sdhc.c revision 1.23 1 /* $NetBSD: sdhc.c,v 1.23 2012/07/20 02:04:13 matt Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.23 2012/07/20 02:04:13 matt Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args const * saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 aprint_normal(" slot %d", HDEVINST(hp));
230
231 return UNCONF;
232 }
233
234 /*
235 * Called by attachment driver. For each SD card slot there is one SD
236 * host controller standard register set. (1.3)
237 */
238 int
239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 bus_space_handle_t ioh, bus_size_t iosize)
241 {
242 struct sdmmcbus_attach_args saa;
243 struct sdhc_host *hp;
244 uint32_t caps;
245 uint16_t sdhcver;
246
247 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 switch (SDHC_SPEC_VERSION(sdhcver)) {
250 case SDHC_SPEC_VERS_100:
251 aprint_normal("1.0");
252 break;
253
254 case SDHC_SPEC_VERS_200:
255 aprint_normal("2.0");
256 break;
257
258 case SDHC_SPEC_VERS_300:
259 aprint_normal("3.0");
260 break;
261
262 default:
263 aprint_normal("unknown version(0x%x)",
264 SDHC_SPEC_VERSION(sdhcver));
265 break;
266 }
267 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268
269 /* Allocate one more host structure. */
270 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 if (hp == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "couldn't alloc memory (sdhc host)\n");
274 goto err1;
275 }
276 sc->sc_host[sc->sc_nhosts++] = hp;
277
278 /* Fill in the new host structure. */
279 hp->sc = sc;
280 hp->iot = iot;
281 hp->ioh = ioh;
282 hp->dmat = sc->sc_dmat;
283 hp->specver = SDHC_SPEC_VERSION(sdhcver);
284
285 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 cv_init(&hp->intr_cv, "sdhcintr");
288
289 /*
290 * Reset the host controller and enable interrupts.
291 */
292 (void)sdhc_host_reset(hp);
293
294 /* Determine host capabilities. */
295 mutex_enter(&hp->host_mtx);
296 caps = HREAD4(hp, SDHC_CAPABILITIES);
297 mutex_exit(&hp->host_mtx);
298
299 /* Use DMA if the host system and the controller support it. */
300 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
301 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
302 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
303 SET(hp->flags, SHF_USE_DMA);
304 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
305 }
306
307 /*
308 * Determine the base clock frequency. (2.2.24)
309 */
310 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
311 if (hp->clkbase == 0) {
312 if (sc->sc_clkbase == 0) {
313 /* The attachment driver must tell us. */
314 aprint_error_dev(sc->sc_dev,
315 "unknown base clock frequency\n");
316 goto err;
317 }
318 hp->clkbase = sc->sc_clkbase;
319 }
320 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
321 /* SDHC 1.0 supports only 10-63 MHz. */
322 aprint_error_dev(sc->sc_dev,
323 "base clock frequency out of range: %u MHz\n",
324 hp->clkbase / 1000);
325 goto err;
326 }
327 DPRINTF(1,("%s: base clock frequency %u MHz\n",
328 device_xname(sc->sc_dev), hp->clkbase / 1000));
329
330 /*
331 * XXX Set the data timeout counter value according to
332 * capabilities. (2.2.15)
333 */
334 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
335 #if 0
336 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
337 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
338 #endif
339
340 /*
341 * Determine SD bus voltage levels supported by the controller.
342 */
343 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
344 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
345 }
346 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
347 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
348 }
349 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
350 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
351 }
352
353 /*
354 * Determine the maximum block length supported by the host
355 * controller. (2.2.24)
356 */
357 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
358 case SDHC_MAX_BLK_LEN_512:
359 hp->maxblklen = 512;
360 break;
361
362 case SDHC_MAX_BLK_LEN_1024:
363 hp->maxblklen = 1024;
364 break;
365
366 case SDHC_MAX_BLK_LEN_2048:
367 hp->maxblklen = 2048;
368 break;
369
370 case SDHC_MAX_BLK_LEN_4096:
371 hp->maxblklen = 4096;
372 break;
373
374 default:
375 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
376 goto err;
377 }
378 DPRINTF(1, ("%s: max block length %u byte%s\n",
379 device_xname(sc->sc_dev), hp->maxblklen,
380 hp->maxblklen > 1 ? "s" : ""));
381
382 /*
383 * Attach the generic SD/MMC bus driver. (The bus driver must
384 * not invoke any chipset functions before it is attached.)
