sdhc.c revision 1.37 1 /* $NetBSD: sdhc.c,v 1.37 2012/12/20 22:56:38 jakllsch Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.37 2012/12/20 22:56:38 jakllsch Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_size_t ios; /* host register space size */
66 bus_dma_tag_t dmat; /* host DMA tag */
67
68 device_t sdmmc; /* generic SD/MMC device */
69
70 struct kmutex host_mtx;
71
72 u_int clkbase; /* base clock frequency in KHz */
73 int maxblklen; /* maximum block length */
74 uint32_t ocr; /* OCR value from capabilities */
75
76 uint8_t regs[14]; /* host controller state */
77
78 uint16_t intr_status; /* soft interrupt status */
79 uint16_t intr_error_status; /* soft error status */
80 struct kmutex intr_mtx;
81 struct kcondvar intr_cv;
82
83 int specver; /* spec. version */
84
85 uint32_t flags; /* flags for this host */
86 #define SHF_USE_DMA 0x0001
87 #define SHF_USE_4BIT_MODE 0x0002
88 #define SHF_USE_8BIT_MODE 0x0004
89 };
90
91 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
92 #define HDEVINST(hp) ((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
93
94 static uint8_t
95 hread1(struct sdhc_host *hp, bus_size_t reg)
96 {
97
98 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
99 return bus_space_read_1(hp->iot, hp->ioh, reg);
100 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
101 }
102
103 static uint16_t
104 hread2(struct sdhc_host *hp, bus_size_t reg)
105 {
106
107 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
108 return bus_space_read_2(hp->iot, hp->ioh, reg);
109 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
110 }
111
112 #define HREAD1(hp, reg) hread1(hp, reg)
113 #define HREAD2(hp, reg) hread2(hp, reg)
114 #define HREAD4(hp, reg) \
115 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
116
117
118 static void
119 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
120 {
121
122 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
123 bus_space_write_1(hp->iot, hp->ioh, o, val);
124 } else {
125 const size_t shift = 8 * (o & 3);
126 o &= -4;
127 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
128 tmp = (val << shift) | (tmp & ~(0xff << shift));
129 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
130 }
131 }
132
133 static void
134 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
135 {
136
137 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
138 bus_space_write_2(hp->iot, hp->ioh, o, val);
139 } else {
140 const size_t shift = 8 * (o & 2);
141 o &= -4;
142 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
143 tmp = (val << shift) | (tmp & ~(0xffff << shift));
144 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
145 }
146 }
147
148 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
149 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
150 #define HWRITE4(hp, reg, val) \
151 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
152
153 #define HCLR1(hp, reg, bits) \
154 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
155 #define HCLR2(hp, reg, bits) \
156 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
157 #define HCLR4(hp, reg, bits) \
158 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
159 #define HSET1(hp, reg, bits) \
160 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
161 #define HSET2(hp, reg, bits) \
162 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
163 #define HSET4(hp, reg, bits) \
164 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
165
166 static int sdhc_host_reset(sdmmc_chipset_handle_t);
167 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
168 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
169 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
170 static int sdhc_card_detect(sdmmc_chipset_handle_t);
171 static int sdhc_write_protect(sdmmc_chipset_handle_t);
172 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
173 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
175 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
177 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
178 static void sdhc_exec_command(sdmmc_chipset_handle_t,
179 struct sdmmc_command *);
180 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
181 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
182 static int sdhc_soft_reset(struct sdhc_host *, int);
183 static int sdhc_wait_intr(struct sdhc_host *, int, int);
184 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
186 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
187 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
190 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
191
192
193 static struct sdmmc_chip_functions sdhc_functions = {
194 /* host controller reset */
195 sdhc_host_reset,
196
197 /* host controller capabilities */
198 sdhc_host_ocr,
199 sdhc_host_maxblklen,
200
201 /* card detection */
202 sdhc_card_detect,
203
204 /* write protect */
205 sdhc_write_protect,
206
207 /* bus power, clock frequency and width */
208 sdhc_bus_power,
209 sdhc_bus_clock,
210 sdhc_bus_width,
211 sdhc_bus_rod,
212
213 /* command execution */
214 sdhc_exec_command,
215
216 /* card interrupt */
217 sdhc_card_enable_intr,
218 sdhc_card_intr_ack
219 };
220
221 static int
222 sdhc_cfprint(void *aux, const char *pnp)
223 {
224 const struct sdmmcbus_attach_args * const saa = aux;
225 const struct sdhc_host * const hp = saa->saa_sch;
226
227 if (pnp) {
228 aprint_normal("sdmmc at %s", pnp);
229 }
230 aprint_normal(" slot %d", HDEVINST(hp));
231
232 return UNCONF;
233 }
234
235 /*
236 * Called by attachment driver. For each SD card slot there is one SD
237 * host controller standard register set. (1.3)
238 */
239 int
240 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
241 bus_space_handle_t ioh, bus_size_t iosize)
242 {
243 struct sdmmcbus_attach_args saa;
244 struct sdhc_host *hp;
245 uint32_t caps;
246 uint16_t sdhcver;
247
248 /* Allocate one more host structure. */
249 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
250 if (hp == NULL) {
251 aprint_error_dev(sc->sc_dev,
252 "couldn't alloc memory (sdhc host)\n");
253 goto err1;
254 }
255 sc->sc_host[sc->sc_nhosts++] = hp;
256
257 /* Fill in the new host structure. */
258 hp->sc = sc;
259 hp->iot = iot;
260 hp->ioh = ioh;
261 hp->ios = iosize;
262 hp->dmat = sc->sc_dmat;
263
264 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
265 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
266 cv_init(&hp->intr_cv, "sdhcintr");
267
268 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
269 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
270 hp->specver = SDHC_SPEC_VERSION(sdhcver);
271 switch (SDHC_SPEC_VERSION(sdhcver)) {
272 case SDHC_SPEC_VERS_100:
273 aprint_normal("1.0");
274 break;
275
276 case SDHC_SPEC_VERS_200:
277 aprint_normal("2.0");
278 break;
279
280 case SDHC_SPEC_VERS_300:
281 aprint_normal("3.0");
282 break;
283
284 default:
285 aprint_normal("unknown version(0x%x)",
286 SDHC_SPEC_VERSION(sdhcver));
287 break;
288 }
289 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
290
291 /*
292 * Reset the host controller and enable interrupts.
