sdhc.c revision 1.31 1 /* $NetBSD: sdhc.c,v 1.31 2012/09/13 21:44:50 joerg Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.31 2012/09/13 21:44:50 joerg Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args * const saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 aprint_normal(" slot %d", HDEVINST(hp));
230
231 return UNCONF;
232 }
233
234 /*
235 * Called by attachment driver. For each SD card slot there is one SD
236 * host controller standard register set. (1.3)
237 */
238 int
239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 bus_space_handle_t ioh, bus_size_t iosize)
241 {
242 struct sdmmcbus_attach_args saa;
243 struct sdhc_host *hp;
244 uint32_t caps;
245 uint16_t sdhcver;
246
247 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 switch (SDHC_SPEC_VERSION(sdhcver)) {
250 case SDHC_SPEC_VERS_100:
251 aprint_normal("1.0");
252 break;
253
254 case SDHC_SPEC_VERS_200:
255 aprint_normal("2.0");
256 break;
257
258 case SDHC_SPEC_VERS_300:
259 aprint_normal("3.0");
260 break;
261
262 default:
263 aprint_normal("unknown version(0x%x)",
264 SDHC_SPEC_VERSION(sdhcver));
265 break;
266 }
267 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268
269 /* Allocate one more host structure. */
270 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 if (hp == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "couldn't alloc memory (sdhc host)\n");
274 goto err1;
275 }
276 sc->sc_host[sc->sc_nhosts++] = hp;
277
278 /* Fill in the new host structure. */
279 hp->sc = sc;
280 hp->iot = iot;
281 hp->ioh = ioh;
282 hp->dmat = sc->sc_dmat;
283 hp->specver = SDHC_SPEC_VERSION(sdhcver);
284
285 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 cv_init(&hp->intr_cv, "sdhcintr");
288
289 /*
290 * Reset the host controller and enable interrupts.
291 */
292 (void)sdhc_host_reset(hp);
293
294 /* Determine host capabilities. */
295 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
296 caps = sc->sc_caps;
297 } else {
298 mutex_enter(&hp->host_mtx);
299 caps = HREAD4(hp, SDHC_CAPABILITIES);
300 mutex_exit(&hp->host_mtx);
301 }
302
303 /* Use DMA if the host system and the controller support it. */
304 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
305 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
306 ISSET(caps, SDHC_DMA_SUPPORT)))) {
307 SET(hp->flags, SHF_USE_DMA);
308 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
309 }
310
311 /*
312 * Determine the base clock frequency. (2.2.24)
313 */
314 if (hp->specver == SDHC_SPEC_VERS_300) {
315 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
316 } else {
317 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
318 }
319 if (hp->clkbase == 0) {
320 if (sc->sc_clkbase == 0) {
321 /* The attachment driver must tell us. */
322 aprint_error_dev(sc->sc_dev,
323 "unknown base clock frequency\n");
324 goto err;
325 }
326 hp->clkbase = sc->sc_clkbase;
327 }
328 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
329 /* SDHC 1.0 supports only 10-63 MHz. */
330 aprint_error_dev(sc->sc_dev,
331 "base clock frequency out of range: %u MHz\n",
332 hp->clkbase / 1000);
333 goto err;
334 }
335 DPRINTF(1,("%s: base clock frequency %u MHz\n",
336 device_xname(sc->sc_dev), hp->clkbase / 1000));
337
338 /*
339 * XXX Set the data timeout counter value according to
340 * capabilities. (2.2.15)
341 */
342 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
343 #if 1
344 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
345 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
346 #endif
347
348 /*
349 * Determine SD bus voltage levels supported by the controller.
350 */
351 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
352 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
353 }
354 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
355 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
356 }
357 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
358 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
359 }
360
361 /*
362 * Determine the maximum block length supported by the host
363 * controller. (2.2.24)
364 */
365 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
366 case SDHC_MAX_BLK_LEN_512:
367 hp->maxblklen = 512;
368 break;
369
370 case SDHC_MAX_BLK_LEN_1024:
371 hp->maxblklen = 1024;
372 break;
373
374 case SDHC_MAX_BLK_LEN_2048:
375 hp->maxblklen = 2048;
376 break;
377
378 case SDHC_MAX_BLK_LEN_4096:
379 hp->maxblklen = 4096;
380 break;
381
382 default:
383 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
384 goto err;
385 }
386 DPRINTF(1, ("%s: max block length %u byte%s\n",
387 device_xname(sc->sc_dev), hp->maxblklen,
388 hp->maxblklen > 1 ? "s" : ""));
389
390 /*
391 * Attach the generic SD/MMC bus driver. (The bus driver must
392 * not invoke any chipset functions before it is attached.)
