sdhc.c revision 1.29 1 /* $NetBSD: sdhc.c,v 1.29 2012/07/30 00:56:01 matt Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.29 2012/07/30 00:56:01 matt Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args const * saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 aprint_normal(" slot %d", HDEVINST(hp));
230
231 return UNCONF;
232 }
233
234 /*
235 * Called by attachment driver. For each SD card slot there is one SD
236 * host controller standard register set. (1.3)
237 */
238 int
239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 bus_space_handle_t ioh, bus_size_t iosize)
241 {
242 struct sdmmcbus_attach_args saa;
243 struct sdhc_host *hp;
244 uint32_t caps;
245 uint16_t sdhcver;
246
247 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 switch (SDHC_SPEC_VERSION(sdhcver)) {
250 case SDHC_SPEC_VERS_100:
251 aprint_normal("1.0");
252 break;
253
254 case SDHC_SPEC_VERS_200:
255 aprint_normal("2.0");
256 break;
257
258 case SDHC_SPEC_VERS_300:
259 aprint_normal("3.0");
260 break;
261
262 default:
263 aprint_normal("unknown version(0x%x)",
264 SDHC_SPEC_VERSION(sdhcver));
265 break;
266 }
267 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268
269 /* Allocate one more host structure. */
270 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 if (hp == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "couldn't alloc memory (sdhc host)\n");
274 goto err1;
275 }
276 sc->sc_host[sc->sc_nhosts++] = hp;
277
278 /* Fill in the new host structure. */
279 hp->sc = sc;
280 hp->iot = iot;
281 hp->ioh = ioh;
282 hp->dmat = sc->sc_dmat;
283 hp->specver = SDHC_SPEC_VERSION(sdhcver);
284
285 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 cv_init(&hp->intr_cv, "sdhcintr");
288
289 /*
290 * Reset the host controller and enable interrupts.
291 */
292 (void)sdhc_host_reset(hp);
293
294 /* Determine host capabilities. */
295 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
296 caps = sc->sc_caps;
297 } else {
298 mutex_enter(&hp->host_mtx);
299 caps = HREAD4(hp, SDHC_CAPABILITIES);
300 mutex_exit(&hp->host_mtx);
301 }
302
303 /* Use DMA if the host system and the controller support it. */
304 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
305 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
306 ISSET(caps, SDHC_DMA_SUPPORT)))) {
307 SET(hp->flags, SHF_USE_DMA);
308 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
309 }
310
311 /*
312 * Determine the base clock frequency. (2.2.24)
313 */
314 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
315 if (hp->clkbase == 0) {
316 if (sc->sc_clkbase == 0) {
317 /* The attachment driver must tell us. */
318 aprint_error_dev(sc->sc_dev,
319 "unknown base clock frequency\n");
320 goto err;
321 }
322 hp->clkbase = sc->sc_clkbase;
323 }
324 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
325 /* SDHC 1.0 supports only 10-63 MHz. */
326 aprint_error_dev(sc->sc_dev,
327 "base clock frequency out of range: %u MHz\n",
328 hp->clkbase / 1000);
329 goto err;
330 }
331 DPRINTF(1,("%s: base clock frequency %u MHz\n",
332 device_xname(sc->sc_dev), hp->clkbase / 1000));
333
334 /*
335 * XXX Set the data timeout counter value according to
336 * capabilities. (2.2.15)
337 */
338 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
339 #if 1
340 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
341 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
342 #endif
343
344 /*
345 * Determine SD bus voltage levels supported by the controller.
346 */
347 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
348 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
349 }
350 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
351 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
352 }
353 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
354 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
355 }
356
357 /*
358 * Determine the maximum block length supported by the host
359 * controller. (2.2.24)
360 */
361 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
362 case SDHC_MAX_BLK_LEN_512:
363 hp->maxblklen = 512;
364 break;
365
366 case SDHC_MAX_BLK_LEN_1024:
367 hp->maxblklen = 1024;
368 break;
369
370 case SDHC_MAX_BLK_LEN_2048:
371 hp->maxblklen = 2048;
372 break;
373
374 case SDHC_MAX_BLK_LEN_4096:
375 hp->maxblklen = 4096;
376 break;
377
378 default:
379 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
380 goto err;
381 }
382 DPRINTF(1, ("%s: max block length %u byte%s\n",
383 device_xname(sc->sc_dev), hp->maxblklen,
384 hp->maxblklen > 1 ? "s" : ""));
385
386 /*
387 * Attach the generic SD/MMC bus driver. (The bus driver must
388 * not invoke any chipset functions before it is attached.)
