Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.29
      1 /*	$NetBSD: sdhc.c,v 1.29 2012/07/30 00:56:01 matt Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.29 2012/07/30 00:56:01 matt Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_dma_tag_t dmat;		/* host DMA tag */
     66 
     67 	device_t sdmmc;			/* generic SD/MMC device */
     68 
     69 	struct kmutex host_mtx;
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	struct kmutex intr_mtx;
     80 	struct kcondvar intr_cv;
     81 
     82 	int specver;			/* spec. version */
     83 
     84 	uint32_t flags;			/* flags for this host */
     85 #define SHF_USE_DMA		0x0001
     86 #define SHF_USE_4BIT_MODE	0x0002
     87 #define SHF_USE_8BIT_MODE	0x0004
     88 };
     89 
     90 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91 #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     92 
     93 static uint8_t
     94 hread1(struct sdhc_host *hp, bus_size_t reg)
     95 {
     96 
     97 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     98 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     99 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    100 }
    101 
    102 static uint16_t
    103 hread2(struct sdhc_host *hp, bus_size_t reg)
    104 {
    105 
    106 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    107 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    108 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    109 }
    110 
    111 #define HREAD1(hp, reg)		hread1(hp, reg)
    112 #define HREAD2(hp, reg)		hread2(hp, reg)
    113 #define HREAD4(hp, reg)		\
    114 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    115 
    116 
    117 static void
    118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    119 {
    120 
    121 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    122 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    123 	} else {
    124 		const size_t shift = 8 * (o & 3);
    125 		o &= -4;
    126 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    127 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    128 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    129 	}
    130 }
    131 
    132 static void
    133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    134 {
    135 
    136 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    138 	} else {
    139 		const size_t shift = 8 * (o & 2);
    140 		o &= -4;
    141 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    143 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144 	}
    145 }
    146 
    147 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    148 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    149 #define HWRITE4(hp, reg, val)						\
    150 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    151 
    152 #define HCLR1(hp, reg, bits)						\
    153 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    154 #define HCLR2(hp, reg, bits)						\
    155 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    156 #define HCLR4(hp, reg, bits)						\
    157 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    158 #define HSET1(hp, reg, bits)						\
    159 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    160 #define HSET2(hp, reg, bits)						\
    161 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    162 #define HSET4(hp, reg, bits)						\
    163 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    164 
    165 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    166 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    167 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    168 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    169 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    170 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    171 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    172 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    173 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    174 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    175 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    176 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    177 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    178 		    struct sdmmc_command *);
    179 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    180 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    181 static int	sdhc_soft_reset(struct sdhc_host *, int);
    182 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    183 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    184 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    185 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    186 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190 
    191 
    192 static struct sdmmc_chip_functions sdhc_functions = {
    193 	/* host controller reset */
    194 	sdhc_host_reset,
    195 
    196 	/* host controller capabilities */
    197 	sdhc_host_ocr,
    198 	sdhc_host_maxblklen,
    199 
    200 	/* card detection */
    201 	sdhc_card_detect,
    202 
    203 	/* write protect */
    204 	sdhc_write_protect,
    205 
    206 	/* bus power, clock frequency and width */
    207 	sdhc_bus_power,
    208 	sdhc_bus_clock,
    209 	sdhc_bus_width,
    210 	sdhc_bus_rod,
    211 
    212 	/* command execution */
    213 	sdhc_exec_command,
    214 
    215 	/* card interrupt */
    216 	sdhc_card_enable_intr,
    217 	sdhc_card_intr_ack
    218 };
    219 
    220 static int
    221 sdhc_cfprint(void *aux, const char *pnp)
    222 {
    223 	const struct sdmmcbus_attach_args const * saa = aux;
    224 	const struct sdhc_host * const hp = saa->saa_sch;
    225 
    226 	if (pnp) {
    227 		aprint_normal("sdmmc at %s", pnp);
    228 	}
    229 	aprint_normal(" slot %d", HDEVINST(hp));
    230 
    231 	return UNCONF;
    232 }
    233 
    234 /*
    235  * Called by attachment driver.  For each SD card slot there is one SD
    236  * host controller standard register set. (1.3)
    237  */
    238 int
    239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    240     bus_space_handle_t ioh, bus_size_t iosize)
    241 {
    242 	struct sdmmcbus_attach_args saa;
    243 	struct sdhc_host *hp;
    244 	uint32_t caps;
    245 	uint16_t sdhcver;
    246 
    247 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
    248 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    249 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    250 	case SDHC_SPEC_VERS_100:
    251 		aprint_normal("1.0");
    252 		break;
    253 
    254 	case SDHC_SPEC_VERS_200:
    255 		aprint_normal("2.0");
    256 		break;
    257 
    258 	case SDHC_SPEC_VERS_300:
    259 		aprint_normal("3.0");
    260 		break;
    261 
    262 	default:
    263 		aprint_normal("unknown version(0x%x)",
    264 		    SDHC_SPEC_VERSION(sdhcver));
    265 		break;
    266 	}
    267 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    268 
    269 	/* Allocate one more host structure. */
    270 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    271 	if (hp == NULL) {
    272 		aprint_error_dev(sc->sc_dev,
    273 		    "couldn't alloc memory (sdhc host)\n");
    274 		goto err1;
    275 	}
    276 	sc->sc_host[sc->sc_nhosts++] = hp;
    277 
    278 	/* Fill in the new host structure. */
    279 	hp->sc = sc;
    280 	hp->iot = iot;
    281 	hp->ioh = ioh;
    282 	hp->dmat = sc->sc_dmat;
    283 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    284 
    285 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    286 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    287 	cv_init(&hp->intr_cv, "sdhcintr");
    288 
    289 	/*
    290 	 * Reset the host controller and enable interrupts.