393 */
394 memset(&saa, 0, sizeof(saa));
395 saa.saa_busname = "sdmmc";
396 saa.saa_sct = &sdhc_functions;
397 saa.saa_sch = hp;
398 saa.saa_dmat = hp->dmat;
399 saa.saa_clkmin = hp->clkbase / 256;
400 saa.saa_clkmax = hp->clkbase;
401 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
402 saa.saa_clkmin /= 2046;
403 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
404 saa.saa_clkmin /= 16;
405 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
406 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
407 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
408 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
409 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
410 if (ISSET(hp->flags, SHF_USE_DMA)) {
411 saa.saa_caps |= SMC_CAPS_DMA;
412 if (hp->specver == SDHC_SPEC_VERS_100) {
413 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
414 }
415 }
416 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
417
418 return 0;
419
420 err:
421 cv_destroy(&hp->intr_cv);
422 mutex_destroy(&hp->intr_mtx);
423 mutex_destroy(&hp->host_mtx);
424 free(hp, M_DEVBUF);
425 sc->sc_host[--sc->sc_nhosts] = NULL;
426 err1:
427 return 1;
428 }
429
430 int
431 sdhc_detach(device_t dev, int flags)
432 {
433 struct sdhc_host *hp = (struct sdhc_host *)dev;
434 struct sdhc_softc *sc = hp->sc;
435 int rv = 0;
436
437 if (hp->sdmmc)
438 rv = config_detach(hp->sdmmc, flags);
439
440 cv_destroy(&hp->intr_cv);
441 mutex_destroy(&hp->intr_mtx);
442 mutex_destroy(&hp->host_mtx);
443 free(hp, M_DEVBUF);
444 sc->sc_host[--sc->sc_nhosts] = NULL;
445
446 return rv;
447 }
448
449 bool
450 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
451 {
452 struct sdhc_softc *sc = device_private(dev);
453 struct sdhc_host *hp;
454 size_t i;
455
456 /* XXX poll for command completion or suspend command
457 * in progress */
458
459 /* Save the host controller state. */
460 for (size_t n = 0; n < sc->sc_nhosts; n++) {
461 hp = sc->sc_host[n];
462 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
463 for (i = 0; i < sizeof hp->regs; i += 4) {
464 uint32_t v = HREAD4(hp, i);
465 hp->regs[i + 0] = (v >> 0);
466 hp->regs[i + 1] = (v >> 8);
467 if (i + 3 < sizeof hp->regs) {
468 hp->regs[i + 2] = (v >> 16);
469 hp->regs[i + 3] = (v >> 24);
470 }
471 }
472 } else {
473 for (i = 0; i < sizeof hp->regs; i++) {
474 hp->regs[i] = HREAD1(hp, i);
475 }
476 }
477 }
478 return true;
479 }
480
481 bool
482 sdhc_resume(device_t dev, const pmf_qual_t *qual)
483 {
484 struct sdhc_softc *sc = device_private(dev);
485 struct sdhc_host *hp;
486 size_t i;
487
488 /* Restore the host controller state. */
489 for (size_t n = 0; n < sc->sc_nhosts; n++) {
490 hp = sc->sc_host[n];
491 (void)sdhc_host_reset(hp);
492 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
493 for (i = 0; i < sizeof hp->regs; i += 4) {
494 if (i + 3 < sizeof hp->regs) {
495 HWRITE4(hp, i,
496 (hp->regs[i + 0] << 0)
497 | (hp->regs[i + 1] << 8)
498 | (hp->regs[i + 2] << 16)
499 | (hp->regs[i + 3] << 24));
500 } else {
501 HWRITE4(hp, i,
502 (hp->regs[i + 0] << 0)
503 | (hp->regs[i + 1] << 8));
504 }
505 }
506 } else {
507 for (i = 0; i < sizeof hp->regs; i++) {
508 HWRITE1(hp, i, hp->regs[i]);
509 }
510 }
511 }
512 return true;
513 }
514
515 bool
516 sdhc_shutdown(device_t dev, int flags)
517 {
518 struct sdhc_softc *sc = device_private(dev);
519 struct sdhc_host *hp;
520
521 /* XXX chip locks up if we don't disable it before reboot. */
522 for (size_t i = 0; i < sc->sc_nhosts; i++) {
523 hp = sc->sc_host[i];
524 (void)sdhc_host_reset(hp);
525 }
526 return true;
527 }
528
529 /*
530 * Reset the host controller. Called during initialization, when
531 * cards are removed, upon resume, and during error recovery.