389 */
390 memset(&saa, 0, sizeof(saa));
391 saa.saa_busname = "sdmmc";
392 saa.saa_sct = &sdhc_functions;
393 saa.saa_sch = hp;
394 saa.saa_dmat = hp->dmat;
395 saa.saa_clkmin = hp->clkbase / 256;
396 saa.saa_clkmax = hp->clkbase;
397 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
398 saa.saa_clkmin /= 2046;
399 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
400 saa.saa_clkmin /= 16;
401 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
402 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
403 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
404 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
405 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
406 if (ISSET(hp->flags, SHF_USE_DMA)) {
407 saa.saa_caps |= SMC_CAPS_DMA;
408 if (hp->specver == SDHC_SPEC_VERS_100) {
409 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
410 }
411 }
412 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
413
414 return 0;
415
416 err:
417 cv_destroy(&hp->intr_cv);
418 mutex_destroy(&hp->intr_mtx);
419 mutex_destroy(&hp->host_mtx);
420 free(hp, M_DEVBUF);
421 sc->sc_host[--sc->sc_nhosts] = NULL;
422 err1:
423 return 1;
424 }
425
426 int
427 sdhc_detach(device_t dev, int flags)
428 {
429 struct sdhc_host *hp = (struct sdhc_host *)dev;
430 struct sdhc_softc *sc = hp->sc;
431 int rv = 0;
432
433 if (hp->sdmmc)
434 rv = config_detach(hp->sdmmc, flags);
435
436 cv_destroy(&hp->intr_cv);
437 mutex_destroy(&hp->intr_mtx);
438 mutex_destroy(&hp->host_mtx);
439 free(hp, M_DEVBUF);
440 sc->sc_host[--sc->sc_nhosts] = NULL;
441
442 return rv;
443 }
444
445 bool
446 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
447 {
448 struct sdhc_softc *sc = device_private(dev);
449 struct sdhc_host *hp;
450 size_t i;
451
452 /* XXX poll for command completion or suspend command
453 * in progress */
454
455 /* Save the host controller state. */
456 for (size_t n = 0; n < sc->sc_nhosts; n++) {
457 hp = sc->sc_host[n];
458 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
459 for (i = 0; i < sizeof hp->regs; i += 4) {
460 uint32_t v = HREAD4(hp, i);
461 hp->regs[i + 0] = (v >> 0);
462 hp->regs[i + 1] = (v >> 8);
463 if (i + 3 < sizeof hp->regs) {
464 hp->regs[i + 2] = (v >> 16);
465 hp->regs[i + 3] = (v >> 24);
466 }
467 }
468 } else {
469 for (i = 0; i < sizeof hp->regs; i++) {
470 hp->regs[i] = HREAD1(hp, i);
471 }
472 }
473 }
474 return true;
475 }
476
477 bool
478 sdhc_resume(device_t dev, const pmf_qual_t *qual)
479 {
480 struct sdhc_softc *sc = device_private(dev);
481 struct sdhc_host *hp;
482 size_t i;
483
484 /* Restore the host controller state. */
485 for (size_t n = 0; n < sc->sc_nhosts; n++) {
486 hp = sc->sc_host[n];
487 (void)sdhc_host_reset(hp);
488 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
489 for (i = 0; i < sizeof hp->regs; i += 4) {
490 if (i + 3 < sizeof hp->regs) {
491 HWRITE4(hp, i,
492 (hp->regs[i + 0] << 0)
493 | (hp->regs[i + 1] << 8)
494 | (hp->regs[i + 2] << 16)
495 | (hp->regs[i + 3] << 24));
496 } else {
497 HWRITE4(hp, i,
498 (hp->regs[i + 0] << 0)
499 | (hp->regs[i + 1] << 8));
500 }
501 }
502 } else {
503 for (i = 0; i < sizeof hp->regs; i++) {
504 HWRITE1(hp, i, hp->regs[i]);
505 }
506 }
507 }
508 return true;
509 }
510
511 bool
512 sdhc_shutdown(device_t dev, int flags)
513 {
514 struct sdhc_softc *sc = device_private(dev);
515 struct sdhc_host *hp;
516
517 /* XXX chip locks up if we don't disable it before reboot. */
518 for (size_t i = 0; i < sc->sc_nhosts; i++) {
519 hp = sc->sc_host[i];
520 (void)sdhc_host_reset(hp);
521 }
522 return true;
523 }
524
525 /*
526 * Reset the host controller. Called during initialization, when
527 * cards are removed, upon resume, and during error recovery.
