Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.39
      1 /*	$NetBSD: sdhc.c,v 1.39 2012/12/23 22:33:09 jakllsch Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.39 2012/12/23 22:33:09 jakllsch Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_size_t ios;			/* host register space size */
     66 	bus_dma_tag_t dmat;		/* host DMA tag */
     67 
     68 	device_t sdmmc;			/* generic SD/MMC device */
     69 
     70 	struct kmutex host_mtx;
     71 
     72 	u_int clkbase;			/* base clock frequency in KHz */
     73 	int maxblklen;			/* maximum block length */
     74 	uint32_t ocr;			/* OCR value from capabilities */
     75 
     76 	uint8_t regs[14];		/* host controller state */
     77 
     78 	uint16_t intr_status;		/* soft interrupt status */
     79 	uint16_t intr_error_status;	/* soft error status */
     80 	struct kmutex intr_mtx;
     81 	struct kcondvar intr_cv;
     82 
     83 	int specver;			/* spec. version */
     84 
     85 	uint32_t flags;			/* flags for this host */
     86 #define SHF_USE_DMA		0x0001
     87 #define SHF_USE_4BIT_MODE	0x0002
     88 #define SHF_USE_8BIT_MODE	0x0004
     89 };
     90 
     91 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     92 #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     93 
     94 static uint8_t
     95 hread1(struct sdhc_host *hp, bus_size_t reg)
     96 {
     97 
     98 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     99 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    100 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    101 }
    102 
    103 static uint16_t
    104 hread2(struct sdhc_host *hp, bus_size_t reg)
    105 {
    106 
    107 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    108 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    109 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    110 }
    111 
    112 #define HREAD1(hp, reg)		hread1(hp, reg)
    113 #define HREAD2(hp, reg)		hread2(hp, reg)
    114 #define HREAD4(hp, reg)		\
    115 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    116 
    117 
    118 static void
    119 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    120 {
    121 
    122 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    123 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    124 	} else {
    125 		const size_t shift = 8 * (o & 3);
    126 		o &= -4;
    127 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    128 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    129 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    130 	}
    131 }
    132 
    133 static void
    134 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    135 {
    136 
    137 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    138 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    139 	} else {
    140 		const size_t shift = 8 * (o & 2);
    141 		o &= -4;
    142 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    143 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    144 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    145 	}
    146 }
    147 
    148 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    149 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    150 #define HWRITE4(hp, reg, val)						\
    151 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    152 
    153 #define HCLR1(hp, reg, bits)						\
    154 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    155 #define HCLR2(hp, reg, bits)						\
    156 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    157 #define HCLR4(hp, reg, bits)						\
    158 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    159 #define HSET1(hp, reg, bits)						\
    160 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    161 #define HSET2(hp, reg, bits)						\
    162 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    163 #define HSET4(hp, reg, bits)						\
    164 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    165 
    166 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    167 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    168 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    169 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    170 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    171 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    172 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    173 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    174 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    175 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    176 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    177 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    178 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    179 		    struct sdmmc_command *);
    180 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    181 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    182 static int	sdhc_soft_reset(struct sdhc_host *, int);
    183 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    184 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    185 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    186 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    187 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    191 
    192 
    193 static struct sdmmc_chip_functions sdhc_functions = {
    194 	/* host controller reset */
    195 	sdhc_host_reset,
    196 
    197 	/* host controller capabilities */
    198 	sdhc_host_ocr,
    199 	sdhc_host_maxblklen,
    200 
    201 	/* card detection */
    202 	sdhc_card_detect,
    203 
    204 	/* write protect */
    205 	sdhc_write_protect,
    206 
    207 	/* bus power, clock frequency and width */
    208 	sdhc_bus_power,
    209 	sdhc_bus_clock,
    210 	sdhc_bus_width,
    211 	sdhc_bus_rod,
    212 
    213 	/* command execution */
    214 	sdhc_exec_command,
    215 
    216 	/* card interrupt */
    217 	sdhc_card_enable_intr,
    218 	sdhc_card_intr_ack
    219 };
    220 
    221 static int
    222 sdhc_cfprint(void *aux, const char *pnp)
    223 {
    224 	const struct sdmmcbus_attach_args * const saa = aux;
    225 	const struct sdhc_host * const hp = saa->saa_sch;
    226 
    227 	if (pnp) {
    228 		aprint_normal("sdmmc at %s", pnp);
    229 	}
    230 	aprint_normal(" slot %d", HDEVINST(hp));
    231 
    232 	return UNCONF;
    233 }
    234 
    235 /*
    236  * Called by attachment driver.  For each SD card slot there is one SD
    237  * host controller standard register set. (1.3)
    238  */
    239 int
    240 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    241     bus_space_handle_t ioh, bus_size_t iosize)
    242 {
    243 	struct sdmmcbus_attach_args saa;
    244 	struct sdhc_host *hp;
    245 	uint32_t caps;
    246 	uint16_t sdhcver;
    247 
    248 	/* Allocate one more host structure. */
    249 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    250 	if (hp == NULL) {
    251 		aprint_error_dev(sc->sc_dev,
    252 		    "couldn't alloc memory (sdhc host)\n");
    253 		goto err1;
    254 	}
    255 	sc->sc_host[sc->sc_nhosts++] = hp;
    256 
    257 	/* Fill in the new host structure. */
    258 	hp->sc = sc;
    259 	hp->iot = iot;
    260 	hp->ioh = ioh;
    261 	hp->ios = iosize;
    262 	hp->dmat = sc->sc_dmat;
    263 
    264 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    265 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    266 	cv_init(&hp->intr_cv, "sdhcintr");
    267 
    268 	sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    269 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    270 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    271 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    272 	case SDHC_SPEC_VERS_100:
    273 		aprint_normal("1.0");
    274 		break;
    275 
    276 	case SDHC_SPEC_VERS_200:
    277 		aprint_normal("2.0");
    278 		break;
    279 
    280 	case SDHC_SPEC_VERS_300:
    281 		aprint_normal("3.0");
    282 		break;
    283 
    284 	default:
    285 		aprint_normal("unknown version(0x%x)",
    286 		    SDHC_SPEC_VERSION(sdhcver));
    287 		break;
    288 	}
    289 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    290 
    291 	/*
    292 	 * Reset the host controller and enable interrupts.