385 */
386 memset(&saa, 0, sizeof(saa));
387 saa.saa_busname = "sdmmc";
388 saa.saa_sct = &sdhc_functions;
389 saa.saa_sch = hp;
390 saa.saa_dmat = hp->dmat;
391 saa.saa_clkmin = hp->clkbase / 256;
392 saa.saa_clkmax = hp->clkbase;
393 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
394 saa.saa_clkmin /= 2046;
395 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
396 saa.saa_clkmin /= 16;
397 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
398 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
399 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
400 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
401 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
402 if (ISSET(hp->flags, SHF_USE_DMA))
403 saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
404 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
405
406 return 0;
407
408 err:
409 cv_destroy(&hp->intr_cv);
410 mutex_destroy(&hp->intr_mtx);
411 mutex_destroy(&hp->host_mtx);
412 free(hp, M_DEVBUF);
413 sc->sc_host[--sc->sc_nhosts] = NULL;
414 err1:
415 return 1;
416 }
417
418 int
419 sdhc_detach(device_t dev, int flags)
420 {
421 struct sdhc_host *hp = (struct sdhc_host *)dev;
422 struct sdhc_softc *sc = hp->sc;
423 int rv = 0;
424
425 if (hp->sdmmc)
426 rv = config_detach(hp->sdmmc, flags);
427
428 cv_destroy(&hp->intr_cv);
429 mutex_destroy(&hp->intr_mtx);
430 mutex_destroy(&hp->host_mtx);
431 free(hp, M_DEVBUF);
432 sc->sc_host[--sc->sc_nhosts] = NULL;
433
434 return rv;
435 }
436
437 bool
438 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
439 {
440 struct sdhc_softc *sc = device_private(dev);
441 struct sdhc_host *hp;
442 size_t i;
443
444 /* XXX poll for command completion or suspend command
445 * in progress */
446
447 /* Save the host controller state. */
448 for (size_t n = 0; n < sc->sc_nhosts; n++) {
449 hp = sc->sc_host[n];
450 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
451 for (i = 0; i < sizeof hp->regs; i += 4) {
452 uint32_t v = HREAD4(hp, i);
453 hp->regs[i + 0] = (v >> 0);
454 hp->regs[i + 1] = (v >> 8);
455 if (i + 3 < sizeof hp->regs) {
456 hp->regs[i + 2] = (v >> 16);
457 hp->regs[i + 3] = (v >> 24);
458 }
459 }
460 } else {
461 for (i = 0; i < sizeof hp->regs; i++) {
462 hp->regs[i] = HREAD1(hp, i);
463 }
464 }
465 }
466 return true;
467 }
468
469 bool
470 sdhc_resume(device_t dev, const pmf_qual_t *qual)
471 {
472 struct sdhc_softc *sc = device_private(dev);
473 struct sdhc_host *hp;
474 size_t i;
475
476 /* Restore the host controller state. */
477 for (size_t n = 0; n < sc->sc_nhosts; n++) {
478 hp = sc->sc_host[n];
479 (void)sdhc_host_reset(hp);
480 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
481 for (i = 0; i < sizeof hp->regs; i += 4) {
482 if (i + 3 < sizeof hp->regs) {
483 HWRITE4(hp, i,
484 (hp->regs[i + 0] << 0)
485 | (hp->regs[i + 1] << 8)
486 | (hp->regs[i + 2] << 16)
487 | (hp->regs[i + 3] << 24));
488 } else {
489 HWRITE4(hp, i,
490 (hp->regs[i + 0] << 0)
491 | (hp->regs[i + 1] << 8));
492 }
493 }
494 } else {
495 for (i = 0; i < sizeof hp->regs; i++) {
496 HWRITE1(hp, i, hp->regs[i]);
497 }
498 }
499 }
500 return true;
501 }
502
503 bool
504 sdhc_shutdown(device_t dev, int flags)
505 {
506 struct sdhc_softc *sc = device_private(dev);
507 struct sdhc_host *hp;
508
509 /* XXX chip locks up if we don't disable it before reboot. */
510 for (size_t i = 0; i < sc->sc_nhosts; i++) {
511 hp = sc->sc_host[i];
512 (void)sdhc_host_reset(hp);
513 }
514 return true;
515 }
516
517 /*
518 * Reset the host controller. Called during initialization, when
519 * cards are removed, upon resume, and during error recovery.
520 */
521 static int
522 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
523 {
524 struct sdhc_host *hp = (struct sdhc_host *)sch;
525 uint32_t sdhcimask;
526 int error;
527
528 /* Don't lock. */
529
530 /* Disable all interrupts. */
531 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
532 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
533 } else {
534 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
535 }
536
537 /*
538 * Reset the entire host controller and wait up to 100ms for
539 * the controller to clear the reset bit.