528 */
529 static int
530 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
531 {
532 struct sdhc_host *hp = (struct sdhc_host *)sch;
533 uint32_t sdhcimask;
534 int error;
535
536 /* Don't lock. */
537
538 /* Disable all interrupts. */
539 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
540 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
541 } else {
542 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
543 }
544
545 /*
546 * Reset the entire host controller and wait up to 100ms for
547 * the controller to clear the reset bit.
548 */
549 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
550 if (error)
551 goto out;
552
553 /* Set data timeout counter value to max for now. */
554 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
555 #if 1
556 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
557 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
558 #endif
559
560 /* Enable interrupts. */
561 mutex_enter(&hp->intr_mtx);
562 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
563 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
564 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
565 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
566 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
567 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
568 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
569 sdhcimask ^=
570 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
571 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
572 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
573 } else {
574 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
575 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
576 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
577 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
578 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
579 }
580 mutex_exit(&hp->intr_mtx);
581
582 out:
583 return error;
584 }
585
586 static int
587 sdhc_host_reset(sdmmc_chipset_handle_t sch)
588 {
589 struct sdhc_host *hp = (struct sdhc_host *)sch;
590 int error;
591
592 mutex_enter(&hp->host_mtx);
593 error = sdhc_host_reset1(sch);
594 mutex_exit(&hp->host_mtx);
595
596 return error;
597 }
598
599 static uint32_t
600 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
601 {
602 struct sdhc_host *hp = (struct sdhc_host *)sch;
603
604 return hp->ocr;
605 }
606
607 static int
608 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
609 {
610 struct sdhc_host *hp = (struct sdhc_host *)sch;
611
612 return hp->maxblklen;
613 }
614
615 /*
616 * Return non-zero if the card is currently inserted.
617 */
618 static int
619 sdhc_card_detect(sdmmc_chipset_handle_t sch)
620 {
621 struct sdhc_host *hp = (struct sdhc_host *)sch;
622 int r;
623
624 mutex_enter(&hp->host_mtx);
625 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
626 mutex_exit(&hp->host_mtx);
627
628 return r ? 1 : 0;
629 }
630
631 /*
632 * Return non-zero if the card is currently write-protected.
633 */
634 static int
635 sdhc_write_protect(sdmmc_chipset_handle_t sch)
636 {
637 struct sdhc_host *hp = (struct sdhc_host *)sch;
638 int r;
639
640 mutex_enter(&hp->host_mtx);
641 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
642 mutex_exit(&hp->host_mtx);
643
644 return r ? 0 : 1;
645 }
646
647 /*
648 * Set or change SD bus voltage and enable or disable SD bus power.
649 * Return zero on success.
650 */
651 static int
652 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
653 {
654 struct sdhc_host *hp = (struct sdhc_host *)sch;
655 uint8_t vdd;
656 int error = 0;
657
658 mutex_enter(&hp->host_mtx);
659
660 /*
661 * Disable bus power before voltage change.
662 */
663 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
664 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
665 HWRITE1(hp, SDHC_POWER_CTL, 0);
666
667 /* If power is disabled, reset the host and return now. */
668 if (ocr == 0) {
669 (void)sdhc_host_reset1(hp);
670 goto out;
671 }
672
673 /*
674 * Select the lowest voltage according to capabilities.
675 */
676 ocr &= hp->ocr;
677 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
678 vdd = SDHC_VOLTAGE_1_8V;
679 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
680 vdd = SDHC_VOLTAGE_3_0V;
681 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
682 vdd = SDHC_VOLTAGE_3_3V;
683 } else {
684 /* Unsupported voltage level requested. */
685 error = EINVAL;
686 goto out;
687 }
688
689 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
690 /*
691 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
692 * voltage ramp until power rises.
693 */
694 HWRITE1(hp, SDHC_POWER_CTL,
695 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
696 sdmmc_delay(10000);
697
698 /*
699 * The host system may not power the bus due to battery low,
700 * etc. In that case, the host controller should clear the
701 * bus power bit.
702 */
703 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
704 error = ENXIO;
705 goto out;
706 }
707 }
708
709 out:
710 mutex_exit(&hp->host_mtx);
711
712 return error;
713 }
714
715 /*
716 * Return the smallest possible base clock frequency divisor value
717 * for the CLOCK_CTL register to produce `freq' (KHz).
718 */
719 static bool
720 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
721 {
722 u_int div;
723
724 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
725 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
726 if ((hp->clkbase / div) <= freq) {
727 *divp = SDHC_SDCLK_CGM
728 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
729 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
730 //freq = hp->clkbase / div;
731 return true;
732 }
733 }
734 /* No divisor found. */
735 return false;
736 }
737 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
738 u_int dvs = (hp->clkbase + freq - 1) / freq;
739 u_int roundup = dvs & 1;
740 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
741 if (dvs + roundup <= 16) {
742 dvs += roundup - 1;
743 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
744 | (dvs << SDHC_SDCLK_DVS_SHIFT);
745 DPRINTF(2,
746 ("%s: divisor for freq %u is %u * %u\n",
747 HDEVNAME(hp), freq, div * 2, dvs + 1));
748 //freq = hp->clkbase / (div * 2) * (dvs + 1);
749 return true;
750 }
751 /*
752 * If we drop bits, we need to round up the divisor.
