sdhc.c revision 1.44.2.8 1 /* $NetBSD: sdhc.c,v 1.44.2.8 2015/04/19 04:31:40 msaitoh Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.44.2.8 2015/04/19 04:31:40 msaitoh Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_size_t ios; /* host register space size */
66 bus_dma_tag_t dmat; /* host DMA tag */
67
68 device_t sdmmc; /* generic SD/MMC device */
69
70 struct kmutex host_mtx;
71
72 u_int clkbase; /* base clock frequency in KHz */
73 int maxblklen; /* maximum block length */
74 uint32_t ocr; /* OCR value from capabilities */
75
76 uint8_t regs[14]; /* host controller state */
77
78 uint16_t intr_status; /* soft interrupt status */
79 uint16_t intr_error_status; /* soft error status */
80 struct kmutex intr_mtx;
81 struct kcondvar intr_cv;
82
83 int specver; /* spec. version */
84
85 uint32_t flags; /* flags for this host */
86 #define SHF_USE_DMA 0x0001
87 #define SHF_USE_4BIT_MODE 0x0002
88 #define SHF_USE_8BIT_MODE 0x0004
89 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
90 };
91
92 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
93
94 static uint8_t
95 hread1(struct sdhc_host *hp, bus_size_t reg)
96 {
97
98 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
99 return bus_space_read_1(hp->iot, hp->ioh, reg);
100 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
101 }
102
103 static uint16_t
104 hread2(struct sdhc_host *hp, bus_size_t reg)
105 {
106
107 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
108 return bus_space_read_2(hp->iot, hp->ioh, reg);
109 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
110 }
111
112 #define HREAD1(hp, reg) hread1(hp, reg)
113 #define HREAD2(hp, reg) hread2(hp, reg)
114 #define HREAD4(hp, reg) \
115 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
116
117
118 static void
119 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
120 {
121
122 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
123 bus_space_write_1(hp->iot, hp->ioh, o, val);
124 } else {
125 const size_t shift = 8 * (o & 3);
126 o &= -4;
127 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
128 tmp = (val << shift) | (tmp & ~(0xff << shift));
129 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
130 }
131 }
132
133 static void
134 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
135 {
136
137 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
138 bus_space_write_2(hp->iot, hp->ioh, o, val);
139 } else {
140 const size_t shift = 8 * (o & 2);
141 o &= -4;
142 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
143 tmp = (val << shift) | (tmp & ~(0xffff << shift));
144 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
145 }
146 }
147
148 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
149 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
150 #define HWRITE4(hp, reg, val) \
151 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
152
153 #define HCLR1(hp, reg, bits) \
154 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
155 #define HCLR2(hp, reg, bits) \
156 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
157 #define HCLR4(hp, reg, bits) \
158 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
159 #define HSET1(hp, reg, bits) \
160 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
161 #define HSET2(hp, reg, bits) \
162 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
163 #define HSET4(hp, reg, bits) \
164 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
165
166 static int sdhc_host_reset(sdmmc_chipset_handle_t);
167 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
168 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
169 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
170 static int sdhc_card_detect(sdmmc_chipset_handle_t);
171 static int sdhc_write_protect(sdmmc_chipset_handle_t);
172 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
173 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
175 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
177 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
178 static void sdhc_exec_command(sdmmc_chipset_handle_t,
179 struct sdmmc_command *);
180 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
181 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
182 static int sdhc_soft_reset(struct sdhc_host *, int);
183 static int sdhc_wait_intr(struct sdhc_host *, int, int);
184 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
186 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
187 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
190 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
191
192
193 static struct sdmmc_chip_functions sdhc_functions = {
194 /* host controller reset */
195 sdhc_host_reset,
196