540 */
541 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
542 if (error)
543 goto out;
544
545 /* Set data timeout counter value to max for now. */
546 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
547 #if 0
548 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
549 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
550 #endif
551
552 /* Enable interrupts. */
553 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
554 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
555 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
556 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
557 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
558 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
559 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
560 sdhcimask ^=
561 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
562 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
563 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
564 } else {
565 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
566 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
567 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
568 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
569 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
570 }
571
572 out:
573 return error;
574 }
575
576 static int
577 sdhc_host_reset(sdmmc_chipset_handle_t sch)
578 {
579 struct sdhc_host *hp = (struct sdhc_host *)sch;
580 int error;
581
582 mutex_enter(&hp->host_mtx);
583 error = sdhc_host_reset1(sch);
584 mutex_exit(&hp->host_mtx);
585
586 return error;
587 }
588
589 static uint32_t
590 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
591 {
592 struct sdhc_host *hp = (struct sdhc_host *)sch;
593
594 return hp->ocr;
595 }
596
597 static int
598 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
599 {
600 struct sdhc_host *hp = (struct sdhc_host *)sch;
601
602 return hp->maxblklen;
603 }
604
605 /*
606 * Return non-zero if the card is currently inserted.
607 */
608 static int
609 sdhc_card_detect(sdmmc_chipset_handle_t sch)
610 {
611 struct sdhc_host *hp = (struct sdhc_host *)sch;
612 int r;
613
614 mutex_enter(&hp->host_mtx);
615 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
616 mutex_exit(&hp->host_mtx);
617
618 return r ? 1 : 0;
619 }
620
621 /*
622 * Return non-zero if the card is currently write-protected.
623 */
624 static int
625 sdhc_write_protect(sdmmc_chipset_handle_t sch)
626 {
627 struct sdhc_host *hp = (struct sdhc_host *)sch;
628 int r;
629
630 mutex_enter(&hp->host_mtx);
631 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
632 mutex_exit(&hp->host_mtx);
633
634 return r ? 0 : 1;
635 }
636
637 /*
638 * Set or change SD bus voltage and enable or disable SD bus power.
639 * Return zero on success.
640 */
641 static int
642 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
643 {
644 struct sdhc_host *hp = (struct sdhc_host *)sch;
645 uint8_t vdd;
646 int error = 0;
647
648 mutex_enter(&hp->host_mtx);
649
650 /*
651 * Disable bus power before voltage change.
652 */
653 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
654 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
655 HWRITE1(hp, SDHC_POWER_CTL, 0);
656
657 /* If power is disabled, reset the host and return now. */
658 if (ocr == 0) {
659 (void)sdhc_host_reset1(hp);
660 goto out;
661 }
662
663 /*
664 * Select the lowest voltage according to capabilities.
665 */
666 ocr &= hp->ocr;
667 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
668 vdd = SDHC_VOLTAGE_1_8V;
669 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
670 vdd = SDHC_VOLTAGE_3_0V;
671 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
672 vdd = SDHC_VOLTAGE_3_3V;
673 } else {
674 /* Unsupported voltage level requested. */
675 error = EINVAL;
676 goto out;
677 }
678
679 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
680 /*
681 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
682 * voltage ramp until power rises.
683 */
684 HWRITE1(hp, SDHC_POWER_CTL,
685 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
686 sdmmc_delay(10000);
687
688 /*
689 * The host system may not power the bus due to battery low,
690 * etc. In that case, the host controller should clear the
691 * bus power bit.
692 */
693 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
694 error = ENXIO;
695 goto out;
696 }
697 }
698
699 out:
700 mutex_exit(&hp->host_mtx);
701
702 return error;
703 }
704
705 /*
706 * Return the smallest possible base clock frequency divisor value
707 * for the CLOCK_CTL register to produce `freq' (KHz).
708 */
709 static bool
710 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
711 {
712 u_int div;
713
714 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
715 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
716 if ((hp->clkbase / div) <= freq) {
717 *divp = SDHC_SDCLK_CGM
718 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
719 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
720 //freq = hp->clkbase / div;
721 return true;
722 }
723 }
724 /* No divisor found. */
725 return false;
726 }
727 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
728 u_int dvs = (hp->clkbase + freq - 1) / freq;
729 u_int roundup = dvs & 1;
730 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
731 if (dvs + roundup <= 16) {
732 dvs += roundup - 1;
733 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
734 | (dvs << SDHC_SDCLK_DVS_SHIFT);
735 DPRINTF(2,
736 ("%s: divisor for freq %u is %u * %u\n",
737 HDEVNAME(hp), freq, div * 2, dvs + 1));
738 //freq = hp->clkbase / (div * 2) * (dvs + 1);
739 return true;
740 }
741 /*
742 * If we drop bits, we need to round up the divisor.
