Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.26
      1 /*	$NetBSD: sdhc.c,v 1.26 2012/07/26 18:36:09 matt Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.26 2012/07/26 18:36:09 matt Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_dma_tag_t dmat;		/* host DMA tag */
     66 
     67 	device_t sdmmc;			/* generic SD/MMC device */
     68 
     69 	struct kmutex host_mtx;
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	struct kmutex intr_mtx;
     80 	struct kcondvar intr_cv;
     81 
     82 	int specver;			/* spec. version */
     83 
     84 	uint32_t flags;			/* flags for this host */
     85 #define SHF_USE_DMA		0x0001
     86 #define SHF_USE_4BIT_MODE	0x0002
     87 #define SHF_USE_8BIT_MODE	0x0004
     88 };
     89 
     90 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91 #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     92 
     93 static uint8_t
     94 hread1(struct sdhc_host *hp, bus_size_t reg)
     95 {
     96 
     97 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     98 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     99 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    100 }
    101 
    102 static uint16_t
    103 hread2(struct sdhc_host *hp, bus_size_t reg)
    104 {
    105 
    106 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    107 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    108 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    109 }
    110 
    111 #define HREAD1(hp, reg)		hread1(hp, reg)
    112 #define HREAD2(hp, reg)		hread2(hp, reg)
    113 #define HREAD4(hp, reg)		\
    114 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    115 
    116 
    117 static void
    118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    119 {
    120 
    121 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    122 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    123 	} else {
    124 		const size_t shift = 8 * (o & 3);
    125 		o &= -4;
    126 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    127 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    128 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    129 	}
    130 }
    131 
    132 static void
    133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    134 {
    135 
    136 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    138 	} else {
    139 		const size_t shift = 8 * (o & 2);
    140 		o &= -4;
    141 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    143 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144 	}
    145 }
    146 
    147 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    148 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    149 #define HWRITE4(hp, reg, val)						\
    150 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    151 
    152 #define HCLR1(hp, reg, bits)						\
    153 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    154 #define HCLR2(hp, reg, bits)						\
    155 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    156 #define HCLR4(hp, reg, bits)						\
    157 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    158 #define HSET1(hp, reg, bits)						\
    159 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    160 #define HSET2(hp, reg, bits)						\
    161 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    162 #define HSET4(hp, reg, bits)						\
    163 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    164 
    165 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    166 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    167 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    168 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    169 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    170 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    171 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    172 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    173 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    174 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    175 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    176 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    177 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    178 		    struct sdmmc_command *);
    179 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    180 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    181 static int	sdhc_soft_reset(struct sdhc_host *, int);
    182 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    183 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    184 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    185 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    186 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190 
    191 
    192 static struct sdmmc_chip_functions sdhc_functions = {
    193 	/* host controller reset */
    194 	sdhc_host_reset,
    195 
    196 	/* host controller capabilities */
    197 	sdhc_host_ocr,
    198 	sdhc_host_maxblklen,
    199 
    200 	/* card detection */
    201 	sdhc_card_detect,
    202 
    203 	/* write protect */
    204 	sdhc_write_protect,
    205 
    206 	/* bus power, clock frequency and width */
    207 	sdhc_bus_power,
    208 	sdhc_bus_clock,
    209 	sdhc_bus_width,
    210 	sdhc_bus_rod,
    211 
    212 	/* command execution */
    213 	sdhc_exec_command,
    214 
    215 	/* card interrupt */
    216 	sdhc_card_enable_intr,
    217 	sdhc_card_intr_ack
    218 };
    219 
    220 static int
    221 sdhc_cfprint(void *aux, const char *pnp)
    222 {
    223 	const struct sdmmcbus_attach_args const * saa = aux;
    224 	const struct sdhc_host * const hp = saa->saa_sch;
    225 
    226 	if (pnp) {
    227 		aprint_normal("sdmmc at %s", pnp);
    228 	}
    229 	aprint_normal(" slot %d", HDEVINST(hp));
    230 
    231 	return UNCONF;
    232 }
    233 
    234 /*
    235  * Called by attachment driver.  For each SD card slot there is one SD
    236  * host controller standard register set. (1.3)
    237  */
    238 int
    239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    240     bus_space_handle_t ioh, bus_size_t iosize)
    241 {
    242 	struct sdmmcbus_attach_args saa;
    243 	struct sdhc_host *hp;
    244 	uint32_t caps;
    245 	uint16_t sdhcver;
    246 
    247 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
    248 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    249 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    250 	case SDHC_SPEC_VERS_100:
    251 		aprint_normal("1.0");
    252 		break;
    253 
    254 	case SDHC_SPEC_VERS_200:
    255 		aprint_normal("2.0");
    256 		break;
    257 
    258 	case SDHC_SPEC_VERS_300:
    259 		aprint_normal("3.0");
    260 		break;
    261 
    262 	default:
    263 		aprint_normal("unknown version(0x%x)",
    264 		    SDHC_SPEC_VERSION(sdhcver));
    265 		break;
    266 	}
    267 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    268 
    269 	/* Allocate one more host structure. */
    270 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    271 	if (hp == NULL) {
    272 		aprint_error_dev(sc->sc_dev,
    273 		    "couldn't alloc memory (sdhc host)\n");
    274 		goto err1;
    275 	}
    276 	sc->sc_host[sc->sc_nhosts++] = hp;
    277 
    278 	/* Fill in the new host structure. */
    279 	hp->sc = sc;
    280 	hp->iot = iot;
    281 	hp->ioh = ioh;
    282 	hp->dmat = sc->sc_dmat;
    283 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    284 
    285 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    286 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    287 	cv_init(&hp->intr_cv, "sdhcintr");
    288 
    289 	/*
    290 	 * Reset the host controller and enable interrupts.