    293 	 */
    294 	(void)sdhc_host_reset(hp);
    295 
    296 	/* Determine host capabilities. */
    297 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    298 		caps = sc->sc_caps;
    299 	} else {
    300 		mutex_enter(&hp->host_mtx);
    301 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    302 		mutex_exit(&hp->host_mtx);
    303 	}
    304 
    305 	/* Use DMA if the host system and the controller support it. */
    306 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    307 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    308 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    309 		SET(hp->flags, SHF_USE_DMA);
    310 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    311 	}
    312 
    313 	/*
    314 	 * Determine the base clock frequency. (2.2.24)
    315 	 */
    316 	if (hp->specver == SDHC_SPEC_VERS_300) {
    317 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    318 	} else {
    319 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    320 	}
    321 	if (hp->clkbase == 0) {
    322 		if (sc->sc_clkbase == 0) {
    323 			/* The attachment driver must tell us. */
    324 			aprint_error_dev(sc->sc_dev,
    325 			    "unknown base clock frequency\n");
    326 			goto err;
    327 		}
    328 		hp->clkbase = sc->sc_clkbase;
    329 	}
    330 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    331 		/* SDHC 1.0 supports only 10-63 MHz. */
    332 		aprint_error_dev(sc->sc_dev,
    333 		    "base clock frequency out of range: %u MHz\n",
    334 		    hp->clkbase / 1000);
    335 		goto err;
    336 	}
    337 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    338 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    339 
    340 	/*
    341 	 * XXX Set the data timeout counter value according to
    342 	 * capabilities. (2.2.15)
    343 	 */
    344 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    345 #if 1
    346 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    347 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    348 #endif
    349 
    350 	/*
    351 	 * Determine SD bus voltage levels supported by the controller.
    352 	 */
    353 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    354 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    355 	}
    356 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    357 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    358 	}
    359 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    360 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    361 	}
    362 
    363 	/*
    364 	 * Determine the maximum block length supported by the host
    365 	 * controller. (2.2.24)
    366 	 */
    367 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    368 	case SDHC_MAX_BLK_LEN_512:
    369 		hp->maxblklen = 512;
    370 		break;
    371 
    372 	case SDHC_MAX_BLK_LEN_1024:
    373 		hp->maxblklen = 1024;
    374 		break;
    375 
    376 	case SDHC_MAX_BLK_LEN_2048:
    377 		hp->maxblklen = 2048;
    378 		break;
    379 
    380 	case SDHC_MAX_BLK_LEN_4096:
    381 		hp->maxblklen = 4096;
    382 		break;
    383 
    384 	default:
    385 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    386 		goto err;
    387 	}
    388 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    389 	    device_xname(sc->sc_dev), hp->maxblklen,
    390 	    hp->maxblklen > 1 ? "s" : ""));
    391 
    392 	/*
    393 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    394 	 * not invoke any chipset functions before it is attached.)
    395 	 */
    396 	memset(&saa, 0, sizeof(saa));
    397 	saa.saa_busname = "sdmmc";
    398 	saa.saa_sct = &sdhc_functions;
    399 	saa.saa_sch = hp;
    400 	saa.saa_dmat = hp->dmat;
    401 	saa.saa_clkmax = hp->clkbase;
    402 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    403 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    404 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    405 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    406 	else if (hp->sc->sc_clkmsk != 0)
    407 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    408 		    (ffs(hp->sc->sc_clkmsk) - 1));
    409 	else if (hp->specver == SDHC_SPEC_VERS_300)
    410 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    411 	else
    412 		saa.saa_clkmin = hp->clkbase / 256;
    413 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    414 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    415 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    416 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    417 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    418 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    419 		saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
    420 	}
    421 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    422 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    423 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    424 
    425 	return 0;
    426 
    427 err:
    428 	cv_destroy(&hp->intr_cv);
    429 	mutex_destroy(&hp->intr_mtx);
    430 	mutex_destroy(&hp->host_mtx);
    431 	free(hp, M_DEVBUF);
    432 	sc->sc_host[--sc->sc_nhosts] = NULL;
    433 err1:
    434 	return 1;
    435 }
    436 
    437 int
    438 sdhc_detach(struct sdhc_softc *sc, int flags)
    439 {
    440 	struct sdhc_host *hp;
    441 	int rv = 0;
    442 
    443 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    444 		hp = sc->sc_host[n];
    445 		if (hp == NULL)
    446 			continue;
    447 		if (hp->sdmmc != NULL) {
    448 			rv = config_detach(hp->sdmmc, flags);
    449 			if (rv)
    450 				break;
    451 			hp->sdmmc = NULL;
    452 		}
    453 		/* disable interrupts */
    454 		if ((flags & DETACH_FORCE) == 0) {
    455 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    456 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    457 			} else {
    458 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    459 			}
    460 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    461 		}
    462 		cv_destroy(&hp->intr_cv);
    463 		mutex_destroy(&hp->intr_mtx);
    464 		mutex_destroy(&hp->host_mtx);
    465 		if (hp->ios > 0) {
    466 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    467 			hp->ios = 0;
    468 		}
    469 		free(hp, M_DEVBUF);
    470 		sc->sc_host[n] = NULL;
    471 	}
    472 
    473 	return rv;
    474 }
    475 
    476 bool
    477 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    478 {
    479 	struct sdhc_softc *sc = device_private(dev);
    480 	struct sdhc_host *hp;
    481 	size_t i;
    482 
    483 	/* XXX poll for command completion or suspend command
    484 	 * in progress */
    485 
    486 	/* Save the host controller state. */
    487 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    488 		hp = sc->sc_host[n];
