Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.40
      1 /*	$NetBSD: sdhc.c,v 1.40 2012/12/24 06:09:50 jakllsch Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.40 2012/12/24 06:09:50 jakllsch Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_size_t ios;			/* host register space size */
     66 	bus_dma_tag_t dmat;		/* host DMA tag */
     67 
     68 	device_t sdmmc;			/* generic SD/MMC device */
     69 
     70 	struct kmutex host_mtx;
     71 
     72 	u_int clkbase;			/* base clock frequency in KHz */
     73 	int maxblklen;			/* maximum block length */
     74 	uint32_t ocr;			/* OCR value from capabilities */
     75 
     76 	uint8_t regs[14];		/* host controller state */
     77 
     78 	uint16_t intr_status;		/* soft interrupt status */
     79 	uint16_t intr_error_status;	/* soft error status */
     80 	struct kmutex intr_mtx;
     81 	struct kcondvar intr_cv;
     82 
     83 	int specver;			/* spec. version */
     84 
     85 	uint32_t flags;			/* flags for this host */
     86 #define SHF_USE_DMA		0x0001
     87 #define SHF_USE_4BIT_MODE	0x0002
     88 #define SHF_USE_8BIT_MODE	0x0004
     89 };
     90 
     91 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     92 #define HDEVINST(hp)	((int)(((hp)-(hp)->sc->sc_host[0])/sizeof(*(hp))))
     93 
     94 static uint8_t
     95 hread1(struct sdhc_host *hp, bus_size_t reg)
     96 {
     97 
     98 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     99 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    100 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    101 }
    102 
    103 static uint16_t
    104 hread2(struct sdhc_host *hp, bus_size_t reg)
    105 {
    106 
    107 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    108 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    109 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    110 }
    111 
    112 #define HREAD1(hp, reg)		hread1(hp, reg)
    113 #define HREAD2(hp, reg)		hread2(hp, reg)
    114 #define HREAD4(hp, reg)		\
    115 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    116 
    117 
    118 static void
    119 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    120 {
    121 
    122 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    123 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    124 	} else {
    125 		const size_t shift = 8 * (o & 3);
    126 		o &= -4;
    127 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    128 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    129 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    130 	}
    131 }
    132 
    133 static void
    134 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    135 {
    136 
    137 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    138 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    139 	} else {
    140 		const size_t shift = 8 * (o & 2);
    141 		o &= -4;
    142 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    143 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    144 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    145 	}
    146 }
    147 
    148 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    149 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    150 #define HWRITE4(hp, reg, val)						\
    151 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    152 
    153 #define HCLR1(hp, reg, bits)						\
    154 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    155 #define HCLR2(hp, reg, bits)						\
    156 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    157 #define HCLR4(hp, reg, bits)						\
    158 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    159 #define HSET1(hp, reg, bits)						\
    160 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    161 #define HSET2(hp, reg, bits)						\
    162 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    163 #define HSET4(hp, reg, bits)						\
    164 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    165 
    166 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    167 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    168 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    169 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    170 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    171 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    172 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    173 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    174 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    175 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    176 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    177 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    178 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    179 		    struct sdmmc_command *);
    180 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    181 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    182 static int	sdhc_soft_reset(struct sdhc_host *, int);
    183 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    184 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    185 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    186 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    187 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    191 
    192 
    193 static struct sdmmc_chip_functions sdhc_functions = {
    194 	/* host controller reset */
    195 	sdhc_host_reset,
    196 
    197 	/* host controller capabilities */
    198 	sdhc_host_ocr,
    199 	sdhc_host_maxblklen,
    200 
    201 	/* card detection */
    202 	sdhc_card_detect,
    203 
    204 	/* write protect */
    205 	sdhc_write_protect,
    206 
    207 	/* bus power, clock frequency and width */
    208 	sdhc_bus_power,
    209 	sdhc_bus_clock,
    210 	sdhc_bus_width,
    211 	sdhc_bus_rod,
    212 
    213 	/* command execution */
    214 	sdhc_exec_command,
    215 
    216 	/* card interrupt */
    217 	sdhc_card_enable_intr,
    218 	sdhc_card_intr_ack
    219 };
    220 
    221 static int
    222 sdhc_cfprint(void *aux, const char *pnp)
    223 {
    224 	const struct sdmmcbus_attach_args * const saa = aux;
    225 	const struct sdhc_host * const hp = saa->saa_sch;
    226 
    227 	if (pnp) {
    228 		aprint_normal("sdmmc at %s", pnp);
    229 	}
    230 	aprint_normal(" slot %d", HDEVINST(hp));
    231 
    232 	return UNCONF;
    233 }
    234 
    235 /*
    236  * Called by attachment driver.  For each SD card slot there is one SD
    237  * host controller standard register set. (1.3)
    238  */
    239 int
    240 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    241     bus_space_handle_t ioh, bus_size_t iosize)
    242 {
    243 	struct sdmmcbus_attach_args saa;
    244 	struct sdhc_host *hp;
    245 	uint32_t caps;
    246 	uint16_t sdhcver;
    247 
    248 	/* Allocate one more host structure. */
    249 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    250 	if (hp == NULL) {
    251 		aprint_error_dev(sc->sc_dev,
    252 		    "couldn't alloc memory (sdhc host)\n");
    253 		goto err1;
    254 	}
    255 	sc->sc_host[sc->sc_nhosts++] = hp;
    256 
    257 	/* Fill in the new host structure. */
    258 	hp->sc = sc;
    259 	hp->iot = iot;
    260 	hp->ioh = ioh;
    261 	hp->ios = iosize;
    262 	hp->dmat = sc->sc_dmat;
    263 
    264 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    265 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    266 	cv_init(&hp->intr_cv, "sdhcintr");
    267 
    268 	sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    269 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    270 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    271 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    272 	case SDHC_SPEC_VERS_100:
    273 		aprint_normal("1.0");
    274 		break;
    275 
    276 	case SDHC_SPEC_VERS_200:
    277 		aprint_normal("2.0");
    278 		break;
    279 
    280 	case SDHC_SPEC_VERS_300:
    281 		aprint_normal("3.0");
    282 		break;
    283 
    284 	default:
    285 		aprint_normal("unknown version(0x%x)",
    286 		    SDHC_SPEC_VERSION(sdhcver));
    287 		break;
    288 	}
    289 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    290 
    291 	/*
    292 	 * Reset the host controller and enable interrupts.