    291 	 */
    292 	(void)sdhc_host_reset(hp);
    293 
    294 	/* Determine host capabilities. */
    295 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    296 		caps = sc->sc_caps;
    297 	} else {
    298 		mutex_enter(&hp->host_mtx);
    299 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    300 		mutex_exit(&hp->host_mtx);
    301 	}
    302 
    303 	/* Use DMA if the host system and the controller support it. */
    304 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
    305 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
    306 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
    307 		SET(hp->flags, SHF_USE_DMA);
    308 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    309 	}
    310 
    311 	/*
    312 	 * Determine the base clock frequency. (2.2.24)
    313 	 */
    314 	hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    315 	if (hp->clkbase == 0) {
    316 		if (sc->sc_clkbase == 0) {
    317 			/* The attachment driver must tell us. */
    318 			aprint_error_dev(sc->sc_dev,
    319 			    "unknown base clock frequency\n");
    320 			goto err;
    321 		}
    322 		hp->clkbase = sc->sc_clkbase;
    323 	}
    324 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    325 		/* SDHC 1.0 supports only 10-63 MHz. */
    326 		aprint_error_dev(sc->sc_dev,
    327 		    "base clock frequency out of range: %u MHz\n",
    328 		    hp->clkbase / 1000);
    329 		goto err;
    330 	}
    331 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    332 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    333 
    334 	/*
    335 	 * XXX Set the data timeout counter value according to
    336 	 * capabilities. (2.2.15)
    337 	 */
    338 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    339 #if 0
    340 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    341 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    342 #endif
    343 
    344 	/*
    345 	 * Determine SD bus voltage levels supported by the controller.
    346 	 */
    347 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    348 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    349 	}
    350 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    351 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    352 	}
    353 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    354 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    355 	}
    356 
    357 	/*
    358 	 * Determine the maximum block length supported by the host
    359 	 * controller. (2.2.24)
    360 	 */
    361 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    362 	case SDHC_MAX_BLK_LEN_512:
    363 		hp->maxblklen = 512;
    364 		break;
    365 
    366 	case SDHC_MAX_BLK_LEN_1024:
    367 		hp->maxblklen = 1024;
    368 		break;
    369 
    370 	case SDHC_MAX_BLK_LEN_2048:
    371 		hp->maxblklen = 2048;
    372 		break;
    373 
    374 	case SDHC_MAX_BLK_LEN_4096:
    375 		hp->maxblklen = 4096;
    376 		break;
    377 
    378 	default:
    379 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    380 		goto err;
    381 	}
    382 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    383 	    device_xname(sc->sc_dev), hp->maxblklen,
    384 	    hp->maxblklen > 1 ? "s" : ""));
    385 
    386 	/*
    387 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    388 	 * not invoke any chipset functions before it is attached.)
    389 	 */
    390 	memset(&saa, 0, sizeof(saa));
    391 	saa.saa_busname = "sdmmc";
    392 	saa.saa_sct = &sdhc_functions;
    393 	saa.saa_sch = hp;
    394 	saa.saa_dmat = hp->dmat;
    395 	saa.saa_clkmin = hp->clkbase / 256;
    396 	saa.saa_clkmax = hp->clkbase;
    397 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    398 		saa.saa_clkmin /= 2046;
    399 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    400 		saa.saa_clkmin /= 16;
    401 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    402 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    403 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    404 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    405 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    406 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    407 		saa.saa_caps |= SMC_CAPS_DMA;
    408 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    409 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    410 		}
    411 	}
    412 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    413 
    414 	return 0;
    415 
    416 err:
    417 	cv_destroy(&hp->intr_cv);
    418 	mutex_destroy(&hp->intr_mtx);
    419 	mutex_destroy(&hp->host_mtx);
    420 	free(hp, M_DEVBUF);
    421 	sc->sc_host[--sc->sc_nhosts] = NULL;
    422 err1:
    423 	return 1;
    424 }
    425 
    426 int
    427 sdhc_detach(device_t dev, int flags)
    428 {
    429 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    430 	struct sdhc_softc *sc = hp->sc;
    431 	int rv = 0;
    432 
    433 	if (hp->sdmmc)
    434 		rv = config_detach(hp->sdmmc, flags);
    435 
    436 	cv_destroy(&hp->intr_cv);
    437 	mutex_destroy(&hp->intr_mtx);
    438 	mutex_destroy(&hp->host_mtx);
    439 	free(hp, M_DEVBUF);
    440 	sc->sc_host[--sc->sc_nhosts] = NULL;
    441 
    442 	return rv;
    443 }
    444 
    445 bool
    446 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    447 {
    448 	struct sdhc_softc *sc = device_private(dev);
    449 	struct sdhc_host *hp;
    450 	size_t i;
    451 
    452 	/* XXX poll for command completion or suspend command
    453 	 * in progress */
    454 
    455 	/* Save the host controller state. */
    456 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    457 		hp = sc->sc_host[n];
    458 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    459 			for (i = 0; i < sizeof hp->regs; i += 4) {
    460 				uint32_t v = HREAD4(hp, i);
    461 				hp->regs[i + 0] = (v >> 0);
    462 				hp->regs[i + 1] = (v >> 8);
    463 				if (i + 3 < sizeof hp->regs) {
    464 					hp->regs[i + 2] = (v >> 16);
    465 					hp->regs[i + 3] = (v >> 24);