    291 	 */
    292 	(void)sdhc_host_reset(hp);
    293 
    294 	/* Determine host capabilities. */
    295 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    296 		caps = sc->sc_caps;
    297 	} else {
    298 		mutex_enter(&hp->host_mtx);
    299 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    300 		mutex_exit(&hp->host_mtx);
    301 	}
    302 
    303 	/* Use DMA if the host system and the controller support it. */
    304 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    305 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    306 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    307 		SET(hp->flags, SHF_USE_DMA);
    308 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    309 	}
    310 
    311 	/*
    312 	 * Determine the base clock frequency. (2.2.24)
    313 	 */
    314 	hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    315 	if (hp->clkbase == 0) {
    316 		if (sc->sc_clkbase == 0) {
    317 			/* The attachment driver must tell us. */
    318 			aprint_error_dev(sc->sc_dev,
    319 			    "unknown base clock frequency\n");
    320 			goto err;
    321 		}
    322 		hp->clkbase = sc->sc_clkbase;
    323 	}
    324 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    325 		/* SDHC 1.0 supports only 10-63 MHz. */
    326 		aprint_error_dev(sc->sc_dev,
    327 		    "base clock frequency out of range: %u MHz\n",
    328 		    hp->clkbase / 1000);
    329 		goto err;
    330 	}
    331 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    332 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    333 
    334 	/*
    335 	 * XXX Set the data timeout counter value according to
    336 	 * capabilities. (2.2.15)
    337 	 */
    338 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    339 #if 1
    340 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    341 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    342 #endif
    343 
    344 	/*
    345 	 * Determine SD bus voltage levels supported by the controller.
    346 	 */
    347 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    348 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    349 	}
    350 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    351 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    352 	}
    353 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    354 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    355 	}
    356 
    357 	/*
    358 	 * Determine the maximum block length supported by the host
    359 	 * controller. (2.2.24)
    360 	 */
    361 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    362 	case SDHC_MAX_BLK_LEN_512:
    363 		hp->maxblklen = 512;
    364 		break;
    365 
    366 	case SDHC_MAX_BLK_LEN_1024:
    367 		hp->maxblklen = 1024;
    368 		break;
    369 
    370 	case SDHC_MAX_BLK_LEN_2048:
    371 		hp->maxblklen = 2048;
    372 		break;
    373 
    374 	case SDHC_MAX_BLK_LEN_4096:
    375 		hp->maxblklen = 4096;
    376 		break;
    377 
    378 	default:
    379 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    380 		goto err;
    381 	}
    382 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    383 	    device_xname(sc->sc_dev), hp->maxblklen,
    384 	    hp->maxblklen > 1 ? "s" : ""));
    385 
    386 	/*
    387 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    388 	 * not invoke any chipset functions before it is attached.)
    389 	 */
    390 	memset(&saa, 0, sizeof(saa));
    391 	saa.saa_busname = "sdmmc";
    392 	saa.saa_sct = &sdhc_functions;
    393 	saa.saa_sch = hp;
    394 	saa.saa_dmat = hp->dmat;
    395 	saa.saa_clkmin = hp->clkbase / 256;
    396 	saa.saa_clkmax = hp->clkbase;
    397 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    398 		saa.saa_clkmin /= 2046;
    399 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    400 		saa.saa_clkmin /= 16;
    401 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    402 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    403 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    404 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    405 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    406 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    407 		saa.saa_caps |= SMC_CAPS_DMA;
    408 		if (hp->specver == SDHC_SPEC_VERS_100) {
    409 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    410 		}
    411 	}
    412 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    413 
    414 	return 0;
    415 
    416 err:
    417 	cv_destroy(&hp->intr_cv);
    418 	mutex_destroy(&hp->intr_mtx);
    419 	mutex_destroy(&hp->host_mtx);
    420 	free(hp, M_DEVBUF);
    421 	sc->sc_host[--sc->sc_nhosts] = NULL;
    422 err1:
    423 	return 1;
    424 }
    425 
    426 int
    427 sdhc_detach(device_t dev, int flags)
    428 {
    429 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    430 	struct sdhc_softc *sc = hp->sc;
    431 	int rv = 0;
    432 
    433 	if (hp->sdmmc)
    434 		rv = config_detach(hp->sdmmc, flags);
    435 
    436 	cv_destroy(&hp->intr_cv);
    437 	mutex_destroy(&hp->intr_mtx);
    438 	mutex_destroy(&hp->host_mtx);
    439 	free(hp, M_DEVBUF);
    440 	sc->sc_host[--sc->sc_nhosts] = NULL;
    441 
    442 	return rv;
    443 }
    444 
    445 bool
    446 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    447 {
    448 	struct sdhc_softc *sc = device_private(dev);
    449 	struct sdhc_host *hp;
    450 	size_t i;
    451 
    452 	/* XXX poll for command completion or suspend command
    453 	 * in progress */
    454 
    455 	/* Save the host controller state. */
    456 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    457 		hp = sc->sc_host[n];
    458 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    459 			for (i = 0; i < sizeof hp->regs; i += 4) {
    460 				uint32_t v = HREAD4(hp, i);
    461 				hp->regs[i + 0] = (v >> 0);
    462 				hp->regs[i + 1] = (v >> 8);
    463 				if (i + 3 < sizeof hp->regs) {
    464 					hp->regs[i + 2] = (v >> 16);
    465 					hp->regs[i + 3] = (v >> 24);
    466 				}
    467 			}
    468 		} else {
