sdhc.c revision 1.27 1 /* $NetBSD: sdhc.c,v 1.27 2012/07/28 20:08:51 jakllsch Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.27 2012/07/28 20:08:51 jakllsch Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args const * saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 aprint_normal(" slot %d", HDEVINST(hp));
230
231 return UNCONF;
232 }
233
234 /*
235 * Called by attachment driver. For each SD card slot there is one SD
236 * host controller standard register set. (1.3)
237 */
238 int
239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 bus_space_handle_t ioh, bus_size_t iosize)
241 {
242 struct sdmmcbus_attach_args saa;
243 struct sdhc_host *hp;
244 uint32_t caps;
245 uint16_t sdhcver;
246
247 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 switch (SDHC_SPEC_VERSION(sdhcver)) {
250 case SDHC_SPEC_VERS_100:
251 aprint_normal("1.0");
252 break;
253
254 case SDHC_SPEC_VERS_200:
255 aprint_normal("2.0");
256 break;
257
258 case SDHC_SPEC_VERS_300:
259 aprint_normal("3.0");
260 break;
261
262 default:
263 aprint_normal("unknown version(0x%x)",
264 SDHC_SPEC_VERSION(sdhcver));
265 break;
266 }
267 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268
269 /* Allocate one more host structure. */
270 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 if (hp == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "couldn't alloc memory (sdhc host)\n");
274 goto err1;
275 }
276 sc->sc_host[sc->sc_nhosts++] = hp;
277
278 /* Fill in the new host structure. */
279 hp->sc = sc;
280 hp->iot = iot;
281 hp->ioh = ioh;
282 hp->dmat = sc->sc_dmat;
283 hp->specver = SDHC_SPEC_VERSION(sdhcver);
284
285 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 cv_init(&hp->intr_cv, "sdhcintr");
288
289 /*
290 * Reset the host controller and enable interrupts.
291 */
292 (void)sdhc_host_reset(hp);
293
294 /* Determine host capabilities. */
295 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
296 caps = sc->sc_caps;
297 } else {
298 mutex_enter(&hp->host_mtx);
299 caps = HREAD4(hp, SDHC_CAPABILITIES);
300 mutex_exit(&hp->host_mtx);
301 }
302
303 /* Use DMA if the host system and the controller support it. */
304 if ((hp->specver == SDHC_SPEC_VERS_100) &&
305 (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
306 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
307 ISSET(caps, SDHC_DMA_SUPPORT))))) {
308 SET(hp->flags, SHF_USE_DMA);
309 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
310 }
311
312 /*
313 * Determine the base clock frequency. (2.2.24)
314 */
315 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
316 if (hp->clkbase == 0) {
317 if (sc->sc_clkbase == 0) {
318 /* The attachment driver must tell us. */
319 aprint_error_dev(sc->sc_dev,
320 "unknown base clock frequency\n");
321 goto err;
322 }
323 hp->clkbase = sc->sc_clkbase;
324 }
325 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
326 /* SDHC 1.0 supports only 10-63 MHz. */
327 aprint_error_dev(sc->sc_dev,
328 "base clock frequency out of range: %u MHz\n",
329 hp->clkbase / 1000);
330 goto err;
331 }
332 DPRINTF(1,("%s: base clock frequency %u MHz\n",
333 device_xname(sc->sc_dev), hp->clkbase / 1000));
334
335 /*
336 * XXX Set the data timeout counter value according to
337 * capabilities. (2.2.15)
338 */
339 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
340 #if 0
341 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
342 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
343 #endif
344
345 /*
346 * Determine SD bus voltage levels supported by the controller.
347 */
348 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
349 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
350 }
351 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
352 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
353 }
354 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
355 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
356 }
357
358 /*
359 * Determine the maximum block length supported by the host
360 * controller. (2.2.24)
361 */
362 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
363 case SDHC_MAX_BLK_LEN_512:
364 hp->maxblklen = 512;
365 break;
366
367 case SDHC_MAX_BLK_LEN_1024:
368 hp->maxblklen = 1024;
369 break;
370
371 case SDHC_MAX_BLK_LEN_2048:
372 hp->maxblklen = 2048;
373 break;
374
375 case SDHC_MAX_BLK_LEN_4096:
376 hp->maxblklen = 4096;
377 break;
378
379 default:
380 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
381 goto err;
382 }
383 DPRINTF(1, ("%s: max block length %u byte%s\n",
384 device_xname(sc->sc_dev), hp->maxblklen,
385 hp->maxblklen > 1 ? "s" : ""));
386
387 /*
388 * Attach the generic SD/MMC bus driver. (The bus driver must
389 * not invoke any chipset functions before it is attached.)