293 */
294 (void)sdhc_host_reset(hp);
295
296 /* Determine host capabilities. */
297 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
298 caps = sc->sc_caps;
299 } else {
300 mutex_enter(&hp->host_mtx);
301 caps = HREAD4(hp, SDHC_CAPABILITIES);
302 mutex_exit(&hp->host_mtx);
303 }
304
305 /* Use DMA if the host system and the controller support it. */
306 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
307 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
308 ISSET(caps, SDHC_DMA_SUPPORT)))) {
309 SET(hp->flags, SHF_USE_DMA);
310 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
311 }
312
313 /*
314 * Determine the base clock frequency. (2.2.24)
315 */
316 if (hp->specver == SDHC_SPEC_VERS_300) {
317 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
318 } else {
319 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
320 }
321 if (hp->clkbase == 0) {
322 if (sc->sc_clkbase == 0) {
323 /* The attachment driver must tell us. */
324 aprint_error_dev(sc->sc_dev,
325 "unknown base clock frequency\n");
326 goto err;
327 }
328 hp->clkbase = sc->sc_clkbase;
329 }
330 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
331 /* SDHC 1.0 supports only 10-63 MHz. */
332 aprint_error_dev(sc->sc_dev,
333 "base clock frequency out of range: %u MHz\n",
334 hp->clkbase / 1000);
335 goto err;
336 }
337 DPRINTF(1,("%s: base clock frequency %u MHz\n",
338 device_xname(sc->sc_dev), hp->clkbase / 1000));
339
340 /*
341 * XXX Set the data timeout counter value according to
342 * capabilities. (2.2.15)
343 */
344 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
345 #if 1
346 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
347 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
348 #endif
349
350 /*
351 * Determine SD bus voltage levels supported by the controller.
352 */
353 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
354 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
355 }
356 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
357 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
358 }
359 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
360 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
361 }
362
363 /*
364 * Determine the maximum block length supported by the host
365 * controller. (2.2.24)
366 */
367 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
368 case SDHC_MAX_BLK_LEN_512:
369 hp->maxblklen = 512;
370 break;
371
372 case SDHC_MAX_BLK_LEN_1024:
373 hp->maxblklen = 1024;
374 break;
375
376 case SDHC_MAX_BLK_LEN_2048:
377 hp->maxblklen = 2048;
378 break;
379
380 case SDHC_MAX_BLK_LEN_4096:
381 hp->maxblklen = 4096;
382 break;
383
384 default:
385 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
386 goto err;
387 }
388 DPRINTF(1, ("%s: max block length %u byte%s\n",
389 device_xname(sc->sc_dev), hp->maxblklen,
390 hp->maxblklen > 1 ? "s" : ""));
391
392 /*
393 * Attach the generic SD/MMC bus driver. (The bus driver must
394 * not invoke any chipset functions before it is attached.)
395 */
396 memset(&saa, 0, sizeof(saa));
397 saa.saa_busname = "sdmmc";
398 saa.saa_sct = &sdhc_functions;
399 saa.saa_sch = hp;
400 saa.saa_dmat = hp->dmat;
401 saa.saa_clkmin = hp->clkbase / 256;
402 saa.saa_clkmax = hp->clkbase;
403 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
404 saa.saa_clkmin /= 2046;
405 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
406 saa.saa_clkmin /= 16;
407 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
408 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
409 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
410 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
411 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
412 if (ISSET(hp->flags, SHF_USE_DMA)) {
413 saa.saa_caps |= SMC_CAPS_DMA;
414 if (hp->specver == SDHC_SPEC_VERS_100) {
415 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
416 }
417 }
418 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
419 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
420 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
421
422 return 0;
423
424 err:
425 cv_destroy(&hp->intr_cv);
426 mutex_destroy(&hp->intr_mtx);
427 mutex_destroy(&hp->host_mtx);
428 free(hp, M_DEVBUF);
429 sc->sc_host[--sc->sc_nhosts] = NULL;
430 err1:
431 return 1;
432 }
433
434 int
435 sdhc_detach(struct sdhc_softc *sc, int flags)
436 {
437 struct sdhc_host *hp;
438 int rv = 0;
439
440 for (size_t n = 0; n < sc->sc_nhosts; n++) {
441 hp = sc->sc_host[n];
442 if (hp == NULL)
443 continue;
444 if (hp->sdmmc != NULL) {
445 rv = config_detach(hp->sdmmc, flags);
446 if (rv)
447 break;
448 hp->sdmmc = NULL;
449 }
450 /* disable interrupts */
451 if ((flags & DETACH_FORCE) == 0) {
452 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
453 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
454 } else {
455 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
456 }
457 sdhc_soft_reset(hp, SDHC_RESET_ALL);
458 }
459 cv_destroy(&hp->intr_cv);
460 mutex_destroy(&hp->intr_mtx);
461 mutex_destroy(&hp->host_mtx);
462 if (hp->ios > 0) {
463 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
464 hp->ios = 0;
465 }
466 free(hp, M_DEVBUF);
467 sc->sc_host[n] = NULL;
468 }
469
470 return rv;
471 }