    293 	 */
    294 	(void)sdhc_host_reset(hp);
    295 
    296 	/* Determine host capabilities. */
    297 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    298 		caps = sc->sc_caps;
    299 	} else {
    300 		mutex_enter(&hp->host_mtx);
    301 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    302 		mutex_exit(&hp->host_mtx);
    303 	}
    304 
    305 	/* Use DMA if the host system and the controller support it. */
    306 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    307 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    308 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    309 		SET(hp->flags, SHF_USE_DMA);
    310 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    311 	}
    312 
    313 	/*
    314 	 * Determine the base clock frequency. (2.2.24)
    315 	 */
    316 	if (hp->specver == SDHC_SPEC_VERS_300) {
    317 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    318 	} else {
    319 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    320 	}
    321 	if (hp->clkbase == 0) {
    322 		if (sc->sc_clkbase == 0) {
    323 			/* The attachment driver must tell us. */
    324 			aprint_error_dev(sc->sc_dev,
    325 			    "unknown base clock frequency\n");
    326 			goto err;
    327 		}
    328 		hp->clkbase = sc->sc_clkbase;
    329 	}
    330 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    331 		/* SDHC 1.0 supports only 10-63 MHz. */
    332 		aprint_error_dev(sc->sc_dev,
    333 		    "base clock frequency out of range: %u MHz\n",
    334 		    hp->clkbase / 1000);
    335 		goto err;
    336 	}
    337 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    338 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    339 
    340 	/*
    341 	 * XXX Set the data timeout counter value according to
    342 	 * capabilities. (2.2.15)
    343 	 */
    344 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    345 #if 1
    346 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    347 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    348 #endif
    349 
    350 	/*
    351 	 * Determine SD bus voltage levels supported by the controller.
    352 	 */
    353 	if (ISSET(caps, SDHC_EMBEDDED_SLOT) &&
    354 	    ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    355 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    356 	}
    357 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    358 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    359 	}
    360 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    361 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    362 	}
    363 
    364 	/*
    365 	 * Determine the maximum block length supported by the host
    366 	 * controller. (2.2.24)
    367 	 */
    368 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    369 	case SDHC_MAX_BLK_LEN_512:
    370 		hp->maxblklen = 512;
    371 		break;
    372 
    373 	case SDHC_MAX_BLK_LEN_1024:
    374 		hp->maxblklen = 1024;
    375 		break;
    376 
    377 	case SDHC_MAX_BLK_LEN_2048:
    378 		hp->maxblklen = 2048;
    379 		break;
    380 
    381 	case SDHC_MAX_BLK_LEN_4096:
    382 		hp->maxblklen = 4096;
    383 		break;
    384 
    385 	default:
    386 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    387 		goto err;
    388 	}
    389 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    390 	    device_xname(sc->sc_dev), hp->maxblklen,
    391 	    hp->maxblklen > 1 ? "s" : ""));
    392 
    393 	/*
    394 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    395 	 * not invoke any chipset functions before it is attached.)
    396 	 */
    397 	memset(&saa, 0, sizeof(saa));
    398 	saa.saa_busname = "sdmmc";
    399 	saa.saa_sct = &sdhc_functions;
    400 	saa.saa_sch = hp;
    401 	saa.saa_dmat = hp->dmat;
    402 	saa.saa_clkmax = hp->clkbase;
    403 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    404 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    405 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    406 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    407 	else if (hp->sc->sc_clkmsk != 0)
    408 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    409 		    (ffs(hp->sc->sc_clkmsk) - 1));
    410 	else if (hp->specver == SDHC_SPEC_VERS_300)
    411 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    412 	else
    413 		saa.saa_clkmin = hp->clkbase / 256;
    414 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    415 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    416 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    417 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    418 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    419 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    420 		saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
    421 	}
    422 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    423 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    424 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    425 
    426 	return 0;
    427 
    428 err:
    429 	cv_destroy(&hp->intr_cv);
    430 	mutex_destroy(&hp->intr_mtx);
    431 	mutex_destroy(&hp->host_mtx);
    432 	free(hp, M_DEVBUF);
    433 	sc->sc_host[--sc->sc_nhosts] = NULL;
    434 err1:
    435 	return 1;
    436 }
    437 
    438 int
    439 sdhc_detach(struct sdhc_softc *sc, int flags)
    440 {
    441 	struct sdhc_host *hp;
    442 	int rv = 0;
    443 
    444 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    445 		hp = sc->sc_host[n];
    446 		if (hp == NULL)
    447 			continue;
    448 		if (hp->sdmmc != NULL) {
    449 			rv = config_detach(hp->sdmmc, flags);
    450 			if (rv)
    451 				break;
    452 			hp->sdmmc = NULL;
    453 		}
    454 		/* disable interrupts */
    455 		if ((flags & DETACH_FORCE) == 0) {
    456 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    457 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    458 			} else {
    459 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    460 			}
    461 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    462 		}
    463 		cv_destroy(&hp->intr_cv);
    464 		mutex_destroy(&hp->intr_mtx);
    465 		mutex_destroy(&hp->host_mtx);
    466 		if (hp->ios > 0) {
    467 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    468 			hp->ios = 0;
    469 		}
    470 		free(hp, M_DEVBUF);
    471 		sc->sc_host[n] = NULL;
    472 	}
    473 
    474 	return rv;
    475 }
    476 
    477 bool
    478 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    479 {
    480 	struct sdhc_softc *sc = device_private(dev);
    481 	struct sdhc_host *hp;
    482 	size_t i;
    483 
    484 	/* XXX poll for command completion or suspend command
    485 	 * in progress */
    486 
    487 	/* Save the host controller state. */
    488 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    489 		hp = sc->sc_host[n];