390 */
391 memset(&saa, 0, sizeof(saa));
392 saa.saa_busname = "sdmmc";
393 saa.saa_sct = &sdhc_functions;
394 saa.saa_sch = hp;
395 saa.saa_dmat = hp->dmat;
396 saa.saa_clkmin = hp->clkbase / 256;
397 saa.saa_clkmax = hp->clkbase;
398 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
399 saa.saa_clkmin /= 2046;
400 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
401 saa.saa_clkmin /= 16;
402 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
403 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
404 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
405 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
406 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
407 if (ISSET(hp->flags, SHF_USE_DMA)) {
408 saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
409 }
410 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
411
412 return 0;
413
414 err:
415 cv_destroy(&hp->intr_cv);
416 mutex_destroy(&hp->intr_mtx);
417 mutex_destroy(&hp->host_mtx);
418 free(hp, M_DEVBUF);
419 sc->sc_host[--sc->sc_nhosts] = NULL;
420 err1:
421 return 1;
422 }
423
424 int
425 sdhc_detach(device_t dev, int flags)
426 {
427 struct sdhc_host *hp = (struct sdhc_host *)dev;
428 struct sdhc_softc *sc = hp->sc;
429 int rv = 0;
430
431 if (hp->sdmmc)
432 rv = config_detach(hp->sdmmc, flags);
433
434 cv_destroy(&hp->intr_cv);
435 mutex_destroy(&hp->intr_mtx);
436 mutex_destroy(&hp->host_mtx);
437 free(hp, M_DEVBUF);
438 sc->sc_host[--sc->sc_nhosts] = NULL;
439
440 return rv;
441 }
442
443 bool
444 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
445 {
446 struct sdhc_softc *sc = device_private(dev);
447 struct sdhc_host *hp;
448 size_t i;
449
450 /* XXX poll for command completion or suspend command
451 * in progress */
452
453 /* Save the host controller state. */
454 for (size_t n = 0; n < sc->sc_nhosts; n++) {
455 hp = sc->sc_host[n];
456 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
457 for (i = 0; i < sizeof hp->regs; i += 4) {
458 uint32_t v = HREAD4(hp, i);
459 hp->regs[i + 0] = (v >> 0);
460 hp->regs[i + 1] = (v >> 8);
461 if (i + 3 < sizeof hp->regs) {
462 hp->regs[i + 2] = (v >> 16);
463 hp->regs[i + 3] = (v >> 24);
464 }
465 }
466 } else {
467 for (i = 0; i < sizeof hp->regs; i++) {
468 hp->regs[i] = HREAD1(hp, i);
469 }
470 }
471 }
472 return true;
473 }
474
475 bool
476 sdhc_resume(device_t dev, const pmf_qual_t *qual)
477 {
478 struct sdhc_softc *sc = device_private(dev);
479 struct sdhc_host *hp;
480 size_t i;
481
482 /* Restore the host controller state. */
483 for (size_t n = 0; n < sc->sc_nhosts; n++) {
484 hp = sc->sc_host[n];
485 (void)sdhc_host_reset(hp);
486 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
487 for (i = 0; i < sizeof hp->regs; i += 4) {
488 if (i + 3 < sizeof hp->regs) {
489 HWRITE4(hp, i,
490 (hp->regs[i + 0] << 0)
491 | (hp->regs[i + 1] << 8)
492 | (hp->regs[i + 2] << 16)
493 | (hp->regs[i + 3] << 24));
494 } else {
495 HWRITE4(hp, i,
496 (hp->regs[i + 0] << 0)
497 | (hp->regs[i + 1] << 8));
498 }
499 }
500 } else {
501 for (i = 0; i < sizeof hp->regs; i++) {
502 HWRITE1(hp, i, hp->regs[i]);
503 }
504 }
505 }
506 return true;
507 }
508
509 bool
510 sdhc_shutdown(device_t dev, int flags)
511 {
512 struct sdhc_softc *sc = device_private(dev);
513 struct sdhc_host *hp;
514
515 /* XXX chip locks up if we don't disable it before reboot. */
516 for (size_t i = 0; i < sc->sc_nhosts; i++) {
517 hp = sc->sc_host[i];
518 (void)sdhc_host_reset(hp);
519 }
520 return true;
521 }
522
523 /*
524 * Reset the host controller. Called during initialization, when
525 * cards are removed, upon resume, and during error recovery.