197 /* host controller capabilities */
198 sdhc_host_ocr,
199 sdhc_host_maxblklen,
200
201 /* card detection */
202 sdhc_card_detect,
203
204 /* write protect */
205 sdhc_write_protect,
206
207 /* bus power, clock frequency and width */
208 sdhc_bus_power,
209 sdhc_bus_clock,
210 sdhc_bus_width,
211 sdhc_bus_rod,
212
213 /* command execution */
214 sdhc_exec_command,
215
216 /* card interrupt */
217 sdhc_card_enable_intr,
218 sdhc_card_intr_ack
219 };
220
221 static int
222 sdhc_cfprint(void *aux, const char *pnp)
223 {
224 const struct sdmmcbus_attach_args * const saa = aux;
225 const struct sdhc_host * const hp = saa->saa_sch;
226
227 if (pnp) {
228 aprint_normal("sdmmc at %s", pnp);
229 }
230 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
231 if (hp->sc->sc_host[host] == hp) {
232 aprint_normal(" slot %zu", host);
233 }
234 }
235
236 return UNCONF;
237 }
238
239 /*
240 * Called by attachment driver. For each SD card slot there is one SD
241 * host controller standard register set. (1.3)
242 */
243 int
244 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
245 bus_space_handle_t ioh, bus_size_t iosize)
246 {
247 struct sdmmcbus_attach_args saa;
248 struct sdhc_host *hp;
249 uint32_t caps;
250 uint16_t sdhcver;
251
252 /* Allocate one more host structure. */
253 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
254 if (hp == NULL) {
255 aprint_error_dev(sc->sc_dev,
256 "couldn't alloc memory (sdhc host)\n");
257 goto err1;
258 }
259 sc->sc_host[sc->sc_nhosts++] = hp;
260
261 /* Fill in the new host structure. */
262 hp->sc = sc;
263 hp->iot = iot;
264 hp->ioh = ioh;
265 hp->ios = iosize;
266 hp->dmat = sc->sc_dmat;
267
268 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
269 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
270 cv_init(&hp->intr_cv, "sdhcintr");
271
272 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
273 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
274 } else {
275 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
276 }
277 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
278 hp->specver = SDHC_SPEC_VERSION(sdhcver);
279 switch (SDHC_SPEC_VERSION(sdhcver)) {
280 case SDHC_SPEC_VERS_100:
281 aprint_normal("1.0");
282 break;
283
284 case SDHC_SPEC_VERS_200:
285 aprint_normal("2.0");
286 break;
287
288 case SDHC_SPEC_VERS_300:
289 aprint_normal("3.0");
290 break;
291
292 default:
293 aprint_normal("unknown version(0x%x)",
294 SDHC_SPEC_VERSION(sdhcver));
295 break;
296 }
297 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
298
299 /*
300 * Reset the host controller and enable interrupts.
301 */
302 (void)sdhc_host_reset(hp);
303
304 /* Determine host capabilities. */
305 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
306 caps = sc->sc_caps;
307 } else {
308 mutex_enter(&hp->host_mtx);
309 caps = HREAD4(hp, SDHC_CAPABILITIES);
310 mutex_exit(&hp->host_mtx);
311 }
312
313 /*
314 * Use DMA if the host system and the controller support it.
315 * Suports integrated or external DMA egine, with or without
316 * SDHC_DMA_ENABLE in the command.
317 */
318 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
319 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
320 ISSET(caps, SDHC_DMA_SUPPORT)))) {
321 SET(hp->flags, SHF_USE_DMA);
322 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
323 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
324 SET(hp->flags, SHF_MODE_DMAEN);
325
326 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
327 }
328
329 /*
330 * Determine the base clock frequency. (2.2.24)
331 */
332 if (hp->specver == SDHC_SPEC_VERS_300) {
333 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
334 } else {
335 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
336 }
337 if (hp->clkbase == 0) {
338 if (sc->sc_clkbase == 0) {
339 /* The attachment driver must tell us. */
340 aprint_error_dev(sc->sc_dev,
341 "unknown base clock frequency\n");
342 goto err;
343 }
344 hp->clkbase = sc->sc_clkbase;
345 }
346 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
347 /* SDHC 1.0 supports only 10-63 MHz. */
348 aprint_error_dev(sc->sc_dev,
349 "base clock frequency out of range: %u MHz\n",
350 hp->clkbase / 1000);
351 goto err;
352 }
353 DPRINTF(1,("%s: base clock frequency %u MHz\n",
354 device_xname(sc->sc_dev), hp->clkbase / 1000));
355
356 /*
357 * XXX Set the data timeout counter value according to
358 * capabilities. (2.2.15)
359 */
360 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
361 #if 1
362 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
363 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
364 #endif
365
366 /*
367 * Determine SD bus voltage levels supported by the controller.