    490 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    491 			for (i = 0; i < sizeof hp->regs; i += 4) {
    492 				uint32_t v = HREAD4(hp, i);
    493 				hp->regs[i + 0] = (v >> 0);
    494 				hp->regs[i + 1] = (v >> 8);
    495 				if (i + 3 < sizeof hp->regs) {
    496 					hp->regs[i + 2] = (v >> 16);
    497 					hp->regs[i + 3] = (v >> 24);
    498 				}
    499 			}
    500 		} else {
    501 			for (i = 0; i < sizeof hp->regs; i++) {
    502 				hp->regs[i] = HREAD1(hp, i);
    503 			}
    504 		}
    505 	}
    506 	return true;
    507 }
    508 
    509 bool
    510 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    511 {
    512 	struct sdhc_softc *sc = device_private(dev);
    513 	struct sdhc_host *hp;
    514 	size_t i;
    515 
    516 	/* Restore the host controller state. */
    517 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    518 		hp = sc->sc_host[n];
    519 		(void)sdhc_host_reset(hp);
    520 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    521 			for (i = 0; i < sizeof hp->regs; i += 4) {
    522 				if (i + 3 < sizeof hp->regs) {
    523 					HWRITE4(hp, i,
    524 					    (hp->regs[i + 0] << 0)
    525 					    | (hp->regs[i + 1] << 8)
    526 					    | (hp->regs[i + 2] << 16)
    527 					    | (hp->regs[i + 3] << 24));
    528 				} else {
    529 					HWRITE4(hp, i,
    530 					    (hp->regs[i + 0] << 0)
    531 					    | (hp->regs[i + 1] << 8));
    532 				}
    533 			}
    534 		} else {
    535 			for (i = 0; i < sizeof hp->regs; i++) {
    536 				HWRITE1(hp, i, hp->regs[i]);
    537 			}
    538 		}
    539 	}
    540 	return true;
    541 }
    542 
    543 bool
    544 sdhc_shutdown(device_t dev, int flags)
    545 {
    546 	struct sdhc_softc *sc = device_private(dev);
    547 	struct sdhc_host *hp;
    548 
    549 	/* XXX chip locks up if we don't disable it before reboot. */
    550 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    551 		hp = sc->sc_host[i];
    552 		(void)sdhc_host_reset(hp);
    553 	}
    554 	return true;
    555 }
    556 
    557 /*
    558  * Reset the host controller.  Called during initialization, when
    559  * cards are removed, upon resume, and during error recovery.
    560  */
    561 static int
    562 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    563 {
    564 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    565 	uint32_t sdhcimask;
    566 	int error;
    567 
    568 	/* Don't lock. */
    569 
    570 	/* Disable all interrupts. */
    571 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    572 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    573 	} else {
    574 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    575 	}
    576 
    577 	/*
    578 	 * Reset the entire host controller and wait up to 100ms for
    579 	 * the controller to clear the reset bit.
    580 	 */
    581 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    582 	if (error)
    583 		goto out;
    584 
    585 	/* Set data timeout counter value to max for now. */
    586 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    587 #if 1
    588 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    589 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    590 #endif
    591 
    592 	/* Enable interrupts. */
    593 	mutex_enter(&hp->intr_mtx);
    594 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    595 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    596 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    597 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    598 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    599 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    600 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    601 		sdhcimask ^=
    602 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    603 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    604 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    605 	} else {
    606 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    607 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    608 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    609 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    610 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    611 	}
    612 	mutex_exit(&hp->intr_mtx);
    613 
    614 out:
    615 	return error;
    616 }
    617 
    618 static int
    619 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    620 {
    621 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    622 	int error;
    623 
    624 	mutex_enter(&hp->host_mtx);
    625 	error = sdhc_host_reset1(sch);
    626 	mutex_exit(&hp->host_mtx);
    627 
    628 	return error;
    629 }
    630 
    631 static uint32_t
    632 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    633 {
    634 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    635 
    636 	return hp->ocr;
    637 }
    638 
    639 static int
    640 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    641 {
    642 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    643 
    644 	return hp->maxblklen;
    645 }
    646 
    647 /*
    648  * Return non-zero if the card is currently inserted.
    649  */
    650 static int
    651 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    652 {
    653 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    654 	int r;
    655 
    656 	if (hp->sc->sc_vendor_card_detect)
    657 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    658 
    659 	mutex_enter(&hp->host_mtx);
    660 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    661 	mutex_exit(&hp->host_mtx);
    662 
    663 	return r ? 1 : 0;
    664 }
    665 
    666 /*
    667  * Return non-zero if the card is currently write-protected.
    668  */
    669 static int
    670 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    671 {
    672 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    673 	int r;
    674 
    675 	if (hp->sc->sc_vendor_write_protect)
    676 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    677 
    678 	mutex_enter(&hp->host_mtx);
    679 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    680 	mutex_exit(&hp->host_mtx);
    681 
    682 	return r ? 0 : 1;
    683 }
    684 
    685 /*
    686  * Set or change SD bus voltage and enable or disable SD bus power.
    687  * Return zero on success.
    688  */
    689 static int
    690 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    691 {
    692 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    693 	uint8_t vdd;
    694 	int error = 0;
    695 	const uint32_t pcmask =
    696 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    697 
    698 	mutex_enter(&hp->host_mtx);
    699 
    700 	/*
    701 	 * Disable bus power before voltage change.