526 */
527 static int
528 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
529 {
530 struct sdhc_host *hp = (struct sdhc_host *)sch;
531 uint32_t sdhcimask;
532 int error;
533
534 /* Don't lock. */
535
536 /* Disable all interrupts. */
537 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
538 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
539 } else {
540 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
541 }
542
543 /*
544 * Reset the entire host controller and wait up to 100ms for
545 * the controller to clear the reset bit.
546 */
547 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
548 if (error)
549 goto out;
550
551 /* Set data timeout counter value to max for now. */
552 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
553 #if 0
554 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
555 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
556 #endif
557
558 /* Enable interrupts. */
559 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
560 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
561 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
562 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
563 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
564 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
565 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
566 sdhcimask ^=
567 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
568 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
569 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
570 } else {
571 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
572 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
573 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
574 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
575 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
576 }
577
578 out:
579 return error;
580 }
581
582 static int
583 sdhc_host_reset(sdmmc_chipset_handle_t sch)
584 {
585 struct sdhc_host *hp = (struct sdhc_host *)sch;
586 int error;
587
588 mutex_enter(&hp->host_mtx);
589 error = sdhc_host_reset1(sch);
590 mutex_exit(&hp->host_mtx);
591
592 return error;
593 }
594
595 static uint32_t
596 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
597 {
598 struct sdhc_host *hp = (struct sdhc_host *)sch;
599
600 return hp->ocr;
601 }
602
603 static int
604 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
605 {
606 struct sdhc_host *hp = (struct sdhc_host *)sch;
607
608 return hp->maxblklen;
609 }
610
611 /*
612 * Return non-zero if the card is currently inserted.
613 */
614 static int
615 sdhc_card_detect(sdmmc_chipset_handle_t sch)
616 {
617 struct sdhc_host *hp = (struct sdhc_host *)sch;
618 int r;
619
620 mutex_enter(&hp->host_mtx);
621 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
622 mutex_exit(&hp->host_mtx);
623
624 return r ? 1 : 0;
625 }
626
627 /*
628 * Return non-zero if the card is currently write-protected.
629 */
630 static int
631 sdhc_write_protect(sdmmc_chipset_handle_t sch)
632 {
633 struct sdhc_host *hp = (struct sdhc_host *)sch;
634 int r;
635
636 mutex_enter(&hp->host_mtx);
637 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
638 mutex_exit(&hp->host_mtx);
639
640 return r ? 0 : 1;
641 }
642
643 /*
644 * Set or change SD bus voltage and enable or disable SD bus power.
645 * Return zero on success.
646 */
647 static int
648 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
649 {
650 struct sdhc_host *hp = (struct sdhc_host *)sch;
651 uint8_t vdd;
652 int error = 0;
653
654 mutex_enter(&hp->host_mtx);
655
656 /*
657 * Disable bus power before voltage change.
658 */
659 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
660 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
661 HWRITE1(hp, SDHC_POWER_CTL, 0);
662
663 /* If power is disabled, reset the host and return now. */
664 if (ocr == 0) {
665 (void)sdhc_host_reset1(hp);
666 goto out;
667 }
668
669 /*
670 * Select the lowest voltage according to capabilities.
671 */
672 ocr &= hp->ocr;
673 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
674 vdd = SDHC_VOLTAGE_1_8V;
675 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
676 vdd = SDHC_VOLTAGE_3_0V;
677 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
678 vdd = SDHC_VOLTAGE_3_3V;
679 } else {
680 /* Unsupported voltage level requested. */
681 error = EINVAL;
682 goto out;
683 }
684
685 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
686 /*
687 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
688 * voltage ramp until power rises.
689 */
690 HWRITE1(hp, SDHC_POWER_CTL,
691 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
692 sdmmc_delay(10000);
693
694 /*
695 * The host system may not power the bus due to battery low,
696 * etc. In that case, the host controller should clear the
697 * bus power bit.
698 */
699 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
700 error = ENXIO;
701 goto out;
702 }
703 }
704
705 out:
706 mutex_exit(&hp->host_mtx);
707
708 return error;
709 }
710
711 /*
712 * Return the smallest possible base clock frequency divisor value
713 * for the CLOCK_CTL register to produce `freq' (KHz).