753 */
754 roundup |= dvs & 1;
755 }
756 /* No divisor found. */
757 return false;
758 } else {
759 for (div = 1; div <= 256; div *= 2) {
760 if ((hp->clkbase / div) <= freq) {
761 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
762 //freq = hp->clkbase / div;
763 return true;
764 }
765 }
766 }
767 /* No divisor found. */
768 return false;
769 }
770
771 /*
772 * Set or change SDCLK frequency or disable the SD clock.
773 * Return zero on success.
774 */
775 static int
776 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
777 {
778 struct sdhc_host *hp = (struct sdhc_host *)sch;
779 u_int div;
780 u_int timo;
781 int error = 0;
782 #ifdef DIAGNOSTIC
783 bool present;
784
785 mutex_enter(&hp->host_mtx);
786 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
787 mutex_exit(&hp->host_mtx);
788
789 /* Must not stop the clock if commands are in progress. */
790 if (present && sdhc_card_detect(hp)) {
791 aprint_normal_dev(hp->sc->sc_dev,
792 "%s: command in progress\n", __func__);
793 }
794 #endif
795
796 mutex_enter(&hp->host_mtx);
797
798 /*
799 * Stop SD clock before changing the frequency.
800 */
801 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
802 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
803 if (freq == SDMMC_SDCLK_OFF) {
804 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
805 goto out;
806 }
807 } else {
808 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
809 if (freq == SDMMC_SDCLK_OFF)
810 goto out;
811 }
812
813 /*
814 * Set the minimum base clock frequency divisor.
815 */
816 if (!sdhc_clock_divisor(hp, freq, &div)) {
817 /* Invalid base clock frequency or `freq' value. */
818 error = EINVAL;
819 goto out;
820 }
821 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
822 HWRITE4(hp, SDHC_CLOCK_CTL,
823 div | (SDHC_TIMEOUT_MAX << 16));
824 } else {
825 HWRITE2(hp, SDHC_CLOCK_CTL, div);
826 }
827
828 /*
829 * Start internal clock. Wait 10ms for stabilization.
830 */
831 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
832 sdmmc_delay(10000);
833 HSET4(hp, SDHC_CLOCK_CTL,
834 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
835 } else {
836 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
837 for (timo = 1000; timo > 0; timo--) {
838 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
839 SDHC_INTCLK_STABLE))
840 break;
841 sdmmc_delay(10);
842 }
843 if (timo == 0) {
844 error = ETIMEDOUT;
845 goto out;
846 }
847 }
848
849 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
850 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
851 /*
852 * Sending 80 clocks at 400kHz takes 200us.
853 * So delay for that time + slop and then
854 * check a few times for completion.
855 */
856 sdmmc_delay(210);
857 for (timo = 10; timo > 0; timo--) {
858 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
859 SDHC_INIT_ACTIVE))
860 break;
861 sdmmc_delay(10);
862 }
863 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
864
865 /*
866 * Enable SD clock.
867 */
868 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
869 } else {
870 /*
871 * Enable SD clock.