    466 				}
    467 			}
    468 		} else {
    469 			for (i = 0; i < sizeof hp->regs; i++) {
    470 				hp->regs[i] = HREAD1(hp, i);
    471 			}
    472 		}
    473 	}
    474 	return true;
    475 }
    476 
    477 bool
    478 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    479 {
    480 	struct sdhc_softc *sc = device_private(dev);
    481 	struct sdhc_host *hp;
    482 	size_t i;
    483 
    484 	/* Restore the host controller state. */
    485 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    486 		hp = sc->sc_host[n];
    487 		(void)sdhc_host_reset(hp);
    488 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    489 			for (i = 0; i < sizeof hp->regs; i += 4) {
    490 				if (i + 3 < sizeof hp->regs) {
    491 					HWRITE4(hp, i,
    492 					    (hp->regs[i + 0] << 0)
    493 					    | (hp->regs[i + 1] << 8)
    494 					    | (hp->regs[i + 2] << 16)
    495 					    | (hp->regs[i + 3] << 24));
    496 				} else {
    497 					HWRITE4(hp, i,
    498 					    (hp->regs[i + 0] << 0)
    499 					    | (hp->regs[i + 1] << 8));
    500 				}
    501 			}
    502 		} else {
    503 			for (i = 0; i < sizeof hp->regs; i++) {
    504 				HWRITE1(hp, i, hp->regs[i]);
    505 			}
    506 		}
    507 	}
    508 	return true;
    509 }
    510 
    511 bool
    512 sdhc_shutdown(device_t dev, int flags)
    513 {
    514 	struct sdhc_softc *sc = device_private(dev);
    515 	struct sdhc_host *hp;
    516 
    517 	/* XXX chip locks up if we don't disable it before reboot. */
    518 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    519 		hp = sc->sc_host[i];
    520 		(void)sdhc_host_reset(hp);
    521 	}
    522 	return true;
    523 }
    524 
    525 /*
    526  * Reset the host controller.  Called during initialization, when
    527  * cards are removed, upon resume, and during error recovery.
    528  */
    529 static int
    530 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    531 {
    532 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    533 	uint32_t sdhcimask;
    534 	int error;
    535 
    536 	/* Don't lock. */
    537 
    538 	/* Disable all interrupts. */
    539 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    540 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    541 	} else {
    542 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    543 	}
    544 
    545 	/*
    546 	 * Reset the entire host controller and wait up to 100ms for
    547 	 * the controller to clear the reset bit.
    548 	 */
    549 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    550 	if (error)
    551 		goto out;
    552 
    553 	/* Set data timeout counter value to max for now. */
    554 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    555 #if 0
    556 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    557 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    558 #endif
    559 
    560 	/* Enable interrupts. */
    561 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    562 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    563 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    564 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    565 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    566 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    567 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    568 		sdhcimask ^=
    569 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    570 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    571 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    572 	} else {
    573 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    574 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    575 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    576 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    577 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    578 	}
    579 
    580 out:
    581 	return error;
    582 }
    583 
    584 static int
    585 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    586 {
    587 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    588 	int error;
    589 
    590 	mutex_enter(&hp->host_mtx);
    591 	error = sdhc_host_reset1(sch);
    592 	mutex_exit(&hp->host_mtx);
    593 
    594 	return error;
    595 }
    596 
    597 static uint32_t
    598 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    599 {
    600 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    601 
    602 	return hp->ocr;
    603 }
    604 
    605 static int
    606 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    607 {
    608 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    609 
    610 	return hp->maxblklen;
    611 }
    612 
    613 /*
    614  * Return non-zero if the card is currently inserted.
    615  */
    616 static int
    617 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    618 {
    619 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    620 	int r;
    621 
    622 	mutex_enter(&hp->host_mtx);
    623 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    624 	mutex_exit(&hp->host_mtx);
    625 
    626 	return r ? 1 : 0;
    627 }
    628 
    629 /*
    630  * Return non-zero if the card is currently write-protected.
    631  */
    632 static int
    633 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    634 {
    635 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    636 	int r;
    637 
    638 	mutex_enter(&hp->host_mtx);
    639 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    640 	mutex_exit(&hp->host_mtx);
    641 
    642 	return r ? 0 : 1;
    643 }
    644 
    645 /*
    646  * Set or change SD bus voltage and enable or disable SD bus power.
    647  * Return zero on success.
    648  */
    649 static int
    650 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    651 {
    652 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    653 	uint8_t vdd;
    654 	int error = 0;
    655 
    656 	mutex_enter(&hp->host_mtx);
    657 
    658 	/*
    659 	 * Disable bus power before voltage change.