532 */
533 static int
534 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
535 {
536 struct sdhc_host *hp = (struct sdhc_host *)sch;
537 uint32_t sdhcimask;
538 int error;
539
540 /* Don't lock. */
541
542 /* Disable all interrupts. */
543 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
544 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
545 } else {
546 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
547 }
548
549 /*
550 * Reset the entire host controller and wait up to 100ms for
551 * the controller to clear the reset bit.
552 */
553 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
554 if (error)
555 goto out;
556
557 /* Set data timeout counter value to max for now. */
558 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
559 #if 1
560 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
561 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
562 #endif
563
564 /* Enable interrupts. */
565 mutex_enter(&hp->intr_mtx);
566 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
567 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
568 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
569 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
570 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
571 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
572 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
573 sdhcimask ^=
574 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
575 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
576 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
577 } else {
578 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
579 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
580 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
581 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
582 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
583 }
584 mutex_exit(&hp->intr_mtx);
585
586 out:
587 return error;
588 }
589
590 static int
591 sdhc_host_reset(sdmmc_chipset_handle_t sch)
592 {
593 struct sdhc_host *hp = (struct sdhc_host *)sch;
594 int error;
595
596 mutex_enter(&hp->host_mtx);
597 error = sdhc_host_reset1(sch);
598 mutex_exit(&hp->host_mtx);
599
600 return error;
601 }
602
603 static uint32_t
604 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
605 {
606 struct sdhc_host *hp = (struct sdhc_host *)sch;
607
608 return hp->ocr;
609 }
610
611 static int
612 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
613 {
614 struct sdhc_host *hp = (struct sdhc_host *)sch;
615
616 return hp->maxblklen;
617 }
618
619 /*
620 * Return non-zero if the card is currently inserted.
621 */
622 static int
623 sdhc_card_detect(sdmmc_chipset_handle_t sch)
624 {
625 struct sdhc_host *hp = (struct sdhc_host *)sch;
626 int r;
627
628 mutex_enter(&hp->host_mtx);
629 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
630 mutex_exit(&hp->host_mtx);
631
632 return r ? 1 : 0;
633 }
634
635 /*
636 * Return non-zero if the card is currently write-protected.
637 */
638 static int
639 sdhc_write_protect(sdmmc_chipset_handle_t sch)
640 {
641 struct sdhc_host *hp = (struct sdhc_host *)sch;
642 int r;
643
644 mutex_enter(&hp->host_mtx);
645 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
646 mutex_exit(&hp->host_mtx);
647
648 return r ? 0 : 1;
649 }
650
651 /*
652 * Set or change SD bus voltage and enable or disable SD bus power.
653 * Return zero on success.
654 */
655 static int
656 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
657 {
658 struct sdhc_host *hp = (struct sdhc_host *)sch;
659 uint8_t vdd;
660 int error = 0;
661
662 mutex_enter(&hp->host_mtx);
663
664 /*
665 * Disable bus power before voltage change.
666 */
667 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
668 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
669 HWRITE1(hp, SDHC_POWER_CTL, 0);
670
671 /* If power is disabled, reset the host and return now. */
672 if (ocr == 0) {
673 (void)sdhc_host_reset1(hp);
674 goto out;
675 }
676
677 /*
678 * Select the lowest voltage according to capabilities.
679 */
680 ocr &= hp->ocr;
681 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
682 vdd = SDHC_VOLTAGE_1_8V;
683 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
684 vdd = SDHC_VOLTAGE_3_0V;
685 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
686 vdd = SDHC_VOLTAGE_3_3V;
687 } else {
688 /* Unsupported voltage level requested. */
689 error = EINVAL;
690 goto out;
691 }
692
693 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
694 /*
695 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
696 * voltage ramp until power rises.
697 */
698 HWRITE1(hp, SDHC_POWER_CTL,
699 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
700 sdmmc_delay(10000);
701
702 /*
703 * The host system may not power the bus due to battery low,
704 * etc. In that case, the host controller should clear the
705 * bus power bit.
706 */
707 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
708 error = ENXIO;
709 goto out;
710 }
711 }
712
713 out:
714 mutex_exit(&hp->host_mtx);
715
716 return error;
717 }
718
719 /*
720 * Return the smallest possible base clock frequency divisor value
721 * for the CLOCK_CTL register to produce `freq' (KHz).