472
473 bool
474 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
475 {
476 struct sdhc_softc *sc = device_private(dev);
477 struct sdhc_host *hp;
478 size_t i;
479
480 /* XXX poll for command completion or suspend command
481 * in progress */
482
483 /* Save the host controller state. */
484 for (size_t n = 0; n < sc->sc_nhosts; n++) {
485 hp = sc->sc_host[n];
486 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
487 for (i = 0; i < sizeof hp->regs; i += 4) {
488 uint32_t v = HREAD4(hp, i);
489 hp->regs[i + 0] = (v >> 0);
490 hp->regs[i + 1] = (v >> 8);
491 if (i + 3 < sizeof hp->regs) {
492 hp->regs[i + 2] = (v >> 16);
493 hp->regs[i + 3] = (v >> 24);
494 }
495 }
496 } else {
497 for (i = 0; i < sizeof hp->regs; i++) {
498 hp->regs[i] = HREAD1(hp, i);
499 }
500 }
501 }
502 return true;
503 }
504
505 bool
506 sdhc_resume(device_t dev, const pmf_qual_t *qual)
507 {
508 struct sdhc_softc *sc = device_private(dev);
509 struct sdhc_host *hp;
510 size_t i;
511
512 /* Restore the host controller state. */
513 for (size_t n = 0; n < sc->sc_nhosts; n++) {
514 hp = sc->sc_host[n];
515 (void)sdhc_host_reset(hp);
516 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
517 for (i = 0; i < sizeof hp->regs; i += 4) {
518 if (i + 3 < sizeof hp->regs) {
519 HWRITE4(hp, i,
520 (hp->regs[i + 0] << 0)
521 | (hp->regs[i + 1] << 8)
522 | (hp->regs[i + 2] << 16)
523 | (hp->regs[i + 3] << 24));
524 } else {
525 HWRITE4(hp, i,
526 (hp->regs[i + 0] << 0)
527 | (hp->regs[i + 1] << 8));
528 }
529 }
530 } else {
531 for (i = 0; i < sizeof hp->regs; i++) {
532 HWRITE1(hp, i, hp->regs[i]);
533 }
534 }
535 }
536 return true;
537 }
538
539 bool
540 sdhc_shutdown(device_t dev, int flags)
541 {
542 struct sdhc_softc *sc = device_private(dev);
543 struct sdhc_host *hp;
544
545 /* XXX chip locks up if we don't disable it before reboot. */
546 for (size_t i = 0; i < sc->sc_nhosts; i++) {
547 hp = sc->sc_host[i];
548 (void)sdhc_host_reset(hp);
549 }
550 return true;
551 }
552
553 /*
554 * Reset the host controller. Called during initialization, when
555 * cards are removed, upon resume, and during error recovery.
556 */
557 static int
558 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
559 {
560 struct sdhc_host *hp = (struct sdhc_host *)sch;
561 uint32_t sdhcimask;
562 int error;
563
564 /* Don't lock. */
565
566 /* Disable all interrupts. */
567 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
568 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
569 } else {
570 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
571 }
572
573 /*
574 * Reset the entire host controller and wait up to 100ms for
575 * the controller to clear the reset bit.
576 */
577 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
578 if (error)
579 goto out;
580
581 /* Set data timeout counter value to max for now. */
582 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
583 #if 1
584 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
585 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
586 #endif
587
588 /* Enable interrupts. */
589 mutex_enter(&hp->intr_mtx);
590 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
591 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
592 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
593 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
594 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
595 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
596 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
597 sdhcimask ^=
598 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
599 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
600 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
601 } else {
602 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
603 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
604 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
605 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
606 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
607 }
608 mutex_exit(&hp->intr_mtx);
609
610 out:
611 return error;
612 }
613
614 static int
615 sdhc_host_reset(sdmmc_chipset_handle_t sch)
616 {
617 struct sdhc_host *hp = (struct sdhc_host *)sch;
618 int error;
619
620 mutex_enter(&hp->host_mtx);
621 error = sdhc_host_reset1(sch);
622 mutex_exit(&hp->host_mtx);
623
624 return error;
625 }
626
627 static uint32_t
628 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
629 {
630 struct sdhc_host *hp = (struct sdhc_host *)sch;
631
632 return hp->ocr;
633 }
634
635 static int
636 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
637 {
638 struct sdhc_host *hp = (struct sdhc_host *)sch;
639
640 return hp->maxblklen;
641 }
642
643 /*
644 * Return non-zero if the card is currently inserted.
645 */
646 static int
647 sdhc_card_detect(sdmmc_chipset_handle_t sch)
648 {
649 struct sdhc_host *hp = (struct sdhc_host *)sch;
650 int r;
651
652 if (hp->sc->sc_vendor_card_detect)
653 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
654
655 mutex_enter(&hp->host_mtx);
656 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
657 mutex_exit(&hp->host_mtx);
658
659 return r ? 1 : 0;
660 }
661
662 /*
663 * Return non-zero if the card is currently write-protected.