    660 	 */
    661 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    662 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    663 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    664 
    665 	/* If power is disabled, reset the host and return now. */
    666 	if (ocr == 0) {
    667 		(void)sdhc_host_reset1(hp);
    668 		goto out;
    669 	}
    670 
    671 	/*
    672 	 * Select the lowest voltage according to capabilities.
    673 	 */
    674 	ocr &= hp->ocr;
    675 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    676 		vdd = SDHC_VOLTAGE_1_8V;
    677 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    678 		vdd = SDHC_VOLTAGE_3_0V;
    679 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    680 		vdd = SDHC_VOLTAGE_3_3V;
    681 	} else {
    682 		/* Unsupported voltage level requested. */
    683 		error = EINVAL;
    684 		goto out;
    685 	}
    686 
    687 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    688 		/*
    689 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    690 		 * voltage ramp until power rises.
    691 		 */
    692 		HWRITE1(hp, SDHC_POWER_CTL,
    693 		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    694 		sdmmc_delay(10000);
    695 
    696 		/*
    697 		 * The host system may not power the bus due to battery low,
    698 		 * etc.  In that case, the host controller should clear the
    699 		 * bus power bit.
    700 		 */
    701 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    702 			error = ENXIO;
    703 			goto out;
    704 		}
    705 	}
    706 
    707 out:
    708 	mutex_exit(&hp->host_mtx);
    709 
    710 	return error;
    711 }
    712 
    713 /*
    714  * Return the smallest possible base clock frequency divisor value
    715  * for the CLOCK_CTL register to produce `freq' (KHz).
    716  */
    717 static bool
    718 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    719 {
    720 	u_int div;
    721 
    722 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    723 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    724 			if ((hp->clkbase / div) <= freq) {
    725 				*divp = SDHC_SDCLK_CGM
    726 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    727 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    728 				//freq = hp->clkbase / div;
    729 				return true;
    730 			}
    731 		}
    732 		/* No divisor found. */
    733 		return false;
    734 	}
    735 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    736 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    737 		u_int roundup = dvs & 1;
    738 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    739 			if (dvs + roundup <= 16) {
    740 				dvs += roundup - 1;
    741 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    742 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    743 				DPRINTF(2,
    744 				    ("%s: divisor for freq %u is %u * %u\n",
    745 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    746 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    747 				return true;
    748 			}
    749 			/*
    750 			 * If we drop bits, we need to round up the divisor.
    751 			 */
    752 			roundup |= dvs & 1;
    753 		}
    754 		/* No divisor found. */
    755 		return false;
    756 	} else {
    757 		for (div = 1; div <= 256; div *= 2) {
    758 			if ((hp->clkbase / div) <= freq) {
    759 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    760 				//freq = hp->clkbase / div;
    761 				return true;
    762 			}
    763 		}
    764 	}
    765 	/* No divisor found. */
    766 	return false;
    767 }
    768 
    769 /*
    770  * Set or change SDCLK frequency or disable the SD clock.
    771  * Return zero on success.
    772  */
    773 static int
    774 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    775 {
    776 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    777 	u_int div;
    778 	u_int timo;
    779 	int error = 0;
    780 #ifdef DIAGNOSTIC
    781 	bool present;
    782 
    783 	mutex_enter(&hp->host_mtx);
    784 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    785 	mutex_exit(&hp->host_mtx);
    786 
    787 	/* Must not stop the clock if commands are in progress. */
    788 	if (present && sdhc_card_detect(hp)) {
    789 		aprint_normal_dev(hp->sc->sc_dev,
    790 		    "%s: command in progress\n", __func__);
    791 	}
    792 #endif
    793 
    794 	mutex_enter(&hp->host_mtx);
    795 
    796 	/*
    797 	 * Stop SD clock before changing the frequency.
    798 	 */
    799 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    800 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    801 		if (freq == SDMMC_SDCLK_OFF) {
    802 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    803 			goto out;
    804 		}
    805 	} else {
    806 		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
    807 		if (freq == SDMMC_SDCLK_OFF)
    808 			goto out;
    809 	}
    810 
    811 	/*
    812 	 * Set the minimum base clock frequency divisor.
    813 	 */
    814 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    815 		/* Invalid base clock frequency or `freq' value. */
    816 		error = EINVAL;
    817 		goto out;
    818 	}
    819 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    820 		HWRITE4(hp, SDHC_CLOCK_CTL,
    821 		    div | (SDHC_TIMEOUT_MAX << 16));
    822 	} else {
    823 		HWRITE2(hp, SDHC_CLOCK_CTL, div);
    824 	}
    825 
    826 	/*
    827 	 * Start internal clock.  Wait 10ms for stabilization.
    828 	 */
    829 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    830 		sdmmc_delay(10000);
    831 		HSET4(hp, SDHC_CLOCK_CTL,
    832 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    833 	} else {
    834 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    835 		for (timo = 1000; timo > 0; timo--) {
    836 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    837 			    SDHC_INTCLK_STABLE))
    838 				break;
    839 			sdmmc_delay(10);
    840 		}
    841 		if (timo == 0) {
    842 			error = ETIMEDOUT;
    843 			goto out;
    844 		}
    845 	}
    846 
    847 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    848 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    849 		/*
    850 		 * Sending 80 clocks at 400kHz takes 200us.
    851 		 * So delay for that time + slop and then
    852 		 * check a few times for completion.