368 */
369 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
370 (hp->specver < SDHC_SPEC_VERS_300 ||
371 ISSET(caps, SDHC_EMBEDDED_SLOT))) {
372 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
373 }
374 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
375 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
376 }
377 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
378 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
379 }
380
381 /*
382 * Determine the maximum block length supported by the host
383 * controller. (2.2.24)
384 */
385 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
386 case SDHC_MAX_BLK_LEN_512:
387 hp->maxblklen = 512;
388 break;
389
390 case SDHC_MAX_BLK_LEN_1024:
391 hp->maxblklen = 1024;
392 break;
393
394 case SDHC_MAX_BLK_LEN_2048:
395 hp->maxblklen = 2048;
396 break;
397
398 case SDHC_MAX_BLK_LEN_4096:
399 hp->maxblklen = 4096;
400 break;
401
402 default:
403 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
404 goto err;
405 }
406 DPRINTF(1, ("%s: max block length %u byte%s\n",
407 device_xname(sc->sc_dev), hp->maxblklen,
408 hp->maxblklen > 1 ? "s" : ""));
409
410 /*
411 * Attach the generic SD/MMC bus driver. (The bus driver must
412 * not invoke any chipset functions before it is attached.)
413 */
414 memset(&saa, 0, sizeof(saa));
415 saa.saa_busname = "sdmmc";
416 saa.saa_sct = &sdhc_functions;
417 saa.saa_sch = hp;
418 saa.saa_dmat = hp->dmat;
419 saa.saa_clkmax = hp->clkbase;
420 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
421 saa.saa_clkmin = hp->clkbase / 256 / 2046;
422 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
423 saa.saa_clkmin = hp->clkbase / 256 / 16;
424 else if (hp->sc->sc_clkmsk != 0)
425 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
426 (ffs(hp->sc->sc_clkmsk) - 1));
427 else if (hp->specver == SDHC_SPEC_VERS_300)
428 saa.saa_clkmin = hp->clkbase / 0x3ff;
429 else
430 saa.saa_clkmin = hp->clkbase / 256;
431 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
432 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
433 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
434 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
435 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
436 if (ISSET(hp->flags, SHF_USE_DMA)) {
437 saa.saa_caps |= SMC_CAPS_DMA;
438 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
439 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
440 }
441 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
442 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
443 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
444
445 return 0;
446
447 err:
448 cv_destroy(&hp->intr_cv);
449 mutex_destroy(&hp->intr_mtx);
450 mutex_destroy(&hp->host_mtx);
451 free(hp, M_DEVBUF);
452 sc->sc_host[--sc->sc_nhosts] = NULL;
453 err1:
454 return 1;
455 }
456
457 int
458 sdhc_detach(struct sdhc_softc *sc, int flags)
459 {
460 struct sdhc_host *hp;
461 int rv = 0;
462
463 for (size_t n = 0; n < sc->sc_nhosts; n++) {
464 hp = sc->sc_host[n];
465 if (hp == NULL)
466 continue;
467 if (hp->sdmmc != NULL) {
468 rv = config_detach(hp->sdmmc, flags);
469 if (rv)
470 break;
471 hp->sdmmc = NULL;
472 }
473 /* disable interrupts */
474 if ((flags & DETACH_FORCE) == 0) {
475 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
476 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
477 } else {
478 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
479 }
480 sdhc_soft_reset(hp, SDHC_RESET_ALL);
481 }
482 cv_destroy(&hp->intr_cv);
483 mutex_destroy(&hp->intr_mtx);
484 mutex_destroy(&hp->host_mtx);
485 if (hp->ios > 0) {
486 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
487 hp->ios = 0;
488 }
489 free(hp, M_DEVBUF);
490 sc->sc_host[n] = NULL;
491 }
492
493 return rv;
494 }
495
496 bool
497 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
498 {
499 struct sdhc_softc *sc = device_private(dev);
500 struct sdhc_host *hp;
501 size_t i;
502
503 /* XXX poll for command completion or suspend command
504 * in progress */
505
506 /* Save the host controller state. */
507 for (size_t n = 0; n < sc->sc_nhosts; n++) {
508 hp = sc->sc_host[n];
509 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
510 for (i = 0; i < sizeof hp->regs; i += 4) {
511 uint32_t v = HREAD4(hp, i);
512 hp->regs[i + 0] = (v >> 0);
513 hp->regs[i + 1] = (v >> 8);
514 if (i + 3 < sizeof hp->regs) {
515 hp->regs[i + 2] = (v >> 16);
516 hp->regs[i + 3] = (v >> 24);
517 }
518 }
519 } else {
520 for (i = 0; i < sizeof hp->regs; i++) {
521 hp->regs[i] = HREAD1(hp, i);
522 }
523 }
524 }
525 return true;
526 }
527
528 bool
529 sdhc_resume(device_t dev, const pmf_qual_t *qual)
530 {
531 struct sdhc_softc *sc = device_private(dev);
532 struct sdhc_host *hp;
533 size_t i;
534
535 /* Restore the host controller state. */
536 for (size_t n = 0; n < sc->sc_nhosts; n++) {
537 hp = sc->sc_host[n];
538 (void)sdhc_host_reset(hp);
539 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