664 */
665 static int
666 sdhc_write_protect(sdmmc_chipset_handle_t sch)
667 {
668 struct sdhc_host *hp = (struct sdhc_host *)sch;
669 int r;
670
671 if (hp->sc->sc_vendor_write_protect)
672 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
673
674 mutex_enter(&hp->host_mtx);
675 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
676 mutex_exit(&hp->host_mtx);
677
678 return r ? 0 : 1;
679 }
680
681 /*
682 * Set or change SD bus voltage and enable or disable SD bus power.
683 * Return zero on success.
684 */
685 static int
686 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
687 {
688 struct sdhc_host *hp = (struct sdhc_host *)sch;
689 uint8_t vdd;
690 int error = 0;
691 const uint32_t pcmask =
692 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
693
694 mutex_enter(&hp->host_mtx);
695
696 /*
697 * Disable bus power before voltage change.
698 */
699 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
700 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
701 HWRITE1(hp, SDHC_POWER_CTL, 0);
702
703 /* If power is disabled, reset the host and return now. */
704 if (ocr == 0) {
705 (void)sdhc_host_reset1(hp);
706 goto out;
707 }
708
709 /*
710 * Select the lowest voltage according to capabilities.
711 */
712 ocr &= hp->ocr;
713 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
714 vdd = SDHC_VOLTAGE_1_8V;
715 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
716 vdd = SDHC_VOLTAGE_3_0V;
717 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
718 vdd = SDHC_VOLTAGE_3_3V;
719 } else {
720 /* Unsupported voltage level requested. */
721 error = EINVAL;
722 goto out;
723 }
724
725 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
726 /*
727 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
728 * voltage ramp until power rises.
729 */
730 HWRITE1(hp, SDHC_POWER_CTL,
731 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
732 sdmmc_delay(1);
733 HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
734 sdmmc_delay(1);
735 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
736 sdmmc_delay(10000);
737
738 /*
739 * The host system may not power the bus due to battery low,
740 * etc. In that case, the host controller should clear the
741 * bus power bit.
742 */
743 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
744 error = ENXIO;
745 goto out;
746 }
747 }
748
749 out:
750 mutex_exit(&hp->host_mtx);
751
752 return error;
753 }
754
755 /*
756 * Return the smallest possible base clock frequency divisor value
757 * for the CLOCK_CTL register to produce `freq' (KHz).
758 */
759 static bool
760 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
761 {
762 u_int div;
763
764 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
765 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
766 if ((hp->clkbase / div) <= freq) {
767 *divp = SDHC_SDCLK_CGM
768 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
769 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
770 //freq = hp->clkbase / div;
771 return true;
772 }
773 }
774 /* No divisor found. */
775 return false;
776 }
777 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
778 u_int dvs = (hp->clkbase + freq - 1) / freq;
779 u_int roundup = dvs & 1;
780 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
781 if (dvs + roundup <= 16) {
782 dvs += roundup - 1;
783 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
784 | (dvs << SDHC_SDCLK_DVS_SHIFT);
785 DPRINTF(2,
786 ("%s: divisor for freq %u is %u * %u\n",
787 HDEVNAME(hp), freq, div * 2, dvs + 1));
788 //freq = hp->clkbase / (div * 2) * (dvs + 1);
789 return true;
790 }
791 /*
792 * If we drop bits, we need to round up the divisor.
793 */
794 roundup |= dvs & 1;
795 }
796 /* No divisor found. */
797 return false;
798 } else {
799 if (hp->sc->sc_clkmsk != 0)
800 *divp = (hp->clkbase / freq) <<
801 (ffs(hp->sc->sc_clkmsk) - 1);
802 else
803 *divp = (hp->clkbase / freq) << SDHC_SDCLK_DIV_SHIFT;
804 return true;
805 }
806 /* No divisor found. */
807 return false;
808 }
809
810 /*
811 * Set or change SDCLK frequency or disable the SD clock.
812 * Return zero on success.
813 */
814 static int
815 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
816 {
817 struct sdhc_host *hp = (struct sdhc_host *)sch;
818 u_int div;
819 u_int timo;
820 int16_t reg;
821 int error = 0;
822 #ifdef DIAGNOSTIC
823 bool present;
824
825 mutex_enter(&hp->host_mtx);
826 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
827 mutex_exit(&hp->host_mtx);
828
829 /* Must not stop the clock if commands are in progress. */
830 if (present && sdhc_card_detect(hp)) {
831 aprint_normal_dev(hp->sc->sc_dev,
832 "%s: command in progress\n", __func__);
833 }
834 #endif
835
836 mutex_enter(&hp->host_mtx);
837
838 if (hp->sc->sc_vendor_bus_clock) {
839 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
840 if (error != 0)
841 goto out;
842 }
843
844 /*
845 * Stop SD clock before changing the frequency.
846 */
847 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
848 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
849 if (freq == SDMMC_SDCLK_OFF) {
850 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
851 goto out;
852 }
853 } else {
854 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
855 if (freq == SDMMC_SDCLK_OFF)
856 goto out;
857 }
858
859 /*
860 * Set the minimum base clock frequency divisor.
861 */
862 if (!sdhc_clock_divisor(hp, freq, &div)) {
863 /* Invalid base clock frequency or `freq' value. */
864 error = EINVAL;
865 goto out;
866 }
867 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
868 HWRITE4(hp, SDHC_CLOCK_CTL,
869 div | (SDHC_TIMEOUT_MAX << 16));
870 } else {
871 reg = HREAD2(hp, SDHC_CLOCK_CTL);
872 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
873 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
874 }
875
876 /*
877 * Start internal clock. Wait 10ms for stabilization.