    853 		 */
    854 		sdmmc_delay(210);
    855 		for (timo = 10; timo > 0; timo--) {
    856 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    857 			    SDHC_INIT_ACTIVE))
    858 				break;
    859 			sdmmc_delay(10);
    860 		}
    861 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    862 
    863 		/*
    864 		 * Enable SD clock.
    865 		 */
    866 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    867 	} else {
    868 		/*
    869 		 * Enable SD clock.
    870 		 */
    871 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    872 
    873 		if (freq > 25000)
    874 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    875 		else
    876 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    877 	}
    878 
    879 out:
    880 	mutex_exit(&hp->host_mtx);
    881 
    882 	return error;
    883 }
    884 
    885 static int
    886 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    887 {
    888 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    889 	int reg;
    890 
    891 	switch (width) {
    892 	case 1:
    893 	case 4:
    894 		break;
    895 
    896 	case 8:
    897 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    898 			break;
    899 		/* FALLTHROUGH */
    900 	default:
    901 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    902 		    HDEVNAME(hp), width));
    903 		return 1;
    904 	}
    905 
    906 	mutex_enter(&hp->host_mtx);
    907 	reg = HREAD1(hp, SDHC_HOST_CTL);
    908 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    909 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    910 		if (width == 4)
    911 			reg |= SDHC_4BIT_MODE;
    912 		else if (width == 8)
    913 			reg |= SDHC_ESDHC_8BIT_MODE;
    914 	} else {
    915 		reg &= ~SDHC_4BIT_MODE;
    916 		if (width == 4)
    917 			reg |= SDHC_4BIT_MODE;
    918 	}
    919 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    920 	mutex_exit(&hp->host_mtx);
    921 
    922 	return 0;
    923 }
    924 
    925 static int
    926 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    927 {
    928 
    929 	/* Nothing ?? */
    930 	return 0;
    931 }
    932 
    933 static void
    934 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    935 {
    936 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    937 
    938 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    939 		mutex_enter(&hp->host_mtx);
    940 		if (enable) {
    941 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    942 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    943 		} else {
    944 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    945 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    946 		}
    947 		mutex_exit(&hp->host_mtx);
    948 	}
    949 }
    950 
    951 static void
    952 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    953 {
    954 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    955 
    956 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    957 		mutex_enter(&hp->host_mtx);
    958 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    959 		mutex_exit(&hp->host_mtx);
    960 	}
    961 }
    962 
    963 static int
    964 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    965 {
    966 	uint32_t state;
    967 	int timeout;
    968 
    969 	for (timeout = 10; timeout > 0; timeout--) {
    970 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    971 			return 0;
    972 		sdmmc_delay(10000);
    973 	}
    974 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
    975 	    value, state));
    976 	return ETIMEDOUT;
    977 }
    978 
    979 static void
    980 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
    981 {
    982 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    983 	int error;
    984 
    985 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    986 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
    987 		if (ISSET(hp->flags, SHF_USE_DMA)) {
    988 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    989 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
    990 		} else {
    991 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    992 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
    993 		}
    994 	}
    995 
    996 	/*
    997 	 * Start the MMC command, or mark `cmd' as failed and return.
    998 	 */
    999 	error = sdhc_start_command(hp, cmd);
   1000 	if (error) {
   1001 		cmd->c_error = error;
   1002 		goto out;
   1003 	}
   1004 
   1005 	/*
   1006 	 * Wait until the command phase is done, or until the command
   1007 	 * is marked done for any other reason.
   1008 	 */
   1009 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1010 		cmd->c_error = ETIMEDOUT;
   1011 		goto out;
   1012 	}
   1013 
   1014 	/*
   1015 	 * The host controller removes bits [0:7] from the response
   1016 	 * data (CRC) and we pass the data up unchanged to the bus
   1017 	 * driver (without padding).
   1018 	 */
   1019 	mutex_enter(&hp->host_mtx);
   1020 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1021 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1022 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1023 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1024 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1025 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1026 		}
   1027 	}
   1028 	mutex_exit(&hp->host_mtx);
   1029 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1030 
   1031 	/*
   1032 	 * If the command has data to transfer in any direction,
   1033 	 * execute the transfer now.