540 for (i = 0; i < sizeof hp->regs; i += 4) {
541 if (i + 3 < sizeof hp->regs) {
542 HWRITE4(hp, i,
543 (hp->regs[i + 0] << 0)
544 | (hp->regs[i + 1] << 8)
545 | (hp->regs[i + 2] << 16)
546 | (hp->regs[i + 3] << 24));
547 } else {
548 HWRITE4(hp, i,
549 (hp->regs[i + 0] << 0)
550 | (hp->regs[i + 1] << 8));
551 }
552 }
553 } else {
554 for (i = 0; i < sizeof hp->regs; i++) {
555 HWRITE1(hp, i, hp->regs[i]);
556 }
557 }
558 }
559 return true;
560 }
561
562 bool
563 sdhc_shutdown(device_t dev, int flags)
564 {
565 struct sdhc_softc *sc = device_private(dev);
566 struct sdhc_host *hp;
567
568 /* XXX chip locks up if we don't disable it before reboot. */
569 for (size_t i = 0; i < sc->sc_nhosts; i++) {
570 hp = sc->sc_host[i];
571 (void)sdhc_host_reset(hp);
572 }
573 return true;
574 }
575
576 /*
577 * Reset the host controller. Called during initialization, when
578 * cards are removed, upon resume, and during error recovery.
579 */
580 static int
581 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
582 {
583 struct sdhc_host *hp = (struct sdhc_host *)sch;
584 uint32_t sdhcimask;
585 int error;
586
587 /* Don't lock. */
588
589 /* Disable all interrupts. */
590 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
591 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
592 } else {
593 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
594 }
595
596 /*
597 * Reset the entire host controller and wait up to 100ms for
598 * the controller to clear the reset bit.
599 */
600 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
601 if (error)
602 goto out;
603
604 /* Set data timeout counter value to max for now. */
605 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
606 #if 1
607 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
608 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
609 #endif
610
611 /* Enable interrupts. */
612 mutex_enter(&hp->intr_mtx);
613 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
614 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
615 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
616 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
617 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
618 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
619 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
620 sdhcimask ^=
621 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
622 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
623 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
624 } else {
625 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
626 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
627 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
628 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
629 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
630 }
631 mutex_exit(&hp->intr_mtx);
632
633 out:
634 return error;
635 }
636
637 static int
638 sdhc_host_reset(sdmmc_chipset_handle_t sch)
639 {
640 struct sdhc_host *hp = (struct sdhc_host *)sch;
641 int error;
642
643 mutex_enter(&hp->host_mtx);
644 error = sdhc_host_reset1(sch);
645 mutex_exit(&hp->host_mtx);
646
647 return error;
648 }
649
650 static uint32_t
651 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
652 {
653 struct sdhc_host *hp = (struct sdhc_host *)sch;
654
655 return hp->ocr;
656 }
657
658 static int
659 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
660 {
661 struct sdhc_host *hp = (struct sdhc_host *)sch;
662
663 return hp->maxblklen;
664 }
665
666 /*
667 * Return non-zero if the card is currently inserted.
668 */
669 static int
670 sdhc_card_detect(sdmmc_chipset_handle_t sch)
671 {
672 struct sdhc_host *hp = (struct sdhc_host *)sch;
673 int r;
674
675 if (hp->sc->sc_vendor_card_detect)
676 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
677
678 mutex_enter(&hp->host_mtx);
679 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
680 mutex_exit(&hp->host_mtx);
681
682 return r ? 1 : 0;
683 }
684
685 /*
686 * Return non-zero if the card is currently write-protected.
687 */
688 static int
689 sdhc_write_protect(sdmmc_chipset_handle_t sch)
690 {
691 struct sdhc_host *hp = (struct sdhc_host *)sch;
692 int r;
693
694 if (hp->sc->sc_vendor_write_protect)
695 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
696
697 mutex_enter(&hp->host_mtx);
698 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
699 mutex_exit(&hp->host_mtx);
700
701 return r ? 0 : 1;
702 }
703
704 /*
705 * Set or change SD bus voltage and enable or disable SD bus power.
706 * Return zero on success.
707 */
708 static int
709 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
710 {
711 struct sdhc_host *hp = (struct sdhc_host *)sch;
712 uint8_t vdd;
713 int error = 0;
714 const uint32_t pcmask =
715 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
716
717 mutex_enter(&hp->host_mtx);
718
719 /*
720 * Disable bus power before voltage change.
