sdhc.c revision 1.32 1 /* $NetBSD: sdhc.c,v 1.32 2012/10/29 13:30:25 kiyohara Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.32 2012/10/29 13:30:25 kiyohara Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 };
89
90 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
91 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args * const saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 aprint_normal(" slot %d", HDEVINST(hp));
230
231 return UNCONF;
232 }
233
234 /*
235 * Called by attachment driver. For each SD card slot there is one SD
236 * host controller standard register set. (1.3)
237 */
238 int
239 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
240 bus_space_handle_t ioh, bus_size_t iosize)
241 {
242 struct sdmmcbus_attach_args saa;
243 struct sdhc_host *hp;
244 uint32_t caps;
245 uint16_t sdhcver;
246
247 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
248 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
249 switch (SDHC_SPEC_VERSION(sdhcver)) {
250 case SDHC_SPEC_VERS_100:
251 aprint_normal("1.0");
252 break;
253
254 case SDHC_SPEC_VERS_200:
255 aprint_normal("2.0");
256 break;
257
258 case SDHC_SPEC_VERS_300:
259 aprint_normal("3.0");
260 break;
261
262 default:
263 aprint_normal("unknown version(0x%x)",
264 SDHC_SPEC_VERSION(sdhcver));
265 break;
266 }
267 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
268
269 /* Allocate one more host structure. */
270 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
271 if (hp == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "couldn't alloc memory (sdhc host)\n");
274 goto err1;
275 }
276 sc->sc_host[sc->sc_nhosts++] = hp;
277
278 /* Fill in the new host structure. */
279 hp->sc = sc;
280 hp->iot = iot;
281 hp->ioh = ioh;
282 hp->dmat = sc->sc_dmat;
283 hp->specver = SDHC_SPEC_VERSION(sdhcver);
284
285 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
286 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
287 cv_init(&hp->intr_cv, "sdhcintr");
288
289 /*
290 * Reset the host controller and enable interrupts.
291 */
292 (void)sdhc_host_reset(hp);
293
294 /* Determine host capabilities. */
295 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
296 caps = sc->sc_caps;
297 } else {
298 mutex_enter(&hp->host_mtx);
299 caps = HREAD4(hp, SDHC_CAPABILITIES);
300 mutex_exit(&hp->host_mtx);
301 }
302
303 /* Use DMA if the host system and the controller support it. */
304 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
305 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
306 ISSET(caps, SDHC_DMA_SUPPORT)))) {
307 SET(hp->flags, SHF_USE_DMA);
308 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
309 }
310
311 /*
312 * Determine the base clock frequency. (2.2.24)
313 */
314 if (hp->specver == SDHC_SPEC_VERS_300) {
315 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
316 } else {
317 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
318 }
319 if (hp->clkbase == 0) {
320 if (sc->sc_clkbase == 0) {
321 /* The attachment driver must tell us. */
322 aprint_error_dev(sc->sc_dev,
323 "unknown base clock frequency\n");
324 goto err;
325 }
326 hp->clkbase = sc->sc_clkbase;
327 }
328 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
329 /* SDHC 1.0 supports only 10-63 MHz. */
330 aprint_error_dev(sc->sc_dev,
331 "base clock frequency out of range: %u MHz\n",
332 hp->clkbase / 1000);
333 goto err;
334 }
335 DPRINTF(1,("%s: base clock frequency %u MHz\n",
336 device_xname(sc->sc_dev), hp->clkbase / 1000));
337
338 /*
339 * XXX Set the data timeout counter value according to
340 * capabilities. (2.2.15)
341 */
342 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
343 #if 1
344 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
345 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
346 #endif
347
348 /*
349 * Determine SD bus voltage levels supported by the controller.
350 */
351 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
352 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
353 }
354 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
355 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
356 }
357 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
358 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
359 }
360
361 /*
362 * Determine the maximum block length supported by the host
363 * controller. (2.2.24)
364 */
365 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
366 case SDHC_MAX_BLK_LEN_512:
367 hp->maxblklen = 512;
368 break;
369
370 case SDHC_MAX_BLK_LEN_1024:
371 hp->maxblklen = 1024;
372 break;
373
374 case SDHC_MAX_BLK_LEN_2048:
375 hp->maxblklen = 2048;
376 break;
377
378 case SDHC_MAX_BLK_LEN_4096:
379 hp->maxblklen = 4096;
380 break;
381
382 default:
383 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
384 goto err;
385 }
386 DPRINTF(1, ("%s: max block length %u byte%s\n",
387 device_xname(sc->sc_dev), hp->maxblklen,
388 hp->maxblklen > 1 ? "s" : ""));
389
390 /*
391 * Attach the generic SD/MMC bus driver. (The bus driver must
392 * not invoke any chipset functions before it is attached.)