    702 	 */
    703 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    704 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    705 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    706 
    707 	/* If power is disabled, reset the host and return now. */
    708 	if (ocr == 0) {
    709 		(void)sdhc_host_reset1(hp);
    710 		goto out;
    711 	}
    712 
    713 	/*
    714 	 * Select the lowest voltage according to capabilities.
    715 	 */
    716 	ocr &= hp->ocr;
    717 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    718 		vdd = SDHC_VOLTAGE_1_8V;
    719 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    720 		vdd = SDHC_VOLTAGE_3_0V;
    721 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    722 		vdd = SDHC_VOLTAGE_3_3V;
    723 	} else {
    724 		/* Unsupported voltage level requested. */
    725 		error = EINVAL;
    726 		goto out;
    727 	}
    728 
    729 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    730 		/*
    731 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    732 		 * voltage ramp until power rises.
    733 		 */
    734 		HWRITE1(hp, SDHC_POWER_CTL,
    735 		    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    736 		sdmmc_delay(1);
    737 		HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
    738 		sdmmc_delay(1);
    739 		HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    740 		sdmmc_delay(10000);
    741 
    742 		/*
    743 		 * The host system may not power the bus due to battery low,
    744 		 * etc.  In that case, the host controller should clear the
    745 		 * bus power bit.
    746 		 */
    747 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    748 			error = ENXIO;
    749 			goto out;
    750 		}
    751 	}
    752 
    753 out:
    754 	mutex_exit(&hp->host_mtx);
    755 
    756 	return error;
    757 }
    758 
    759 /*
    760  * Return the smallest possible base clock frequency divisor value
    761  * for the CLOCK_CTL register to produce `freq' (KHz).
    762  */
    763 static bool
    764 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    765 {
    766 	u_int div;
    767 
    768 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    769 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    770 			if ((hp->clkbase / div) <= freq) {
    771 				*divp = SDHC_SDCLK_CGM
    772 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    773 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    774 				//freq = hp->clkbase / div;
    775 				return true;
    776 			}
    777 		}
    778 		/* No divisor found. */
    779 		return false;
    780 	}
    781 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    782 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    783 		u_int roundup = dvs & 1;
    784 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    785 			if (dvs + roundup <= 16) {
    786 				dvs += roundup - 1;
    787 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    788 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    789 				DPRINTF(2,
    790 				    ("%s: divisor for freq %u is %u * %u\n",
    791 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    792 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    793 				return true;
    794 			}
    795 			/*
    796 			 * If we drop bits, we need to round up the divisor.
    797 			 */
    798 			roundup |= dvs & 1;
    799 		}
    800 		/* No divisor found. */
    801 		return false;
    802 	}
    803 	if (hp->sc->sc_clkmsk != 0) {
    804 		div = howmany(hp->clkbase, freq);
    805 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    806 			return false;
    807 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    808 		//freq = hp->clkbase / div;
    809 		return true;
    810 	}
    811 	if (hp->specver == SDHC_SPEC_VERS_300) {
    812 		div = howmany(hp->clkbase, freq);
    813 		if (div > 0x3ff)
    814 			return false;
    815 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    816 			 << SDHC_SDCLK_XDIV_SHIFT) |
    817 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    818 			 << SDHC_SDCLK_DIV_SHIFT);
    819 		//freq = hp->clkbase / div;
    820 		return true;
    821 	} else {
    822 		for (div = 1; div <= 256; div *= 2) {
    823 			if ((hp->clkbase / div) <= freq) {
    824 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    825 				//freq = hp->clkbase / div;
    826 				return true;
    827 			}
    828 		}
    829 		/* No divisor found. */
    830 		return false;
    831 	}
    832 	/* No divisor found. */
    833 	return false;
    834 }
    835 
    836 /*
    837  * Set or change SDCLK frequency or disable the SD clock.
    838  * Return zero on success.
    839  */
    840 static int
    841 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    842 {
    843 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    844 	u_int div;
    845 	u_int timo;
    846 	int16_t reg;
    847 	int error = 0;
    848 #ifdef DIAGNOSTIC
    849 	bool present;
    850 
    851 	mutex_enter(&hp->host_mtx);
    852 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    853 	mutex_exit(&hp->host_mtx);
    854 
    855 	/* Must not stop the clock if commands are in progress. */
    856 	if (present && sdhc_card_detect(hp)) {
    857 		aprint_normal_dev(hp->sc->sc_dev,
    858 		    "%s: command in progress\n", __func__);
    859 	}
    860 #endif
    861 
    862 	mutex_enter(&hp->host_mtx);
    863 
    864 	if (hp->sc->sc_vendor_bus_clock) {
    865 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    866 		if (error != 0)
    867 			goto out;
    868 	}
    869 
    870 	/*
    871 	 * Stop SD clock before changing the frequency.
    872 	 */
    873 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    874 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    875 		if (freq == SDMMC_SDCLK_OFF) {
    876 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    877 			goto out;
    878 		}
    879 	} else {
    880 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    881 		if (freq == SDMMC_SDCLK_OFF)
    882 			goto out;
    883 	}
    884 
    885 	/*
    886 	 * Set the minimum base clock frequency divisor.
    887 	 */
    888 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    889 		/* Invalid base clock frequency or `freq' value. */
    890 		error = EINVAL;
    891 		goto out;
    892 	}
    893 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    894 		HWRITE4(hp, SDHC_CLOCK_CTL,
    895 		    div | (SDHC_TIMEOUT_MAX << 16));
    896 	} else {
    897 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
    898 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
    899 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
    900 	}
    901 
    902 	/*
    903 	 * Start internal clock.  Wait 10ms for stabilization.