   1034 	 */
   1035 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1036 		sdhc_transfer_data(hp, cmd);
   1037 
   1038 out:
   1039 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1040 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1041 		mutex_enter(&hp->host_mtx);
   1042 		/* Turn off the LED. */
   1043 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1044 		mutex_exit(&hp->host_mtx);
   1045 	}
   1046 	SET(cmd->c_flags, SCF_ITSDONE);
   1047 
   1048 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1049 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1050 	    cmd->c_flags, cmd->c_error));
   1051 }
   1052 
   1053 static int
   1054 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1055 {
   1056 	struct sdhc_softc * const sc = hp->sc;
   1057 	uint16_t blksize = 0;
   1058 	uint16_t blkcount = 0;
   1059 	uint16_t mode;
   1060 	uint16_t command;
   1061 	int error;
   1062 
   1063 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1064 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1065 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1066 
   1067 	/*
   1068 	 * The maximum block length for commands should be the minimum
   1069 	 * of the host buffer size and the card buffer size. (1.7.2)
   1070 	 */
   1071 
   1072 	/* Fragment the data into proper blocks. */
   1073 	if (cmd->c_datalen > 0) {
   1074 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1075 		blkcount = cmd->c_datalen / blksize;
   1076 		if (cmd->c_datalen % blksize > 0) {
   1077 			/* XXX: Split this command. (1.7.4) */
   1078 			aprint_error_dev(sc->sc_dev,
   1079 			    "data not a multiple of %u bytes\n", blksize);
   1080 			return EINVAL;
   1081 		}
   1082 	}
   1083 
   1084 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1085 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1086 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1087 		return EINVAL;
   1088 	}
   1089 
   1090 	/* Prepare transfer mode register value. (2.2.5) */
   1091 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1092 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1093 		mode |= SDHC_READ_MODE;
   1094 	if (blkcount > 1) {
   1095 		mode |= SDHC_MULTI_BLOCK_MODE;
   1096 		/* XXX only for memory commands? */
   1097 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1098 	}
   1099 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1100 		mode |= SDHC_DMA_ENABLE;
   1101 	}
   1102 
   1103 	/*
   1104 	 * Prepare command register value. (2.2.6)
   1105 	 */
   1106 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1107 
   1108 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1109 		command |= SDHC_CRC_CHECK_ENABLE;
   1110 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1111 		command |= SDHC_INDEX_CHECK_ENABLE;
   1112 	if (cmd->c_data != NULL)
   1113 		command |= SDHC_DATA_PRESENT_SELECT;
   1114 
   1115 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1116 		command |= SDHC_NO_RESPONSE;
   1117 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1118 		command |= SDHC_RESP_LEN_136;
   1119 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1120 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1121 	else
   1122 		command |= SDHC_RESP_LEN_48;
   1123 
   1124 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1125 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1126 	if (error)
   1127 		return error;
   1128 
   1129 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1130 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1131 
   1132 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1133 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1134 
   1135 	mutex_enter(&hp->host_mtx);
   1136 
   1137 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1138 		/* Alert the user not to remove the card. */
   1139 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1140 	}
   1141 
   1142 	/* Set DMA start address. */
   1143 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1144 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1145 
   1146 	/*
   1147 	 * Start a CPU data transfer.  Writing to the high order byte
   1148 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1149 	 */
   1150 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1151 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1152 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1153 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1154 	} else {
   1155 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1156 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1157 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1158 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1159 		HWRITE2(hp, SDHC_COMMAND, command);
   1160 	}
   1161 
   1162 	mutex_exit(&hp->host_mtx);
   1163 
   1164 	return 0;
   1165 }
   1166 
   1167 static void
   1168 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1169 {
   1170 	int error;
   1171 
   1172 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1173 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1174 
   1175 #ifdef SDHC_DEBUG
   1176 	/* XXX I forgot why I wanted to know when this happens :-( */
   1177 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1178 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1179 		aprint_error_dev(hp->sc->sc_dev,
   1180 		    "CMD52/53 error response flags %#x\n",
   1181 		    MMC_R1(cmd->c_resp) & 0xff00);
   1182 	}
   1183 #endif
   1184 
   1185 	if (cmd->c_dmamap != NULL)
   1186 		error = sdhc_transfer_data_dma(hp, cmd);
   1187 	else
   1188 		error = sdhc_transfer_data_pio(hp, cmd);
   1189 	if (error)
   1190 		cmd->c_error = error;
   1191 	SET(cmd->c_flags, SCF_ITSDONE);
   1192 
   1193 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1194 	    HDEVNAME(hp), cmd->c_error));
   1195 }
   1196 
   1197 static int
   1198 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1199 {
   1200 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1201 	bus_addr_t posaddr;
   1202 	bus_addr_t segaddr;
   1203 	bus_size_t seglen;
   1204 	u_int seg = 0;
   1205 	int error = 0;
   1206 	int status;
   1207 