393 */
394 memset(&saa, 0, sizeof(saa));
395 saa.saa_busname = "sdmmc";
396 saa.saa_sct = &sdhc_functions;
397 saa.saa_sch = hp;
398 saa.saa_dmat = hp->dmat;
399 saa.saa_clkmin = hp->clkbase / 256;
400 saa.saa_clkmax = hp->clkbase;
401 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
402 saa.saa_clkmin /= 2046;
403 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
404 saa.saa_clkmin /= 16;
405 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
406 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
407 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
408 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
409 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
410 if (ISSET(hp->flags, SHF_USE_DMA)) {
411 saa.saa_caps |= SMC_CAPS_DMA;
412 if (hp->specver == SDHC_SPEC_VERS_100) {
413 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
414 }
415 }
416 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
417 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
418 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
419
420 return 0;
421
422 err:
423 cv_destroy(&hp->intr_cv);
424 mutex_destroy(&hp->intr_mtx);
425 mutex_destroy(&hp->host_mtx);
426 free(hp, M_DEVBUF);
427 sc->sc_host[--sc->sc_nhosts] = NULL;
428 err1:
429 return 1;
430 }
431
432 int
433 sdhc_detach(device_t dev, int flags)
434 {
435 struct sdhc_host *hp = (struct sdhc_host *)dev;
436 struct sdhc_softc *sc = hp->sc;
437 int rv = 0;
438
439 if (hp->sdmmc)
440 rv = config_detach(hp->sdmmc, flags);
441
442 cv_destroy(&hp->intr_cv);
443 mutex_destroy(&hp->intr_mtx);
444 mutex_destroy(&hp->host_mtx);
445 free(hp, M_DEVBUF);
446 sc->sc_host[--sc->sc_nhosts] = NULL;
447
448 return rv;
449 }
450
451 bool
452 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
453 {
454 struct sdhc_softc *sc = device_private(dev);
455 struct sdhc_host *hp;
456 size_t i;
457
458 /* XXX poll for command completion or suspend command
459 * in progress */
460
461 /* Save the host controller state. */
462 for (size_t n = 0; n < sc->sc_nhosts; n++) {
463 hp = sc->sc_host[n];
464 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
465 for (i = 0; i < sizeof hp->regs; i += 4) {
466 uint32_t v = HREAD4(hp, i);
467 hp->regs[i + 0] = (v >> 0);
468 hp->regs[i + 1] = (v >> 8);
469 if (i + 3 < sizeof hp->regs) {
470 hp->regs[i + 2] = (v >> 16);
471 hp->regs[i + 3] = (v >> 24);
472 }
473 }
474 } else {
475 for (i = 0; i < sizeof hp->regs; i++) {
476 hp->regs[i] = HREAD1(hp, i);
477 }
478 }
479 }
480 return true;
481 }
482
483 bool
484 sdhc_resume(device_t dev, const pmf_qual_t *qual)
485 {
486 struct sdhc_softc *sc = device_private(dev);
487 struct sdhc_host *hp;
488 size_t i;
489
490 /* Restore the host controller state. */
491 for (size_t n = 0; n < sc->sc_nhosts; n++) {
492 hp = sc->sc_host[n];
493 (void)sdhc_host_reset(hp);
494 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
495 for (i = 0; i < sizeof hp->regs; i += 4) {
496 if (i + 3 < sizeof hp->regs) {
497 HWRITE4(hp, i,
498 (hp->regs[i + 0] << 0)
499 | (hp->regs[i + 1] << 8)
500 | (hp->regs[i + 2] << 16)
501 | (hp->regs[i + 3] << 24));
502 } else {
503 HWRITE4(hp, i,
504 (hp->regs[i + 0] << 0)
505 | (hp->regs[i + 1] << 8));
506 }
507 }
508 } else {
509 for (i = 0; i < sizeof hp->regs; i++) {
510 HWRITE1(hp, i, hp->regs[i]);
511 }
512 }
513 }
514 return true;
515 }
516
517 bool
518 sdhc_shutdown(device_t dev, int flags)
519 {
520 struct sdhc_softc *sc = device_private(dev);
521 struct sdhc_host *hp;
522
523 /* XXX chip locks up if we don't disable it before reboot. */
524 for (size_t i = 0; i < sc->sc_nhosts; i++) {
525 hp = sc->sc_host[i];
526 (void)sdhc_host_reset(hp);
527 }
528 return true;
529 }
530
531 /*
532 * Reset the host controller. Called during initialization, when
533 * cards are removed, upon resume, and during error recovery.
534 */
535 static int
536 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
537 {
538 struct sdhc_host *hp = (struct sdhc_host *)sch;
539 uint32_t sdhcimask;
540 int error;
541
542 /* Don't lock. */
543
544 /* Disable all interrupts. */
545 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
546 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
547 } else {
548 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
549 }
550
551 /*
552 * Reset the entire host controller and wait up to 100ms for
553 * the controller to clear the reset bit.