721 */
722 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
723 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
724 HWRITE1(hp, SDHC_POWER_CTL, 0);
725
726 /* If power is disabled, reset the host and return now. */
727 if (ocr == 0) {
728 (void)sdhc_host_reset1(hp);
729 goto out;
730 }
731
732 /*
733 * Select the lowest voltage according to capabilities.
734 */
735 ocr &= hp->ocr;
736 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
737 vdd = SDHC_VOLTAGE_1_8V;
738 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
739 vdd = SDHC_VOLTAGE_3_0V;
740 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
741 vdd = SDHC_VOLTAGE_3_3V;
742 } else {
743 /* Unsupported voltage level requested. */
744 error = EINVAL;
745 goto out;
746 }
747
748 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
749 /*
750 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
751 * voltage ramp until power rises.
752 */
753 HWRITE1(hp, SDHC_POWER_CTL,
754 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
755 sdmmc_delay(1);
756 HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
757 sdmmc_delay(1);
758 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
759 sdmmc_delay(10000);
760
761 /*
762 * The host system may not power the bus due to battery low,
763 * etc. In that case, the host controller should clear the
764 * bus power bit.
765 */
766 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
767 error = ENXIO;
768 goto out;
769 }
770 }
771
772 out:
773 mutex_exit(&hp->host_mtx);
774
775 return error;
776 }
777
778 /*
779 * Return the smallest possible base clock frequency divisor value
780 * for the CLOCK_CTL register to produce `freq' (KHz).
781 */
782 static bool
783 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
784 {
785 u_int div;
786
787 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
788 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
789 if ((hp->clkbase / div) <= freq) {
790 *divp = SDHC_SDCLK_CGM
791 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
792 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
793 //freq = hp->clkbase / div;
794 return true;
795 }
796 }
797 /* No divisor found. */
798 return false;
799 }
800 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
801 u_int dvs = (hp->clkbase + freq - 1) / freq;
802 u_int roundup = dvs & 1;
803 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
804 if (dvs + roundup <= 16) {
805 dvs += roundup - 1;
806 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
807 | (dvs << SDHC_SDCLK_DVS_SHIFT);
808 DPRINTF(2,
809 ("%s: divisor for freq %u is %u * %u\n",
810 HDEVNAME(hp), freq, div * 2, dvs + 1));
811 //freq = hp->clkbase / (div * 2) * (dvs + 1);
812 return true;
813 }
814 /*
815 * If we drop bits, we need to round up the divisor.
816 */
817 roundup |= dvs & 1;
818 }
819 /* No divisor found. */
820 return false;
821 }
822 if (hp->sc->sc_clkmsk != 0) {
823 div = howmany(hp->clkbase, freq);
824 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
825 return false;
826 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
827 //freq = hp->clkbase / div;
828 return true;
829 }
830 if (hp->specver == SDHC_SPEC_VERS_300) {
831 div = howmany(hp->clkbase, freq);
832 div = div > 1 ? howmany(div, 2) : 0;
833 if (div > 0x3ff)
834 return false;
835 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
836 << SDHC_SDCLK_XDIV_SHIFT) |
837 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
838 << SDHC_SDCLK_DIV_SHIFT);
839 //freq = hp->clkbase / div;
840 return true;
841 } else {
842 for (div = 1; div <= 256; div *= 2) {
843 if ((hp->clkbase / div) <= freq) {
844 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
845 //freq = hp->clkbase / div;
846 return true;
847 }
848 }
849 /* No divisor found. */
850 return false;
851 }
852 /* No divisor found. */
853 return false;
854 }
855
856 /*
857 * Set or change SDCLK frequency or disable the SD clock.
858 * Return zero on success.
859 */
860 static int
861 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
862 {
863 struct sdhc_host *hp = (struct sdhc_host *)sch;
864 u_int div;
865 u_int timo;
866 int16_t reg;
867 int error = 0;
868 #ifdef DIAGNOSTIC
869 bool present;
870
871 mutex_enter(&hp->host_mtx);
872 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
873 mutex_exit(&hp->host_mtx);
874
875 /* Must not stop the clock if commands are in progress. */
876 if (present && sdhc_card_detect(hp)) {
877 aprint_normal_dev(hp->sc->sc_dev,
878 "%s: command in progress\n", __func__);
879 }
880 #endif
881
882 mutex_enter(&hp->host_mtx);
883
884 if (hp->sc->sc_vendor_bus_clock) {
885 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
886 if (error != 0)
887 goto out;
888 }
889
890 /*
891 * Stop SD clock before changing the frequency.