   1208 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1209 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1210 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1211 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1212 
   1213 	for (;;) {
   1214 		status = sdhc_wait_intr(hp,
   1215 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1216 		    SDHC_DMA_TIMEOUT);
   1217 
   1218 		if (status & SDHC_TRANSFER_COMPLETE) {
   1219 			break;
   1220 		}
   1221 		if (!status) {
   1222 			error = ETIMEDOUT;
   1223 			break;
   1224 		}
   1225 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1226 			continue;
   1227 		}
   1228 
   1229 		/* DMA Interrupt (boundary crossing) */
   1230 
   1231 		segaddr = dm_segs[seg].ds_addr;
   1232 		seglen = dm_segs[seg].ds_len;
   1233 		mutex_enter(&hp->host_mtx);
   1234 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1235 		mutex_exit(&hp->host_mtx);
   1236 
   1237 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1238 			break;
   1239 		}
   1240 		mutex_enter(&hp->host_mtx);
   1241 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1242 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1243 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1244 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1245 		mutex_exit(&hp->host_mtx);
   1246 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1247 	}
   1248 
   1249 	return error;
   1250 }
   1251 
   1252 static int
   1253 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1254 {
   1255 	uint8_t *data = cmd->c_data;
   1256 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1257 	u_int len, datalen;
   1258 	u_int imask;
   1259 	u_int pmask;
   1260 	int error = 0;
   1261 
   1262 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1263 		imask = SDHC_BUFFER_READ_READY;
   1264 		pmask = SDHC_BUFFER_READ_ENABLE;
   1265 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1266 			pio_func = esdhc_read_data_pio;
   1267 		} else {
   1268 			pio_func = sdhc_read_data_pio;
   1269 		}
   1270 	} else {
   1271 		imask = SDHC_BUFFER_WRITE_READY;
   1272 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1273 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1274 			pio_func = esdhc_write_data_pio;
   1275 		} else {
   1276 			pio_func = sdhc_write_data_pio;
   1277 		}
   1278 	}
   1279 	datalen = cmd->c_datalen;
   1280 
   1281 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1282 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1283 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1284 
   1285 	while (datalen > 0) {
   1286 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1287 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1288 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1289 			} else {
   1290 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1291 			}
   1292 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1293 				error = ETIMEDOUT;
   1294 				break;
   1295 			}
   1296 
   1297 			error = sdhc_wait_state(hp, pmask, pmask);
   1298 			if (error)
   1299 				break;
   1300 		}
   1301 
   1302 		len = MIN(datalen, cmd->c_blklen);
   1303 		(*pio_func)(hp, data, len);
   1304 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1305 		    HDEVNAME(hp), len, data));
   1306 
   1307 		data += len;
   1308 		datalen -= len;
   1309 	}
   1310 
   1311 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1312 	    SDHC_TRANSFER_TIMEOUT))
   1313 		error = ETIMEDOUT;
   1314 
   1315 	return error;
   1316 }
   1317 
   1318 static void
   1319 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1320 {
   1321 
   1322 	if (((__uintptr_t)data & 3) == 0) {
   1323 		while (datalen > 3) {
   1324 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
   1325 			data += 4;
   1326 			datalen -= 4;
   1327 		}
   1328 		if (datalen > 1) {
   1329 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1330 			data += 2;
   1331 			datalen -= 2;
   1332 		}
   1333 		if (datalen > 0) {
   1334 			*data = HREAD1(hp, SDHC_DATA);
   1335 			data += 1;
   1336 			datalen -= 1;
   1337 		}
   1338 	} else if (((__uintptr_t)data & 1) == 0) {
   1339 		while (datalen > 1) {
   1340 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1341 			data += 2;
   1342 			datalen -= 2;
   1343 		}
   1344 		if (datalen > 0) {
   1345 			*data = HREAD1(hp, SDHC_DATA);
   1346 			data += 1;
   1347 			datalen -= 1;
   1348 		}
   1349 	} else {
   1350 		while (datalen > 0) {
   1351 			*data = HREAD1(hp, SDHC_DATA);
   1352 			data += 1;
   1353 			datalen -= 1;
   1354 		}
   1355 	}
   1356 }
   1357 
   1358 static void
   1359 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1360 {
   1361 
   1362 	if (((__uintptr_t)data & 3) == 0) {
   1363 		while (datalen > 3) {
   1364 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
   1365 			data += 4;
   1366 			datalen -= 4;
   1367 		}
   1368 		if (datalen > 1) {
   1369 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1370 			data += 2;
   1371 			datalen -= 2;
   1372 		}
   1373 		if (datalen > 0) {
   1374 			HWRITE1(hp, SDHC_DATA, *data);
   1375 			data += 1;
   1376 			datalen -= 1;
   1377 		}
   1378 	} else if (((__uintptr_t)data & 1) == 0) {
   1379 		while (datalen > 1) {
   1380 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1381 			data += 2;
   1382 			datalen -= 2;
   1383 		}
   1384 		if (datalen > 0) {
   1385 			HWRITE1(hp, SDHC_DATA, *data);
   1386 			data += 1;
   1387 			datalen -= 1;
   1388 		}
   1389 	} else {
   1390 		while (datalen > 0) {
   1391 			HWRITE1(hp, SDHC_DATA, *data);
   1392 			data += 1;
   1393 			datalen -= 1;
   1394 		}
   1395 	}
   1396 }
   1397 
   1398 static void
   1399 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1400 {
   1401 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1402 	uint32_t v;
   1403 
   1404 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1405 	size_t count = 0;
   1406 
   1407 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1408 		if (count == 0) {
   1409 			/*
   1410 			 * If we've drained "watermark" words, we need to wait
   1411 			 * a little bit so the read FIFO can refill.