722 */
723 static bool
724 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
725 {
726 u_int div;
727
728 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
729 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
730 if ((hp->clkbase / div) <= freq) {
731 *divp = SDHC_SDCLK_CGM
732 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
733 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
734 //freq = hp->clkbase / div;
735 return true;
736 }
737 }
738 /* No divisor found. */
739 return false;
740 }
741 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
742 u_int dvs = (hp->clkbase + freq - 1) / freq;
743 u_int roundup = dvs & 1;
744 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
745 if (dvs + roundup <= 16) {
746 dvs += roundup - 1;
747 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
748 | (dvs << SDHC_SDCLK_DVS_SHIFT);
749 DPRINTF(2,
750 ("%s: divisor for freq %u is %u * %u\n",
751 HDEVNAME(hp), freq, div * 2, dvs + 1));
752 //freq = hp->clkbase / (div * 2) * (dvs + 1);
753 return true;
754 }
755 /*
756 * If we drop bits, we need to round up the divisor.
757 */
758 roundup |= dvs & 1;
759 }
760 /* No divisor found. */
761 return false;
762 } else {
763 for (div = 1; div <= 256; div *= 2) {
764 if ((hp->clkbase / div) <= freq) {
765 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
766 //freq = hp->clkbase / div;
767 return true;
768 }
769 }
770 }
771 /* No divisor found. */
772 return false;
773 }
774
775 /*
776 * Set or change SDCLK frequency or disable the SD clock.
777 * Return zero on success.
778 */
779 static int
780 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
781 {
782 struct sdhc_host *hp = (struct sdhc_host *)sch;
783 u_int div;
784 u_int timo;
785 int error = 0;
786 #ifdef DIAGNOSTIC
787 bool present;
788
789 mutex_enter(&hp->host_mtx);
790 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
791 mutex_exit(&hp->host_mtx);
792
793 /* Must not stop the clock if commands are in progress. */
794 if (present && sdhc_card_detect(hp)) {
795 aprint_normal_dev(hp->sc->sc_dev,
796 "%s: command in progress\n", __func__);
797 }
798 #endif
799
800 mutex_enter(&hp->host_mtx);
801
802 /*
803 * Stop SD clock before changing the frequency.
804 */
805 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
806 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
807 if (freq == SDMMC_SDCLK_OFF) {
808 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
809 goto out;
810 }
811 } else {
812 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
813 if (freq == SDMMC_SDCLK_OFF)
814 goto out;
815 }
816
817 /*
818 * Set the minimum base clock frequency divisor.
819 */
820 if (!sdhc_clock_divisor(hp, freq, &div)) {
821 /* Invalid base clock frequency or `freq' value. */
822 error = EINVAL;
823 goto out;
824 }
825 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
826 HWRITE4(hp, SDHC_CLOCK_CTL,
827 div | (SDHC_TIMEOUT_MAX << 16));
828 } else {
829 HWRITE2(hp, SDHC_CLOCK_CTL, div);
830 }
831
832 /*
833 * Start internal clock. Wait 10ms for stabilization.
834 */
835 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
836 sdmmc_delay(10000);
837 HSET4(hp, SDHC_CLOCK_CTL,
838 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
839 } else {
840 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
841 for (timo = 1000; timo > 0; timo--) {
842 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
843 SDHC_INTCLK_STABLE))
844 break;
845 sdmmc_delay(10);
846 }
847 if (timo == 0) {
848 error = ETIMEDOUT;
849 goto out;
850 }
851 }
852
853 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
854 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
855 /*
856 * Sending 80 clocks at 400kHz takes 200us.
857 * So delay for that time + slop and then
858 * check a few times for completion.
859 */
860 sdmmc_delay(210);
861 for (timo = 10; timo > 0; timo--) {
862 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
863 SDHC_INIT_ACTIVE))
864 break;
865 sdmmc_delay(10);
866 }
867 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
868
869 /*
870 * Enable SD clock.
871 */
872 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
873 } else {
874 /*
875 * Enable SD clock.