554 */
555 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
556 if (error)
557 goto out;
558
559 /* Set data timeout counter value to max for now. */
560 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
561 #if 1
562 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
563 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
564 #endif
565
566 /* Enable interrupts. */
567 mutex_enter(&hp->intr_mtx);
568 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
569 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
570 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
571 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
572 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
573 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
574 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
575 sdhcimask ^=
576 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
577 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
578 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
579 } else {
580 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
581 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
582 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
583 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
584 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
585 }
586 mutex_exit(&hp->intr_mtx);
587
588 out:
589 return error;
590 }
591
592 static int
593 sdhc_host_reset(sdmmc_chipset_handle_t sch)
594 {
595 struct sdhc_host *hp = (struct sdhc_host *)sch;
596 int error;
597
598 mutex_enter(&hp->host_mtx);
599 error = sdhc_host_reset1(sch);
600 mutex_exit(&hp->host_mtx);
601
602 return error;
603 }
604
605 static uint32_t
606 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
607 {
608 struct sdhc_host *hp = (struct sdhc_host *)sch;
609
610 return hp->ocr;
611 }
612
613 static int
614 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
615 {
616 struct sdhc_host *hp = (struct sdhc_host *)sch;
617
618 return hp->maxblklen;
619 }
620
621 /*
622 * Return non-zero if the card is currently inserted.
623 */
624 static int
625 sdhc_card_detect(sdmmc_chipset_handle_t sch)
626 {
627 struct sdhc_host *hp = (struct sdhc_host *)sch;
628 int r;
629
630 if (hp->sc->sc_vendor_card_detect)
631 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
632
633 mutex_enter(&hp->host_mtx);
634 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
635 mutex_exit(&hp->host_mtx);
636
637 return r ? 1 : 0;
638 }
639
640 /*
641 * Return non-zero if the card is currently write-protected.
642 */
643 static int
644 sdhc_write_protect(sdmmc_chipset_handle_t sch)
645 {
646 struct sdhc_host *hp = (struct sdhc_host *)sch;
647 int r;
648
649 if (hp->sc->sc_vendor_write_protect)
650 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
651
652 mutex_enter(&hp->host_mtx);
653 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
654 mutex_exit(&hp->host_mtx);
655
656 return r ? 0 : 1;
657 }
658
659 /*
660 * Set or change SD bus voltage and enable or disable SD bus power.
661 * Return zero on success.
662 */
663 static int
664 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
665 {
666 struct sdhc_host *hp = (struct sdhc_host *)sch;
667 uint8_t vdd;
668 int error = 0;
669 const uint32_t pcmask =
670 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
671
672 mutex_enter(&hp->host_mtx);
673
674 /*
675 * Disable bus power before voltage change.
676 */
677 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
678 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
679 HWRITE1(hp, SDHC_POWER_CTL, 0);
680
681 /* If power is disabled, reset the host and return now. */
682 if (ocr == 0) {
683 (void)sdhc_host_reset1(hp);
684 goto out;
685 }
686
687 /*
688 * Select the lowest voltage according to capabilities.
689 */
690 ocr &= hp->ocr;
691 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
692 vdd = SDHC_VOLTAGE_1_8V;
693 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
694 vdd = SDHC_VOLTAGE_3_0V;
695 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
696 vdd = SDHC_VOLTAGE_3_3V;
697 } else {
698 /* Unsupported voltage level requested. */
699 error = EINVAL;
700 goto out;
701 }
702
703 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
704 /*
705 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
706 * voltage ramp until power rises.
707 */
708 HWRITE1(hp, SDHC_POWER_CTL,
709 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
710 sdmmc_delay(1);
711 HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
712 sdmmc_delay(1);
713 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
714 sdmmc_delay(10000);
715
716 /*
717 * The host system may not power the bus due to battery low,
718 * etc. In that case, the host controller should clear the
719 * bus power bit.
720 */
721 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
722 error = ENXIO;
723 goto out;
724 }
725 }
726
727 out:
728 mutex_exit(&hp->host_mtx);
729
730 return error;
731 }
732
733 /*
734 * Return the smallest possible base clock frequency divisor value
735 * for the CLOCK_CTL register to produce `freq' (KHz).