892 */
893 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
894 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
895 if (freq == SDMMC_SDCLK_OFF) {
896 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
897 goto out;
898 }
899 } else {
900 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
901 if (freq == SDMMC_SDCLK_OFF)
902 goto out;
903 }
904
905 /*
906 * Set the minimum base clock frequency divisor.
907 */
908 if (!sdhc_clock_divisor(hp, freq, &div)) {
909 /* Invalid base clock frequency or `freq' value. */
910 error = EINVAL;
911 goto out;
912 }
913 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
914 HWRITE4(hp, SDHC_CLOCK_CTL,
915 div | (SDHC_TIMEOUT_MAX << 16));
916 } else {
917 reg = HREAD2(hp, SDHC_CLOCK_CTL);
918 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
919 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
920 }
921
922 /*
923 * Start internal clock. Wait 10ms for stabilization.
924 */
925 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
926 sdmmc_delay(10000);
927 HSET4(hp, SDHC_CLOCK_CTL,
928 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
929 } else {
930 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
931 for (timo = 1000; timo > 0; timo--) {
932 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
933 SDHC_INTCLK_STABLE))
934 break;
935 sdmmc_delay(10);
936 }
937 if (timo == 0) {
938 error = ETIMEDOUT;
939 goto out;
940 }
941 }
942
943 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
944 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
945 /*
946 * Sending 80 clocks at 400kHz takes 200us.
947 * So delay for that time + slop and then
948 * check a few times for completion.
949 */
950 sdmmc_delay(210);
951 for (timo = 10; timo > 0; timo--) {
952 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
953 SDHC_INIT_ACTIVE))
954 break;
955 sdmmc_delay(10);
956 }
957 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
958
959 /*
960 * Enable SD clock.
961 */
962 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
963 } else {
964 /*
965 * Enable SD clock.
966 */
967 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
968
969 if (freq > 25000 &&
970 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
971 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
972 else
973 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
974 }
975
976 out:
977 mutex_exit(&hp->host_mtx);
978
979 return error;
980 }
981
982 static int
983 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
984 {
985 struct sdhc_host *hp = (struct sdhc_host *)sch;
986 int reg;
987
988 switch (width) {
989 case 1:
990 case 4:
991 break;
992
993 case 8:
994 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
995 break;
996 /* FALLTHROUGH */
997 default:
998 DPRINTF(0,("%s: unsupported bus width (%d)\n",
999 HDEVNAME(hp), width));
1000 return 1;
1001 }
1002
1003 mutex_enter(&hp->host_mtx);
1004 reg = HREAD1(hp, SDHC_HOST_CTL);
1005 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1006 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1007 if (width == 4)
1008 reg |= SDHC_4BIT_MODE;
1009 else if (width == 8)
1010 reg |= SDHC_ESDHC_8BIT_MODE;
1011 } else {
1012 reg &= ~SDHC_4BIT_MODE;
1013 if (width == 4)
1014 reg |= SDHC_4BIT_MODE;
1015 }
1016 HWRITE1(hp, SDHC_HOST_CTL, reg);
1017 mutex_exit(&hp->host_mtx);
1018
1019 return 0;
1020 }
1021
1022 static int
1023 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1024 {
1025 struct sdhc_host *hp = (struct sdhc_host *)sch;
1026
1027 if (hp->sc->sc_vendor_rod)
1028 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1029
1030 return 0;
1031 }
1032
1033 static void
1034 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1035 {
1036 struct sdhc_host *hp = (struct sdhc_host *)sch;
1037
1038 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1039 mutex_enter(&hp->intr_mtx);
1040 if (enable) {
1041 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1042 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1043 } else {
1044 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1045 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1046 }
1047 mutex_exit(&hp->intr_mtx);
1048 }
1049 }
1050
1051 static void
1052 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1053 {
1054 struct sdhc_host *hp = (struct sdhc_host *)sch;
1055
1056 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1057 mutex_enter(&hp->intr_mtx);
1058 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1059 mutex_exit(&hp->intr_mtx);
1060 }
1061 }
1062
1063 static int
1064 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1065 {
1066 uint32_t state;
1067 int timeout;
1068
1069 for (timeout = 10; timeout > 0; timeout--) {
1070 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1071 return 0;
1072 sdmmc_delay(10000);
1073 }
1074 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1075 value, state));
1076 return ETIMEDOUT;
1077 }
1078
1079 static void
1080 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1081 {
1082 struct sdhc_host *hp = (struct sdhc_host *)sch;
1083 int error;
1084
1085 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1086 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1087 mutex_enter(&hp->intr_mtx);
1088 if (ISSET(hp->flags, SHF_USE_DMA)) {
1089 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1090 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1091 } else {
1092 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1093 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1094 }
1095 mutex_exit(&hp->intr_mtx);
1096 }
1097
1098 /*
1099 * Start the MMC command, or mark `cmd' as failed and return.