876 */
877 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
878
879 if (freq > 25000)
880 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
881 else
882 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
883 }
884
885 out:
886 mutex_exit(&hp->host_mtx);
887
888 return error;
889 }
890
891 static int
892 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
893 {
894 struct sdhc_host *hp = (struct sdhc_host *)sch;
895 int reg;
896
897 switch (width) {
898 case 1:
899 case 4:
900 break;
901
902 case 8:
903 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
904 break;
905 /* FALLTHROUGH */
906 default:
907 DPRINTF(0,("%s: unsupported bus width (%d)\n",
908 HDEVNAME(hp), width));
909 return 1;
910 }
911
912 mutex_enter(&hp->host_mtx);
913 reg = HREAD1(hp, SDHC_HOST_CTL);
914 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
915 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
916 if (width == 4)
917 reg |= SDHC_4BIT_MODE;
918 else if (width == 8)
919 reg |= SDHC_ESDHC_8BIT_MODE;
920 } else {
921 reg &= ~SDHC_4BIT_MODE;
922 if (width == 4)
923 reg |= SDHC_4BIT_MODE;
924 }
925 HWRITE1(hp, SDHC_HOST_CTL, reg);
926 mutex_exit(&hp->host_mtx);
927
928 return 0;
929 }
930
931 static int
932 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
933 {
934
935 /* Nothing ?? */
936 return 0;
937 }
938
939 static void
940 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
941 {
942 struct sdhc_host *hp = (struct sdhc_host *)sch;
943
944 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
945 mutex_enter(&hp->intr_mtx);
946 if (enable) {
947 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
948 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
949 } else {
950 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
951 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
952 }
953 mutex_exit(&hp->intr_mtx);
954 }
955 }
956
957 static void
958 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
959 {
960 struct sdhc_host *hp = (struct sdhc_host *)sch;
961
962 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
963 mutex_enter(&hp->intr_mtx);
964 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
965 mutex_exit(&hp->intr_mtx);
966 }
967 }
968
969 static int
970 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
971 {
972 uint32_t state;
973 int timeout;
974
975 for (timeout = 10; timeout > 0; timeout--) {
976 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
977 return 0;
978 sdmmc_delay(10000);
979 }
980 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
981 value, state));
982 return ETIMEDOUT;
983 }
984
985 static void
986 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
987 {
988 struct sdhc_host *hp = (struct sdhc_host *)sch;
989 int error;
990
991 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
992 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
993 mutex_enter(&hp->intr_mtx);
994 if (ISSET(hp->flags, SHF_USE_DMA)) {
995 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
996 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
997 } else {
998 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
999 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1000 }
1001 mutex_exit(&hp->intr_mtx);
1002 }
1003
1004 /*
1005 * Start the MMC command, or mark `cmd' as failed and return.
1006 */
1007 error = sdhc_start_command(hp, cmd);
1008 if (error) {
1009 cmd->c_error = error;
1010 goto out;
1011 }
1012
1013 /*
1014 * Wait until the command phase is done, or until the command
1015 * is marked done for any other reason.
1016 */
1017 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1018 cmd->c_error = ETIMEDOUT;
1019 goto out;
1020 }
1021
1022 /*
1023 * The host controller removes bits [0:7] from the response
1024 * data (CRC) and we pass the data up unchanged to the bus
1025 * driver (without padding).
1026 */
1027 mutex_enter(&hp->host_mtx);
1028 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1029 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1030 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1031 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1032 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1033 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1034 }
1035 }
1036 mutex_exit(&hp->host_mtx);
1037 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1038
1039 /*
1040 * If the command has data to transfer in any direction,
1041 * execute the transfer now.
1042 */
1043 if (cmd->c_error == 0 && cmd->c_data != NULL)
1044 sdhc_transfer_data(hp, cmd);
1045
1046 out:
1047 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1048 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1049 mutex_enter(&hp->host_mtx);
1050 /* Turn off the LED. */
1051 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1052 mutex_exit(&hp->host_mtx);
1053 }
1054 SET(cmd->c_flags, SCF_ITSDONE);
1055
1056 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1057 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1058 cmd->c_flags, cmd->c_error));
1059 }
1060
1061 static int
1062 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1063 {
1064 struct sdhc_softc * const sc = hp->sc;
1065 uint16_t blksize = 0;
1066 uint16_t blkcount = 0;
1067 uint16_t mode;
1068 uint16_t command;
1069 int error;
1070
1071 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1072 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1073 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1074
1075 /*
1076 * The maximum block length for commands should be the minimum
1077 * of the host buffer size and the card buffer size. (1.7.2)
1078 */
1079
1080 /* Fragment the data into proper blocks. */
1081 if (cmd->c_datalen > 0) {
1082 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1083 blkcount = cmd->c_datalen / blksize;
1084 if (cmd->c_datalen % blksize > 0) {