    489 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    490 			for (i = 0; i < sizeof hp->regs; i += 4) {
    491 				uint32_t v = HREAD4(hp, i);
    492 				hp->regs[i + 0] = (v >> 0);
    493 				hp->regs[i + 1] = (v >> 8);
    494 				if (i + 3 < sizeof hp->regs) {
    495 					hp->regs[i + 2] = (v >> 16);
    496 					hp->regs[i + 3] = (v >> 24);
    497 				}
    498 			}
    499 		} else {
    500 			for (i = 0; i < sizeof hp->regs; i++) {
    501 				hp->regs[i] = HREAD1(hp, i);
    502 			}
    503 		}
    504 	}
    505 	return true;
    506 }
    507 
    508 bool
    509 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    510 {
    511 	struct sdhc_softc *sc = device_private(dev);
    512 	struct sdhc_host *hp;
    513 	size_t i;
    514 
    515 	/* Restore the host controller state. */
    516 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    517 		hp = sc->sc_host[n];
    518 		(void)sdhc_host_reset(hp);
    519 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    520 			for (i = 0; i < sizeof hp->regs; i += 4) {
    521 				if (i + 3 < sizeof hp->regs) {
    522 					HWRITE4(hp, i,
    523 					    (hp->regs[i + 0] << 0)
    524 					    | (hp->regs[i + 1] << 8)
    525 					    | (hp->regs[i + 2] << 16)
    526 					    | (hp->regs[i + 3] << 24));
    527 				} else {
    528 					HWRITE4(hp, i,
    529 					    (hp->regs[i + 0] << 0)
    530 					    | (hp->regs[i + 1] << 8));
    531 				}
    532 			}
    533 		} else {
    534 			for (i = 0; i < sizeof hp->regs; i++) {
    535 				HWRITE1(hp, i, hp->regs[i]);
    536 			}
    537 		}
    538 	}
    539 	return true;
    540 }
    541 
    542 bool
    543 sdhc_shutdown(device_t dev, int flags)
    544 {
    545 	struct sdhc_softc *sc = device_private(dev);
    546 	struct sdhc_host *hp;
    547 
    548 	/* XXX chip locks up if we don't disable it before reboot. */
    549 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    550 		hp = sc->sc_host[i];
    551 		(void)sdhc_host_reset(hp);
    552 	}
    553 	return true;
    554 }
    555 
    556 /*
    557  * Reset the host controller.  Called during initialization, when
    558  * cards are removed, upon resume, and during error recovery.
    559  */
    560 static int
    561 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    562 {
    563 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    564 	uint32_t sdhcimask;
    565 	int error;
    566 
    567 	/* Don't lock. */
    568 
    569 	/* Disable all interrupts. */
    570 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    571 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    572 	} else {
    573 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    574 	}
    575 
    576 	/*
    577 	 * Reset the entire host controller and wait up to 100ms for
    578 	 * the controller to clear the reset bit.
    579 	 */
    580 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    581 	if (error)
    582 		goto out;
    583 
    584 	/* Set data timeout counter value to max for now. */
    585 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    586 #if 1
    587 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    588 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    589 #endif
    590 
    591 	/* Enable interrupts. */
    592 	mutex_enter(&hp->intr_mtx);
    593 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    594 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    595 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    596 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    597 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    598 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    599 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    600 		sdhcimask ^=
    601 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    602 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    603 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    604 	} else {
    605 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    606 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    607 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    608 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    609 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    610 	}
    611 	mutex_exit(&hp->intr_mtx);
    612 
    613 out:
    614 	return error;
    615 }
    616 
    617 static int
    618 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    619 {
    620 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    621 	int error;
    622 
    623 	mutex_enter(&hp->host_mtx);
    624 	error = sdhc_host_reset1(sch);
    625 	mutex_exit(&hp->host_mtx);
    626 
    627 	return error;
    628 }
    629 
    630 static uint32_t
    631 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    632 {
    633 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    634 
    635 	return hp->ocr;
    636 }
    637 
    638 static int
    639 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    640 {
    641 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    642 
    643 	return hp->maxblklen;
    644 }
    645 
    646 /*
    647  * Return non-zero if the card is currently inserted.
    648  */
    649 static int
    650 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    651 {
    652 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    653 	int r;
    654 
    655 	if (hp->sc->sc_vendor_card_detect)
    656 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    657 
    658 	mutex_enter(&hp->host_mtx);
    659 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    660 	mutex_exit(&hp->host_mtx);
    661 
    662 	return r ? 1 : 0;
    663 }
    664 
    665 /*
    666  * Return non-zero if the card is currently write-protected.
    667  */
    668 static int
    669 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    670 {
    671 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    672 	int r;
    673 
    674 	if (hp->sc->sc_vendor_write_protect)
    675 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    676 
    677 	mutex_enter(&hp->host_mtx);
    678 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    679 	mutex_exit(&hp->host_mtx);
    680 
    681 	return r ? 0 : 1;
    682 }
    683 
    684 /*
    685  * Set or change SD bus voltage and enable or disable SD bus power.
    686  * Return zero on success.
    687  */
    688 static int
    689 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    690 {
    691 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    692 	uint8_t vdd;
    693 	int error = 0;
    694 	const uint32_t pcmask =
    695 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    696 
    697 	mutex_enter(&hp->host_mtx);
    698 
    699 	/*
    700 	 * Disable bus power before voltage change.