743 */
744 roundup |= dvs & 1;
745 }
746 /* No divisor found. */
747 return false;
748 } else {
749 for (div = 1; div <= 256; div *= 2) {
750 if ((hp->clkbase / div) <= freq) {
751 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
752 //freq = hp->clkbase / div;
753 return true;
754 }
755 }
756 }
757 /* No divisor found. */
758 return false;
759 }
760
761 /*
762 * Set or change SDCLK frequency or disable the SD clock.
763 * Return zero on success.
764 */
765 static int
766 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
767 {
768 struct sdhc_host *hp = (struct sdhc_host *)sch;
769 u_int div;
770 u_int timo;
771 int error = 0;
772 #ifdef DIAGNOSTIC
773 bool present;
774
775 mutex_enter(&hp->host_mtx);
776 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
777 mutex_exit(&hp->host_mtx);
778
779 /* Must not stop the clock if commands are in progress. */
780 if (present && sdhc_card_detect(hp)) {
781 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
782 device_xname(hp->sc->sc_dev));
783 }
784 #endif
785
786 mutex_enter(&hp->host_mtx);
787
788 /*
789 * Stop SD clock before changing the frequency.
790 */
791 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
792 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
793 if (freq == SDMMC_SDCLK_OFF) {
794 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
795 goto out;
796 }
797 } else {
798 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
799 if (freq == SDMMC_SDCLK_OFF)
800 goto out;
801 }
802
803 /*
804 * Set the minimum base clock frequency divisor.
805 */
806 if (!sdhc_clock_divisor(hp, freq, &div)) {
807 /* Invalid base clock frequency or `freq' value. */
808 error = EINVAL;
809 goto out;
810 }
811 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
812 HWRITE4(hp, SDHC_CLOCK_CTL,
813 div | (SDHC_TIMEOUT_MAX << 16));
814 } else {
815 HWRITE2(hp, SDHC_CLOCK_CTL, div);
816 }
817
818 /*
819 * Start internal clock. Wait 10ms for stabilization.
820 */
821 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
822 sdmmc_delay(10000);
823 HSET4(hp, SDHC_CLOCK_CTL,
824 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
825 } else {
826 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
827 for (timo = 1000; timo > 0; timo--) {
828 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
829 SDHC_INTCLK_STABLE))
830 break;
831 sdmmc_delay(10);
832 }
833 if (timo == 0) {
834 error = ETIMEDOUT;
835 goto out;
836 }
837 }
838
839 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
840 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
841 /*
842 * Sending 80 clocks at 400kHz takes 200us.
843 * So delay for that time + slop and then
844 * check a few times for completion.
845 */
846 sdmmc_delay(210);
847 for (timo = 10; timo > 0; timo--) {
848 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
849 SDHC_INIT_ACTIVE))
850 break;
851 sdmmc_delay(10);
852 }
853 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
854
855 /*
856 * Enable SD clock.
857 */
858 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
859 } else {
860 /*
861 * Enable SD clock.