    904 	 */
    905 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    906 		sdmmc_delay(10000);
    907 		HSET4(hp, SDHC_CLOCK_CTL,
    908 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    909 	} else {
    910 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    911 		for (timo = 1000; timo > 0; timo--) {
    912 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    913 			    SDHC_INTCLK_STABLE))
    914 				break;
    915 			sdmmc_delay(10);
    916 		}
    917 		if (timo == 0) {
    918 			error = ETIMEDOUT;
    919 			goto out;
    920 		}
    921 	}
    922 
    923 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    924 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    925 		/*
    926 		 * Sending 80 clocks at 400kHz takes 200us.
    927 		 * So delay for that time + slop and then
    928 		 * check a few times for completion.
    929 		 */
    930 		sdmmc_delay(210);
    931 		for (timo = 10; timo > 0; timo--) {
    932 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    933 			    SDHC_INIT_ACTIVE))
    934 				break;
    935 			sdmmc_delay(10);
    936 		}
    937 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    938 
    939 		/*
    940 		 * Enable SD clock.
    941 		 */
    942 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    943 	} else {
    944 		/*
    945 		 * Enable SD clock.
    946 		 */
    947 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    948 
    949 		if (freq > 25000)
    950 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    951 		else
    952 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    953 	}
    954 
    955 out:
    956 	mutex_exit(&hp->host_mtx);
    957 
    958 	return error;
    959 }
    960 
    961 static int
    962 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    963 {
    964 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    965 	int reg;
    966 
    967 	switch (width) {
    968 	case 1:
    969 	case 4:
    970 		break;
    971 
    972 	case 8:
    973 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    974 			break;
    975 		/* FALLTHROUGH */
    976 	default:
    977 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    978 		    HDEVNAME(hp), width));
    979 		return 1;
    980 	}
    981 
    982 	mutex_enter(&hp->host_mtx);
    983 	reg = HREAD1(hp, SDHC_HOST_CTL);
    984 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    985 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    986 		if (width == 4)
    987 			reg |= SDHC_4BIT_MODE;
    988 		else if (width == 8)
    989 			reg |= SDHC_ESDHC_8BIT_MODE;
    990 	} else {
    991 		reg &= ~SDHC_4BIT_MODE;
    992 		if (width == 4)
    993 			reg |= SDHC_4BIT_MODE;
    994 	}
    995 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    996 	mutex_exit(&hp->host_mtx);
    997 
    998 	return 0;
    999 }
   1000 
   1001 static int
   1002 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1003 {
   1004 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1005 
   1006 	if (hp->sc->sc_vendor_rod)
   1007 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1008 
   1009 	return 0;
   1010 }
   1011 
   1012 static void
   1013 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1014 {
   1015 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1016 
   1017 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1018 		mutex_enter(&hp->intr_mtx);
   1019 		if (enable) {
   1020 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1021 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1022 		} else {
   1023 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1024 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1025 		}
   1026 		mutex_exit(&hp->intr_mtx);
   1027 	}
   1028 }
   1029 
   1030 static void
   1031 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1032 {
   1033 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1034 
   1035 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1036 		mutex_enter(&hp->intr_mtx);
   1037 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1038 		mutex_exit(&hp->intr_mtx);
   1039 	}
   1040 }
   1041 
   1042 static int
   1043 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1044 {
   1045 	uint32_t state;
   1046 	int timeout;
   1047 
   1048 	for (timeout = 10; timeout > 0; timeout--) {
   1049 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1050 			return 0;
   1051 		sdmmc_delay(10000);
   1052 	}
   1053 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1054 	    value, state));
   1055 	return ETIMEDOUT;
   1056 }
   1057 
   1058 static void
   1059 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1060 {
   1061 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1062 	int error;
   1063 
   1064 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1065 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1066 		mutex_enter(&hp->intr_mtx);
   1067 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1068 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1069 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1070 		} else {
   1071 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1072 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1073 		}
   1074 		mutex_exit(&hp->intr_mtx);
   1075 	}
   1076 
   1077 	/*
   1078 	 * Start the MMC command, or mark `cmd' as failed and return.
   1079 	 */
   1080 	error = sdhc_start_command(hp, cmd);
   1081 	if (error) {
   1082 		cmd->c_error = error;
   1083 		goto out;
   1084 	}
   1085 
   1086 	/*
   1087 	 * Wait until the command phase is done, or until the command
   1088 	 * is marked done for any other reason.
   1089 	 */
   1090 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1091 		cmd->c_error = ETIMEDOUT;
   1092 		goto out;
   1093 	}
   1094 
   1095 	/*
   1096 	 * The host controller removes bits [0:7] from the response
   1097 	 * data (CRC) and we pass the data up unchanged to the bus
   1098 	 * driver (without padding).
   1099 	 */
   1100 	mutex_enter(&hp->host_mtx);
   1101 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1102 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1103 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1104 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1105 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1106 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1107 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1108 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1109 				    (cmd->c_resp[1] << 24);
   1110 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1111 				    (cmd->c_resp[2] << 24);
   1112 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1113 				    (cmd->c_resp[3] << 24);
   1114 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1115 			}
   1116 		}
   1117 	}
   1118 	mutex_exit(&hp->host_mtx);
   1119 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1120 
   1121 	/*
   1122 	 * If the command has data to transfer in any direction,
   1123 	 * execute the transfer now.