714 */
715 static bool
716 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
717 {
718 u_int div;
719
720 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
721 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
722 if ((hp->clkbase / div) <= freq) {
723 *divp = SDHC_SDCLK_CGM
724 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
725 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
726 //freq = hp->clkbase / div;
727 return true;
728 }
729 }
730 /* No divisor found. */
731 return false;
732 }
733 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
734 u_int dvs = (hp->clkbase + freq - 1) / freq;
735 u_int roundup = dvs & 1;
736 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
737 if (dvs + roundup <= 16) {
738 dvs += roundup - 1;
739 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
740 | (dvs << SDHC_SDCLK_DVS_SHIFT);
741 DPRINTF(2,
742 ("%s: divisor for freq %u is %u * %u\n",
743 HDEVNAME(hp), freq, div * 2, dvs + 1));
744 //freq = hp->clkbase / (div * 2) * (dvs + 1);
745 return true;
746 }
747 /*
748 * If we drop bits, we need to round up the divisor.
749 */
750 roundup |= dvs & 1;
751 }
752 /* No divisor found. */
753 return false;
754 } else {
755 for (div = 1; div <= 256; div *= 2) {
756 if ((hp->clkbase / div) <= freq) {
757 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
758 //freq = hp->clkbase / div;
759 return true;
760 }
761 }
762 }
763 /* No divisor found. */
764 return false;
765 }
766
767 /*
768 * Set or change SDCLK frequency or disable the SD clock.
769 * Return zero on success.
770 */
771 static int
772 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
773 {
774 struct sdhc_host *hp = (struct sdhc_host *)sch;
775 u_int div;
776 u_int timo;
777 int error = 0;
778 #ifdef DIAGNOSTIC
779 bool present;
780
781 mutex_enter(&hp->host_mtx);
782 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
783 mutex_exit(&hp->host_mtx);
784
785 /* Must not stop the clock if commands are in progress. */
786 if (present && sdhc_card_detect(hp)) {
787 aprint_normal_dev(hp->sc->sc_dev,
788 "%s: command in progress\n", __func__);
789 }
790 #endif
791
792 mutex_enter(&hp->host_mtx);
793
794 /*
795 * Stop SD clock before changing the frequency.
796 */
797 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
798 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
799 if (freq == SDMMC_SDCLK_OFF) {
800 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
801 goto out;
802 }
803 } else {
804 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
805 if (freq == SDMMC_SDCLK_OFF)
806 goto out;
807 }
808
809 /*
810 * Set the minimum base clock frequency divisor.
811 */
812 if (!sdhc_clock_divisor(hp, freq, &div)) {
813 /* Invalid base clock frequency or `freq' value. */
814 error = EINVAL;
815 goto out;
816 }
817 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
818 HWRITE4(hp, SDHC_CLOCK_CTL,
819 div | (SDHC_TIMEOUT_MAX << 16));
820 } else {
821 HWRITE2(hp, SDHC_CLOCK_CTL, div);
822 }
823
824 /*
825 * Start internal clock. Wait 10ms for stabilization.
826 */
827 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
828 sdmmc_delay(10000);
829 HSET4(hp, SDHC_CLOCK_CTL,
830 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
831 } else {
832 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
833 for (timo = 1000; timo > 0; timo--) {
834 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
835 SDHC_INTCLK_STABLE))
836 break;
837 sdmmc_delay(10);
838 }
839 if (timo == 0) {
840 error = ETIMEDOUT;
841 goto out;
842 }
843 }
844
845 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
846 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
847 /*
848 * Sending 80 clocks at 400kHz takes 200us.
849 * So delay for that time + slop and then
850 * check a few times for completion.
851 */
852 sdmmc_delay(210);
853 for (timo = 10; timo > 0; timo--) {
854 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
855 SDHC_INIT_ACTIVE))
856 break;
857 sdmmc_delay(10);
858 }
859 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
860
861 /*
862 * Enable SD clock.
863 */
864 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
865 } else {
866 /*
867 * Enable SD clock.