    701 	 */
    702 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    703 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    704 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    705 
    706 	/* If power is disabled, reset the host and return now. */
    707 	if (ocr == 0) {
    708 		(void)sdhc_host_reset1(hp);
    709 		goto out;
    710 	}
    711 
    712 	/*
    713 	 * Select the lowest voltage according to capabilities.
    714 	 */
    715 	ocr &= hp->ocr;
    716 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    717 		vdd = SDHC_VOLTAGE_1_8V;
    718 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    719 		vdd = SDHC_VOLTAGE_3_0V;
    720 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    721 		vdd = SDHC_VOLTAGE_3_3V;
    722 	} else {
    723 		/* Unsupported voltage level requested. */
    724 		error = EINVAL;
    725 		goto out;
    726 	}
    727 
    728 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    729 		/*
    730 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    731 		 * voltage ramp until power rises.
    732 		 */
    733 		HWRITE1(hp, SDHC_POWER_CTL,
    734 		    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    735 		sdmmc_delay(1);
    736 		HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
    737 		sdmmc_delay(1);
    738 		HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    739 		sdmmc_delay(10000);
    740 
    741 		/*
    742 		 * The host system may not power the bus due to battery low,
    743 		 * etc.  In that case, the host controller should clear the
    744 		 * bus power bit.
    745 		 */
    746 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    747 			error = ENXIO;
    748 			goto out;
    749 		}
    750 	}
    751 
    752 out:
    753 	mutex_exit(&hp->host_mtx);
    754 
    755 	return error;
    756 }
    757 
    758 /*
    759  * Return the smallest possible base clock frequency divisor value
    760  * for the CLOCK_CTL register to produce `freq' (KHz).
    761  */
    762 static bool
    763 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    764 {
    765 	u_int div;
    766 
    767 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    768 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    769 			if ((hp->clkbase / div) <= freq) {
    770 				*divp = SDHC_SDCLK_CGM
    771 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    772 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    773 				//freq = hp->clkbase / div;
    774 				return true;
    775 			}
    776 		}
    777 		/* No divisor found. */
    778 		return false;
    779 	}
    780 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    781 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    782 		u_int roundup = dvs & 1;
    783 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    784 			if (dvs + roundup <= 16) {
    785 				dvs += roundup - 1;
    786 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    787 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    788 				DPRINTF(2,
    789 				    ("%s: divisor for freq %u is %u * %u\n",
    790 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    791 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    792 				return true;
    793 			}
    794 			/*
    795 			 * If we drop bits, we need to round up the divisor.
    796 			 */
    797 			roundup |= dvs & 1;
    798 		}
    799 		/* No divisor found. */
    800 		return false;
    801 	}
    802 	if (hp->sc->sc_clkmsk != 0) {
    803 		div = howmany(hp->clkbase, freq);
    804 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    805 			return false;
    806 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    807 		//freq = hp->clkbase / div;
    808 		return true;
    809 	}
    810 	if (hp->specver == SDHC_SPEC_VERS_300) {
    811 		div = howmany(hp->clkbase, freq);
    812 		if (div > 0x3ff)
    813 			return false;
    814 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    815 			 << SDHC_SDCLK_XDIV_SHIFT) |
    816 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    817 			 << SDHC_SDCLK_DIV_SHIFT);
    818 		//freq = hp->clkbase / div;
    819 		return true;
    820 	} else {
    821 		for (div = 1; div <= 256; div *= 2) {
    822 			if ((hp->clkbase / div) <= freq) {
    823 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    824 				//freq = hp->clkbase / div;
    825 				return true;
    826 			}
    827 		}
    828 		/* No divisor found. */
    829 		return false;
    830 	}
    831 	/* No divisor found. */
    832 	return false;
    833 }
    834 
    835 /*
    836  * Set or change SDCLK frequency or disable the SD clock.
    837  * Return zero on success.
    838  */
    839 static int
    840 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    841 {
    842 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    843 	u_int div;
    844 	u_int timo;
    845 	int16_t reg;
    846 	int error = 0;
    847 #ifdef DIAGNOSTIC
    848 	bool present;
    849 
    850 	mutex_enter(&hp->host_mtx);
    851 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    852 	mutex_exit(&hp->host_mtx);
    853 
    854 	/* Must not stop the clock if commands are in progress. */
    855 	if (present && sdhc_card_detect(hp)) {
    856 		aprint_normal_dev(hp->sc->sc_dev,
    857 		    "%s: command in progress\n", __func__);
    858 	}
    859 #endif
    860 
    861 	mutex_enter(&hp->host_mtx);
    862 
    863 	if (hp->sc->sc_vendor_bus_clock) {
    864 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    865 		if (error != 0)
    866 			goto out;
    867 	}
    868 
    869 	/*
    870 	 * Stop SD clock before changing the frequency.
    871 	 */
    872 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    873 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    874 		if (freq == SDMMC_SDCLK_OFF) {
    875 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    876 			goto out;
    877 		}
    878 	} else {
    879 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    880 		if (freq == SDMMC_SDCLK_OFF)
    881 			goto out;
    882 	}
    883 
    884 	/*
    885 	 * Set the minimum base clock frequency divisor.
    886 	 */
    887 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    888 		/* Invalid base clock frequency or `freq' value. */
    889 		error = EINVAL;
    890 		goto out;
    891 	}
    892 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    893 		HWRITE4(hp, SDHC_CLOCK_CTL,
    894 		    div | (SDHC_TIMEOUT_MAX << 16));
    895 	} else {
    896 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
    897 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
    898 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
    899 	}
    900 
    901 	/*
    902 	 * Start internal clock.  Wait 10ms for stabilization.