1100 */
1101 error = sdhc_start_command(hp, cmd);
1102 if (error) {
1103 cmd->c_error = error;
1104 goto out;
1105 }
1106
1107 /*
1108 * Wait until the command phase is done, or until the command
1109 * is marked done for any other reason.
1110 */
1111 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1112 cmd->c_error = ETIMEDOUT;
1113 goto out;
1114 }
1115
1116 /*
1117 * The host controller removes bits [0:7] from the response
1118 * data (CRC) and we pass the data up unchanged to the bus
1119 * driver (without padding).
1120 */
1121 mutex_enter(&hp->host_mtx);
1122 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1123 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1124 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1125 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1126 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1127 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1128 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1129 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1130 (cmd->c_resp[1] << 24);
1131 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1132 (cmd->c_resp[2] << 24);
1133 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1134 (cmd->c_resp[3] << 24);
1135 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1136 }
1137 }
1138 }
1139 mutex_exit(&hp->host_mtx);
1140 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1141
1142 /*
1143 * If the command has data to transfer in any direction,
1144 * execute the transfer now.
1145 */
1146 if (cmd->c_error == 0 && cmd->c_data != NULL)
1147 sdhc_transfer_data(hp, cmd);
1148 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1149 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1150 cmd->c_error = ETIMEDOUT;
1151 goto out;
1152 }
1153 }
1154
1155 out:
1156 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1157 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1158 mutex_enter(&hp->host_mtx);
1159 /* Turn off the LED. */
1160 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1161 mutex_exit(&hp->host_mtx);
1162 }
1163 SET(cmd->c_flags, SCF_ITSDONE);
1164
1165 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1166 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1167 cmd->c_flags, cmd->c_error));
1168 }
1169
1170 static int
1171 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1172 {
1173 struct sdhc_softc * const sc = hp->sc;
1174 uint16_t blksize = 0;
1175 uint16_t blkcount = 0;
1176 uint16_t mode;
1177 uint16_t command;
1178 int error;
1179
1180 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1181 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1182 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1183
1184 /*
1185 * The maximum block length for commands should be the minimum
1186 * of the host buffer size and the card buffer size. (1.7.2)
1187 */
1188
1189 /* Fragment the data into proper blocks. */
1190 if (cmd->c_datalen > 0) {
1191 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1192 blkcount = cmd->c_datalen / blksize;
1193 if (cmd->c_datalen % blksize > 0) {
1194 /* XXX: Split this command. (1.7.4) */
1195 aprint_error_dev(sc->sc_dev,
1196 "data not a multiple of %u bytes\n", blksize);
1197 return EINVAL;
1198 }
1199 }
1200
1201 /* Check limit imposed by 9-bit block count. (1.7.2) */
1202 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1203 aprint_error_dev(sc->sc_dev, "too much data\n");
1204 return EINVAL;
1205 }
1206
1207 /* Prepare transfer mode register value. (2.2.5) */
1208 mode = SDHC_BLOCK_COUNT_ENABLE;
1209 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1210 mode |= SDHC_READ_MODE;
1211 if (blkcount > 1) {
1212 mode |= SDHC_MULTI_BLOCK_MODE;
1213 /* XXX only for memory commands? */
1214 mode |= SDHC_AUTO_CMD12_ENABLE;
1215 }
1216 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1217 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1218 mode |= SDHC_DMA_ENABLE;
1219 }
1220
1221 /*
1222 * Prepare command register value. (2.2.6)
1223 */
1224 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1225
1226 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1227 command |= SDHC_CRC_CHECK_ENABLE;
1228 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1229 command |= SDHC_INDEX_CHECK_ENABLE;
1230 if (cmd->c_data != NULL)
1231 command |= SDHC_DATA_PRESENT_SELECT;
1232
1233 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1234 command |= SDHC_NO_RESPONSE;
1235 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1236 command |= SDHC_RESP_LEN_136;
1237 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1238 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1239 else
1240 command |= SDHC_RESP_LEN_48;
1241
1242 /* Wait until command and data inhibit bits are clear. (1.5) */
1243 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1244 if (error)
1245 return error;
1246
1247 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1248 HDEVNAME(hp), blksize, blkcount, mode, command));
1249
1250 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1251 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1252 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1253 }
1254
1255 mutex_enter(&hp->host_mtx);