878 */
879 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
880 sdmmc_delay(10000);
881 HSET4(hp, SDHC_CLOCK_CTL,
882 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
883 } else {
884 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
885 for (timo = 1000; timo > 0; timo--) {
886 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
887 SDHC_INTCLK_STABLE))
888 break;
889 sdmmc_delay(10);
890 }
891 if (timo == 0) {
892 error = ETIMEDOUT;
893 goto out;
894 }
895 }
896
897 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
898 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
899 /*
900 * Sending 80 clocks at 400kHz takes 200us.
901 * So delay for that time + slop and then
902 * check a few times for completion.
903 */
904 sdmmc_delay(210);
905 for (timo = 10; timo > 0; timo--) {
906 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
907 SDHC_INIT_ACTIVE))
908 break;
909 sdmmc_delay(10);
910 }
911 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
912
913 /*
914 * Enable SD clock.
915 */
916 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
917 } else {
918 /*
919 * Enable SD clock.
920 */
921 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
922
923 if (freq > 25000)
924 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
925 else
926 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
927 }
928
929 out:
930 mutex_exit(&hp->host_mtx);
931
932 return error;
933 }
934
935 static int
936 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
937 {
938 struct sdhc_host *hp = (struct sdhc_host *)sch;
939 int reg;
940
941 switch (width) {
942 case 1:
943 case 4:
944 break;
945
946 case 8:
947 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
948 break;
949 /* FALLTHROUGH */
950 default:
951 DPRINTF(0,("%s: unsupported bus width (%d)\n",
952 HDEVNAME(hp), width));
953 return 1;
954 }
955
956 mutex_enter(&hp->host_mtx);
957 reg = HREAD1(hp, SDHC_HOST_CTL);
958 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
959 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
960 if (width == 4)
961 reg |= SDHC_4BIT_MODE;
962 else if (width == 8)
963 reg |= SDHC_ESDHC_8BIT_MODE;
964 } else {
965 reg &= ~SDHC_4BIT_MODE;
966 if (width == 4)
967 reg |= SDHC_4BIT_MODE;
968 }
969 HWRITE1(hp, SDHC_HOST_CTL, reg);
970 mutex_exit(&hp->host_mtx);
971
972 return 0;
973 }
974
975 static int
976 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
977 {
978 struct sdhc_host *hp = (struct sdhc_host *)sch;
979
980 if (hp->sc->sc_vendor_rod)
981 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
982
983 return 0;
984 }
985
986 static void
987 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
988 {
989 struct sdhc_host *hp = (struct sdhc_host *)sch;
990
991 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
992 mutex_enter(&hp->intr_mtx);
993 if (enable) {
994 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
995 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
996 } else {
997 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
998 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
999 }
1000 mutex_exit(&hp->intr_mtx);
1001 }
1002 }
1003
1004 static void
1005 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1006 {
1007 struct sdhc_host *hp = (struct sdhc_host *)sch;
1008
1009 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1010 mutex_enter(&hp->intr_mtx);
1011 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1012 mutex_exit(&hp->intr_mtx);
1013 }
1014 }
1015
1016 static int
1017 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1018 {
1019 uint32_t state;
1020 int timeout;
1021
1022 for (timeout = 10; timeout > 0; timeout--) {
1023 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1024 return 0;
1025 sdmmc_delay(10000);
1026 }
1027 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1028 value, state));
1029 return ETIMEDOUT;
1030 }
1031
1032 static void
1033 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1034 {
1035 struct sdhc_host *hp = (struct sdhc_host *)sch;
1036 int error;
1037
1038 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1039 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1040 mutex_enter(&hp->intr_mtx);
1041 if (ISSET(hp->flags, SHF_USE_DMA)) {
1042 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1043 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1044 } else {
1045 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1046 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1047 }
1048 mutex_exit(&hp->intr_mtx);
1049 }
1050
1051 /*
1052 * Start the MMC command, or mark `cmd' as failed and return.
1053 */
1054 error = sdhc_start_command(hp, cmd);
1055 if (error) {
1056 cmd->c_error = error;
1057 goto out;
1058 }
1059
1060 /*
1061 * Wait until the command phase is done, or until the command
1062 * is marked done for any other reason.
1063 */
1064 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1065 cmd->c_error = ETIMEDOUT;
1066 goto out;
1067 }
1068
1069 /*
1070 * The host controller removes bits [0:7] from the response
1071 * data (CRC) and we pass the data up unchanged to the bus
1072 * driver (without padding).
1073 */
1074 mutex_enter(&hp->host_mtx);
1075 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1076 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1077 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1078 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1079 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1080 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1081 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1082 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1083 (cmd->c_resp[1] << 24);
1084 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1085 (cmd->c_resp[2] << 24);
1086 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1087 (cmd->c_resp[3] << 24);
1088 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1089 }
1090 }
1091 }
1092 mutex_exit(&hp->host_mtx);
1093 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1094
1095 /*
1096 * If the command has data to transfer in any direction,
1097 * execute the transfer now.