862 */
863 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
864
865 if (freq > 25000)
866 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
867 else
868 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
869 }
870
871 out:
872 mutex_exit(&hp->host_mtx);
873
874 return error;
875 }
876
877 static int
878 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
879 {
880 struct sdhc_host *hp = (struct sdhc_host *)sch;
881 int reg;
882
883 switch (width) {
884 case 1:
885 case 4:
886 break;
887
888 case 8:
889 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
890 break;
891 /* FALLTHROUGH */
892 default:
893 DPRINTF(0,("%s: unsupported bus width (%d)\n",
894 HDEVNAME(hp), width));
895 return 1;
896 }
897
898 mutex_enter(&hp->host_mtx);
899 reg = HREAD1(hp, SDHC_HOST_CTL);
900 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
901 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
902 if (width == 4)
903 reg |= SDHC_4BIT_MODE;
904 else if (width == 8)
905 reg |= SDHC_ESDHC_8BIT_MODE;
906 } else {
907 reg &= ~SDHC_4BIT_MODE;
908 if (width == 4)
909 reg |= SDHC_4BIT_MODE;
910 }
911 HWRITE1(hp, SDHC_HOST_CTL, reg);
912 mutex_exit(&hp->host_mtx);
913
914 return 0;
915 }
916
917 static int
918 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
919 {
920
921 /* Nothing ?? */
922 return 0;
923 }
924
925 static void
926 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
927 {
928 struct sdhc_host *hp = (struct sdhc_host *)sch;
929
930 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
931 mutex_enter(&hp->host_mtx);
932 if (enable) {
933 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
934 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
935 } else {
936 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
937 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
938 }
939 mutex_exit(&hp->host_mtx);
940 }
941 }
942
943 static void
944 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
945 {
946 struct sdhc_host *hp = (struct sdhc_host *)sch;
947
948 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
949 mutex_enter(&hp->host_mtx);
950 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
951 mutex_exit(&hp->host_mtx);
952 }
953 }
954
955 static int
956 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
957 {
958 uint32_t state;
959 int timeout;
960
961 for (timeout = 10; timeout > 0; timeout--) {
962 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
963 return 0;
964 sdmmc_delay(10000);
965 }
966 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
967 value, state));
968 return ETIMEDOUT;
969 }
970
971 static void
972 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
973 {
974 struct sdhc_host *hp = (struct sdhc_host *)sch;
975 int error;
976
977 #if 0
978 if (cmd->c_data) {
979 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
980 if (ISSET(hp->flags, SHF_USE_DMA)) {
981 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
982 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
983 } else {
984 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
985 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
986 }
987 }
988 #endif
989
990 /*
991 * Start the MMC command, or mark `cmd' as failed and return.
992 */
993 error = sdhc_start_command(hp, cmd);
994 if (error) {
995 cmd->c_error = error;
996 goto out;
997 }
998
999 /*
1000 * Wait until the command phase is done, or until the command
1001 * is marked done for any other reason.
1002 */
1003 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1004 cmd->c_error = ETIMEDOUT;
1005 goto out;
1006 }
1007
1008 /*
1009 * The host controller removes bits [0:7] from the response
1010 * data (CRC) and we pass the data up unchanged to the bus
1011 * driver (without padding).
1012 */
1013 mutex_enter(&hp->host_mtx);
1014 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1015 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1016 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1017 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1018 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1019 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1020 }
1021 }
1022 mutex_exit(&hp->host_mtx);
1023 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), be32toh(cmd->c_resp[0])));
1024
1025 /*
1026 * If the command has data to transfer in any direction,
1027 * execute the transfer now.
1028 */
1029 if (cmd->c_error == 0 && cmd->c_data != NULL)
1030 sdhc_transfer_data(hp, cmd);
1031
1032 out:
1033 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1034 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1035 mutex_enter(&hp->host_mtx);
1036 /* Turn off the LED. */
1037 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1038 mutex_exit(&hp->host_mtx);
1039 }
1040 SET(cmd->c_flags, SCF_ITSDONE);
1041
1042 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1043 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1044 cmd->c_flags, cmd->c_error));
1045 }
1046
1047 static int
1048 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1049 {
1050 struct sdhc_softc * const sc = hp->sc;
1051 uint16_t blksize = 0;
1052 uint16_t blkcount = 0;
1053 uint16_t mode;
1054 uint16_t command;
1055 int error;
1056
1057 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1058 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1059 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1060
1061 /*
1062 * The maximum block length for commands should be the minimum
1063 * of the host buffer size and the card buffer size. (1.7.2)
1064 */
1065
1066 /* Fragment the data into proper blocks. */
1067 if (cmd->c_datalen > 0) {
1068 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1069 blkcount = cmd->c_datalen / blksize;
1070 if (cmd->c_datalen % blksize > 0) {