872 */
873 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
874
875 if (freq > 25000)
876 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
877 else
878 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
879 }
880
881 out:
882 mutex_exit(&hp->host_mtx);
883
884 return error;
885 }
886
887 static int
888 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
889 {
890 struct sdhc_host *hp = (struct sdhc_host *)sch;
891 int reg;
892
893 switch (width) {
894 case 1:
895 case 4:
896 break;
897
898 case 8:
899 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
900 break;
901 /* FALLTHROUGH */
902 default:
903 DPRINTF(0,("%s: unsupported bus width (%d)\n",
904 HDEVNAME(hp), width));
905 return 1;
906 }
907
908 mutex_enter(&hp->host_mtx);
909 reg = HREAD1(hp, SDHC_HOST_CTL);
910 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
911 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
912 if (width == 4)
913 reg |= SDHC_4BIT_MODE;
914 else if (width == 8)
915 reg |= SDHC_ESDHC_8BIT_MODE;
916 } else {
917 reg &= ~SDHC_4BIT_MODE;
918 if (width == 4)
919 reg |= SDHC_4BIT_MODE;
920 }
921 HWRITE1(hp, SDHC_HOST_CTL, reg);
922 mutex_exit(&hp->host_mtx);
923
924 return 0;
925 }
926
927 static int
928 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
929 {
930
931 /* Nothing ?? */
932 return 0;
933 }
934
935 static void
936 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
937 {
938 struct sdhc_host *hp = (struct sdhc_host *)sch;
939
940 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
941 mutex_enter(&hp->intr_mtx);
942 if (enable) {
943 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
944 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
945 } else {
946 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
947 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
948 }
949 mutex_exit(&hp->intr_mtx);
950 }
951 }
952
953 static void
954 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
955 {
956 struct sdhc_host *hp = (struct sdhc_host *)sch;
957
958 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
959 mutex_enter(&hp->intr_mtx);
960 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
961 mutex_exit(&hp->intr_mtx);
962 }
963 }
964
965 static int
966 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
967 {
968 uint32_t state;
969 int timeout;
970
971 for (timeout = 10; timeout > 0; timeout--) {
972 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
973 return 0;
974 sdmmc_delay(10000);
975 }
976 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
977 value, state));
978 return ETIMEDOUT;
979 }
980
981 static void
982 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
983 {
984 struct sdhc_host *hp = (struct sdhc_host *)sch;
985 int error;
986
987 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
988 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
989 mutex_enter(&hp->intr_mtx);
990 if (ISSET(hp->flags, SHF_USE_DMA)) {
991 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
992 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
993 } else {
994 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
995 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
996 }
997 mutex_exit(&hp->intr_mtx);
998 }
999
1000 /*
1001 * Start the MMC command, or mark `cmd' as failed and return.
1002 */
1003 error = sdhc_start_command(hp, cmd);
1004 if (error) {
1005 cmd->c_error = error;
1006 goto out;
1007 }
1008
1009 /*
1010 * Wait until the command phase is done, or until the command
1011 * is marked done for any other reason.
1012 */
1013 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1014 cmd->c_error = ETIMEDOUT;
1015 goto out;
1016 }
1017
1018 /*
1019 * The host controller removes bits [0:7] from the response
1020 * data (CRC) and we pass the data up unchanged to the bus
1021 * driver (without padding).
1022 */
1023 mutex_enter(&hp->host_mtx);
1024 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1025 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1026 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1027 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1028 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1029 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1030 }
1031 }
1032 mutex_exit(&hp->host_mtx);
1033 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1034
1035 /*
1036 * If the command has data to transfer in any direction,
1037 * execute the transfer now.
1038 */
1039 if (cmd->c_error == 0 && cmd->c_data != NULL)
1040 sdhc_transfer_data(hp, cmd);
1041
1042 out:
1043 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1044 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1045 mutex_enter(&hp->host_mtx);
1046 /* Turn off the LED. */
1047 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1048 mutex_exit(&hp->host_mtx);
1049 }
1050 SET(cmd->c_flags, SCF_ITSDONE);
1051
1052 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1053 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1054 cmd->c_flags, cmd->c_error));
1055 }
1056
1057 static int
1058 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1059 {
1060 struct sdhc_softc * const sc = hp->sc;
1061 uint16_t blksize = 0;
1062 uint16_t blkcount = 0;
1063 uint16_t mode;
1064 uint16_t command;
1065 int error;
1066
1067 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1068 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1069 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1070
1071 /*
1072 * The maximum block length for commands should be the minimum
1073 * of the host buffer size and the card buffer size. (1.7.2)
1074 */
1075
1076 /* Fragment the data into proper blocks. */
1077 if (cmd->c_datalen > 0) {
1078 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1079 blkcount = cmd->c_datalen / blksize;
1080 if (cmd->c_datalen % blksize > 0) {