736 */
737 static bool
738 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
739 {
740 u_int div;
741
742 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
743 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
744 if ((hp->clkbase / div) <= freq) {
745 *divp = SDHC_SDCLK_CGM
746 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
747 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
748 //freq = hp->clkbase / div;
749 return true;
750 }
751 }
752 /* No divisor found. */
753 return false;
754 }
755 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
756 u_int dvs = (hp->clkbase + freq - 1) / freq;
757 u_int roundup = dvs & 1;
758 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
759 if (dvs + roundup <= 16) {
760 dvs += roundup - 1;
761 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
762 | (dvs << SDHC_SDCLK_DVS_SHIFT);
763 DPRINTF(2,
764 ("%s: divisor for freq %u is %u * %u\n",
765 HDEVNAME(hp), freq, div * 2, dvs + 1));
766 //freq = hp->clkbase / (div * 2) * (dvs + 1);
767 return true;
768 }
769 /*
770 * If we drop bits, we need to round up the divisor.
771 */
772 roundup |= dvs & 1;
773 }
774 /* No divisor found. */
775 return false;
776 } else {
777 if (hp->sc->sc_clkmsk != 0)
778 *divp = (hp->clkbase / freq) <<
779 (ffs(hp->sc->sc_clkmsk) - 1);
780 else
781 *divp = (hp->clkbase / freq) << SDHC_SDCLK_DIV_SHIFT;
782 return true;
783 }
784 /* No divisor found. */
785 return false;
786 }
787
788 /*
789 * Set or change SDCLK frequency or disable the SD clock.
790 * Return zero on success.
791 */
792 static int
793 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
794 {
795 struct sdhc_host *hp = (struct sdhc_host *)sch;
796 u_int div;
797 u_int timo;
798 int16_t reg;
799 int error = 0;
800 #ifdef DIAGNOSTIC
801 bool present;
802
803 mutex_enter(&hp->host_mtx);
804 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
805 mutex_exit(&hp->host_mtx);
806
807 /* Must not stop the clock if commands are in progress. */
808 if (present && sdhc_card_detect(hp)) {
809 aprint_normal_dev(hp->sc->sc_dev,
810 "%s: command in progress\n", __func__);
811 }
812 #endif
813
814 mutex_enter(&hp->host_mtx);
815
816 /*
817 * Stop SD clock before changing the frequency.
818 */
819 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
820 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
821 if (freq == SDMMC_SDCLK_OFF) {
822 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
823 goto out;
824 }
825 } else {
826 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
827 if (freq == SDMMC_SDCLK_OFF)
828 goto out;
829 }
830
831 /*
832 * Set the minimum base clock frequency divisor.
833 */
834 if (!sdhc_clock_divisor(hp, freq, &div)) {
835 /* Invalid base clock frequency or `freq' value. */
836 error = EINVAL;
837 goto out;
838 }
839 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
840 HWRITE4(hp, SDHC_CLOCK_CTL,
841 div | (SDHC_TIMEOUT_MAX << 16));
842 } else {
843 reg = HREAD2(hp, SDHC_CLOCK_CTL);
844 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
845 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
846 }
847
848 /*
849 * Start internal clock. Wait 10ms for stabilization.
850 */
851 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
852 sdmmc_delay(10000);
853 HSET4(hp, SDHC_CLOCK_CTL,
854 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
855 } else {
856 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
857 for (timo = 1000; timo > 0; timo--) {
858 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
859 SDHC_INTCLK_STABLE))
860 break;
861 sdmmc_delay(10);
862 }
863 if (timo == 0) {
864 error = ETIMEDOUT;
865 goto out;
866 }
867 }
868
869 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
870 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
871 /*
872 * Sending 80 clocks at 400kHz takes 200us.
873 * So delay for that time + slop and then
874 * check a few times for completion.
875 */
876 sdmmc_delay(210);
877 for (timo = 10; timo > 0; timo--) {
878 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
879 SDHC_INIT_ACTIVE))
880 break;
881 sdmmc_delay(10);
882 }
883 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
884
885 /*
886 * Enable SD clock.
887 */
888 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
889 } else {
890 /*
891 * Enable SD clock.