868 */
869 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
870
871 if (freq > 25000)
872 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
873 else
874 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
875 }
876
877 out:
878 mutex_exit(&hp->host_mtx);
879
880 return error;
881 }
882
883 static int
884 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
885 {
886 struct sdhc_host *hp = (struct sdhc_host *)sch;
887 int reg;
888
889 switch (width) {
890 case 1:
891 case 4:
892 break;
893
894 case 8:
895 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
896 break;
897 /* FALLTHROUGH */
898 default:
899 DPRINTF(0,("%s: unsupported bus width (%d)\n",
900 HDEVNAME(hp), width));
901 return 1;
902 }
903
904 mutex_enter(&hp->host_mtx);
905 reg = HREAD1(hp, SDHC_HOST_CTL);
906 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
907 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
908 if (width == 4)
909 reg |= SDHC_4BIT_MODE;
910 else if (width == 8)
911 reg |= SDHC_ESDHC_8BIT_MODE;
912 } else {
913 reg &= ~SDHC_4BIT_MODE;
914 if (width == 4)
915 reg |= SDHC_4BIT_MODE;
916 }
917 HWRITE1(hp, SDHC_HOST_CTL, reg);
918 mutex_exit(&hp->host_mtx);
919
920 return 0;
921 }
922
923 static int
924 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
925 {
926
927 /* Nothing ?? */
928 return 0;
929 }
930
931 static void
932 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
933 {
934 struct sdhc_host *hp = (struct sdhc_host *)sch;
935
936 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
937 mutex_enter(&hp->host_mtx);
938 if (enable) {
939 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
940 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
941 } else {
942 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
943 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
944 }
945 mutex_exit(&hp->host_mtx);
946 }
947 }
948
949 static void
950 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
951 {
952 struct sdhc_host *hp = (struct sdhc_host *)sch;
953
954 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
955 mutex_enter(&hp->host_mtx);
956 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
957 mutex_exit(&hp->host_mtx);
958 }
959 }
960
961 static int
962 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
963 {
964 uint32_t state;
965 int timeout;
966
967 for (timeout = 10; timeout > 0; timeout--) {
968 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
969 return 0;
970 sdmmc_delay(10000);
971 }
972 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
973 value, state));
974 return ETIMEDOUT;
975 }
976
977 static void
978 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
979 {
980 struct sdhc_host *hp = (struct sdhc_host *)sch;
981 int error;
982
983 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
984 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
985 if (ISSET(hp->flags, SHF_USE_DMA)) {
986 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
987 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
988 } else {
989 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
990 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
991 }
992 }
993
994 /*
995 * Start the MMC command, or mark `cmd' as failed and return.
996 */
997 error = sdhc_start_command(hp, cmd);
998 if (error) {
999 cmd->c_error = error;
1000 goto out;
1001 }
1002
1003 /*
1004 * Wait until the command phase is done, or until the command
1005 * is marked done for any other reason.
1006 */
1007 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1008 cmd->c_error = ETIMEDOUT;
1009 goto out;
1010 }
1011
1012 /*
1013 * The host controller removes bits [0:7] from the response
1014 * data (CRC) and we pass the data up unchanged to the bus
1015 * driver (without padding).
1016 */
1017 mutex_enter(&hp->host_mtx);
1018 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1019 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1020 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1021 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1022 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1023 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1024 }
1025 }
1026 mutex_exit(&hp->host_mtx);
1027 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1028
1029 /*
1030 * If the command has data to transfer in any direction,
1031 * execute the transfer now.
1032 */
1033 if (cmd->c_error == 0 && cmd->c_data != NULL)
1034 sdhc_transfer_data(hp, cmd);
1035
1036 out:
1037 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1038 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1039 mutex_enter(&hp->host_mtx);
1040 /* Turn off the LED. */
1041 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1042 mutex_exit(&hp->host_mtx);
1043 }
1044 SET(cmd->c_flags, SCF_ITSDONE);
1045
1046 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1047 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1048 cmd->c_flags, cmd->c_error));
1049 }
1050
1051 static int
1052 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1053 {
1054 struct sdhc_softc * const sc = hp->sc;
1055 uint16_t blksize = 0;
1056 uint16_t blkcount = 0;
1057 uint16_t mode;
1058 uint16_t command;
1059 int error;
1060
1061 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1062 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1063 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1064
1065 /*
1066 * The maximum block length for commands should be the minimum
1067 * of the host buffer size and the card buffer size. (1.7.2)
1068 */
1069
1070 /* Fragment the data into proper blocks. */
1071 if (cmd->c_datalen > 0) {
1072 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1073 blkcount = cmd->c_datalen / blksize;
1074 if (cmd->c_datalen % blksize > 0) {