    469 			for (i = 0; i < sizeof hp->regs; i++) {
    470 				hp->regs[i] = HREAD1(hp, i);
    471 			}
    472 		}
    473 	}
    474 	return true;
    475 }
    476 
    477 bool
    478 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    479 {
    480 	struct sdhc_softc *sc = device_private(dev);
    481 	struct sdhc_host *hp;
    482 	size_t i;
    483 
    484 	/* Restore the host controller state. */
    485 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    486 		hp = sc->sc_host[n];
    487 		(void)sdhc_host_reset(hp);
    488 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    489 			for (i = 0; i < sizeof hp->regs; i += 4) {
    490 				if (i + 3 < sizeof hp->regs) {
    491 					HWRITE4(hp, i,
    492 					    (hp->regs[i + 0] << 0)
    493 					    | (hp->regs[i + 1] << 8)
    494 					    | (hp->regs[i + 2] << 16)
    495 					    | (hp->regs[i + 3] << 24));
    496 				} else {
    497 					HWRITE4(hp, i,
    498 					    (hp->regs[i + 0] << 0)
    499 					    | (hp->regs[i + 1] << 8));
    500 				}
    501 			}
    502 		} else {
    503 			for (i = 0; i < sizeof hp->regs; i++) {
    504 				HWRITE1(hp, i, hp->regs[i]);
    505 			}
    506 		}
    507 	}
    508 	return true;
    509 }
    510 
    511 bool
    512 sdhc_shutdown(device_t dev, int flags)
    513 {
    514 	struct sdhc_softc *sc = device_private(dev);
    515 	struct sdhc_host *hp;
    516 
    517 	/* XXX chip locks up if we don't disable it before reboot. */
    518 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    519 		hp = sc->sc_host[i];
    520 		(void)sdhc_host_reset(hp);
    521 	}
    522 	return true;
    523 }
    524 
    525 /*
    526  * Reset the host controller.  Called during initialization, when
    527  * cards are removed, upon resume, and during error recovery.
    528  */
    529 static int
    530 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    531 {
    532 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    533 	uint32_t sdhcimask;
    534 	int error;
    535 
    536 	/* Don't lock. */
    537 
    538 	/* Disable all interrupts. */
    539 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    540 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    541 	} else {
    542 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    543 	}
    544 
    545 	/*
    546 	 * Reset the entire host controller and wait up to 100ms for
    547 	 * the controller to clear the reset bit.
    548 	 */
    549 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    550 	if (error)
    551 		goto out;
    552 
    553 	/* Set data timeout counter value to max for now. */
    554 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    555 #if 1
    556 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    557 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    558 #endif
    559 
    560 	/* Enable interrupts. */
    561 	mutex_enter(&hp->intr_mtx);
    562 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    563 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    564 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    565 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    566 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    567 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    568 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    569 		sdhcimask ^=
    570 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    571 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    572 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    573 	} else {
    574 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    575 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    576 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    577 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    578 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    579 	}
    580 	mutex_exit(&hp->intr_mtx);
    581 
    582 out:
    583 	return error;
    584 }
    585 
    586 static int
    587 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    588 {
    589 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    590 	int error;
    591 
    592 	mutex_enter(&hp->host_mtx);
    593 	error = sdhc_host_reset1(sch);
    594 	mutex_exit(&hp->host_mtx);
    595 
    596 	return error;
    597 }
    598 
    599 static uint32_t
    600 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    601 {
    602 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    603 
    604 	return hp->ocr;
    605 }
    606 
    607 static int
    608 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    609 {
    610 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    611 
    612 	return hp->maxblklen;
    613 }
    614 
    615 /*
    616  * Return non-zero if the card is currently inserted.
    617  */
    618 static int
    619 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    620 {
    621 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    622 	int r;
    623 
    624 	mutex_enter(&hp->host_mtx);
    625 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    626 	mutex_exit(&hp->host_mtx);
    627 
    628 	return r ? 1 : 0;
    629 }
    630 
    631 /*
    632  * Return non-zero if the card is currently write-protected.
    633  */
    634 static int
    635 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    636 {
    637 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    638 	int r;
    639 
    640 	mutex_enter(&hp->host_mtx);
    641 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    642 	mutex_exit(&hp->host_mtx);
    643 
    644 	return r ? 0 : 1;
    645 }
    646 
    647 /*
    648  * Set or change SD bus voltage and enable or disable SD bus power.
    649  * Return zero on success.
    650  */
    651 static int
    652 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    653 {
    654 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    655 	uint8_t vdd;
    656 	int error = 0;
    657 
    658 	mutex_enter(&hp->host_mtx);
    659 
    660 	/*
    661 	 * Disable bus power before voltage change.