892 */
893 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
894
895 if (freq > 25000)
896 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
897 else
898 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
899 }
900
901 out:
902 mutex_exit(&hp->host_mtx);
903
904 return error;
905 }
906
907 static int
908 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
909 {
910 struct sdhc_host *hp = (struct sdhc_host *)sch;
911 int reg;
912
913 switch (width) {
914 case 1:
915 case 4:
916 break;
917
918 case 8:
919 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
920 break;
921 /* FALLTHROUGH */
922 default:
923 DPRINTF(0,("%s: unsupported bus width (%d)\n",
924 HDEVNAME(hp), width));
925 return 1;
926 }
927
928 mutex_enter(&hp->host_mtx);
929 reg = HREAD1(hp, SDHC_HOST_CTL);
930 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
931 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
932 if (width == 4)
933 reg |= SDHC_4BIT_MODE;
934 else if (width == 8)
935 reg |= SDHC_ESDHC_8BIT_MODE;
936 } else {
937 reg &= ~SDHC_4BIT_MODE;
938 if (width == 4)
939 reg |= SDHC_4BIT_MODE;
940 }
941 HWRITE1(hp, SDHC_HOST_CTL, reg);
942 mutex_exit(&hp->host_mtx);
943
944 return 0;
945 }
946
947 static int
948 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
949 {
950 struct sdhc_host *hp = (struct sdhc_host *)sch;
951
952 if (hp->sc->sc_vendor_rod)
953 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
954
955 return 0;
956 }
957
958 static void
959 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
960 {
961 struct sdhc_host *hp = (struct sdhc_host *)sch;
962
963 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
964 mutex_enter(&hp->intr_mtx);
965 if (enable) {
966 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
967 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
968 } else {
969 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
970 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
971 }
972 mutex_exit(&hp->intr_mtx);
973 }
974 }
975
976 static void
977 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
978 {
979 struct sdhc_host *hp = (struct sdhc_host *)sch;
980
981 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
982 mutex_enter(&hp->intr_mtx);
983 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
984 mutex_exit(&hp->intr_mtx);
985 }
986 }
987
988 static int
989 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
990 {
991 uint32_t state;
992 int timeout;
993
994 for (timeout = 10; timeout > 0; timeout--) {
995 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
996 return 0;
997 sdmmc_delay(10000);
998 }
999 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1000 value, state));
1001 return ETIMEDOUT;
1002 }
1003
1004 static void
1005 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1006 {
1007 struct sdhc_host *hp = (struct sdhc_host *)sch;
1008 int error;
1009
1010 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1011 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1012 mutex_enter(&hp->intr_mtx);
1013 if (ISSET(hp->flags, SHF_USE_DMA)) {
1014 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1015 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1016 } else {
1017 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1018 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1019 }
1020 mutex_exit(&hp->intr_mtx);
1021 }
1022
1023 /*
1024 * Start the MMC command, or mark `cmd' as failed and return.
1025 */
1026 error = sdhc_start_command(hp, cmd);
1027 if (error) {
1028 cmd->c_error = error;
1029 goto out;
1030 }
1031
1032 /*
1033 * Wait until the command phase is done, or until the command
1034 * is marked done for any other reason.
1035 */
1036 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1037 cmd->c_error = ETIMEDOUT;
1038 goto out;
1039 }
1040
1041 /*
1042 * The host controller removes bits [0:7] from the response
1043 * data (CRC) and we pass the data up unchanged to the bus
1044 * driver (without padding).
1045 */
1046 mutex_enter(&hp->host_mtx);
1047 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1048 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1049 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1050 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1051 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1052 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1053 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1054 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1055 (cmd->c_resp[1] << 24);
1056 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1057 (cmd->c_resp[2] << 24);
1058 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1059 (cmd->c_resp[3] << 24);
1060 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1061 }
1062 }
1063 }
1064 mutex_exit(&hp->host_mtx);
1065 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1066
1067 /*
1068 * If the command has data to transfer in any direction,
1069 * execute the transfer now.
1070 */
1071 if (cmd->c_error == 0 && cmd->c_data != NULL)
1072 sdhc_transfer_data(hp, cmd);
1073
1074 out:
1075 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1076 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1077 mutex_enter(&hp->host_mtx);
1078 /* Turn off the LED. */
1079 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1080 mutex_exit(&hp->host_mtx);
1081 }