   1124 	 */
   1125 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1126 		sdhc_transfer_data(hp, cmd);
   1127 
   1128 out:
   1129 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1130 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1131 		mutex_enter(&hp->host_mtx);
   1132 		/* Turn off the LED. */
   1133 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1134 		mutex_exit(&hp->host_mtx);
   1135 	}
   1136 	SET(cmd->c_flags, SCF_ITSDONE);
   1137 
   1138 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1139 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1140 	    cmd->c_flags, cmd->c_error));
   1141 }
   1142 
   1143 static int
   1144 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1145 {
   1146 	struct sdhc_softc * const sc = hp->sc;
   1147 	uint16_t blksize = 0;
   1148 	uint16_t blkcount = 0;
   1149 	uint16_t mode;
   1150 	uint16_t command;
   1151 	int error;
   1152 
   1153 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1154 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1155 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1156 
   1157 	/*
   1158 	 * The maximum block length for commands should be the minimum
   1159 	 * of the host buffer size and the card buffer size. (1.7.2)
   1160 	 */
   1161 
   1162 	/* Fragment the data into proper blocks. */
   1163 	if (cmd->c_datalen > 0) {
   1164 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1165 		blkcount = cmd->c_datalen / blksize;
   1166 		if (cmd->c_datalen % blksize > 0) {
   1167 			/* XXX: Split this command. (1.7.4) */
   1168 			aprint_error_dev(sc->sc_dev,
   1169 			    "data not a multiple of %u bytes\n", blksize);
   1170 			return EINVAL;
   1171 		}
   1172 	}
   1173 
   1174 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1175 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1176 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1177 		return EINVAL;
   1178 	}
   1179 
   1180 	/* Prepare transfer mode register value. (2.2.5) */
   1181 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1182 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1183 		mode |= SDHC_READ_MODE;
   1184 	if (blkcount > 1) {
   1185 		mode |= SDHC_MULTI_BLOCK_MODE;
   1186 		/* XXX only for memory commands? */
   1187 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1188 	}
   1189 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1190 		mode |= SDHC_DMA_ENABLE;
   1191 	}
   1192 
   1193 	/*
   1194 	 * Prepare command register value. (2.2.6)
   1195 	 */
   1196 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1197 
   1198 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1199 		command |= SDHC_CRC_CHECK_ENABLE;
   1200 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1201 		command |= SDHC_INDEX_CHECK_ENABLE;
   1202 	if (cmd->c_data != NULL)
   1203 		command |= SDHC_DATA_PRESENT_SELECT;
   1204 
   1205 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1206 		command |= SDHC_NO_RESPONSE;
   1207 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1208 		command |= SDHC_RESP_LEN_136;
   1209 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1210 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1211 	else
   1212 		command |= SDHC_RESP_LEN_48;
   1213 
   1214 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1215 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1216 	if (error)
   1217 		return error;
   1218 
   1219 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1220 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1221 
   1222 	blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1223 	    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1224 
   1225 	mutex_enter(&hp->host_mtx);
   1226 
   1227 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1228 		/* Alert the user not to remove the card. */
   1229 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1230 	}
   1231 
   1232 	/* Set DMA start address. */
   1233 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1234 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1235 
   1236 	/*
   1237 	 * Start a CPU data transfer.  Writing to the high order byte
   1238 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1239 	 */
   1240 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1241 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1242 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1243 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1244 	} else {
   1245 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1246 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1247 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1248 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1249 		HWRITE2(hp, SDHC_COMMAND, command);
   1250 	}
   1251 
   1252 	mutex_exit(&hp->host_mtx);
   1253 
   1254 	return 0;
   1255 }
   1256 
   1257 static void
   1258 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1259 {
   1260 	int error;
   1261 
   1262 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1263 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1264 
   1265 #ifdef SDHC_DEBUG
   1266 	/* XXX I forgot why I wanted to know when this happens :-( */
   1267 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1268 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1269 		aprint_error_dev(hp->sc->sc_dev,
   1270 		    "CMD52/53 error response flags %#x\n",
   1271 		    MMC_R1(cmd->c_resp) & 0xff00);
   1272 	}
   1273 #endif
   1274 
   1275 	if (cmd->c_dmamap != NULL)
   1276 		error = sdhc_transfer_data_dma(hp, cmd);
   1277 	else
   1278 		error = sdhc_transfer_data_pio(hp, cmd);
   1279 	if (error)
   1280 		cmd->c_error = error;
   1281 	SET(cmd->c_flags, SCF_ITSDONE);
   1282 
   1283 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1284 	    HDEVNAME(hp), cmd->c_error));
   1285 }
   1286 
   1287 static int
   1288 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1289 {
   1290 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1291 	bus_addr_t posaddr;
   1292 	bus_addr_t segaddr;
   1293 	bus_size_t seglen;
   1294 	u_int seg = 0;
   1295 	int error = 0;
   1296 	int status;
   1297 
   1298 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1299 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1300 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1301 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1302 
   1303 	for (;;) {
   1304 		status = sdhc_wait_intr(hp,
   1305 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1306 		    SDHC_DMA_TIMEOUT);
   1307 
   1308 		if (status & SDHC_TRANSFER_COMPLETE) {
   1309 			break;
   1310 		}
   1311 		if (!status) {
   1312 			error = ETIMEDOUT;
   1313 			break;
   1314 		}
   1315 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1316 			continue;
   1317 		}
   1318 
   1319 		/* DMA Interrupt (boundary crossing) */
   1320 
   1321 		segaddr = dm_segs[seg].ds_addr;
   1322 		seglen = dm_segs[seg].ds_len;
   1323 		mutex_enter(&hp->host_mtx);
   1324 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1325 		mutex_exit(&hp->host_mtx);
   1326 
   1327 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1328 			continue;
   1329 		}