1075 /* XXX: Split this command. (1.7.4) */
1076 aprint_error_dev(sc->sc_dev,
1077 "data not a multiple of %u bytes\n", blksize);
1078 return EINVAL;
1079 }
1080 }
1081
1082 /* Check limit imposed by 9-bit block count. (1.7.2) */
1083 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1084 aprint_error_dev(sc->sc_dev, "too much data\n");
1085 return EINVAL;
1086 }
1087
1088 /* Prepare transfer mode register value. (2.2.5) */
1089 mode = SDHC_BLOCK_COUNT_ENABLE;
1090 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1091 mode |= SDHC_READ_MODE;
1092 if (blkcount > 1) {
1093 mode |= SDHC_MULTI_BLOCK_MODE;
1094 /* XXX only for memory commands? */
1095 mode |= SDHC_AUTO_CMD12_ENABLE;
1096 }
1097 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1098 mode |= SDHC_DMA_ENABLE;
1099 }
1100
1101 /*
1102 * Prepare command register value. (2.2.6)
1103 */
1104 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1105
1106 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1107 command |= SDHC_CRC_CHECK_ENABLE;
1108 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1109 command |= SDHC_INDEX_CHECK_ENABLE;
1110 if (cmd->c_data != NULL)
1111 command |= SDHC_DATA_PRESENT_SELECT;
1112
1113 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1114 command |= SDHC_NO_RESPONSE;
1115 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1116 command |= SDHC_RESP_LEN_136;
1117 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1118 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1119 else
1120 command |= SDHC_RESP_LEN_48;
1121
1122 /* Wait until command and data inhibit bits are clear. (1.5) */
1123 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1124 if (error)
1125 return error;
1126
1127 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1128 HDEVNAME(hp), blksize, blkcount, mode, command));
1129
1130 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1131 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1132
1133 mutex_enter(&hp->host_mtx);
1134
1135 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1136 /* Alert the user not to remove the card. */
1137 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1138 }
1139
1140 /* Set DMA start address. */
1141 if (ISSET(mode, SDHC_DMA_ENABLE))
1142 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1143
1144 /*
1145 * Start a CPU data transfer. Writing to the high order byte
1146 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1147 */
1148 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1149 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1150 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1151 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1152 } else {
1153 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1154 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1155 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1156 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1157 HWRITE2(hp, SDHC_COMMAND, command);
1158 }
1159
1160 mutex_exit(&hp->host_mtx);
1161
1162 return 0;
1163 }
1164
1165 static void
1166 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1167 {
1168 int error;
1169
1170 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1171 MMC_R1(cmd->c_resp), cmd->c_datalen));
1172
1173 #ifdef SDHC_DEBUG
1174 /* XXX I forgot why I wanted to know when this happens :-( */
1175 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1176 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1177 aprint_error_dev(hp->sc->sc_dev,
1178 "CMD52/53 error response flags %#x\n",
1179 MMC_R1(cmd->c_resp) & 0xff00);
1180 }
1181 #endif
1182
1183 if (cmd->c_dmamap != NULL)
1184 error = sdhc_transfer_data_dma(hp, cmd);
1185 else
1186 error = sdhc_transfer_data_pio(hp, cmd);
1187 if (error)
1188 cmd->c_error = error;
1189 SET(cmd->c_flags, SCF_ITSDONE);
1190
1191 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1192 HDEVNAME(hp), cmd->c_error));
1193 }
1194
1195 static int
1196 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1197 {
1198 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1199 bus_addr_t posaddr;
1200 bus_addr_t segaddr;
1201 bus_size_t seglen;
1202 u_int seg = 0;
1203 int error = 0;
1204 int status;
1205
1206 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1207 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1208 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1209 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1210
1211 for (;;) {
1212 status = sdhc_wait_intr(hp,
1213 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1214 SDHC_DMA_TIMEOUT);
1215
1216 if (status & SDHC_TRANSFER_COMPLETE) {
1217 break;
1218 }
1219 if (!status) {
1220 error = ETIMEDOUT;
1221 break;
1222 }
1223 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1224 continue;
1225 }
1226
1227 /* DMA Interrupt (boundary crossing) */
1228
1229 segaddr = dm_segs[seg].ds_addr;
1230 seglen = dm_segs[seg].ds_len;
1231 mutex_enter(&hp->host_mtx);
1232 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1233 mutex_exit(&hp->host_mtx);
1234
1235 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1236 break;
1237 }
1238 mutex_enter(&hp->host_mtx);
1239 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1240 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1241 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1242 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1243 mutex_exit(&hp->host_mtx);
1244 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1245 }
1246
1247 return error;
1248 }
1249
1250 static int
1251 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1252 {
1253 uint8_t *data = cmd->c_data;
1254 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1255 u_int len, datalen;
1256 u_int imask;
1257 u_int pmask;