1071 /* XXX: Split this command. (1.7.4) */
1072 aprint_error_dev(sc->sc_dev,
1073 "data not a multiple of %u bytes\n", blksize);
1074 return EINVAL;
1075 }
1076 }
1077
1078 /* Check limit imposed by 9-bit block count. (1.7.2) */
1079 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1080 aprint_error_dev(sc->sc_dev, "too much data\n");
1081 return EINVAL;
1082 }
1083
1084 /* Prepare transfer mode register value. (2.2.5) */
1085 mode = SDHC_BLOCK_COUNT_ENABLE;
1086 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1087 mode |= SDHC_READ_MODE;
1088 if (blkcount > 1) {
1089 mode |= SDHC_MULTI_BLOCK_MODE;
1090 /* XXX only for memory commands? */
1091 mode |= SDHC_AUTO_CMD12_ENABLE;
1092 }
1093 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1094 mode |= SDHC_DMA_ENABLE;
1095 }
1096
1097 /*
1098 * Prepare command register value. (2.2.6)
1099 */
1100 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1101
1102 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1103 command |= SDHC_CRC_CHECK_ENABLE;
1104 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1105 command |= SDHC_INDEX_CHECK_ENABLE;
1106 if (cmd->c_data != NULL)
1107 command |= SDHC_DATA_PRESENT_SELECT;
1108
1109 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1110 command |= SDHC_NO_RESPONSE;
1111 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1112 command |= SDHC_RESP_LEN_136;
1113 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1114 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1115 else
1116 command |= SDHC_RESP_LEN_48;
1117
1118 /* Wait until command and data inhibit bits are clear. (1.5) */
1119 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1120 if (error)
1121 return error;
1122
1123 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1124 HDEVNAME(hp), blksize, blkcount, mode, command));
1125
1126 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1127 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1128
1129 mutex_enter(&hp->host_mtx);
1130
1131 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1132 /* Alert the user not to remove the card. */
1133 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1134 }
1135
1136 /* Set DMA start address. */
1137 if (ISSET(mode, SDHC_DMA_ENABLE))
1138 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1139
1140 /*
1141 * Start a CPU data transfer. Writing to the high order byte
1142 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1143 */
1144 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1145 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1146 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1147 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1148 } else {
1149 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1150 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1151 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1152 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1153 HWRITE2(hp, SDHC_COMMAND, command);
1154 }
1155
1156 mutex_exit(&hp->host_mtx);
1157
1158 return 0;
1159 }
1160
1161 static void
1162 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1163 {
1164 int error;
1165
1166 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1167 MMC_R1(cmd->c_resp), cmd->c_datalen));
1168
1169 #ifdef SDHC_DEBUG
1170 /* XXX I forgot why I wanted to know when this happens :-( */
1171 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1172 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1173 aprint_error_dev(hp->sc->sc_dev,
1174 "CMD52/53 error response flags %#x\n",
1175 MMC_R1(cmd->c_resp) & 0xff00);
1176 }
1177 #endif
1178
1179 if (cmd->c_dmamap != NULL)
1180 error = sdhc_transfer_data_dma(hp, cmd);
1181 else
1182 error = sdhc_transfer_data_pio(hp, cmd);
1183 if (error)
1184 cmd->c_error = error;
1185 SET(cmd->c_flags, SCF_ITSDONE);
1186
1187 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1188 HDEVNAME(hp), cmd->c_error));
1189 }
1190
1191 static int
1192 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1193 {
1194 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1195 bus_addr_t posaddr;
1196 bus_addr_t segaddr;
1197 bus_size_t seglen;
1198 u_int seg = 0;
1199 int error = 0;
1200 int status;
1201
1202 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1203 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1204 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1205 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1206
1207 for (;;) {
1208 status = sdhc_wait_intr(hp,
1209 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1210 SDHC_DMA_TIMEOUT);
1211
1212 if (status & SDHC_TRANSFER_COMPLETE) {
1213 break;
1214 }
1215 if (!status) {
1216 error = ETIMEDOUT;
1217 break;
1218 }
1219 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1220 continue;
1221 }
1222
1223 /* DMA Interrupt (boundary crossing) */
1224
1225 segaddr = dm_segs[seg].ds_addr;
1226 seglen = dm_segs[seg].ds_len;
1227 mutex_enter(&hp->host_mtx);
1228 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1229 mutex_exit(&hp->host_mtx);
1230
1231 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1232 break;
1233 }
1234 mutex_enter(&hp->host_mtx);
1235 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1236 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1237 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1238 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1239 mutex_exit(&hp->host_mtx);
1240 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1241 }
1242
1243 return error;
1244 }
1245
1246 static int
1247 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1248 {
1249 uint8_t *data = cmd->c_data;
1250 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1251 u_int len, datalen;
1252 u_int imask;
1253 u_int pmask;