1081 /* XXX: Split this command. (1.7.4) */
1082 aprint_error_dev(sc->sc_dev,
1083 "data not a multiple of %u bytes\n", blksize);
1084 return EINVAL;
1085 }
1086 }
1087
1088 /* Check limit imposed by 9-bit block count. (1.7.2) */
1089 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1090 aprint_error_dev(sc->sc_dev, "too much data\n");
1091 return EINVAL;
1092 }
1093
1094 /* Prepare transfer mode register value. (2.2.5) */
1095 mode = SDHC_BLOCK_COUNT_ENABLE;
1096 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1097 mode |= SDHC_READ_MODE;
1098 if (blkcount > 1) {
1099 mode |= SDHC_MULTI_BLOCK_MODE;
1100 /* XXX only for memory commands? */
1101 mode |= SDHC_AUTO_CMD12_ENABLE;
1102 }
1103 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1104 mode |= SDHC_DMA_ENABLE;
1105 }
1106
1107 /*
1108 * Prepare command register value. (2.2.6)
1109 */
1110 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1111
1112 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1113 command |= SDHC_CRC_CHECK_ENABLE;
1114 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1115 command |= SDHC_INDEX_CHECK_ENABLE;
1116 if (cmd->c_data != NULL)
1117 command |= SDHC_DATA_PRESENT_SELECT;
1118
1119 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1120 command |= SDHC_NO_RESPONSE;
1121 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1122 command |= SDHC_RESP_LEN_136;
1123 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1124 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1125 else
1126 command |= SDHC_RESP_LEN_48;
1127
1128 /* Wait until command and data inhibit bits are clear. (1.5) */
1129 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1130 if (error)
1131 return error;
1132
1133 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1134 HDEVNAME(hp), blksize, blkcount, mode, command));
1135
1136 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1137 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1138
1139 mutex_enter(&hp->host_mtx);
1140
1141 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1142 /* Alert the user not to remove the card. */
1143 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1144 }
1145
1146 /* Set DMA start address. */
1147 if (ISSET(mode, SDHC_DMA_ENABLE))
1148 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1149
1150 /*
1151 * Start a CPU data transfer. Writing to the high order byte
1152 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1153 */
1154 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1155 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1156 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1157 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1158 } else {
1159 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1160 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1161 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1162 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1163 HWRITE2(hp, SDHC_COMMAND, command);
1164 }
1165
1166 mutex_exit(&hp->host_mtx);
1167
1168 return 0;
1169 }
1170
1171 static void
1172 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1173 {
1174 int error;
1175
1176 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1177 MMC_R1(cmd->c_resp), cmd->c_datalen));
1178
1179 #ifdef SDHC_DEBUG
1180 /* XXX I forgot why I wanted to know when this happens :-( */
1181 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1182 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1183 aprint_error_dev(hp->sc->sc_dev,
1184 "CMD52/53 error response flags %#x\n",
1185 MMC_R1(cmd->c_resp) & 0xff00);
1186 }
1187 #endif
1188
1189 if (cmd->c_dmamap != NULL)
1190 error = sdhc_transfer_data_dma(hp, cmd);
1191 else
1192 error = sdhc_transfer_data_pio(hp, cmd);
1193 if (error)
1194 cmd->c_error = error;
1195 SET(cmd->c_flags, SCF_ITSDONE);
1196
1197 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1198 HDEVNAME(hp), cmd->c_error));
1199 }
1200
1201 static int
1202 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1203 {
1204 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1205 bus_addr_t posaddr;
1206 bus_addr_t segaddr;
1207 bus_size_t seglen;
1208 u_int seg = 0;
1209 int error = 0;
1210 int status;
1211
1212 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1213 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1214 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1215 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1216
1217 for (;;) {
1218 status = sdhc_wait_intr(hp,
1219 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1220 SDHC_DMA_TIMEOUT);
1221
1222 if (status & SDHC_TRANSFER_COMPLETE) {
1223 break;
1224 }
1225 if (!status) {
1226 error = ETIMEDOUT;
1227 break;
1228 }
1229 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1230 continue;
1231 }
1232
1233 /* DMA Interrupt (boundary crossing) */
1234
1235 segaddr = dm_segs[seg].ds_addr;
1236 seglen = dm_segs[seg].ds_len;
1237 mutex_enter(&hp->host_mtx);
1238 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1239 mutex_exit(&hp->host_mtx);
1240
1241 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1242 break;
1243 }
1244 mutex_enter(&hp->host_mtx);
1245 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1246 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1247 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1248 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1249 mutex_exit(&hp->host_mtx);
1250 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1251 }
1252
1253 return error;
1254 }
1255
1256 static int
1257 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1258 {
1259 uint8_t *data = cmd->c_data;
1260 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1261 u_int len, datalen;
1262 u_int imask;
1263 u_int pmask;
1264 int error = 0;
1265