    662 	 */
    663 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    664 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    665 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    666 
    667 	/* If power is disabled, reset the host and return now. */
    668 	if (ocr == 0) {
    669 		(void)sdhc_host_reset1(hp);
    670 		goto out;
    671 	}
    672 
    673 	/*
    674 	 * Select the lowest voltage according to capabilities.
    675 	 */
    676 	ocr &= hp->ocr;
    677 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    678 		vdd = SDHC_VOLTAGE_1_8V;
    679 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    680 		vdd = SDHC_VOLTAGE_3_0V;
    681 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    682 		vdd = SDHC_VOLTAGE_3_3V;
    683 	} else {
    684 		/* Unsupported voltage level requested. */
    685 		error = EINVAL;
    686 		goto out;
    687 	}
    688 
    689 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    690 		/*
    691 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    692 		 * voltage ramp until power rises.
    693 		 */
    694 		HWRITE1(hp, SDHC_POWER_CTL,
    695 		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    696 		sdmmc_delay(10000);
    697 
    698 		/*
    699 		 * The host system may not power the bus due to battery low,
    700 		 * etc.  In that case, the host controller should clear the
    701 		 * bus power bit.
    702 		 */
    703 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    704 			error = ENXIO;
    705 			goto out;
    706 		}
    707 	}
    708 
    709 out:
    710 	mutex_exit(&hp->host_mtx);
    711 
    712 	return error;
    713 }
    714 
    715 /*
    716  * Return the smallest possible base clock frequency divisor value
    717  * for the CLOCK_CTL register to produce `freq' (KHz).
    718  */
    719 static bool
    720 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    721 {
    722 	u_int div;
    723 
    724 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    725 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    726 			if ((hp->clkbase / div) <= freq) {
    727 				*divp = SDHC_SDCLK_CGM
    728 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    729 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    730 				//freq = hp->clkbase / div;
    731 				return true;
    732 			}
    733 		}
    734 		/* No divisor found. */
    735 		return false;
    736 	}
    737 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    738 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    739 		u_int roundup = dvs & 1;
    740 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    741 			if (dvs + roundup <= 16) {
    742 				dvs += roundup - 1;
    743 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    744 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    745 				DPRINTF(2,
    746 				    ("%s: divisor for freq %u is %u * %u\n",
    747 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    748 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    749 				return true;
    750 			}
    751 			/*
    752 			 * If we drop bits, we need to round up the divisor.
    753 			 */
    754 			roundup |= dvs & 1;
    755 		}
    756 		/* No divisor found. */
    757 		return false;
    758 	} else {
    759 		for (div = 1; div <= 256; div *= 2) {
    760 			if ((hp->clkbase / div) <= freq) {
    761 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    762 				//freq = hp->clkbase / div;
    763 				return true;
    764 			}
    765 		}
    766 	}
    767 	/* No divisor found. */
    768 	return false;
    769 }
    770 
    771 /*
    772  * Set or change SDCLK frequency or disable the SD clock.
    773  * Return zero on success.
    774  */
    775 static int
    776 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    777 {
    778 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    779 	u_int div;
    780 	u_int timo;
    781 	int error = 0;
    782 #ifdef DIAGNOSTIC
    783 	bool present;
    784 
    785 	mutex_enter(&hp->host_mtx);
    786 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    787 	mutex_exit(&hp->host_mtx);
    788 
    789 	/* Must not stop the clock if commands are in progress. */
    790 	if (present && sdhc_card_detect(hp)) {
    791 		aprint_normal_dev(hp->sc->sc_dev,
    792 		    "%s: command in progress\n", __func__);
    793 	}
    794 #endif
    795 
    796 	mutex_enter(&hp->host_mtx);
    797 
    798 	/*
    799 	 * Stop SD clock before changing the frequency.
    800 	 */
    801 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    802 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    803 		if (freq == SDMMC_SDCLK_OFF) {
    804 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    805 			goto out;
    806 		}
    807 	} else {
    808 		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
    809 		if (freq == SDMMC_SDCLK_OFF)
    810 			goto out;
    811 	}
    812 
    813 	/*
    814 	 * Set the minimum base clock frequency divisor.
    815 	 */
    816 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    817 		/* Invalid base clock frequency or `freq' value. */
    818 		error = EINVAL;
    819 		goto out;
    820 	}
    821 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    822 		HWRITE4(hp, SDHC_CLOCK_CTL,
    823 		    div | (SDHC_TIMEOUT_MAX << 16));
    824 	} else {
    825 		HWRITE2(hp, SDHC_CLOCK_CTL, div);
    826 	}
    827 
    828 	/*
    829 	 * Start internal clock.  Wait 10ms for stabilization.
    830 	 */
    831 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    832 		sdmmc_delay(10000);
    833 		HSET4(hp, SDHC_CLOCK_CTL,
    834 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    835 	} else {
    836 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    837 		for (timo = 1000; timo > 0; timo--) {
    838 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    839 			    SDHC_INTCLK_STABLE))
    840 				break;
    841 			sdmmc_delay(10);
    842 		}
    843 		if (timo == 0) {
    844 			error = ETIMEDOUT;
    845 			goto out;
    846 		}
    847 	}
    848 
    849 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    850 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    851 		/*
    852 		 * Sending 80 clocks at 400kHz takes 200us.
    853 		 * So delay for that time + slop and then
    854 		 * check a few times for completion.