   1330 		mutex_enter(&hp->host_mtx);
   1331 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1332 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1333 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1334 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1335 		mutex_exit(&hp->host_mtx);
   1336 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1337 	}
   1338 
   1339 	return error;
   1340 }
   1341 
   1342 static int
   1343 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1344 {
   1345 	uint8_t *data = cmd->c_data;
   1346 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1347 	u_int len, datalen;
   1348 	u_int imask;
   1349 	u_int pmask;
   1350 	int error = 0;
   1351 
   1352 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1353 		imask = SDHC_BUFFER_READ_READY;
   1354 		pmask = SDHC_BUFFER_READ_ENABLE;
   1355 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1356 			pio_func = esdhc_read_data_pio;
   1357 		} else {
   1358 			pio_func = sdhc_read_data_pio;
   1359 		}
   1360 	} else {
   1361 		imask = SDHC_BUFFER_WRITE_READY;
   1362 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1363 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1364 			pio_func = esdhc_write_data_pio;
   1365 		} else {
   1366 			pio_func = sdhc_write_data_pio;
   1367 		}
   1368 	}
   1369 	datalen = cmd->c_datalen;
   1370 
   1371 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1372 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1373 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1374 
   1375 	while (datalen > 0) {
   1376 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1377 			mutex_enter(&hp->intr_mtx);
   1378 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1379 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1380 			} else {
   1381 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1382 			}
   1383 			mutex_exit(&hp->intr_mtx);
   1384 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1385 				error = ETIMEDOUT;
   1386 				break;
   1387 			}
   1388 
   1389 			error = sdhc_wait_state(hp, pmask, pmask);
   1390 			if (error)
   1391 				break;
   1392 		}
   1393 
   1394 		len = MIN(datalen, cmd->c_blklen);
   1395 		(*pio_func)(hp, data, len);
   1396 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1397 		    HDEVNAME(hp), len, data));
   1398 
   1399 		data += len;
   1400 		datalen -= len;
   1401 	}
   1402 
   1403 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1404 	    SDHC_TRANSFER_TIMEOUT))
   1405 		error = ETIMEDOUT;
   1406 
   1407 	return error;
   1408 }
   1409 
   1410 static void
   1411 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1412 {
   1413 
   1414 	if (((__uintptr_t)data & 3) == 0) {
   1415 		while (datalen > 3) {
   1416 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1417 			data += 4;
   1418 			datalen -= 4;
   1419 		}
   1420 		if (datalen > 1) {
   1421 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1422 			data += 2;
   1423 			datalen -= 2;
   1424 		}
   1425 		if (datalen > 0) {
   1426 			*data = HREAD1(hp, SDHC_DATA);
   1427 			data += 1;
   1428 			datalen -= 1;
   1429 		}
   1430 	} else if (((__uintptr_t)data & 1) == 0) {
   1431 		while (datalen > 1) {
   1432 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1433 			data += 2;
   1434 			datalen -= 2;
   1435 		}
   1436 		if (datalen > 0) {
   1437 			*data = HREAD1(hp, SDHC_DATA);
   1438 			data += 1;
   1439 			datalen -= 1;
   1440 		}
   1441 	} else {
   1442 		while (datalen > 0) {
   1443 			*data = HREAD1(hp, SDHC_DATA);
   1444 			data += 1;
   1445 			datalen -= 1;
   1446 		}
   1447 	}
   1448 }
   1449 
   1450 static void
   1451 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1452 {
   1453 
   1454 	if (((__uintptr_t)data & 3) == 0) {
   1455 		while (datalen > 3) {
   1456 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1457 			data += 4;
   1458 			datalen -= 4;
   1459 		}
   1460 		if (datalen > 1) {
   1461 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1462 			data += 2;
   1463 			datalen -= 2;
   1464 		}
   1465 		if (datalen > 0) {
   1466 			HWRITE1(hp, SDHC_DATA, *data);
   1467 			data += 1;
   1468 			datalen -= 1;
   1469 		}
   1470 	} else if (((__uintptr_t)data & 1) == 0) {
   1471 		while (datalen > 1) {
   1472 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1473 			data += 2;
   1474 			datalen -= 2;
   1475 		}
   1476 		if (datalen > 0) {
   1477 			HWRITE1(hp, SDHC_DATA, *data);
   1478 			data += 1;
   1479 			datalen -= 1;
   1480 		}
   1481 	} else {
   1482 		while (datalen > 0) {
   1483 			HWRITE1(hp, SDHC_DATA, *data);
   1484 			data += 1;
   1485 			datalen -= 1;
   1486 		}
   1487 	}
   1488 }
   1489 
   1490 static void
   1491 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1492 {
   1493 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1494 	uint32_t v;
   1495 
   1496 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1497 	size_t count = 0;
   1498 
   1499 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1500 		if (count == 0) {
   1501 			/*
   1502 			 * If we've drained "watermark" words, we need to wait
   1503 			 * a little bit so the read FIFO can refill.
   1504 			 */
   1505 			sdmmc_delay(10);
   1506 			count = watermark;
   1507 		}
   1508 		v = HREAD4(hp, SDHC_DATA);
   1509 		v = le32toh(v);
   1510 		*(uint32_t *)data = v;
   1511 		data += 4;
   1512 		datalen -= 4;
   1513 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1514 		count--;
   1515 	}
   1516 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1517 		if (count == 0) {
   1518 			sdmmc_delay(10);
   1519 		}
   1520 		v = HREAD4(hp, SDHC_DATA);
   1521 		v = le32toh(v);
   1522 		do {
   1523 			*data++ = v;
   1524 			v >>= 8;
   1525 		} while (--datalen > 0);
   1526 	}
   1527 }
   1528 
   1529 static void
   1530 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1531 {
   1532 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1533 	uint32_t v;
   1534 
   1535 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1536 	size_t count = watermark;
   1537 
   1538 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1539 		if (count == 0) {
   1540 			sdmmc_delay(10);
   1541 			count = watermark;
   1542 		}
   1543 		v = *(uint32_t *)data;
   1544 		v = htole32(v);
   1545 		HWRITE4(hp, SDHC_DATA, v);
   1546 		data += 4;
   1547 		datalen -= 4;
   1548 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1549 		count--;
   1550 	}
   1551 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1552 		if (count == 0) {
   1553 			sdmmc_delay(10);
   1554 		}
   1555 		v = *(uint32_t *)data;
   1556 		v = htole32(v);
   1557 		HWRITE4(hp, SDHC_DATA, v);
   1558 	}
   1559 }
   1560 
   1561 /* Prepare for another command. */
   1562 static int
   1563 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1564 {
   1565 	int timo;
   1566 
   1567 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1568 
   1569 	/* Request the reset.  */
   1570 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1571 
   1572 	/*
   1573 	 * If necessary, wait for the controller to set the bits to
   1574 	 * acknowledge the reset.