1082 SET(cmd->c_flags, SCF_ITSDONE);
1083
1084 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1085 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1086 cmd->c_flags, cmd->c_error));
1087 }
1088
1089 static int
1090 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1091 {
1092 struct sdhc_softc * const sc = hp->sc;
1093 uint16_t blksize = 0;
1094 uint16_t blkcount = 0;
1095 uint16_t mode;
1096 uint16_t command;
1097 int error;
1098
1099 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1100 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1101 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1102
1103 /*
1104 * The maximum block length for commands should be the minimum
1105 * of the host buffer size and the card buffer size. (1.7.2)
1106 */
1107
1108 /* Fragment the data into proper blocks. */
1109 if (cmd->c_datalen > 0) {
1110 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1111 blkcount = cmd->c_datalen / blksize;
1112 if (cmd->c_datalen % blksize > 0) {
1113 /* XXX: Split this command. (1.7.4) */
1114 aprint_error_dev(sc->sc_dev,
1115 "data not a multiple of %u bytes\n", blksize);
1116 return EINVAL;
1117 }
1118 }
1119
1120 /* Check limit imposed by 9-bit block count. (1.7.2) */
1121 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1122 aprint_error_dev(sc->sc_dev, "too much data\n");
1123 return EINVAL;
1124 }
1125
1126 /* Prepare transfer mode register value. (2.2.5) */
1127 mode = SDHC_BLOCK_COUNT_ENABLE;
1128 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1129 mode |= SDHC_READ_MODE;
1130 if (blkcount > 1) {
1131 mode |= SDHC_MULTI_BLOCK_MODE;
1132 /* XXX only for memory commands? */
1133 mode |= SDHC_AUTO_CMD12_ENABLE;
1134 }
1135 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1136 mode |= SDHC_DMA_ENABLE;
1137 }
1138
1139 /*
1140 * Prepare command register value. (2.2.6)
1141 */
1142 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1143
1144 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1145 command |= SDHC_CRC_CHECK_ENABLE;
1146 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1147 command |= SDHC_INDEX_CHECK_ENABLE;
1148 if (cmd->c_data != NULL)
1149 command |= SDHC_DATA_PRESENT_SELECT;
1150
1151 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1152 command |= SDHC_NO_RESPONSE;
1153 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1154 command |= SDHC_RESP_LEN_136;
1155 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1156 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1157 else
1158 command |= SDHC_RESP_LEN_48;
1159
1160 /* Wait until command and data inhibit bits are clear. (1.5) */
1161 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1162 if (error)
1163 return error;
1164
1165 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1166 HDEVNAME(hp), blksize, blkcount, mode, command));
1167
1168 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1169 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1170
1171 mutex_enter(&hp->host_mtx);
1172
1173 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1174 /* Alert the user not to remove the card. */
1175 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1176 }
1177
1178 /* Set DMA start address. */
1179 if (ISSET(mode, SDHC_DMA_ENABLE))
1180 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1181
1182 /*
1183 * Start a CPU data transfer. Writing to the high order byte
1184 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1185 */
1186 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1187 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1188 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1189 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1190 } else {
1191 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1192 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1193 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1194 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1195 HWRITE2(hp, SDHC_COMMAND, command);
1196 }
1197
1198 mutex_exit(&hp->host_mtx);
1199
1200 return 0;
1201 }
1202
1203 static void
1204 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1205 {
1206 int error;
1207
1208 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1209 MMC_R1(cmd->c_resp), cmd->c_datalen));
1210
1211 #ifdef SDHC_DEBUG
1212 /* XXX I forgot why I wanted to know when this happens :-( */
1213 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1214 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1215 aprint_error_dev(hp->sc->sc_dev,
1216 "CMD52/53 error response flags %#x\n",
1217 MMC_R1(cmd->c_resp) & 0xff00);
1218 }
1219 #endif
1220
1221 if (cmd->c_dmamap != NULL)
1222 error = sdhc_transfer_data_dma(hp, cmd);
1223 else
1224 error = sdhc_transfer_data_pio(hp, cmd);
1225 if (error)
1226 cmd->c_error = error;
1227 SET(cmd->c_flags, SCF_ITSDONE);
1228
1229 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1230 HDEVNAME(hp), cmd->c_error));
1231 }
1232
1233 static int
1234 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1235 {
1236 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1237 bus_addr_t posaddr;
1238 bus_addr_t segaddr;
1239 bus_size_t seglen;
1240 u_int seg = 0;
1241 int error = 0;
1242 int status;
1243
1244 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1245 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1246 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1247 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1248