1085 /* XXX: Split this command. (1.7.4) */
1086 aprint_error_dev(sc->sc_dev,
1087 "data not a multiple of %u bytes\n", blksize);
1088 return EINVAL;
1089 }
1090 }
1091
1092 /* Check limit imposed by 9-bit block count. (1.7.2) */
1093 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1094 aprint_error_dev(sc->sc_dev, "too much data\n");
1095 return EINVAL;
1096 }
1097
1098 /* Prepare transfer mode register value. (2.2.5) */
1099 mode = SDHC_BLOCK_COUNT_ENABLE;
1100 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1101 mode |= SDHC_READ_MODE;
1102 if (blkcount > 1) {
1103 mode |= SDHC_MULTI_BLOCK_MODE;
1104 /* XXX only for memory commands? */
1105 mode |= SDHC_AUTO_CMD12_ENABLE;
1106 }
1107 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1108 mode |= SDHC_DMA_ENABLE;
1109 }
1110
1111 /*
1112 * Prepare command register value. (2.2.6)
1113 */
1114 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1115
1116 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1117 command |= SDHC_CRC_CHECK_ENABLE;
1118 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1119 command |= SDHC_INDEX_CHECK_ENABLE;
1120 if (cmd->c_data != NULL)
1121 command |= SDHC_DATA_PRESENT_SELECT;
1122
1123 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1124 command |= SDHC_NO_RESPONSE;
1125 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1126 command |= SDHC_RESP_LEN_136;
1127 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1128 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1129 else
1130 command |= SDHC_RESP_LEN_48;
1131
1132 /* Wait until command and data inhibit bits are clear. (1.5) */
1133 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1134 if (error)
1135 return error;
1136
1137 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1138 HDEVNAME(hp), blksize, blkcount, mode, command));
1139
1140 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1141 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1142
1143 mutex_enter(&hp->host_mtx);
1144
1145 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1146 /* Alert the user not to remove the card. */
1147 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1148 }
1149
1150 /* Set DMA start address. */
1151 if (ISSET(mode, SDHC_DMA_ENABLE))
1152 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1153
1154 /*
1155 * Start a CPU data transfer. Writing to the high order byte
1156 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1157 */
1158 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1159 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1160 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1161 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1162 } else {
1163 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1164 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1165 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1166 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1167 HWRITE2(hp, SDHC_COMMAND, command);
1168 }
1169
1170 mutex_exit(&hp->host_mtx);
1171
1172 return 0;
1173 }
1174
1175 static void
1176 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1177 {
1178 int error;
1179
1180 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1181 MMC_R1(cmd->c_resp), cmd->c_datalen));
1182
1183 #ifdef SDHC_DEBUG
1184 /* XXX I forgot why I wanted to know when this happens :-( */
1185 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1186 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1187 aprint_error_dev(hp->sc->sc_dev,
1188 "CMD52/53 error response flags %#x\n",
1189 MMC_R1(cmd->c_resp) & 0xff00);
1190 }
1191 #endif
1192
1193 if (cmd->c_dmamap != NULL)
1194 error = sdhc_transfer_data_dma(hp, cmd);
1195 else
1196 error = sdhc_transfer_data_pio(hp, cmd);
1197 if (error)
1198 cmd->c_error = error;
1199 SET(cmd->c_flags, SCF_ITSDONE);
1200
1201 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1202 HDEVNAME(hp), cmd->c_error));
1203 }
1204
1205 static int
1206 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1207 {
1208 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1209 bus_addr_t posaddr;
1210 bus_addr_t segaddr;
1211 bus_size_t seglen;
1212 u_int seg = 0;
1213 int error = 0;
1214 int status;
1215
1216 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1217 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1218 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1219 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1220
1221 for (;;) {
1222 status = sdhc_wait_intr(hp,
1223 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1224 SDHC_DMA_TIMEOUT);
1225
1226 if (status & SDHC_TRANSFER_COMPLETE) {
1227 break;
1228 }
1229 if (!status) {
1230 error = ETIMEDOUT;
1231 break;
1232 }
1233 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1234 continue;
1235 }
1236
1237 /* DMA Interrupt (boundary crossing) */
1238
1239 segaddr = dm_segs[seg].ds_addr;
1240 seglen = dm_segs[seg].ds_len;
1241 mutex_enter(&hp->host_mtx);
1242 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1243 mutex_exit(&hp->host_mtx);
1244
1245 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1246 break;
1247 }
1248 mutex_enter(&hp->host_mtx);
1249 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1250 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1251 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1252 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1253 mutex_exit(&hp->host_mtx);
1254 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1255 }
1256
1257 return error;
1258 }
1259
1260 static int
1261 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1262 {
1263 uint8_t *data = cmd->c_data;
1264 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1265 u_int len, datalen;
1266 u_int imask;
1267 u_int pmask;
1268 int error = 0;
1269