1254 int error = 0;
1255
1256 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1257 imask = SDHC_BUFFER_READ_READY;
1258 pmask = SDHC_BUFFER_READ_ENABLE;
1259 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1260 pio_func = esdhc_read_data_pio;
1261 } else {
1262 pio_func = sdhc_read_data_pio;
1263 }
1264 } else {
1265 imask = SDHC_BUFFER_WRITE_READY;
1266 pmask = SDHC_BUFFER_WRITE_ENABLE;
1267 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1268 pio_func = esdhc_write_data_pio;
1269 } else {
1270 pio_func = sdhc_write_data_pio;
1271 }
1272 }
1273 datalen = cmd->c_datalen;
1274
1275 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1276 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1277 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1278
1279 while (datalen > 0) {
1280 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1281 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1282 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1283 } else {
1284 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1285 }
1286 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1287 error = ETIMEDOUT;
1288 break;
1289 }
1290
1291 error = sdhc_wait_state(hp, pmask, pmask);
1292 if (error)
1293 break;
1294 }
1295
1296 len = MIN(datalen, cmd->c_blklen);
1297 (*pio_func)(hp, data, len);
1298 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1299 HDEVNAME(hp), len, data));
1300
1301 data += len;
1302 datalen -= len;
1303 }
1304
1305 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1306 SDHC_TRANSFER_TIMEOUT))
1307 error = ETIMEDOUT;
1308
1309 return error;
1310 }
1311
1312 static void
1313 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1314 {
1315
1316 if (((__uintptr_t)data & 3) == 0) {
1317 while (datalen > 3) {
1318 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1319 data += 4;
1320 datalen -= 4;
1321 }
1322 if (datalen > 1) {
1323 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1324 data += 2;
1325 datalen -= 2;
1326 }
1327 if (datalen > 0) {
1328 *data = HREAD1(hp, SDHC_DATA);
1329 data += 1;
1330 datalen -= 1;
1331 }
1332 } else if (((__uintptr_t)data & 1) == 0) {
1333 while (datalen > 1) {
1334 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1335 data += 2;
1336 datalen -= 2;
1337 }
1338 if (datalen > 0) {
1339 *data = HREAD1(hp, SDHC_DATA);
1340 data += 1;
1341 datalen -= 1;
1342 }
1343 } else {
1344 while (datalen > 0) {
1345 *data = HREAD1(hp, SDHC_DATA);
1346 data += 1;
1347 datalen -= 1;
1348 }
1349 }
1350 }
1351
1352 static void
1353 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1354 {
1355
1356 if (((__uintptr_t)data & 3) == 0) {
1357 while (datalen > 3) {
1358 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1359 data += 4;
1360 datalen -= 4;
1361 }
1362 if (datalen > 1) {
1363 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1364 data += 2;
1365 datalen -= 2;
1366 }
1367 if (datalen > 0) {
1368 HWRITE1(hp, SDHC_DATA, *data);
1369 data += 1;
1370 datalen -= 1;
1371 }
1372 } else if (((__uintptr_t)data & 1) == 0) {
1373 while (datalen > 1) {
1374 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1375 data += 2;
1376 datalen -= 2;
1377 }
1378 if (datalen > 0) {
1379 HWRITE1(hp, SDHC_DATA, *data);
1380 data += 1;
1381 datalen -= 1;
1382 }
1383 } else {
1384 while (datalen > 0) {
1385 HWRITE1(hp, SDHC_DATA, *data);
1386 data += 1;
1387 datalen -= 1;
1388 }
1389 }
1390 }
1391
1392 static void
1393 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1394 {
1395 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1396 uint32_t v;
1397
1398 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1399 size_t count = 0;
1400
1401 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1402 if (count == 0) {
1403 /*
1404 * If we've drained "watermark" words, we need to wait
1405 * a little bit so the read FIFO can refill.
1406 */
1407 sdmmc_delay(10);
1408 count = watermark;
1409 }
1410 v = HREAD4(hp, SDHC_DATA);
1411 v = le32toh(v);
1412 *(uint32_t *)data = v;
1413 data += 4;
1414 datalen -= 4;
1415 status = HREAD2(hp, SDHC_NINTR_STATUS);
1416 count--;
1417 }
1418 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1419 if (count == 0) {
1420 sdmmc_delay(10);
1421 }
1422 v = HREAD4(hp, SDHC_DATA);
1423 v = le32toh(v);
1424 do {
1425 *data++ = v;
1426 v >>= 8;
1427 } while (--datalen > 0);
1428 }
1429 }
1430
1431 static void
1432 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1433 {
1434 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1435 uint32_t v;
1436
1437 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1438 size_t count = watermark;
1439
1440 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1441 if (count == 0) {
1442 sdmmc_delay(10);
1443 count = watermark;
1444 }
1445 v = *(uint32_t *)data;
1446 v = htole32(v);
1447 HWRITE4(hp, SDHC_DATA, v);
1448 data += 4;
1449 datalen -= 4;
1450 status = HREAD2(hp, SDHC_NINTR_STATUS);
1451 count--;
1452 }
1453 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1454 if (count == 0) {
1455 sdmmc_delay(10);
1456 }
1457 v = *(uint32_t *)data;
1458 v = htole32(v);
1459 HWRITE4(hp, SDHC_DATA, v);
1460 }
1461 }
1462
1463 /* Prepare for another command. */
1464 static int
1465 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1466 {
1467 int timo;
1468
1469 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1470
1471 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1472 for (timo = 10; timo > 0; timo--) {
1473 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1474 break;
1475 sdmmc_delay(10000);
1476 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1477 }
1478 if (timo == 0) {
1479 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1480 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1481 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1482 return ETIMEDOUT;