1249 for (;;) {
1250 status = sdhc_wait_intr(hp,
1251 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1252 SDHC_DMA_TIMEOUT);
1253
1254 if (status & SDHC_TRANSFER_COMPLETE) {
1255 break;
1256 }
1257 if (!status) {
1258 error = ETIMEDOUT;
1259 break;
1260 }
1261 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1262 continue;
1263 }
1264
1265 /* DMA Interrupt (boundary crossing) */
1266
1267 segaddr = dm_segs[seg].ds_addr;
1268 seglen = dm_segs[seg].ds_len;
1269 mutex_enter(&hp->host_mtx);
1270 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1271 mutex_exit(&hp->host_mtx);
1272
1273 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1274 break;
1275 }
1276 mutex_enter(&hp->host_mtx);
1277 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1278 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1279 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1280 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1281 mutex_exit(&hp->host_mtx);
1282 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1283 }
1284
1285 return error;
1286 }
1287
1288 static int
1289 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1290 {
1291 uint8_t *data = cmd->c_data;
1292 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1293 u_int len, datalen;
1294 u_int imask;
1295 u_int pmask;
1296 int error = 0;
1297
1298 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1299 imask = SDHC_BUFFER_READ_READY;
1300 pmask = SDHC_BUFFER_READ_ENABLE;
1301 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1302 pio_func = esdhc_read_data_pio;
1303 } else {
1304 pio_func = sdhc_read_data_pio;
1305 }
1306 } else {
1307 imask = SDHC_BUFFER_WRITE_READY;
1308 pmask = SDHC_BUFFER_WRITE_ENABLE;
1309 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1310 pio_func = esdhc_write_data_pio;
1311 } else {
1312 pio_func = sdhc_write_data_pio;
1313 }
1314 }
1315 datalen = cmd->c_datalen;
1316
1317 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1318 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1319 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1320
1321 while (datalen > 0) {
1322 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1323 mutex_enter(&hp->intr_mtx);
1324 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1325 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1326 } else {
1327 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1328 }
1329 mutex_exit(&hp->intr_mtx);
1330 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1331 error = ETIMEDOUT;
1332 break;
1333 }
1334
1335 error = sdhc_wait_state(hp, pmask, pmask);
1336 if (error)
1337 break;
1338 }
1339
1340 len = MIN(datalen, cmd->c_blklen);
1341 (*pio_func)(hp, data, len);
1342 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1343 HDEVNAME(hp), len, data));
1344
1345 data += len;
1346 datalen -= len;
1347 }
1348
1349 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1350 SDHC_TRANSFER_TIMEOUT))
1351 error = ETIMEDOUT;
1352
1353 return error;
1354 }
1355
1356 static void
1357 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1358 {
1359
1360 if (((__uintptr_t)data & 3) == 0) {
1361 while (datalen > 3) {
1362 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1363 data += 4;
1364 datalen -= 4;
1365 }
1366 if (datalen > 1) {
1367 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1368 data += 2;
1369 datalen -= 2;
1370 }
1371 if (datalen > 0) {
1372 *data = HREAD1(hp, SDHC_DATA);
1373 data += 1;
1374 datalen -= 1;
1375 }
1376 } else if (((__uintptr_t)data & 1) == 0) {
1377 while (datalen > 1) {
1378 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1379 data += 2;
1380 datalen -= 2;
1381 }
1382 if (datalen > 0) {
1383 *data = HREAD1(hp, SDHC_DATA);
1384 data += 1;
1385 datalen -= 1;
1386 }
1387 } else {
1388 while (datalen > 0) {
1389 *data = HREAD1(hp, SDHC_DATA);
1390 data += 1;
1391 datalen -= 1;
1392 }
1393 }
1394 }
1395
1396 static void
1397 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1398 {
1399
1400 if (((__uintptr_t)data & 3) == 0) {
1401 while (datalen > 3) {
1402 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1403 data += 4;
1404 datalen -= 4;
1405 }
1406 if (datalen > 1) {
1407 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1408 data += 2;
1409 datalen -= 2;
1410 }
1411 if (datalen > 0) {
1412 HWRITE1(hp, SDHC_DATA, *data);
1413 data += 1;
1414 datalen -= 1;
1415 }
1416 } else if (((__uintptr_t)data & 1) == 0) {
1417 while (datalen > 1) {
1418 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1419 data += 2;
1420 datalen -= 2;
1421 }
1422 if (datalen > 0) {
1423 HWRITE1(hp, SDHC_DATA, *data);
1424 data += 1;
1425 datalen -= 1;
1426 }
1427 } else {
1428 while (datalen > 0) {
1429 HWRITE1(hp, SDHC_DATA, *data);
1430 data += 1;
1431 datalen -= 1;
1432 }
1433 }
1434 }
1435
1436 static void
1437 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1438 {
1439 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1440 uint32_t v;
1441
1442 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1443 size_t count = 0;
1444
1445 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1446 if (count == 0) {
1447 /*
1448 * If we've drained "watermark" words, we need to wait
1449 * a little bit so the read FIFO can refill.