1266 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1267 imask = SDHC_BUFFER_READ_READY;
1268 pmask = SDHC_BUFFER_READ_ENABLE;
1269 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1270 pio_func = esdhc_read_data_pio;
1271 } else {
1272 pio_func = sdhc_read_data_pio;
1273 }
1274 } else {
1275 imask = SDHC_BUFFER_WRITE_READY;
1276 pmask = SDHC_BUFFER_WRITE_ENABLE;
1277 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1278 pio_func = esdhc_write_data_pio;
1279 } else {
1280 pio_func = sdhc_write_data_pio;
1281 }
1282 }
1283 datalen = cmd->c_datalen;
1284
1285 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1286 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1287 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1288
1289 while (datalen > 0) {
1290 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1291 mutex_enter(&hp->intr_mtx);
1292 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1293 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1294 } else {
1295 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1296 }
1297 mutex_exit(&hp->intr_mtx);
1298 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1299 error = ETIMEDOUT;
1300 break;
1301 }
1302
1303 error = sdhc_wait_state(hp, pmask, pmask);
1304 if (error)
1305 break;
1306 }
1307
1308 len = MIN(datalen, cmd->c_blklen);
1309 (*pio_func)(hp, data, len);
1310 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1311 HDEVNAME(hp), len, data));
1312
1313 data += len;
1314 datalen -= len;
1315 }
1316
1317 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1318 SDHC_TRANSFER_TIMEOUT))
1319 error = ETIMEDOUT;
1320
1321 return error;
1322 }
1323
1324 static void
1325 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1326 {
1327
1328 if (((__uintptr_t)data & 3) == 0) {
1329 while (datalen > 3) {
1330 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1331 data += 4;
1332 datalen -= 4;
1333 }
1334 if (datalen > 1) {
1335 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1336 data += 2;
1337 datalen -= 2;
1338 }
1339 if (datalen > 0) {
1340 *data = HREAD1(hp, SDHC_DATA);
1341 data += 1;
1342 datalen -= 1;
1343 }
1344 } else if (((__uintptr_t)data & 1) == 0) {
1345 while (datalen > 1) {
1346 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1347 data += 2;
1348 datalen -= 2;
1349 }
1350 if (datalen > 0) {
1351 *data = HREAD1(hp, SDHC_DATA);
1352 data += 1;
1353 datalen -= 1;
1354 }
1355 } else {
1356 while (datalen > 0) {
1357 *data = HREAD1(hp, SDHC_DATA);
1358 data += 1;
1359 datalen -= 1;
1360 }
1361 }
1362 }
1363
1364 static void
1365 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1366 {
1367
1368 if (((__uintptr_t)data & 3) == 0) {
1369 while (datalen > 3) {
1370 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1371 data += 4;
1372 datalen -= 4;
1373 }
1374 if (datalen > 1) {
1375 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1376 data += 2;
1377 datalen -= 2;
1378 }
1379 if (datalen > 0) {
1380 HWRITE1(hp, SDHC_DATA, *data);
1381 data += 1;
1382 datalen -= 1;
1383 }
1384 } else if (((__uintptr_t)data & 1) == 0) {
1385 while (datalen > 1) {
1386 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1387 data += 2;
1388 datalen -= 2;
1389 }
1390 if (datalen > 0) {
1391 HWRITE1(hp, SDHC_DATA, *data);
1392 data += 1;
1393 datalen -= 1;
1394 }
1395 } else {
1396 while (datalen > 0) {
1397 HWRITE1(hp, SDHC_DATA, *data);
1398 data += 1;
1399 datalen -= 1;
1400 }
1401 }
1402 }
1403
1404 static void
1405 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1406 {
1407 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1408 uint32_t v;
1409
1410 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1411 size_t count = 0;
1412
1413 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1414 if (count == 0) {
1415 /*
1416 * If we've drained "watermark" words, we need to wait
1417 * a little bit so the read FIFO can refill.
1418 */
1419 sdmmc_delay(10);
1420 count = watermark;
1421 }
1422 v = HREAD4(hp, SDHC_DATA);
1423 v = le32toh(v);
1424 *(uint32_t *)data = v;
1425 data += 4;
1426 datalen -= 4;
1427 status = HREAD2(hp, SDHC_NINTR_STATUS);
1428 count--;
1429 }
1430 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1431 if (count == 0) {
1432 sdmmc_delay(10);
1433 }
1434 v = HREAD4(hp, SDHC_DATA);
1435 v = le32toh(v);
1436 do {
1437 *data++ = v;
1438 v >>= 8;
1439 } while (--datalen > 0);
1440 }
1441 }
1442
1443 static void
1444 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1445 {
1446 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1447 uint32_t v;
1448
1449 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1450 size_t count = watermark;
1451
1452 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1453 if (count == 0) {
1454 sdmmc_delay(10);
1455 count = watermark;
1456 }
1457 v = *(uint32_t *)data;
1458 v = htole32(v);
1459 HWRITE4(hp, SDHC_DATA, v);
1460 data += 4;
1461 datalen -= 4;
1462 status = HREAD2(hp, SDHC_NINTR_STATUS);
1463 count--;
1464 }
1465 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1466 if (count == 0) {
1467 sdmmc_delay(10);
1468 }
1469 v = *(uint32_t *)data;
1470 v = htole32(v);
1471 HWRITE4(hp, SDHC_DATA, v);
1472 }
1473 }
1474
1475 /* Prepare for another command. */
1476 static int
1477 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1478 {
1479 int timo;
1480
1481 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1482
1483 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1484 for (timo = 10; timo > 0; timo--) {
1485 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1486 break;
1487 sdmmc_delay(10000);
1488 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1489 }
1490 if (timo == 0) {
1491 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1492 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1493 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1494 return ETIMEDOUT;