1258 int error = 0;
1259
1260 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1261 imask = SDHC_BUFFER_READ_READY;
1262 pmask = SDHC_BUFFER_READ_ENABLE;
1263 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1264 pio_func = esdhc_read_data_pio;
1265 } else {
1266 pio_func = sdhc_read_data_pio;
1267 }
1268 } else {
1269 imask = SDHC_BUFFER_WRITE_READY;
1270 pmask = SDHC_BUFFER_WRITE_ENABLE;
1271 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1272 pio_func = esdhc_write_data_pio;
1273 } else {
1274 pio_func = sdhc_write_data_pio;
1275 }
1276 }
1277 datalen = cmd->c_datalen;
1278
1279 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1280 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1281 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1282
1283 while (datalen > 0) {
1284 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1285 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1286 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1287 } else {
1288 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1289 }
1290 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1291 error = ETIMEDOUT;
1292 break;
1293 }
1294
1295 error = sdhc_wait_state(hp, pmask, pmask);
1296 if (error)
1297 break;
1298 }
1299
1300 len = MIN(datalen, cmd->c_blklen);
1301 (*pio_func)(hp, data, len);
1302 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1303 HDEVNAME(hp), len, data));
1304
1305 data += len;
1306 datalen -= len;
1307 }
1308
1309 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1310 SDHC_TRANSFER_TIMEOUT))
1311 error = ETIMEDOUT;
1312
1313 return error;
1314 }
1315
1316 static void
1317 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1318 {
1319
1320 if (((__uintptr_t)data & 3) == 0) {
1321 while (datalen > 3) {
1322 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1323 data += 4;
1324 datalen -= 4;
1325 }
1326 if (datalen > 1) {
1327 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1328 data += 2;
1329 datalen -= 2;
1330 }
1331 if (datalen > 0) {
1332 *data = HREAD1(hp, SDHC_DATA);
1333 data += 1;
1334 datalen -= 1;
1335 }
1336 } else if (((__uintptr_t)data & 1) == 0) {
1337 while (datalen > 1) {
1338 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1339 data += 2;
1340 datalen -= 2;
1341 }
1342 if (datalen > 0) {
1343 *data = HREAD1(hp, SDHC_DATA);
1344 data += 1;
1345 datalen -= 1;
1346 }
1347 } else {
1348 while (datalen > 0) {
1349 *data = HREAD1(hp, SDHC_DATA);
1350 data += 1;
1351 datalen -= 1;
1352 }
1353 }
1354 }
1355
1356 static void
1357 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1358 {
1359
1360 if (((__uintptr_t)data & 3) == 0) {
1361 while (datalen > 3) {
1362 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1363 data += 4;
1364 datalen -= 4;
1365 }
1366 if (datalen > 1) {
1367 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1368 data += 2;
1369 datalen -= 2;
1370 }
1371 if (datalen > 0) {
1372 HWRITE1(hp, SDHC_DATA, *data);
1373 data += 1;
1374 datalen -= 1;
1375 }
1376 } else if (((__uintptr_t)data & 1) == 0) {
1377 while (datalen > 1) {
1378 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1379 data += 2;
1380 datalen -= 2;
1381 }
1382 if (datalen > 0) {
1383 HWRITE1(hp, SDHC_DATA, *data);
1384 data += 1;
1385 datalen -= 1;
1386 }
1387 } else {
1388 while (datalen > 0) {
1389 HWRITE1(hp, SDHC_DATA, *data);
1390 data += 1;
1391 datalen -= 1;
1392 }
1393 }
1394 }
1395
1396 static void
1397 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1398 {
1399 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1400 uint32_t v;
1401
1402 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1403 size_t count = 0;
1404
1405 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1406 if (count == 0) {
1407 /*
1408 * If we've drained "watermark" words, we need to wait
1409 * a little bit so the read FIFO can refill.
1410 */
1411 sdmmc_delay(10);
1412 count = watermark;
1413 }
1414 v = HREAD4(hp, SDHC_DATA);
1415 v = le32toh(v);
1416 *(uint32_t *)data = v;
1417 data += 4;
1418 datalen -= 4;
1419 status = HREAD2(hp, SDHC_NINTR_STATUS);
1420 count--;
1421 }
1422 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1423 if (count == 0) {
1424 sdmmc_delay(10);
1425 }
1426 v = HREAD4(hp, SDHC_DATA);
1427 v = le32toh(v);
1428 do {
1429 *data++ = v;
1430 v >>= 8;
1431 } while (--datalen > 0);
1432 }
1433 }
1434
1435 static void
1436 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1437 {
1438 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1439 uint32_t v;
1440
1441 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1442 size_t count = watermark;
1443
1444 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1445 if (count == 0) {
1446 sdmmc_delay(10);
1447 count = watermark;
1448 }
1449 v = *(uint32_t *)data;
1450 v = htole32(v);
1451 HWRITE4(hp, SDHC_DATA, v);
1452 data += 4;
1453 datalen -= 4;
1454 status = HREAD2(hp, SDHC_NINTR_STATUS);
1455 count--;
1456 }
1457 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1458 if (count == 0) {
1459 sdmmc_delay(10);
1460 }
1461 v = *(uint32_t *)data;
1462 v = htole32(v);
1463 HWRITE4(hp, SDHC_DATA, v);
1464 }
1465 }
1466
1467 /* Prepare for another command. */
1468 static int
1469 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1470 {
1471 int timo;
1472
1473 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1474
1475 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1476 for (timo = 10; timo > 0; timo--) {
1477 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1478 break;
1479 sdmmc_delay(10000);
1480 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1481 }
1482 if (timo == 0) {
1483 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1484 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1485 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1486 return ETIMEDOUT;