1450 */
1451 sdmmc_delay(10);
1452 count = watermark;
1453 }
1454 v = HREAD4(hp, SDHC_DATA);
1455 v = le32toh(v);
1456 *(uint32_t *)data = v;
1457 data += 4;
1458 datalen -= 4;
1459 status = HREAD2(hp, SDHC_NINTR_STATUS);
1460 count--;
1461 }
1462 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1463 if (count == 0) {
1464 sdmmc_delay(10);
1465 }
1466 v = HREAD4(hp, SDHC_DATA);
1467 v = le32toh(v);
1468 do {
1469 *data++ = v;
1470 v >>= 8;
1471 } while (--datalen > 0);
1472 }
1473 }
1474
1475 static void
1476 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1477 {
1478 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1479 uint32_t v;
1480
1481 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1482 size_t count = watermark;
1483
1484 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1485 if (count == 0) {
1486 sdmmc_delay(10);
1487 count = watermark;
1488 }
1489 v = *(uint32_t *)data;
1490 v = htole32(v);
1491 HWRITE4(hp, SDHC_DATA, v);
1492 data += 4;
1493 datalen -= 4;
1494 status = HREAD2(hp, SDHC_NINTR_STATUS);
1495 count--;
1496 }
1497 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1498 if (count == 0) {
1499 sdmmc_delay(10);
1500 }
1501 v = *(uint32_t *)data;
1502 v = htole32(v);
1503 HWRITE4(hp, SDHC_DATA, v);
1504 }
1505 }
1506
1507 /* Prepare for another command. */
1508 static int
1509 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1510 {
1511 int timo;
1512
1513 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1514
1515 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1516 for (timo = 10; timo > 0; timo--) {
1517 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1518 break;
1519 sdmmc_delay(10000);
1520 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1521 }
1522 if (timo == 0) {
1523 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1524 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1525 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1526 return ETIMEDOUT;
1527 }
1528
1529 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1530 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1531 }
1532
1533 return 0;
1534 }
1535
1536 static int
1537 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1538 {
1539 int status;
1540
1541 mask |= SDHC_ERROR_INTERRUPT;
1542
1543 mutex_enter(&hp->intr_mtx);
1544 status = hp->intr_status & mask;
1545 while (status == 0) {
1546 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1547 == EWOULDBLOCK) {
1548 status |= SDHC_ERROR_INTERRUPT;
1549 break;
1550 }
1551 status = hp->intr_status & mask;
1552 }
1553 hp->intr_status &= ~status;
1554
1555 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1556 hp->intr_error_status));
1557
1558 /* Command timeout has higher priority than command complete. */
1559 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1560 hp->intr_error_status = 0;
1561 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1562 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1563 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1564 }
1565 status = 0;
1566 }
1567 mutex_exit(&hp->intr_mtx);
1568
1569 return status;
1570 }
1571
1572 /*
1573 * Established by attachment driver at interrupt priority IPL_SDMMC.
1574 */
1575 int
1576 sdhc_intr(void *arg)
1577 {
1578 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1579 struct sdhc_host *hp;
1580 int done = 0;
1581 uint16_t status;
1582 uint16_t error;
1583
1584 /* We got an interrupt, but we don't know from which slot. */
1585 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1586 hp = sc->sc_host[host];
1587 if (hp == NULL)
1588 continue;
1589
1590 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1591 /* Find out which interrupts are pending. */
1592 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1593 status = xstatus;
1594 error = xstatus >> 16;
1595 if (error)
1596 xstatus |= SDHC_ERROR_INTERRUPT;
1597 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1598 continue; /* no interrupt for us */
1599 /* Acknowledge the interrupts we are about to handle. */
1600 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1601 } else {
1602 /* Find out which interrupts are pending. */
1603 error = 0;
1604 status = HREAD2(hp, SDHC_NINTR_STATUS);
1605 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1606 continue; /* no interrupt for us */
1607 /* Acknowledge the interrupts we are about to handle. */
1608 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1609 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1610 /* Acknowledge error interrupts. */
1611 error = HREAD2(hp, SDHC_EINTR_STATUS);
1612 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1613 }
1614 }
1615
1616 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1617 status, error));
1618
1619 mutex_enter(&hp->intr_mtx);
1620
1621 /* Claim this interrupt. */
1622 done = 1;
1623
1624 /*
1625 * Service error interrupts.
1626 */
1627 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1628 SDHC_DATA_TIMEOUT_ERROR)) {
1629 hp->intr_error_status |= error;
1630 hp->intr_status |= status;
1631 cv_broadcast(&hp->intr_cv);
1632 }
1633
1634 /*
1635 * Wake up the sdmmc event thread to scan for cards.
1636 */
1637 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1638 sdmmc_needs_discover(hp->sdmmc);
1639 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1640 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1641 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1642 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1643 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1644 }
1645 }
1646
1647 /*
1648 * Wake up the blocking process to service command
1649 * related interrupt(s).
1650 */
1651 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1652 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1653 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1654 hp->intr_status |= status;
1655 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1656 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1657 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1658 }
1659 cv_broadcast(&hp->intr_cv);
1660 }
1661
1662 /*
1663 * Service SD card interrupts.
1664 */
1665 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1666 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1667 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1668 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1669 sdmmc_card_intr(hp->sdmmc);
1670 }
1671 mutex_exit(&hp->intr_mtx);
1672 }
1673
1674 return done;
1675 }
1676
1677 #ifdef SDHC_DEBUG
1678 void
1679 sdhc_dump_regs(struct sdhc_host *hp)
1680 {
1681
1682 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1683 HREAD4(hp, SDHC_PRESENT_STATE));
1684 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1685 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1686 HREAD1(hp, SDHC_POWER_CTL));
1687 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1688 HREAD2(hp, SDHC_NINTR_STATUS));
1689 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1690 HREAD2(hp, SDHC_EINTR_STATUS));
1691 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1692 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1693 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1694 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1695 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1696 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1697 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1698 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1699 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1700 HREAD4(hp, SDHC_CAPABILITIES));
1701 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1702 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1703 }
1704 #endif
1705