    855 		 */
    856 		sdmmc_delay(210);
    857 		for (timo = 10; timo > 0; timo--) {
    858 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    859 			    SDHC_INIT_ACTIVE))
    860 				break;
    861 			sdmmc_delay(10);
    862 		}
    863 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    864 
    865 		/*
    866 		 * Enable SD clock.
    867 		 */
    868 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    869 	} else {
    870 		/*
    871 		 * Enable SD clock.
    872 		 */
    873 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    874 
    875 		if (freq > 25000)
    876 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    877 		else
    878 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    879 	}
    880 
    881 out:
    882 	mutex_exit(&hp->host_mtx);
    883 
    884 	return error;
    885 }
    886 
    887 static int
    888 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    889 {
    890 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    891 	int reg;
    892 
    893 	switch (width) {
    894 	case 1:
    895 	case 4:
    896 		break;
    897 
    898 	case 8:
    899 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    900 			break;
    901 		/* FALLTHROUGH */
    902 	default:
    903 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    904 		    HDEVNAME(hp), width));
    905 		return 1;
    906 	}
    907 
    908 	mutex_enter(&hp->host_mtx);
    909 	reg = HREAD1(hp, SDHC_HOST_CTL);
    910 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    911 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    912 		if (width == 4)
    913 			reg |= SDHC_4BIT_MODE;
    914 		else if (width == 8)
    915 			reg |= SDHC_ESDHC_8BIT_MODE;
    916 	} else {
    917 		reg &= ~SDHC_4BIT_MODE;
    918 		if (width == 4)
    919 			reg |= SDHC_4BIT_MODE;
    920 	}
    921 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    922 	mutex_exit(&hp->host_mtx);
    923 
    924 	return 0;
    925 }
    926 
    927 static int
    928 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    929 {
    930 
    931 	/* Nothing ?? */
    932 	return 0;
    933 }
    934 
    935 static void
    936 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    937 {
    938 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    939 
    940 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    941 		mutex_enter(&hp->intr_mtx);
    942 		if (enable) {
    943 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    944 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    945 		} else {
    946 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    947 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    948 		}
    949 		mutex_exit(&hp->intr_mtx);
    950 	}
    951 }
    952 
    953 static void
    954 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    955 {
    956 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    957 
    958 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    959 		mutex_enter(&hp->intr_mtx);
    960 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    961 		mutex_exit(&hp->intr_mtx);
    962 	}
    963 }
    964 
    965 static int
    966 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    967 {
    968 	uint32_t state;
    969 	int timeout;
    970 
    971 	for (timeout = 10; timeout > 0; timeout--) {
    972 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    973 			return 0;
    974 		sdmmc_delay(10000);
    975 	}
    976 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
    977 	    value, state));
    978 	return ETIMEDOUT;
    979 }
    980 
    981 static void
    982 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
    983 {
    984 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    985 	int error;
    986 
    987 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    988 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
    989 		mutex_enter(&hp->intr_mtx);
    990 		if (ISSET(hp->flags, SHF_USE_DMA)) {
    991 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    992 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
    993 		} else {
    994 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    995 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
    996 		}
    997 		mutex_exit(&hp->intr_mtx);
    998 	}
    999 
   1000 	/*
   1001 	 * Start the MMC command, or mark `cmd' as failed and return.
   1002 	 */
   1003 	error = sdhc_start_command(hp, cmd);
   1004 	if (error) {
   1005 		cmd->c_error = error;
   1006 		goto out;
   1007 	}
   1008 
   1009 	/*
   1010 	 * Wait until the command phase is done, or until the command
   1011 	 * is marked done for any other reason.
   1012 	 */
   1013 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1014 		cmd->c_error = ETIMEDOUT;
   1015 		goto out;
   1016 	}
   1017 
   1018 	/*
   1019 	 * The host controller removes bits [0:7] from the response
   1020 	 * data (CRC) and we pass the data up unchanged to the bus
   1021 	 * driver (without padding).
   1022 	 */
   1023 	mutex_enter(&hp->host_mtx);
   1024 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1025 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1026 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1027 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1028 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1029 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1030 		}
   1031 	}
   1032 	mutex_exit(&hp->host_mtx);
   1033 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1034 
   1035 	/*
   1036 	 * If the command has data to transfer in any direction,
   1037 	 * execute the transfer now.