   1575 	 */
   1576 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1577 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1578 		for (timo = 10000; timo > 0; timo--) {
   1579 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1580 				break;
   1581 			/* Short delay because I worry we may miss it...  */
   1582 			sdmmc_delay(1);
   1583 		}
   1584 		if (timo == 0)
   1585 			return ETIMEDOUT;
   1586 	}
   1587 
   1588 	/*
   1589 	 * Wait for the controller to clear the bits to indicate that
   1590 	 * the reset has completed.
   1591 	 */
   1592 	for (timo = 10; timo > 0; timo--) {
   1593 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1594 			break;
   1595 		sdmmc_delay(10000);
   1596 	}
   1597 	if (timo == 0) {
   1598 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1599 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1600 		return ETIMEDOUT;
   1601 	}
   1602 
   1603 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1604 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1605 	}
   1606 
   1607 	return 0;
   1608 }
   1609 
   1610 static int
   1611 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1612 {
   1613 	int status;
   1614 
   1615 	mask |= SDHC_ERROR_INTERRUPT;
   1616 
   1617 	mutex_enter(&hp->intr_mtx);
   1618 	status = hp->intr_status & mask;
   1619 	while (status == 0) {
   1620 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1621 		    == EWOULDBLOCK) {
   1622 			status |= SDHC_ERROR_INTERRUPT;
   1623 			break;
   1624 		}
   1625 		status = hp->intr_status & mask;
   1626 	}
   1627 	hp->intr_status &= ~status;
   1628 
   1629 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1630 	    hp->intr_error_status));
   1631 
   1632 	/* Command timeout has higher priority than command complete. */
   1633 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1634 		hp->intr_error_status = 0;
   1635 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1636 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1637 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1638 		}
   1639 		status = 0;
   1640 	}
   1641 	mutex_exit(&hp->intr_mtx);
   1642 
   1643 	return status;
   1644 }
   1645 
   1646 /*
   1647  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1648  */
   1649 int
   1650 sdhc_intr(void *arg)
   1651 {
   1652 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1653 	struct sdhc_host *hp;
   1654 	int done = 0;
   1655 	uint16_t status;
   1656 	uint16_t error;
   1657 
   1658 	/* We got an interrupt, but we don't know from which slot. */
   1659 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1660 		hp = sc->sc_host[host];
   1661 		if (hp == NULL)
   1662 			continue;
   1663 
   1664 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1665 			/* Find out which interrupts are pending. */
   1666 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1667 			status = xstatus;
   1668 			error = xstatus >> 16;
   1669 			if (error)
   1670 				xstatus |= SDHC_ERROR_INTERRUPT;
   1671 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1672 				continue; /* no interrupt for us */
   1673 			/* Acknowledge the interrupts we are about to handle. */
   1674 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1675 		} else {
   1676 			/* Find out which interrupts are pending. */
   1677 			error = 0;
   1678 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1679 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1680 				continue; /* no interrupt for us */
   1681 			/* Acknowledge the interrupts we are about to handle. */
   1682 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1683 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1684 				/* Acknowledge error interrupts. */
   1685 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1686 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1687 			}
   1688 		}
   1689 
   1690 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1691 		    status, error));
   1692 
   1693 		mutex_enter(&hp->intr_mtx);
   1694 
   1695 		/* Claim this interrupt. */
   1696 		done = 1;
   1697 
   1698 		/*
   1699 		 * Service error interrupts.
   1700 		 */
   1701 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1702 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1703 			hp->intr_error_status |= error;
   1704 			hp->intr_status |= status;
   1705 			cv_broadcast(&hp->intr_cv);
   1706 		}
   1707 
   1708 		/*
   1709 		 * Wake up the sdmmc event thread to scan for cards.
   1710 		 */
   1711 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1712 			sdmmc_needs_discover(hp->sdmmc);
   1713 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1714 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1715 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1716 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1717 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1718 			}
   1719 		}
   1720 
   1721 		/*
   1722 		 * Wake up the blocking process to service command
   1723 		 * related interrupt(s).
   1724 		 */
   1725 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1726 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1727 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1728 			hp->intr_status |= status;
   1729 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1730 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1731 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1732 			}
   1733 			cv_broadcast(&hp->intr_cv);
   1734 		}
   1735 
   1736 		/*
   1737 		 * Service SD card interrupts.
   1738 		 */
   1739 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1740 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1741 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1742 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1743 			sdmmc_card_intr(hp->sdmmc);
   1744 		}
   1745 		mutex_exit(&hp->intr_mtx);
   1746 	}
   1747 
   1748 	return done;
   1749 }
   1750 
   1751 #ifdef SDHC_DEBUG
   1752 void
   1753 sdhc_dump_regs(struct sdhc_host *hp)
   1754 {
   1755 
   1756 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1757 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1758 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1759 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1760 		    HREAD1(hp, SDHC_POWER_CTL));
   1761 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1762 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1763 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1764 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1765 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1766 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1767 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1768 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1769 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1770 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1771 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1772 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1773 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1774 	    HREAD4(hp, SDHC_CAPABILITIES));
   1775 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1776 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1777 }
   1778 #endif
   1779