    903 	 */
    904 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    905 		sdmmc_delay(10000);
    906 		HSET4(hp, SDHC_CLOCK_CTL,
    907 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    908 	} else {
    909 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    910 		for (timo = 1000; timo > 0; timo--) {
    911 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    912 			    SDHC_INTCLK_STABLE))
    913 				break;
    914 			sdmmc_delay(10);
    915 		}
    916 		if (timo == 0) {
    917 			error = ETIMEDOUT;
    918 			goto out;
    919 		}
    920 	}
    921 
    922 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    923 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    924 		/*
    925 		 * Sending 80 clocks at 400kHz takes 200us.
    926 		 * So delay for that time + slop and then
    927 		 * check a few times for completion.
    928 		 */
    929 		sdmmc_delay(210);
    930 		for (timo = 10; timo > 0; timo--) {
    931 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    932 			    SDHC_INIT_ACTIVE))
    933 				break;
    934 			sdmmc_delay(10);
    935 		}
    936 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    937 
    938 		/*
    939 		 * Enable SD clock.
    940 		 */
    941 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    942 	} else {
    943 		/*
    944 		 * Enable SD clock.
    945 		 */
    946 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    947 
    948 		if (freq > 25000)
    949 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    950 		else
    951 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    952 	}
    953 
    954 out:
    955 	mutex_exit(&hp->host_mtx);
    956 
    957 	return error;
    958 }
    959 
    960 static int
    961 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    962 {
    963 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    964 	int reg;
    965 
    966 	switch (width) {
    967 	case 1:
    968 	case 4:
    969 		break;
    970 
    971 	case 8:
    972 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    973 			break;
    974 		/* FALLTHROUGH */
    975 	default:
    976 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    977 		    HDEVNAME(hp), width));
    978 		return 1;
    979 	}
    980 
    981 	mutex_enter(&hp->host_mtx);
    982 	reg = HREAD1(hp, SDHC_HOST_CTL);
    983 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    984 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    985 		if (width == 4)
    986 			reg |= SDHC_4BIT_MODE;
    987 		else if (width == 8)
    988 			reg |= SDHC_ESDHC_8BIT_MODE;
    989 	} else {
    990 		reg &= ~SDHC_4BIT_MODE;
    991 		if (width == 4)
    992 			reg |= SDHC_4BIT_MODE;
    993 	}
    994 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    995 	mutex_exit(&hp->host_mtx);
    996 
    997 	return 0;
    998 }
    999 
   1000 static int
   1001 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1002 {
   1003 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1004 
   1005 	if (hp->sc->sc_vendor_rod)
   1006 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1007 
   1008 	return 0;
   1009 }
   1010 
   1011 static void
   1012 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1013 {
   1014 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1015 
   1016 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1017 		mutex_enter(&hp->intr_mtx);
   1018 		if (enable) {
   1019 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1020 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1021 		} else {
   1022 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1023 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1024 		}
   1025 		mutex_exit(&hp->intr_mtx);
   1026 	}
   1027 }
   1028 
   1029 static void
   1030 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1031 {
   1032 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1033 
   1034 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1035 		mutex_enter(&hp->intr_mtx);
   1036 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1037 		mutex_exit(&hp->intr_mtx);
   1038 	}
   1039 }
   1040 
   1041 static int
   1042 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1043 {
   1044 	uint32_t state;
   1045 	int timeout;
   1046 
   1047 	for (timeout = 10; timeout > 0; timeout--) {
   1048 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1049 			return 0;
   1050 		sdmmc_delay(10000);
   1051 	}
   1052 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1053 	    value, state));
   1054 	return ETIMEDOUT;
   1055 }
   1056 
   1057 static void
   1058 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1059 {
   1060 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1061 	int error;
   1062 
   1063 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1064 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1065 		mutex_enter(&hp->intr_mtx);
   1066 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1067 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1068 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1069 		} else {
   1070 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1071 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1072 		}
   1073 		mutex_exit(&hp->intr_mtx);
   1074 	}
   1075 
   1076 	/*
   1077 	 * Start the MMC command, or mark `cmd' as failed and return.
   1078 	 */
   1079 	error = sdhc_start_command(hp, cmd);
   1080 	if (error) {
   1081 		cmd->c_error = error;
   1082 		goto out;
   1083 	}
   1084 
   1085 	/*
   1086 	 * Wait until the command phase is done, or until the command
   1087 	 * is marked done for any other reason.
   1088 	 */
   1089 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1090 		cmd->c_error = ETIMEDOUT;
   1091 		goto out;
   1092 	}
   1093 
   1094 	/*
   1095 	 * The host controller removes bits [0:7] from the response
   1096 	 * data (CRC) and we pass the data up unchanged to the bus
   1097 	 * driver (without padding).
   1098 	 */
   1099 	mutex_enter(&hp->host_mtx);
   1100 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1101 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1102 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1103 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1104 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1105 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1106 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1107 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1108 				    (cmd->c_resp[1] << 24);
   1109 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1110 				    (cmd->c_resp[2] << 24);
   1111 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1112 				    (cmd->c_resp[3] << 24);
   1113 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1114 			}
   1115 		}
   1116 	}
   1117 	mutex_exit(&hp->host_mtx);
   1118 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1119 
   1120 	/*
   1121 	 * If the command has data to transfer in any direction,
   1122 	 * execute the transfer now.