   1038 	 */
   1039 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1040 		sdhc_transfer_data(hp, cmd);
   1041 
   1042 out:
   1043 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1044 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1045 		mutex_enter(&hp->host_mtx);
   1046 		/* Turn off the LED. */
   1047 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1048 		mutex_exit(&hp->host_mtx);
   1049 	}
   1050 	SET(cmd->c_flags, SCF_ITSDONE);
   1051 
   1052 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1053 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1054 	    cmd->c_flags, cmd->c_error));
   1055 }
   1056 
   1057 static int
   1058 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1059 {
   1060 	struct sdhc_softc * const sc = hp->sc;
   1061 	uint16_t blksize = 0;
   1062 	uint16_t blkcount = 0;
   1063 	uint16_t mode;
   1064 	uint16_t command;
   1065 	int error;
   1066 
   1067 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1068 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1069 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1070 
   1071 	/*
   1072 	 * The maximum block length for commands should be the minimum
   1073 	 * of the host buffer size and the card buffer size. (1.7.2)
   1074 	 */
   1075 
   1076 	/* Fragment the data into proper blocks. */
   1077 	if (cmd->c_datalen > 0) {
   1078 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1079 		blkcount = cmd->c_datalen / blksize;
   1080 		if (cmd->c_datalen % blksize > 0) {
   1081 			/* XXX: Split this command. (1.7.4) */
   1082 			aprint_error_dev(sc->sc_dev,
   1083 			    "data not a multiple of %u bytes\n", blksize);
   1084 			return EINVAL;
   1085 		}
   1086 	}
   1087 
   1088 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1089 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1090 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1091 		return EINVAL;
   1092 	}
   1093 
   1094 	/* Prepare transfer mode register value. (2.2.5) */
   1095 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1096 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1097 		mode |= SDHC_READ_MODE;
   1098 	if (blkcount > 1) {
   1099 		mode |= SDHC_MULTI_BLOCK_MODE;
   1100 		/* XXX only for memory commands? */
   1101 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1102 	}
   1103 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1104 		mode |= SDHC_DMA_ENABLE;
   1105 	}
   1106 
   1107 	/*
   1108 	 * Prepare command register value. (2.2.6)
   1109 	 */
   1110 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1111 
   1112 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1113 		command |= SDHC_CRC_CHECK_ENABLE;
   1114 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1115 		command |= SDHC_INDEX_CHECK_ENABLE;
   1116 	if (cmd->c_data != NULL)
   1117 		command |= SDHC_DATA_PRESENT_SELECT;
   1118 
   1119 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1120 		command |= SDHC_NO_RESPONSE;
   1121 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1122 		command |= SDHC_RESP_LEN_136;
   1123 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1124 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1125 	else
   1126 		command |= SDHC_RESP_LEN_48;
   1127 
   1128 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1129 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1130 	if (error)
   1131 		return error;
   1132 
   1133 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1134 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1135 
   1136 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1137 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1138 
   1139 	mutex_enter(&hp->host_mtx);
   1140 
   1141 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1142 		/* Alert the user not to remove the card. */
   1143 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1144 	}
   1145 
   1146 	/* Set DMA start address. */
   1147 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1148 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1149 
   1150 	/*
   1151 	 * Start a CPU data transfer.  Writing to the high order byte
   1152 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1153 	 */
   1154 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1155 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1156 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1157 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1158 	} else {
   1159 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1160 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1161 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1162 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1163 		HWRITE2(hp, SDHC_COMMAND, command);
   1164 	}
   1165 
   1166 	mutex_exit(&hp->host_mtx);
   1167 
   1168 	return 0;
   1169 }
   1170 
   1171 static void
   1172 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1173 {
   1174 	int error;
   1175 
   1176 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1177 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1178 
   1179 #ifdef SDHC_DEBUG
   1180 	/* XXX I forgot why I wanted to know when this happens :-( */
   1181 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1182 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1183 		aprint_error_dev(hp->sc->sc_dev,
   1184 		    "CMD52/53 error response flags %#x\n",
   1185 		    MMC_R1(cmd->c_resp) & 0xff00);
   1186 	}
   1187 #endif
   1188 
   1189 	if (cmd->c_dmamap != NULL)
   1190 		error = sdhc_transfer_data_dma(hp, cmd);
   1191 	else
   1192 		error = sdhc_transfer_data_pio(hp, cmd);
   1193 	if (error)
   1194 		cmd->c_error = error;
   1195 	SET(cmd->c_flags, SCF_ITSDONE);
   1196 
   1197 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1198 	    HDEVNAME(hp), cmd->c_error));
   1199 }
   1200 
   1201 static int
   1202 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1203 {
   1204 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1205 	bus_addr_t posaddr;
   1206 	bus_addr_t segaddr;
   1207 	bus_size_t seglen;
   1208 	u_int seg = 0;
   1209 	int error = 0;
   1210 	int status;
   1211 