1270 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1271 imask = SDHC_BUFFER_READ_READY;
1272 pmask = SDHC_BUFFER_READ_ENABLE;
1273 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1274 pio_func = esdhc_read_data_pio;
1275 } else {
1276 pio_func = sdhc_read_data_pio;
1277 }
1278 } else {
1279 imask = SDHC_BUFFER_WRITE_READY;
1280 pmask = SDHC_BUFFER_WRITE_ENABLE;
1281 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1282 pio_func = esdhc_write_data_pio;
1283 } else {
1284 pio_func = sdhc_write_data_pio;
1285 }
1286 }
1287 datalen = cmd->c_datalen;
1288
1289 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1290 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1291 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1292
1293 while (datalen > 0) {
1294 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1295 mutex_enter(&hp->intr_mtx);
1296 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1297 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1298 } else {
1299 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1300 }
1301 mutex_exit(&hp->intr_mtx);
1302 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1303 error = ETIMEDOUT;
1304 break;
1305 }
1306
1307 error = sdhc_wait_state(hp, pmask, pmask);
1308 if (error)
1309 break;
1310 }
1311
1312 len = MIN(datalen, cmd->c_blklen);
1313 (*pio_func)(hp, data, len);
1314 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1315 HDEVNAME(hp), len, data));
1316
1317 data += len;
1318 datalen -= len;
1319 }
1320
1321 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1322 SDHC_TRANSFER_TIMEOUT))
1323 error = ETIMEDOUT;
1324
1325 return error;
1326 }
1327
1328 static void
1329 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1330 {
1331
1332 if (((__uintptr_t)data & 3) == 0) {
1333 while (datalen > 3) {
1334 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1335 data += 4;
1336 datalen -= 4;
1337 }
1338 if (datalen > 1) {
1339 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1340 data += 2;
1341 datalen -= 2;
1342 }
1343 if (datalen > 0) {
1344 *data = HREAD1(hp, SDHC_DATA);
1345 data += 1;
1346 datalen -= 1;
1347 }
1348 } else if (((__uintptr_t)data & 1) == 0) {
1349 while (datalen > 1) {
1350 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1351 data += 2;
1352 datalen -= 2;
1353 }
1354 if (datalen > 0) {
1355 *data = HREAD1(hp, SDHC_DATA);
1356 data += 1;
1357 datalen -= 1;
1358 }
1359 } else {
1360 while (datalen > 0) {
1361 *data = HREAD1(hp, SDHC_DATA);
1362 data += 1;
1363 datalen -= 1;
1364 }
1365 }
1366 }
1367
1368 static void
1369 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1370 {
1371
1372 if (((__uintptr_t)data & 3) == 0) {
1373 while (datalen > 3) {
1374 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1375 data += 4;
1376 datalen -= 4;
1377 }
1378 if (datalen > 1) {
1379 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1380 data += 2;
1381 datalen -= 2;
1382 }
1383 if (datalen > 0) {
1384 HWRITE1(hp, SDHC_DATA, *data);
1385 data += 1;
1386 datalen -= 1;
1387 }
1388 } else if (((__uintptr_t)data & 1) == 0) {
1389 while (datalen > 1) {
1390 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1391 data += 2;
1392 datalen -= 2;
1393 }
1394 if (datalen > 0) {
1395 HWRITE1(hp, SDHC_DATA, *data);
1396 data += 1;
1397 datalen -= 1;
1398 }
1399 } else {
1400 while (datalen > 0) {
1401 HWRITE1(hp, SDHC_DATA, *data);
1402 data += 1;
1403 datalen -= 1;
1404 }
1405 }
1406 }
1407
1408 static void
1409 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1410 {
1411 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1412 uint32_t v;
1413
1414 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1415 size_t count = 0;
1416
1417 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1418 if (count == 0) {
1419 /*
1420 * If we've drained "watermark" words, we need to wait
1421 * a little bit so the read FIFO can refill.
1422 */
1423 sdmmc_delay(10);
1424 count = watermark;
1425 }
1426 v = HREAD4(hp, SDHC_DATA);
1427 v = le32toh(v);
1428 *(uint32_t *)data = v;
1429 data += 4;
1430 datalen -= 4;
1431 status = HREAD2(hp, SDHC_NINTR_STATUS);
1432 count--;
1433 }
1434 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1435 if (count == 0) {
1436 sdmmc_delay(10);
1437 }
1438 v = HREAD4(hp, SDHC_DATA);
1439 v = le32toh(v);
1440 do {
1441 *data++ = v;
1442 v >>= 8;
1443 } while (--datalen > 0);
1444 }
1445 }
1446
1447 static void
1448 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1449 {
1450 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1451 uint32_t v;
1452
1453 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1454 size_t count = watermark;
1455
1456 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1457 if (count == 0) {
1458 sdmmc_delay(10);
1459 count = watermark;
1460 }
1461 v = *(uint32_t *)data;
1462 v = htole32(v);
1463 HWRITE4(hp, SDHC_DATA, v);
1464 data += 4;
1465 datalen -= 4;
1466 status = HREAD2(hp, SDHC_NINTR_STATUS);
1467 count--;
1468 }
1469 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1470 if (count == 0) {
1471 sdmmc_delay(10);
1472 }
1473 v = *(uint32_t *)data;
1474 v = htole32(v);
1475 HWRITE4(hp, SDHC_DATA, v);
1476 }
1477 }
1478
1479 /* Prepare for another command. */
1480 static int
1481 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1482 {
1483 int timo;
1484
1485 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1486
1487 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1488 for (timo = 10; timo > 0; timo--) {
1489 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1490 break;
1491 sdmmc_delay(10000);
1492 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1493 }
1494 if (timo == 0) {
1495 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1496 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1497 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1498 return ETIMEDOUT;