1098 */
1099 if (cmd->c_error == 0 && cmd->c_data != NULL)
1100 sdhc_transfer_data(hp, cmd);
1101
1102 out:
1103 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1104 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1105 mutex_enter(&hp->host_mtx);
1106 /* Turn off the LED. */
1107 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1108 mutex_exit(&hp->host_mtx);
1109 }
1110 SET(cmd->c_flags, SCF_ITSDONE);
1111
1112 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1113 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1114 cmd->c_flags, cmd->c_error));
1115 }
1116
1117 static int
1118 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1119 {
1120 struct sdhc_softc * const sc = hp->sc;
1121 uint16_t blksize = 0;
1122 uint16_t blkcount = 0;
1123 uint16_t mode;
1124 uint16_t command;
1125 int error;
1126
1127 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1128 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1129 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1130
1131 /*
1132 * The maximum block length for commands should be the minimum
1133 * of the host buffer size and the card buffer size. (1.7.2)
1134 */
1135
1136 /* Fragment the data into proper blocks. */
1137 if (cmd->c_datalen > 0) {
1138 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1139 blkcount = cmd->c_datalen / blksize;
1140 if (cmd->c_datalen % blksize > 0) {
1141 /* XXX: Split this command. (1.7.4) */
1142 aprint_error_dev(sc->sc_dev,
1143 "data not a multiple of %u bytes\n", blksize);
1144 return EINVAL;
1145 }
1146 }
1147
1148 /* Check limit imposed by 9-bit block count. (1.7.2) */
1149 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1150 aprint_error_dev(sc->sc_dev, "too much data\n");
1151 return EINVAL;
1152 }
1153
1154 /* Prepare transfer mode register value. (2.2.5) */
1155 mode = SDHC_BLOCK_COUNT_ENABLE;
1156 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1157 mode |= SDHC_READ_MODE;
1158 if (blkcount > 1) {
1159 mode |= SDHC_MULTI_BLOCK_MODE;
1160 /* XXX only for memory commands? */
1161 mode |= SDHC_AUTO_CMD12_ENABLE;
1162 }
1163 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
1164 mode |= SDHC_DMA_ENABLE;
1165 }
1166
1167 /*
1168 * Prepare command register value. (2.2.6)
1169 */
1170 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1171
1172 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1173 command |= SDHC_CRC_CHECK_ENABLE;
1174 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1175 command |= SDHC_INDEX_CHECK_ENABLE;
1176 if (cmd->c_data != NULL)
1177 command |= SDHC_DATA_PRESENT_SELECT;
1178
1179 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1180 command |= SDHC_NO_RESPONSE;
1181 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1182 command |= SDHC_RESP_LEN_136;
1183 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1184 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1185 else
1186 command |= SDHC_RESP_LEN_48;
1187
1188 /* Wait until command and data inhibit bits are clear. (1.5) */
1189 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1190 if (error)
1191 return error;
1192
1193 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1194 HDEVNAME(hp), blksize, blkcount, mode, command));
1195
1196 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1197 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1198
1199 mutex_enter(&hp->host_mtx);
1200
1201 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1202 /* Alert the user not to remove the card. */
1203 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1204 }
1205
1206 /* Set DMA start address. */
1207 if (ISSET(mode, SDHC_DMA_ENABLE))
1208 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1209
1210 /*
1211 * Start a CPU data transfer. Writing to the high order byte
1212 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1213 */
1214 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1215 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1216 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1217 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1218 } else {
1219 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1220 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1221 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1222 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1223 HWRITE2(hp, SDHC_COMMAND, command);
1224 }
1225
1226 mutex_exit(&hp->host_mtx);
1227
1228 return 0;
1229 }
1230
1231 static void
1232 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1233 {
1234 int error;
1235
1236 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1237 MMC_R1(cmd->c_resp), cmd->c_datalen));
1238
1239 #ifdef SDHC_DEBUG
1240 /* XXX I forgot why I wanted to know when this happens :-( */
1241 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1242 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1243 aprint_error_dev(hp->sc->sc_dev,
1244 "CMD52/53 error response flags %#x\n",
1245 MMC_R1(cmd->c_resp) & 0xff00);
1246 }
1247 #endif
1248
1249 if (cmd->c_dmamap != NULL)
1250 error = sdhc_transfer_data_dma(hp, cmd);
1251 else
1252 error = sdhc_transfer_data_pio(hp, cmd);
1253 if (error)
1254 cmd->c_error = error;
1255 SET(cmd->c_flags, SCF_ITSDONE);
1256
1257 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1258 HDEVNAME(hp), cmd->c_error));
1259 }
1260
1261 static int
1262 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1263 {
1264 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1265 bus_addr_t posaddr;
1266 bus_addr_t segaddr;
1267 bus_size_t seglen;
1268 u_int seg = 0;
1269 int error = 0;
1270 int status;
1271
1272 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1273 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1274 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1275 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1276
1277 for (;;) {
1278 status = sdhc_wait_intr(hp,
1279 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1280 SDHC_DMA_TIMEOUT);
1281
1282 if (status & SDHC_TRANSFER_COMPLETE) {
1283 break;
1284 }
1285 if (!status) {
1286 error = ETIMEDOUT;
1287 break;
1288 }
1289 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1290 continue;
1291 }
1292
1293 /* DMA Interrupt (boundary crossing) */
1294
1295 segaddr = dm_segs[seg].ds_addr;
1296 seglen = dm_segs[seg].ds_len;
1297 mutex_enter(&hp->host_mtx);