   1212 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1213 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1214 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1215 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1216 
   1217 	for (;;) {
   1218 		status = sdhc_wait_intr(hp,
   1219 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1220 		    SDHC_DMA_TIMEOUT);
   1221 
   1222 		if (status & SDHC_TRANSFER_COMPLETE) {
   1223 			break;
   1224 		}
   1225 		if (!status) {
   1226 			error = ETIMEDOUT;
   1227 			break;
   1228 		}
   1229 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1230 			continue;
   1231 		}
   1232 
   1233 		/* DMA Interrupt (boundary crossing) */
   1234 
   1235 		segaddr = dm_segs[seg].ds_addr;
   1236 		seglen = dm_segs[seg].ds_len;
   1237 		mutex_enter(&hp->host_mtx);
   1238 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1239 		mutex_exit(&hp->host_mtx);
   1240 
   1241 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1242 			break;
   1243 		}
   1244 		mutex_enter(&hp->host_mtx);
   1245 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1246 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1247 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1248 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1249 		mutex_exit(&hp->host_mtx);
   1250 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1251 	}
   1252 
   1253 	return error;
   1254 }
   1255 
   1256 static int
   1257 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1258 {
   1259 	uint8_t *data = cmd->c_data;
   1260 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1261 	u_int len, datalen;
   1262 	u_int imask;
   1263 	u_int pmask;
   1264 	int error = 0;
   1265 
   1266 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1267 		imask = SDHC_BUFFER_READ_READY;
   1268 		pmask = SDHC_BUFFER_READ_ENABLE;
   1269 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1270 			pio_func = esdhc_read_data_pio;
   1271 		} else {
   1272 			pio_func = sdhc_read_data_pio;
   1273 		}
   1274 	} else {
   1275 		imask = SDHC_BUFFER_WRITE_READY;
   1276 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1277 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1278 			pio_func = esdhc_write_data_pio;
   1279 		} else {
   1280 			pio_func = sdhc_write_data_pio;
   1281 		}
   1282 	}
   1283 	datalen = cmd->c_datalen;
   1284 
   1285 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1286 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1287 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1288 
   1289 	while (datalen > 0) {
   1290 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1291 			mutex_enter(&hp->intr_mtx);
   1292 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1293 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1294 			} else {
   1295 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1296 			}
   1297 			mutex_exit(&hp->intr_mtx);
   1298 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1299 				error = ETIMEDOUT;
   1300 				break;
   1301 			}
   1302 
   1303 			error = sdhc_wait_state(hp, pmask, pmask);
   1304 			if (error)
   1305 				break;
   1306 		}
   1307 
   1308 		len = MIN(datalen, cmd->c_blklen);
   1309 		(*pio_func)(hp, data, len);
   1310 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1311 		    HDEVNAME(hp), len, data));
   1312 
   1313 		data += len;
   1314 		datalen -= len;
   1315 	}
   1316 
   1317 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1318 	    SDHC_TRANSFER_TIMEOUT))
   1319 		error = ETIMEDOUT;
   1320 
   1321 	return error;
   1322 }
   1323 
   1324 static void
   1325 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1326 {
   1327 
   1328 	if (((__uintptr_t)data & 3) == 0) {
   1329 		while (datalen > 3) {
   1330 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1331 			data += 4;
   1332 			datalen -= 4;
   1333 		}
   1334 		if (datalen > 1) {
   1335 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1336 			data += 2;
   1337 			datalen -= 2;
   1338 		}
   1339 		if (datalen > 0) {
   1340 			*data = HREAD1(hp, SDHC_DATA);
   1341 			data += 1;
   1342 			datalen -= 1;
   1343 		}
   1344 	} else if (((__uintptr_t)data & 1) == 0) {
   1345 		while (datalen > 1) {
   1346 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1347 			data += 2;
   1348 			datalen -= 2;
   1349 		}
   1350 		if (datalen > 0) {
   1351 			*data = HREAD1(hp, SDHC_DATA);
   1352 			data += 1;
   1353 			datalen -= 1;
   1354 		}
   1355 	} else {
   1356 		while (datalen > 0) {
   1357 			*data = HREAD1(hp, SDHC_DATA);
   1358 			data += 1;
   1359 			datalen -= 1;
   1360 		}
   1361 	}
   1362 }
   1363 
   1364 static void
   1365 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1366 {
   1367 
   1368 	if (((__uintptr_t)data & 3) == 0) {
   1369 		while (datalen > 3) {
   1370 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1371 			data += 4;
   1372 			datalen -= 4;
   1373 		}
   1374 		if (datalen > 1) {
   1375 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1376 			data += 2;
   1377 			datalen -= 2;
   1378 		}
   1379 		if (datalen > 0) {
   1380 			HWRITE1(hp, SDHC_DATA, *data);
   1381 			data += 1;
   1382 			datalen -= 1;
   1383 		}
   1384 	} else if (((__uintptr_t)data & 1) == 0) {
   1385 		while (datalen > 1) {
   1386 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1387 			data += 2;
   1388 			datalen -= 2;
   1389 		}
   1390 		if (datalen > 0) {
   1391 			HWRITE1(hp, SDHC_DATA, *data);
   1392 			data += 1;
   1393 			datalen -= 1;
   1394 		}
   1395 	} else {
   1396 		while (datalen > 0) {
   1397 			HWRITE1(hp, SDHC_DATA, *data);
   1398 			data += 1;
   1399 			datalen -= 1;
   1400 		}
   1401 	}
   1402 }
   1403 
   1404 static void
   1405 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1406 {
   1407 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1408 	uint32_t v;
   1409 
   1410 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1411 	size_t count = 0;
   1412 
   1413 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1414 		if (count == 0) {
   1415 			/*
   1416 			 * If we've drained "watermark" words, we need to wait
   1417 			 * a little bit so the read FIFO can refill.