1483 }
1484
1485 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1486 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1487 }
1488
1489 return 0;
1490 }
1491
1492 static int
1493 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1494 {
1495 int status;
1496
1497 mask |= SDHC_ERROR_INTERRUPT;
1498
1499 mutex_enter(&hp->intr_mtx);
1500 status = hp->intr_status & mask;
1501 while (status == 0) {
1502 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1503 == EWOULDBLOCK) {
1504 status |= SDHC_ERROR_INTERRUPT;
1505 break;
1506 }
1507 status = hp->intr_status & mask;
1508 }
1509 hp->intr_status &= ~status;
1510
1511 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1512 hp->intr_error_status));
1513
1514 /* Command timeout has higher priority than command complete. */
1515 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1516 hp->intr_error_status = 0;
1517 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1518 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1519 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1520 }
1521 status = 0;
1522 }
1523 mutex_exit(&hp->intr_mtx);
1524
1525 return status;
1526 }
1527
1528 /*
1529 * Established by attachment driver at interrupt priority IPL_SDMMC.
1530 */
1531 int
1532 sdhc_intr(void *arg)
1533 {
1534 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1535 struct sdhc_host *hp;
1536 int done = 0;
1537 uint16_t status;
1538 uint16_t error;
1539
1540 /* We got an interrupt, but we don't know from which slot. */
1541 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1542 hp = sc->sc_host[host];
1543 if (hp == NULL)
1544 continue;
1545
1546 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1547 /* Find out which interrupts are pending. */
1548 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1549 status = xstatus;
1550 error = xstatus >> 16;
1551 if (error)
1552 xstatus |= SDHC_ERROR_INTERRUPT;
1553 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1554 continue; /* no interrupt for us */
1555 /* Acknowledge the interrupts we are about to handle. */
1556 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1557 } else {
1558 /* Find out which interrupts are pending. */
1559 error = 0;
1560 status = HREAD2(hp, SDHC_NINTR_STATUS);
1561 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1562 continue; /* no interrupt for us */
1563 /* Acknowledge the interrupts we are about to handle. */
1564 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1565 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1566 /* Acknowledge error interrupts. */
1567 error = HREAD2(hp, SDHC_EINTR_STATUS);
1568 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1569 }
1570 }
1571
1572 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1573 status, error));
1574
1575 /* Claim this interrupt. */
1576 done = 1;
1577
1578 /*
1579 * Service error interrupts.
1580 */
1581 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1582 SDHC_DATA_TIMEOUT_ERROR)) {
1583 hp->intr_error_status |= error;
1584 hp->intr_status |= status;
1585 cv_broadcast(&hp->intr_cv);
1586 }
1587
1588 /*
1589 * Wake up the sdmmc event thread to scan for cards.
1590 */
1591 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1592 sdmmc_needs_discover(hp->sdmmc);
1593 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1594 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1595 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1596 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1597 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1598 }
1599 }
1600
1601 /*
1602 * Wake up the blocking process to service command
1603 * related interrupt(s).
1604 */
1605 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1606 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1607 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1608 hp->intr_status |= status;
1609 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1610 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1611 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1612 }
1613 cv_broadcast(&hp->intr_cv);
1614 }
1615
1616 /*
1617 * Service SD card interrupts.
1618 */
1619 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1620 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1621 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1622 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1623 sdmmc_card_intr(hp->sdmmc);
1624 }
1625 }
1626
1627 return done;
1628 }
1629
1630 #ifdef SDHC_DEBUG
1631 void
1632 sdhc_dump_regs(struct sdhc_host *hp)
1633 {
1634
1635 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1636 HREAD4(hp, SDHC_PRESENT_STATE));
1637 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1638 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1639 HREAD1(hp, SDHC_POWER_CTL));
1640 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1641 HREAD2(hp, SDHC_NINTR_STATUS));
1642 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1643 HREAD2(hp, SDHC_EINTR_STATUS));
1644 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1645 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1646 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1647 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1648 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1649 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1650 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1651 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1652 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1653 HREAD4(hp, SDHC_CAPABILITIES));
1654 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1655 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1656 }
1657 #endif
1658