1298 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1299 mutex_exit(&hp->host_mtx);
1300
1301 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1302 continue;
1303 }
1304 mutex_enter(&hp->host_mtx);
1305 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1306 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1307 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1308 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1309 mutex_exit(&hp->host_mtx);
1310 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1311 }
1312
1313 return error;
1314 }
1315
1316 static int
1317 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1318 {
1319 uint8_t *data = cmd->c_data;
1320 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1321 u_int len, datalen;
1322 u_int imask;
1323 u_int pmask;
1324 int error = 0;
1325
1326 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1327 imask = SDHC_BUFFER_READ_READY;
1328 pmask = SDHC_BUFFER_READ_ENABLE;
1329 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1330 pio_func = esdhc_read_data_pio;
1331 } else {
1332 pio_func = sdhc_read_data_pio;
1333 }
1334 } else {
1335 imask = SDHC_BUFFER_WRITE_READY;
1336 pmask = SDHC_BUFFER_WRITE_ENABLE;
1337 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1338 pio_func = esdhc_write_data_pio;
1339 } else {
1340 pio_func = sdhc_write_data_pio;
1341 }
1342 }
1343 datalen = cmd->c_datalen;
1344
1345 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1346 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1347 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1348
1349 while (datalen > 0) {
1350 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1351 mutex_enter(&hp->intr_mtx);
1352 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1353 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1354 } else {
1355 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1356 }
1357 mutex_exit(&hp->intr_mtx);
1358 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1359 error = ETIMEDOUT;
1360 break;
1361 }
1362
1363 error = sdhc_wait_state(hp, pmask, pmask);
1364 if (error)
1365 break;
1366 }
1367
1368 len = MIN(datalen, cmd->c_blklen);
1369 (*pio_func)(hp, data, len);
1370 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1371 HDEVNAME(hp), len, data));
1372
1373 data += len;
1374 datalen -= len;
1375 }
1376
1377 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1378 SDHC_TRANSFER_TIMEOUT))
1379 error = ETIMEDOUT;
1380
1381 return error;
1382 }
1383
1384 static void
1385 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1386 {
1387
1388 if (((__uintptr_t)data & 3) == 0) {
1389 while (datalen > 3) {
1390 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1391 data += 4;
1392 datalen -= 4;
1393 }
1394 if (datalen > 1) {
1395 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1396 data += 2;
1397 datalen -= 2;
1398 }
1399 if (datalen > 0) {
1400 *data = HREAD1(hp, SDHC_DATA);
1401 data += 1;
1402 datalen -= 1;
1403 }
1404 } else if (((__uintptr_t)data & 1) == 0) {
1405 while (datalen > 1) {
1406 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1407 data += 2;
1408 datalen -= 2;
1409 }
1410 if (datalen > 0) {
1411 *data = HREAD1(hp, SDHC_DATA);
1412 data += 1;
1413 datalen -= 1;
1414 }
1415 } else {
1416 while (datalen > 0) {
1417 *data = HREAD1(hp, SDHC_DATA);
1418 data += 1;
1419 datalen -= 1;
1420 }
1421 }
1422 }
1423
1424 static void
1425 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1426 {
1427
1428 if (((__uintptr_t)data & 3) == 0) {
1429 while (datalen > 3) {
1430 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1431 data += 4;
1432 datalen -= 4;
1433 }
1434 if (datalen > 1) {
1435 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1436 data += 2;
1437 datalen -= 2;
1438 }
1439 if (datalen > 0) {
1440 HWRITE1(hp, SDHC_DATA, *data);
1441 data += 1;
1442 datalen -= 1;
1443 }
1444 } else if (((__uintptr_t)data & 1) == 0) {
1445 while (datalen > 1) {
1446 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1447 data += 2;
1448 datalen -= 2;
1449 }
1450 if (datalen > 0) {
1451 HWRITE1(hp, SDHC_DATA, *data);
1452 data += 1;
1453 datalen -= 1;
1454 }
1455 } else {
1456 while (datalen > 0) {
1457 HWRITE1(hp, SDHC_DATA, *data);
1458 data += 1;
1459 datalen -= 1;
1460 }
1461 }
1462 }
1463
1464 static void
1465 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1466 {
1467 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1468 uint32_t v;
1469
1470 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1471 size_t count = 0;
1472
1473 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1474 if (count == 0) {
1475 /*
1476 * If we've drained "watermark" words, we need to wait
1477 * a little bit so the read FIFO can refill.
1478 */
1479 sdmmc_delay(10);
1480 count = watermark;
1481 }
1482 v = HREAD4(hp, SDHC_DATA);
1483 v = le32toh(v);
1484 *(uint32_t *)data = v;
1485 data += 4;
1486 datalen -= 4;
1487 status = HREAD2(hp, SDHC_NINTR_STATUS);
1488 count--;
1489 }
1490 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1491 if (count == 0) {
1492 sdmmc_delay(10);
1493 }
1494 v = HREAD4(hp, SDHC_DATA);
1495 v = le32toh(v);
1496 do {
1497 *data++ = v;
1498 v >>= 8;
1499 } while (--datalen > 0);
1500 }
1501 }
1502
1503 static void
1504 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1505 {
1506 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1507 uint32_t v;
1508
1509 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1510 size_t count = watermark;
1511
1512 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1513 if (count == 0) {
1514 sdmmc_delay(10);
1515 count = watermark;
1516 }
1517 v = *(uint32_t *)data;
1518 v = htole32(v);
1519 HWRITE4(hp, SDHC_DATA, v);
1520 data += 4;
1521 datalen -= 4;
1522 status = HREAD2(hp, SDHC_NINTR_STATUS);
1523 count--;
1524 }
1525 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1526 if (count == 0) {
1527 sdmmc_delay(10);
1528 }
1529 v = *(uint32_t *)data;
1530 v = htole32(v);
1531 HWRITE4(hp, SDHC_DATA, v);
1532 }
1533 }
1534
1535 /* Prepare for another command. */
1536 static int
1537 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1538 {
1539 int timo;
1540
1541 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1542
1543 /* Request the reset. */
1544 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1545
1546 /*
1547 * If necessary, wait for the controller to set the bits to
1548 * acknowledge the reset.