   1418 			 */
   1419 			sdmmc_delay(10);
   1420 			count = watermark;
   1421 		}
   1422 		v = HREAD4(hp, SDHC_DATA);
   1423 		v = le32toh(v);
   1424 		*(uint32_t *)data = v;
   1425 		data += 4;
   1426 		datalen -= 4;
   1427 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1428 		count--;
   1429 	}
   1430 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1431 		if (count == 0) {
   1432 			sdmmc_delay(10);
   1433 		}
   1434 		v = HREAD4(hp, SDHC_DATA);
   1435 		v = le32toh(v);
   1436 		do {
   1437 			*data++ = v;
   1438 			v >>= 8;
   1439 		} while (--datalen > 0);
   1440 	}
   1441 }
   1442 
   1443 static void
   1444 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1445 {
   1446 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1447 	uint32_t v;
   1448 
   1449 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1450 	size_t count = watermark;
   1451 
   1452 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1453 		if (count == 0) {
   1454 			sdmmc_delay(10);
   1455 			count = watermark;
   1456 		}
   1457 		v = *(uint32_t *)data;
   1458 		v = htole32(v);
   1459 		HWRITE4(hp, SDHC_DATA, v);
   1460 		data += 4;
   1461 		datalen -= 4;
   1462 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1463 		count--;
   1464 	}
   1465 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1466 		if (count == 0) {
   1467 			sdmmc_delay(10);
   1468 		}
   1469 		v = *(uint32_t *)data;
   1470 		v = htole32(v);
   1471 		HWRITE4(hp, SDHC_DATA, v);
   1472 	}
   1473 }
   1474 
   1475 /* Prepare for another command. */
   1476 static int
   1477 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1478 {
   1479 	int timo;
   1480 
   1481 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1482 
   1483 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1484 	for (timo = 10; timo > 0; timo--) {
   1485 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1486 			break;
   1487 		sdmmc_delay(10000);
   1488 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1489 	}
   1490 	if (timo == 0) {
   1491 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1492 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1493 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1494 		return ETIMEDOUT;
   1495 	}
   1496 
   1497 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1498 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1499 	}
   1500 
   1501 	return 0;
   1502 }
   1503 
   1504 static int
   1505 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1506 {
   1507 	int status;
   1508 
   1509 	mask |= SDHC_ERROR_INTERRUPT;
   1510 
   1511 	mutex_enter(&hp->intr_mtx);
   1512 	status = hp->intr_status & mask;
   1513 	while (status == 0) {
   1514 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1515 		    == EWOULDBLOCK) {
   1516 			status |= SDHC_ERROR_INTERRUPT;
   1517 			break;
   1518 		}
   1519 		status = hp->intr_status & mask;
   1520 	}
   1521 	hp->intr_status &= ~status;
   1522 
   1523 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1524 	    hp->intr_error_status));
   1525 
   1526 	/* Command timeout has higher priority than command complete. */
   1527 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1528 		hp->intr_error_status = 0;
   1529 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1530 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1531 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1532 		}
   1533 		status = 0;
   1534 	}
   1535 	mutex_exit(&hp->intr_mtx);
   1536 
   1537 	return status;
   1538 }
   1539 
   1540 /*
   1541  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1542  */
   1543 int
   1544 sdhc_intr(void *arg)
   1545 {
   1546 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1547 	struct sdhc_host *hp;
   1548 	int done = 0;
   1549 	uint16_t status;
   1550 	uint16_t error;
   1551 
   1552 	/* We got an interrupt, but we don't know from which slot. */
   1553 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1554 		hp = sc->sc_host[host];
   1555 		if (hp == NULL)
   1556 			continue;
   1557 
   1558 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1559 			/* Find out which interrupts are pending. */
   1560 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1561 			status = xstatus;
   1562 			error = xstatus >> 16;
   1563 			if (error)
   1564 				xstatus |= SDHC_ERROR_INTERRUPT;
   1565 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1566 				continue; /* no interrupt for us */
   1567 			/* Acknowledge the interrupts we are about to handle. */
   1568 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1569 		} else {
   1570 			/* Find out which interrupts are pending. */
   1571 			error = 0;
   1572 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1573 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1574 				continue; /* no interrupt for us */
   1575 			/* Acknowledge the interrupts we are about to handle. */
   1576 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1577 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1578 				/* Acknowledge error interrupts. */
   1579 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1580 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1581 			}
   1582 		}
   1583 
   1584 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1585 		    status, error));
   1586 
   1587 		mutex_enter(&hp->intr_mtx);
   1588 
   1589 		/* Claim this interrupt. */
   1590 		done = 1;
   1591 
   1592 		/*
   1593 		 * Service error interrupts.
   1594 		 */
   1595 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1596 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1597 			hp->intr_error_status |= error;
   1598 			hp->intr_status |= status;
   1599 			cv_broadcast(&hp->intr_cv);
   1600 		}
   1601 
   1602 		/*
   1603 		 * Wake up the sdmmc event thread to scan for cards.
   1604 		 */
   1605 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1606 			sdmmc_needs_discover(hp->sdmmc);
   1607 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1608 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1609 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1610 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1611 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1612 			}
   1613 		}
   1614 
   1615 		/*
   1616 		 * Wake up the blocking process to service command
   1617 		 * related interrupt(s).
   1618 		 */
   1619 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1620 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1621 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1622 			hp->intr_status |= status;
   1623 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1624 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1625 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1626 			}
   1627 			cv_broadcast(&hp->intr_cv);
   1628 		}
   1629 
   1630 		/*
   1631 		 * Service SD card interrupts.
   1632 		 */
   1633 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1634 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1635 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1636 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1637 			sdmmc_card_intr(hp->sdmmc);
   1638 		}
   1639 		mutex_exit(&hp->intr_mtx);
   1640 	}
   1641 
   1642 	return done;
   1643 }
   1644 
   1645 #ifdef SDHC_DEBUG
   1646 void
   1647 sdhc_dump_regs(struct sdhc_host *hp)
   1648 {
   1649 
   1650 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1651 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1652 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1653 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1654 		    HREAD1(hp, SDHC_POWER_CTL));
   1655 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1656 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1657 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1658 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1659 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1660 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1661 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1662 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1663 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1664 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1665 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1666 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1667 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1668 	    HREAD4(hp, SDHC_CAPABILITIES));
   1669 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1670 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1671 }
   1672 #endif
   1673