   1412 			 */
   1413 			sdmmc_delay(10);
   1414 			count = watermark;
   1415 		}
   1416 		v = HREAD4(hp, SDHC_DATA);
   1417 		v = le32toh(v);
   1418 		*(uint32_t *)data = v;
   1419 		data += 4;
   1420 		datalen -= 4;
   1421 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1422 		count--;
   1423 	}
   1424 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1425 		if (count == 0) {
   1426 			sdmmc_delay(10);
   1427 		}
   1428 		v = HREAD4(hp, SDHC_DATA);
   1429 		v = le32toh(v);
   1430 		do {
   1431 			*data++ = v;
   1432 			v >>= 8;
   1433 		} while (--datalen > 0);
   1434 	}
   1435 }
   1436 
   1437 static void
   1438 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1439 {
   1440 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1441 	uint32_t v;
   1442 
   1443 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1444 	size_t count = watermark;
   1445 
   1446 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1447 		if (count == 0) {
   1448 			sdmmc_delay(10);
   1449 			count = watermark;
   1450 		}
   1451 		v = *(uint32_t *)data;
   1452 		v = htole32(v);
   1453 		HWRITE4(hp, SDHC_DATA, v);
   1454 		data += 4;
   1455 		datalen -= 4;
   1456 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1457 		count--;
   1458 	}
   1459 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1460 		if (count == 0) {
   1461 			sdmmc_delay(10);
   1462 		}
   1463 		v = *(uint32_t *)data;
   1464 		v = htole32(v);
   1465 		HWRITE4(hp, SDHC_DATA, v);
   1466 	}
   1467 }
   1468 
   1469 /* Prepare for another command. */
   1470 static int
   1471 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1472 {
   1473 	int timo;
   1474 
   1475 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1476 
   1477 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1478 	for (timo = 10; timo > 0; timo--) {
   1479 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1480 			break;
   1481 		sdmmc_delay(10000);
   1482 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1483 	}
   1484 	if (timo == 0) {
   1485 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1486 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1487 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1488 		return ETIMEDOUT;
   1489 	}
   1490 
   1491 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1492 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1493 	}
   1494 
   1495 	return 0;
   1496 }
   1497 
   1498 static int
   1499 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1500 {
   1501 	int status;
   1502 
   1503 	mask |= SDHC_ERROR_INTERRUPT;
   1504 
   1505 	mutex_enter(&hp->intr_mtx);
   1506 	status = hp->intr_status & mask;
   1507 	while (status == 0) {
   1508 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1509 		    == EWOULDBLOCK) {
   1510 			status |= SDHC_ERROR_INTERRUPT;
   1511 			break;
   1512 		}
   1513 		status = hp->intr_status & mask;
   1514 	}
   1515 	hp->intr_status &= ~status;
   1516 
   1517 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1518 	    hp->intr_error_status));
   1519 
   1520 	/* Command timeout has higher priority than command complete. */
   1521 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1522 		hp->intr_error_status = 0;
   1523 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1524 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1525 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1526 		}
   1527 		status = 0;
   1528 	}
   1529 	mutex_exit(&hp->intr_mtx);
   1530 
   1531 	return status;
   1532 }
   1533 
   1534 /*
   1535  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1536  */
   1537 int
   1538 sdhc_intr(void *arg)
   1539 {
   1540 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1541 	struct sdhc_host *hp;
   1542 	int done = 0;
   1543 	uint16_t status;
   1544 	uint16_t error;
   1545 
   1546 	/* We got an interrupt, but we don't know from which slot. */
   1547 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1548 		hp = sc->sc_host[host];
   1549 		if (hp == NULL)
   1550 			continue;
   1551 
   1552 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1553 			/* Find out which interrupts are pending. */
   1554 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1555 			status = xstatus;
   1556 			error = xstatus >> 16;
   1557 			if (error)
   1558 				xstatus |= SDHC_ERROR_INTERRUPT;
   1559 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1560 				continue; /* no interrupt for us */
   1561 			/* Acknowledge the interrupts we are about to handle. */
   1562 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1563 		} else {
   1564 			/* Find out which interrupts are pending. */
   1565 			error = 0;
   1566 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1567 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1568 				continue; /* no interrupt for us */
   1569 			/* Acknowledge the interrupts we are about to handle. */
   1570 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1571 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1572 				/* Acknowledge error interrupts. */
   1573 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1574 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1575 			}
   1576 		}
   1577 
   1578 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1579 		    status, error));
   1580 
   1581 		/* Claim this interrupt. */
   1582 		done = 1;
   1583 
   1584 		/*
   1585 		 * Service error interrupts.
   1586 		 */
   1587 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1588 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1589 			hp->intr_error_status |= error;
   1590 			hp->intr_status |= status;
   1591 			cv_broadcast(&hp->intr_cv);
   1592 		}
   1593 
   1594 		/*
   1595 		 * Wake up the sdmmc event thread to scan for cards.
   1596 		 */
   1597 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1598 			sdmmc_needs_discover(hp->sdmmc);
   1599 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1600 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1601 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1602 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1603 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1604 			}
   1605 		}
   1606 
   1607 		/*
   1608 		 * Wake up the blocking process to service command
   1609 		 * related interrupt(s).
   1610 		 */
   1611 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1612 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1613 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1614 			hp->intr_status |= status;
   1615 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1616 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1617 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1618 			}
   1619 			cv_broadcast(&hp->intr_cv);
   1620 		}
   1621 
   1622 		/*
   1623 		 * Service SD card interrupts.
   1624 		 */
   1625 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1626 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1627 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1628 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1629 			sdmmc_card_intr(hp->sdmmc);
   1630 		}
   1631 	}
   1632 
   1633 	return done;
   1634 }
   1635 
   1636 #ifdef SDHC_DEBUG
   1637 void
   1638 sdhc_dump_regs(struct sdhc_host *hp)
   1639 {
   1640 
   1641 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1642 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1643 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1644 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1645 		    HREAD1(hp, SDHC_POWER_CTL));
   1646 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1647 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1648 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1649 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1650 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1651 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1652 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1653 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1654 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1655 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1656 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1657 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1658 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1659 	    HREAD4(hp, SDHC_CAPABILITIES));
   1660 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1661 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1662 }
   1663 #endif
   1664