   1123 	 */
   1124 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1125 		sdhc_transfer_data(hp, cmd);
   1126 
   1127 out:
   1128 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1129 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1130 		mutex_enter(&hp->host_mtx);
   1131 		/* Turn off the LED. */
   1132 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1133 		mutex_exit(&hp->host_mtx);
   1134 	}
   1135 	SET(cmd->c_flags, SCF_ITSDONE);
   1136 
   1137 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1138 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1139 	    cmd->c_flags, cmd->c_error));
   1140 }
   1141 
   1142 static int
   1143 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1144 {
   1145 	struct sdhc_softc * const sc = hp->sc;
   1146 	uint16_t blksize = 0;
   1147 	uint16_t blkcount = 0;
   1148 	uint16_t mode;
   1149 	uint16_t command;
   1150 	int error;
   1151 
   1152 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1153 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1154 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1155 
   1156 	/*
   1157 	 * The maximum block length for commands should be the minimum
   1158 	 * of the host buffer size and the card buffer size. (1.7.2)
   1159 	 */
   1160 
   1161 	/* Fragment the data into proper blocks. */
   1162 	if (cmd->c_datalen > 0) {
   1163 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1164 		blkcount = cmd->c_datalen / blksize;
   1165 		if (cmd->c_datalen % blksize > 0) {
   1166 			/* XXX: Split this command. (1.7.4) */
   1167 			aprint_error_dev(sc->sc_dev,
   1168 			    "data not a multiple of %u bytes\n", blksize);
   1169 			return EINVAL;
   1170 		}
   1171 	}
   1172 
   1173 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1174 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1175 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1176 		return EINVAL;
   1177 	}
   1178 
   1179 	/* Prepare transfer mode register value. (2.2.5) */
   1180 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1181 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1182 		mode |= SDHC_READ_MODE;
   1183 	if (blkcount > 1) {
   1184 		mode |= SDHC_MULTI_BLOCK_MODE;
   1185 		/* XXX only for memory commands? */
   1186 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1187 	}
   1188 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1189 		mode |= SDHC_DMA_ENABLE;
   1190 	}
   1191 
   1192 	/*
   1193 	 * Prepare command register value. (2.2.6)
   1194 	 */
   1195 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1196 
   1197 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1198 		command |= SDHC_CRC_CHECK_ENABLE;
   1199 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1200 		command |= SDHC_INDEX_CHECK_ENABLE;
   1201 	if (cmd->c_data != NULL)
   1202 		command |= SDHC_DATA_PRESENT_SELECT;
   1203 
   1204 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1205 		command |= SDHC_NO_RESPONSE;
   1206 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1207 		command |= SDHC_RESP_LEN_136;
   1208 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1209 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1210 	else
   1211 		command |= SDHC_RESP_LEN_48;
   1212 
   1213 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1214 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1215 	if (error)
   1216 		return error;
   1217 
   1218 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1219 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1220 
   1221 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1222 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1223 
   1224 	mutex_enter(&hp->host_mtx);
   1225 
   1226 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1227 		/* Alert the user not to remove the card. */
   1228 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1229 	}
   1230 
   1231 	/* Set DMA start address. */
   1232 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1233 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1234 
   1235 	/*
   1236 	 * Start a CPU data transfer.  Writing to the high order byte
   1237 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1238 	 */
   1239 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1240 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1241 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1242 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1243 	} else {
   1244 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1245 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1246 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1247 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1248 		HWRITE2(hp, SDHC_COMMAND, command);
   1249 	}
   1250 
   1251 	mutex_exit(&hp->host_mtx);
   1252 
   1253 	return 0;
   1254 }
   1255 
   1256 static void
   1257 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1258 {
   1259 	int error;
   1260 
   1261 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1262 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1263 
   1264 #ifdef SDHC_DEBUG
   1265 	/* XXX I forgot why I wanted to know when this happens :-( */
   1266 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1267 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1268 		aprint_error_dev(hp->sc->sc_dev,
   1269 		    "CMD52/53 error response flags %#x\n",
   1270 		    MMC_R1(cmd->c_resp) & 0xff00);
   1271 	}
   1272 #endif
   1273 
   1274 	if (cmd->c_dmamap != NULL)
   1275 		error = sdhc_transfer_data_dma(hp, cmd);
   1276 	else
   1277 		error = sdhc_transfer_data_pio(hp, cmd);
   1278 	if (error)
   1279 		cmd->c_error = error;
   1280 	SET(cmd->c_flags, SCF_ITSDONE);
   1281 
   1282 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1283 	    HDEVNAME(hp), cmd->c_error));
   1284 }
   1285 
   1286 static int
   1287 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1288 {
   1289 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1290 	bus_addr_t posaddr;
   1291 	bus_addr_t segaddr;
   1292 	bus_size_t seglen;
   1293 	u_int seg = 0;
   1294 	int error = 0;
   1295 	int status;
   1296 
   1297 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1298 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1299 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1300 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1301 
   1302 	for (;;) {
   1303 		status = sdhc_wait_intr(hp,
   1304 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1305 		    SDHC_DMA_TIMEOUT);
   1306 
   1307 		if (status & SDHC_TRANSFER_COMPLETE) {
   1308 			break;
   1309 		}
   1310 		if (!status) {
   1311 			error = ETIMEDOUT;
   1312 			break;
   1313 		}
   1314 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1315 			continue;
   1316 		}
   1317 
   1318 		/* DMA Interrupt (boundary crossing) */
   1319 
   1320 		segaddr = dm_segs[seg].ds_addr;
   1321 		seglen = dm_segs[seg].ds_len;
   1322 		mutex_enter(&hp->host_mtx);
   1323 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1324 		mutex_exit(&hp->host_mtx);
   1325 
   1326 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1327 			continue;
   1328 		}