1487 }
1488
1489 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1490 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1491 }
1492
1493 return 0;
1494 }
1495
1496 static int
1497 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1498 {
1499 int status;
1500
1501 mask |= SDHC_ERROR_INTERRUPT;
1502
1503 mutex_enter(&hp->intr_mtx);
1504 status = hp->intr_status & mask;
1505 while (status == 0) {
1506 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1507 == EWOULDBLOCK) {
1508 status |= SDHC_ERROR_INTERRUPT;
1509 break;
1510 }
1511 status = hp->intr_status & mask;
1512 }
1513 hp->intr_status &= ~status;
1514
1515 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1516 hp->intr_error_status));
1517
1518 /* Command timeout has higher priority than command complete. */
1519 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1520 hp->intr_error_status = 0;
1521 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1522 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1523 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1524 }
1525 status = 0;
1526 }
1527 mutex_exit(&hp->intr_mtx);
1528
1529 return status;
1530 }
1531
1532 /*
1533 * Established by attachment driver at interrupt priority IPL_SDMMC.
1534 */
1535 int
1536 sdhc_intr(void *arg)
1537 {
1538 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1539 struct sdhc_host *hp;
1540 int done = 0;
1541 uint16_t status;
1542 uint16_t error;
1543
1544 /* We got an interrupt, but we don't know from which slot. */
1545 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1546 hp = sc->sc_host[host];
1547 if (hp == NULL)
1548 continue;
1549
1550 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1551 /* Find out which interrupts are pending. */
1552 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1553 status = xstatus;
1554 error = xstatus >> 16;
1555 if (error)
1556 xstatus |= SDHC_ERROR_INTERRUPT;
1557 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1558 continue; /* no interrupt for us */
1559 /* Acknowledge the interrupts we are about to handle. */
1560 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1561 } else {
1562 /* Find out which interrupts are pending. */
1563 error = 0;
1564 status = HREAD2(hp, SDHC_NINTR_STATUS);
1565 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1566 continue; /* no interrupt for us */
1567 /* Acknowledge the interrupts we are about to handle. */
1568 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1569 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1570 /* Acknowledge error interrupts. */
1571 error = HREAD2(hp, SDHC_EINTR_STATUS);
1572 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1573 }
1574 }
1575
1576 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1577 status, error));
1578
1579 /* Claim this interrupt. */
1580 done = 1;
1581
1582 /*
1583 * Service error interrupts.
1584 */
1585 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1586 SDHC_DATA_TIMEOUT_ERROR)) {
1587 hp->intr_error_status |= error;
1588 hp->intr_status |= status;
1589 cv_broadcast(&hp->intr_cv);
1590 }
1591
1592 /*
1593 * Wake up the sdmmc event thread to scan for cards.
1594 */
1595 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1596 sdmmc_needs_discover(hp->sdmmc);
1597 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1598 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1599 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1600 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1601 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1602 }
1603 }
1604
1605 /*
1606 * Wake up the blocking process to service command
1607 * related interrupt(s).
1608 */
1609 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1610 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1611 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1612 hp->intr_status |= status;
1613 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1614 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1615 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1616 }
1617 cv_broadcast(&hp->intr_cv);
1618 }
1619
1620 /*
1621 * Service SD card interrupts.
1622 */
1623 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1624 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1625 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1626 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1627 sdmmc_card_intr(hp->sdmmc);
1628 }
1629 }
1630
1631 return done;
1632 }
1633
1634 #ifdef SDHC_DEBUG
1635 void
1636 sdhc_dump_regs(struct sdhc_host *hp)
1637 {
1638
1639 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1640 HREAD4(hp, SDHC_PRESENT_STATE));
1641 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1642 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1643 HREAD1(hp, SDHC_POWER_CTL));
1644 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1645 HREAD2(hp, SDHC_NINTR_STATUS));
1646 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1647 HREAD2(hp, SDHC_EINTR_STATUS));
1648 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1649 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1650 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1651 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1652 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1653 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1654 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1655 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1656 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1657 HREAD4(hp, SDHC_CAPABILITIES));
1658 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1659 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1660 }
1661 #endif
1662