1499 }
1500
1501 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1502 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1503 }
1504
1505 return 0;
1506 }
1507
1508 static int
1509 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1510 {
1511 int status;
1512
1513 mask |= SDHC_ERROR_INTERRUPT;
1514
1515 mutex_enter(&hp->intr_mtx);
1516 status = hp->intr_status & mask;
1517 while (status == 0) {
1518 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1519 == EWOULDBLOCK) {
1520 status |= SDHC_ERROR_INTERRUPT;
1521 break;
1522 }
1523 status = hp->intr_status & mask;
1524 }
1525 hp->intr_status &= ~status;
1526
1527 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1528 hp->intr_error_status));
1529
1530 /* Command timeout has higher priority than command complete. */
1531 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1532 hp->intr_error_status = 0;
1533 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1534 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1535 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1536 }
1537 status = 0;
1538 }
1539 mutex_exit(&hp->intr_mtx);
1540
1541 return status;
1542 }
1543
1544 /*
1545 * Established by attachment driver at interrupt priority IPL_SDMMC.
1546 */
1547 int
1548 sdhc_intr(void *arg)
1549 {
1550 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1551 struct sdhc_host *hp;
1552 int done = 0;
1553 uint16_t status;
1554 uint16_t error;
1555
1556 /* We got an interrupt, but we don't know from which slot. */
1557 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1558 hp = sc->sc_host[host];
1559 if (hp == NULL)
1560 continue;
1561
1562 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1563 /* Find out which interrupts are pending. */
1564 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1565 status = xstatus;
1566 error = xstatus >> 16;
1567 if (error)
1568 xstatus |= SDHC_ERROR_INTERRUPT;
1569 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1570 continue; /* no interrupt for us */
1571 /* Acknowledge the interrupts we are about to handle. */
1572 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1573 } else {
1574 /* Find out which interrupts are pending. */
1575 error = 0;
1576 status = HREAD2(hp, SDHC_NINTR_STATUS);
1577 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1578 continue; /* no interrupt for us */
1579 /* Acknowledge the interrupts we are about to handle. */
1580 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1581 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1582 /* Acknowledge error interrupts. */
1583 error = HREAD2(hp, SDHC_EINTR_STATUS);
1584 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1585 }
1586 }
1587
1588 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1589 status, error));
1590
1591 mutex_enter(&hp->intr_mtx);
1592
1593 /* Claim this interrupt. */
1594 done = 1;
1595
1596 /*
1597 * Service error interrupts.
1598 */
1599 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1600 SDHC_DATA_TIMEOUT_ERROR)) {
1601 hp->intr_error_status |= error;
1602 hp->intr_status |= status;
1603 cv_broadcast(&hp->intr_cv);
1604 }
1605
1606 /*
1607 * Wake up the sdmmc event thread to scan for cards.
1608 */
1609 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1610 sdmmc_needs_discover(hp->sdmmc);
1611 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1612 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1613 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1614 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1615 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1616 }
1617 }
1618
1619 /*
1620 * Wake up the blocking process to service command
1621 * related interrupt(s).
1622 */
1623 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1624 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1625 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1626 hp->intr_status |= status;
1627 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1628 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1629 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1630 }
1631 cv_broadcast(&hp->intr_cv);
1632 }
1633
1634 /*
1635 * Service SD card interrupts.
1636 */
1637 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1638 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1639 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1640 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1641 sdmmc_card_intr(hp->sdmmc);
1642 }
1643 mutex_exit(&hp->intr_mtx);
1644 }
1645
1646 return done;
1647 }
1648
1649 #ifdef SDHC_DEBUG
1650 void
1651 sdhc_dump_regs(struct sdhc_host *hp)
1652 {
1653
1654 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1655 HREAD4(hp, SDHC_PRESENT_STATE));
1656 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1657 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1658 HREAD1(hp, SDHC_POWER_CTL));
1659 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1660 HREAD2(hp, SDHC_NINTR_STATUS));
1661 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1662 HREAD2(hp, SDHC_EINTR_STATUS));
1663 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1664 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1665 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1666 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1667 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1668 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1669 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1670 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1671 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1672 HREAD4(hp, SDHC_CAPABILITIES));
1673 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1674 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1675 }
1676 #endif
1677