   1329 		mutex_enter(&hp->host_mtx);
   1330 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1331 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1332 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1333 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1334 		mutex_exit(&hp->host_mtx);
   1335 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1336 	}
   1337 
   1338 	return error;
   1339 }
   1340 
   1341 static int
   1342 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1343 {
   1344 	uint8_t *data = cmd->c_data;
   1345 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1346 	u_int len, datalen;
   1347 	u_int imask;
   1348 	u_int pmask;
   1349 	int error = 0;
   1350 
   1351 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1352 		imask = SDHC_BUFFER_READ_READY;
   1353 		pmask = SDHC_BUFFER_READ_ENABLE;
   1354 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1355 			pio_func = esdhc_read_data_pio;
   1356 		} else {
   1357 			pio_func = sdhc_read_data_pio;
   1358 		}
   1359 	} else {
   1360 		imask = SDHC_BUFFER_WRITE_READY;
   1361 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1362 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1363 			pio_func = esdhc_write_data_pio;
   1364 		} else {
   1365 			pio_func = sdhc_write_data_pio;
   1366 		}
   1367 	}
   1368 	datalen = cmd->c_datalen;
   1369 
   1370 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1371 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1372 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1373 
   1374 	while (datalen > 0) {
   1375 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1376 			mutex_enter(&hp->intr_mtx);
   1377 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1378 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1379 			} else {
   1380 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1381 			}
   1382 			mutex_exit(&hp->intr_mtx);
   1383 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1384 				error = ETIMEDOUT;
   1385 				break;
   1386 			}
   1387 
   1388 			error = sdhc_wait_state(hp, pmask, pmask);
   1389 			if (error)
   1390 				break;
   1391 		}
   1392 
   1393 		len = MIN(datalen, cmd->c_blklen);
   1394 		(*pio_func)(hp, data, len);
   1395 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1396 		    HDEVNAME(hp), len, data));
   1397 
   1398 		data += len;
   1399 		datalen -= len;
   1400 	}
   1401 
   1402 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1403 	    SDHC_TRANSFER_TIMEOUT))
   1404 		error = ETIMEDOUT;
   1405 
   1406 	return error;
   1407 }
   1408 
   1409 static void
   1410 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1411 {
   1412 
   1413 	if (((__uintptr_t)data & 3) == 0) {
   1414 		while (datalen > 3) {
   1415 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1416 			data += 4;
   1417 			datalen -= 4;
   1418 		}
   1419 		if (datalen > 1) {
   1420 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1421 			data += 2;
   1422 			datalen -= 2;
   1423 		}
   1424 		if (datalen > 0) {
   1425 			*data = HREAD1(hp, SDHC_DATA);
   1426 			data += 1;
   1427 			datalen -= 1;
   1428 		}
   1429 	} else if (((__uintptr_t)data & 1) == 0) {
   1430 		while (datalen > 1) {
   1431 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1432 			data += 2;
   1433 			datalen -= 2;
   1434 		}
   1435 		if (datalen > 0) {
   1436 			*data = HREAD1(hp, SDHC_DATA);
   1437 			data += 1;
   1438 			datalen -= 1;
   1439 		}
   1440 	} else {
   1441 		while (datalen > 0) {
   1442 			*data = HREAD1(hp, SDHC_DATA);
   1443 			data += 1;
   1444 			datalen -= 1;
   1445 		}
   1446 	}
   1447 }
   1448 
   1449 static void
   1450 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1451 {
   1452 
   1453 	if (((__uintptr_t)data & 3) == 0) {
   1454 		while (datalen > 3) {
   1455 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1456 			data += 4;
   1457 			datalen -= 4;
   1458 		}
   1459 		if (datalen > 1) {
   1460 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1461 			data += 2;
   1462 			datalen -= 2;
   1463 		}
   1464 		if (datalen > 0) {
   1465 			HWRITE1(hp, SDHC_DATA, *data);
   1466 			data += 1;
   1467 			datalen -= 1;
   1468 		}
   1469 	} else if (((__uintptr_t)data & 1) == 0) {
   1470 		while (datalen > 1) {
   1471 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1472 			data += 2;
   1473 			datalen -= 2;
   1474 		}
   1475 		if (datalen > 0) {
   1476 			HWRITE1(hp, SDHC_DATA, *data);
   1477 			data += 1;
   1478 			datalen -= 1;
   1479 		}
   1480 	} else {
   1481 		while (datalen > 0) {
   1482 			HWRITE1(hp, SDHC_DATA, *data);
   1483 			data += 1;
   1484 			datalen -= 1;
   1485 		}
   1486 	}
   1487 }
   1488 
   1489 static void
   1490 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1491 {
   1492 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1493 	uint32_t v;
   1494 
   1495 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1496 	size_t count = 0;
   1497 
   1498 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1499 		if (count == 0) {
   1500 			/*
   1501 			 * If we've drained "watermark" words, we need to wait
   1502 			 * a little bit so the read FIFO can refill.
   1503 			 */
   1504 			sdmmc_delay(10);
   1505 			count = watermark;
   1506 		}
   1507 		v = HREAD4(hp, SDHC_DATA);
   1508 		v = le32toh(v);
   1509 		*(uint32_t *)data = v;
   1510 		data += 4;
   1511 		datalen -= 4;
   1512 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1513 		count--;
   1514 	}
   1515 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1516 		if (count == 0) {
   1517 			sdmmc_delay(10);
   1518 		}
   1519 		v = HREAD4(hp, SDHC_DATA);
   1520 		v = le32toh(v);
   1521 		do {
   1522 			*data++ = v;
   1523 			v >>= 8;
   1524 		} while (--datalen > 0);
   1525 	}
   1526 }
   1527 
   1528 static void
   1529 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1530 {
   1531 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1532 	uint32_t v;
   1533 
   1534 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1535 	size_t count = watermark;
   1536 
   1537 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1538 		if (count == 0) {
   1539 			sdmmc_delay(10);
   1540 			count = watermark;
   1541 		}
   1542 		v = *(uint32_t *)data;
   1543 		v = htole32(v);
   1544 		HWRITE4(hp, SDHC_DATA, v);
   1545 		data += 4;
   1546 		datalen -= 4;
   1547 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1548 		count--;
   1549 	}
   1550 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1551 		if (count == 0) {
   1552 			sdmmc_delay(10);
   1553 		}
   1554 		v = *(uint32_t *)data;
   1555 		v = htole32(v);
   1556 		HWRITE4(hp, SDHC_DATA, v);
   1557 	}
   1558 }
   1559 
   1560 /* Prepare for another command. */
   1561 static int
   1562 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1563 {
   1564 	int timo;
   1565 
   1566 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1567 
   1568 	/* Request the reset.  */
   1569 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1570 
   1571 	/*
   1572 	 * If necessary, wait for the controller to set the bits to
   1573 	 * acknowledge the reset.