1495 }
1496
1497 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1498 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1499 }
1500
1501 return 0;
1502 }
1503
1504 static int
1505 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1506 {
1507 int status;
1508
1509 mask |= SDHC_ERROR_INTERRUPT;
1510
1511 mutex_enter(&hp->intr_mtx);
1512 status = hp->intr_status & mask;
1513 while (status == 0) {
1514 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1515 == EWOULDBLOCK) {
1516 status |= SDHC_ERROR_INTERRUPT;
1517 break;
1518 }
1519 status = hp->intr_status & mask;
1520 }
1521 hp->intr_status &= ~status;
1522
1523 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1524 hp->intr_error_status));
1525
1526 /* Command timeout has higher priority than command complete. */
1527 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1528 hp->intr_error_status = 0;
1529 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1530 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1531 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1532 }
1533 status = 0;
1534 }
1535 mutex_exit(&hp->intr_mtx);
1536
1537 return status;
1538 }
1539
1540 /*
1541 * Established by attachment driver at interrupt priority IPL_SDMMC.
1542 */
1543 int
1544 sdhc_intr(void *arg)
1545 {
1546 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1547 struct sdhc_host *hp;
1548 int done = 0;
1549 uint16_t status;
1550 uint16_t error;
1551
1552 /* We got an interrupt, but we don't know from which slot. */
1553 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1554 hp = sc->sc_host[host];
1555 if (hp == NULL)
1556 continue;
1557
1558 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1559 /* Find out which interrupts are pending. */
1560 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1561 status = xstatus;
1562 error = xstatus >> 16;
1563 if (error)
1564 xstatus |= SDHC_ERROR_INTERRUPT;
1565 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1566 continue; /* no interrupt for us */
1567 /* Acknowledge the interrupts we are about to handle. */
1568 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1569 } else {
1570 /* Find out which interrupts are pending. */
1571 error = 0;
1572 status = HREAD2(hp, SDHC_NINTR_STATUS);
1573 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1574 continue; /* no interrupt for us */
1575 /* Acknowledge the interrupts we are about to handle. */
1576 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1577 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1578 /* Acknowledge error interrupts. */
1579 error = HREAD2(hp, SDHC_EINTR_STATUS);
1580 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1581 }
1582 }
1583
1584 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1585 status, error));
1586
1587 mutex_enter(&hp->intr_mtx);
1588
1589 /* Claim this interrupt. */
1590 done = 1;
1591
1592 /*
1593 * Service error interrupts.
1594 */
1595 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1596 SDHC_DATA_TIMEOUT_ERROR)) {
1597 hp->intr_error_status |= error;
1598 hp->intr_status |= status;
1599 cv_broadcast(&hp->intr_cv);
1600 }
1601
1602 /*
1603 * Wake up the sdmmc event thread to scan for cards.
1604 */
1605 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1606 sdmmc_needs_discover(hp->sdmmc);
1607 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1608 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1609 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1610 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1611 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1612 }
1613 }
1614
1615 /*
1616 * Wake up the blocking process to service command
1617 * related interrupt(s).
1618 */
1619 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1620 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1621 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1622 hp->intr_status |= status;
1623 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1624 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1625 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1626 }
1627 cv_broadcast(&hp->intr_cv);
1628 }
1629
1630 /*
1631 * Service SD card interrupts.
1632 */
1633 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1634 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1635 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1636 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1637 sdmmc_card_intr(hp->sdmmc);
1638 }
1639 mutex_exit(&hp->intr_mtx);
1640 }
1641
1642 return done;
1643 }
1644
1645 #ifdef SDHC_DEBUG
1646 void
1647 sdhc_dump_regs(struct sdhc_host *hp)
1648 {
1649
1650 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1651 HREAD4(hp, SDHC_PRESENT_STATE));
1652 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1653 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1654 HREAD1(hp, SDHC_POWER_CTL));
1655 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1656 HREAD2(hp, SDHC_NINTR_STATUS));
1657 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1658 HREAD2(hp, SDHC_EINTR_STATUS));
1659 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1660 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1661 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1662 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1663 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1664 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1665 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1666 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1667 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1668 HREAD4(hp, SDHC_CAPABILITIES));
1669 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1670 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1671 }
1672 #endif
1673