1549 */
1550 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1551 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1552 for (timo = 10000; timo > 0; timo--) {
1553 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1554 break;
1555 /* Short delay because I worry we may miss it... */
1556 sdmmc_delay(1);
1557 }
1558 if (timo == 0)
1559 return ETIMEDOUT;
1560 }
1561
1562 /*
1563 * Wait for the controller to clear the bits to indicate that
1564 * the reset has completed.
1565 */
1566 for (timo = 10; timo > 0; timo--) {
1567 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1568 break;
1569 sdmmc_delay(10000);
1570 }
1571 if (timo == 0) {
1572 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1573 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1574 return ETIMEDOUT;
1575 }
1576
1577 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1578 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1579 }
1580
1581 return 0;
1582 }
1583
1584 static int
1585 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1586 {
1587 int status;
1588
1589 mask |= SDHC_ERROR_INTERRUPT;
1590
1591 mutex_enter(&hp->intr_mtx);
1592 status = hp->intr_status & mask;
1593 while (status == 0) {
1594 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1595 == EWOULDBLOCK) {
1596 status |= SDHC_ERROR_INTERRUPT;
1597 break;
1598 }
1599 status = hp->intr_status & mask;
1600 }
1601 hp->intr_status &= ~status;
1602
1603 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1604 hp->intr_error_status));
1605
1606 /* Command timeout has higher priority than command complete. */
1607 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1608 hp->intr_error_status = 0;
1609 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1610 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1611 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1612 }
1613 status = 0;
1614 }
1615 mutex_exit(&hp->intr_mtx);
1616
1617 return status;
1618 }
1619
1620 /*
1621 * Established by attachment driver at interrupt priority IPL_SDMMC.
1622 */
1623 int
1624 sdhc_intr(void *arg)
1625 {
1626 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1627 struct sdhc_host *hp;
1628 int done = 0;
1629 uint16_t status;
1630 uint16_t error;
1631
1632 /* We got an interrupt, but we don't know from which slot. */
1633 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1634 hp = sc->sc_host[host];
1635 if (hp == NULL)
1636 continue;
1637
1638 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1639 /* Find out which interrupts are pending. */
1640 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1641 status = xstatus;
1642 error = xstatus >> 16;
1643 if (error)
1644 xstatus |= SDHC_ERROR_INTERRUPT;
1645 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1646 continue; /* no interrupt for us */
1647 /* Acknowledge the interrupts we are about to handle. */
1648 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1649 } else {
1650 /* Find out which interrupts are pending. */
1651 error = 0;
1652 status = HREAD2(hp, SDHC_NINTR_STATUS);
1653 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1654 continue; /* no interrupt for us */
1655 /* Acknowledge the interrupts we are about to handle. */
1656 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1657 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1658 /* Acknowledge error interrupts. */
1659 error = HREAD2(hp, SDHC_EINTR_STATUS);
1660 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1661 }
1662 }
1663
1664 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1665 status, error));
1666
1667 mutex_enter(&hp->intr_mtx);
1668
1669 /* Claim this interrupt. */
1670 done = 1;
1671
1672 /*
1673 * Service error interrupts.
1674 */
1675 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1676 SDHC_DATA_TIMEOUT_ERROR)) {
1677 hp->intr_error_status |= error;
1678 hp->intr_status |= status;
1679 cv_broadcast(&hp->intr_cv);
1680 }
1681
1682 /*
1683 * Wake up the sdmmc event thread to scan for cards.
1684 */
1685 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1686 sdmmc_needs_discover(hp->sdmmc);
1687 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1688 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1689 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1690 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1691 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1692 }
1693 }
1694
1695 /*
1696 * Wake up the blocking process to service command
1697 * related interrupt(s).
1698 */
1699 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1700 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1701 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1702 hp->intr_status |= status;
1703 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1704 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1705 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1706 }
1707 cv_broadcast(&hp->intr_cv);
1708 }
1709
1710 /*
1711 * Service SD card interrupts.
1712 */
1713 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1714 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1715 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1716 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1717 sdmmc_card_intr(hp->sdmmc);
1718 }
1719 mutex_exit(&hp->intr_mtx);
1720 }
1721
1722 return done;
1723 }
1724
1725 #ifdef SDHC_DEBUG
1726 void
1727 sdhc_dump_regs(struct sdhc_host *hp)
1728 {
1729
1730 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1731 HREAD4(hp, SDHC_PRESENT_STATE));
1732 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1733 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1734 HREAD1(hp, SDHC_POWER_CTL));
1735 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1736 HREAD2(hp, SDHC_NINTR_STATUS));
1737 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1738 HREAD2(hp, SDHC_EINTR_STATUS));
1739 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1740 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1741 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1742 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1743 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1744 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1745 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1746 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1747 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1748 HREAD4(hp, SDHC_CAPABILITIES));
1749 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1750 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1751 }
1752 #endif
1753