   1574 	 */
   1575 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1576 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1577 		for (timo = 10000; timo > 0; timo--) {
   1578 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1579 				break;
   1580 			/* Short delay because I worry we may miss it...  */
   1581 			sdmmc_delay(1);
   1582 		}
   1583 		if (timo == 0)
   1584 			return ETIMEDOUT;
   1585 	}
   1586 
   1587 	/*
   1588 	 * Wait for the controller to clear the bits to indicate that
   1589 	 * the reset has completed.
   1590 	 */
   1591 	for (timo = 10; timo > 0; timo--) {
   1592 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1593 			break;
   1594 		sdmmc_delay(10000);
   1595 	}
   1596 	if (timo == 0) {
   1597 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1598 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1599 		return ETIMEDOUT;
   1600 	}
   1601 
   1602 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1603 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1604 	}
   1605 
   1606 	return 0;
   1607 }
   1608 
   1609 static int
   1610 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1611 {
   1612 	int status;
   1613 
   1614 	mask |= SDHC_ERROR_INTERRUPT;
   1615 
   1616 	mutex_enter(&hp->intr_mtx);
   1617 	status = hp->intr_status & mask;
   1618 	while (status == 0) {
   1619 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1620 		    == EWOULDBLOCK) {
   1621 			status |= SDHC_ERROR_INTERRUPT;
   1622 			break;
   1623 		}
   1624 		status = hp->intr_status & mask;
   1625 	}
   1626 	hp->intr_status &= ~status;
   1627 
   1628 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1629 	    hp->intr_error_status));
   1630 
   1631 	/* Command timeout has higher priority than command complete. */
   1632 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1633 		hp->intr_error_status = 0;
   1634 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1635 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1636 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1637 		}
   1638 		status = 0;
   1639 	}
   1640 	mutex_exit(&hp->intr_mtx);
   1641 
   1642 	return status;
   1643 }
   1644 
   1645 /*
   1646  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1647  */
   1648 int
   1649 sdhc_intr(void *arg)
   1650 {
   1651 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1652 	struct sdhc_host *hp;
   1653 	int done = 0;
   1654 	uint16_t status;
   1655 	uint16_t error;
   1656 
   1657 	/* We got an interrupt, but we don't know from which slot. */
   1658 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1659 		hp = sc->sc_host[host];
   1660 		if (hp == NULL)
   1661 			continue;
   1662 
   1663 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1664 			/* Find out which interrupts are pending. */
   1665 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1666 			status = xstatus;
   1667 			error = xstatus >> 16;
   1668 			if (error)
   1669 				xstatus |= SDHC_ERROR_INTERRUPT;
   1670 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1671 				continue; /* no interrupt for us */
   1672 			/* Acknowledge the interrupts we are about to handle. */
   1673 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1674 		} else {
   1675 			/* Find out which interrupts are pending. */
   1676 			error = 0;
   1677 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1678 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1679 				continue; /* no interrupt for us */
   1680 			/* Acknowledge the interrupts we are about to handle. */
   1681 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1682 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1683 				/* Acknowledge error interrupts. */
   1684 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1685 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1686 			}
   1687 		}
   1688 
   1689 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1690 		    status, error));
   1691 
   1692 		mutex_enter(&hp->intr_mtx);
   1693 
   1694 		/* Claim this interrupt. */
   1695 		done = 1;
   1696 
   1697 		/*
   1698 		 * Service error interrupts.
   1699 		 */
   1700 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1701 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1702 			hp->intr_error_status |= error;
   1703 			hp->intr_status |= status;
   1704 			cv_broadcast(&hp->intr_cv);
   1705 		}
   1706 
   1707 		/*
   1708 		 * Wake up the sdmmc event thread to scan for cards.
   1709 		 */
   1710 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1711 			sdmmc_needs_discover(hp->sdmmc);
   1712 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1713 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1714 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1715 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1716 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1717 			}
   1718 		}
   1719 
   1720 		/*
   1721 		 * Wake up the blocking process to service command
   1722 		 * related interrupt(s).
   1723 		 */
   1724 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1725 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1726 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1727 			hp->intr_status |= status;
   1728 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1729 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1730 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1731 			}
   1732 			cv_broadcast(&hp->intr_cv);
   1733 		}
   1734 
   1735 		/*
   1736 		 * Service SD card interrupts.
   1737 		 */
   1738 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1739 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1740 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1741 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1742 			sdmmc_card_intr(hp->sdmmc);
   1743 		}
   1744 		mutex_exit(&hp->intr_mtx);
   1745 	}
   1746 
   1747 	return done;
   1748 }
   1749 
   1750 #ifdef SDHC_DEBUG
   1751 void
   1752 sdhc_dump_regs(struct sdhc_host *hp)
   1753 {
   1754 
   1755 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1756 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1757 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1758 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1759 		    HREAD1(hp, SDHC_POWER_CTL));
   1760 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1761 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1762 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1763 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1764 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1765 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1766 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1767 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1768 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1769 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1770 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1771 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1772 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1773 	    HREAD4(hp, SDHC_CAPABILITIES));
   1774 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1775 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1776 }
   1777 #endif
   1778