1256
1257 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1258 /* Alert the user not to remove the card. */
1259 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1260 }
1261
1262 /* Set DMA start address. */
1263 if (ISSET(mode, SDHC_DMA_ENABLE) &&
1264 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA))
1265 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1266
1267 /*
1268 * Start a CPU data transfer. Writing to the high order byte
1269 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1270 */
1271 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1272 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1273 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1274 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1275 } else {
1276 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1277 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1278 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1279 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1280 HWRITE2(hp, SDHC_COMMAND, command);
1281 }
1282
1283 mutex_exit(&hp->host_mtx);
1284
1285 return 0;
1286 }
1287
1288 static void
1289 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1290 {
1291 struct sdhc_softc *sc = hp->sc;
1292 int error;
1293
1294 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1295 MMC_R1(cmd->c_resp), cmd->c_datalen));
1296
1297 #ifdef SDHC_DEBUG
1298 /* XXX I forgot why I wanted to know when this happens :-( */
1299 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1300 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1301 aprint_error_dev(hp->sc->sc_dev,
1302 "CMD52/53 error response flags %#x\n",
1303 MMC_R1(cmd->c_resp) & 0xff00);
1304 }
1305 #endif
1306
1307 if (cmd->c_dmamap != NULL) {
1308 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1309 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1310 if (error == 0 && !sdhc_wait_intr(hp,
1311 SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) {
1312 error = ETIMEDOUT;
1313 }
1314 } else {
1315 error = sdhc_transfer_data_dma(hp, cmd);
1316 }
1317 } else
1318 error = sdhc_transfer_data_pio(hp, cmd);
1319 if (error)
1320 cmd->c_error = error;
1321 SET(cmd->c_flags, SCF_ITSDONE);
1322
1323 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1324 HDEVNAME(hp), cmd->c_error));
1325 }
1326
1327 static int
1328 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1329 {
1330 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1331 bus_addr_t posaddr;
1332 bus_addr_t segaddr;
1333 bus_size_t seglen;
1334 u_int seg = 0;
1335 int error = 0;
1336 int status;
1337
1338 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1339 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1340 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1341 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1342
1343 for (;;) {
1344 status = sdhc_wait_intr(hp,
1345 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1346 SDHC_DMA_TIMEOUT);
1347
1348 if (status & SDHC_TRANSFER_COMPLETE) {
1349 break;
1350 }
1351 if (!status) {
1352 error = ETIMEDOUT;
1353 break;
1354 }
1355 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1356 continue;
1357 }
1358
1359 /* DMA Interrupt (boundary crossing) */
1360
1361 segaddr = dm_segs[seg].ds_addr;
1362 seglen = dm_segs[seg].ds_len;
1363 mutex_enter(&hp->host_mtx);
1364 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1365 mutex_exit(&hp->host_mtx);
1366
1367 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1368 continue;
1369 }
1370 mutex_enter(&hp->host_mtx);
1371 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1372 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1373 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1374 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1375 mutex_exit(&hp->host_mtx);
1376 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1377 }
1378
1379 return error;
1380 }
1381
1382 static int
1383 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1384 {
1385 uint8_t *data = cmd->c_data;
1386 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1387 u_int len, datalen;
1388 u_int imask;
1389 u_int pmask;
1390 int error = 0;
1391
1392 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1393 imask = SDHC_BUFFER_READ_READY;
1394 pmask = SDHC_BUFFER_READ_ENABLE;
1395 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1396 pio_func = esdhc_read_data_pio;
1397 } else {
1398 pio_func = sdhc_read_data_pio;
1399 }
1400 } else {
1401 imask = SDHC_BUFFER_WRITE_READY;
1402 pmask = SDHC_BUFFER_WRITE_ENABLE;
1403 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1404 pio_func = esdhc_write_data_pio;
1405 } else {
1406 pio_func = sdhc_write_data_pio;
1407 }
1408 }
1409 datalen = cmd->c_datalen;
1410
1411 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1412 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1413 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1414
1415 while (datalen > 0) {
1416 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1417 mutex_enter(&hp->intr_mtx);
1418 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1419 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1420 } else {
1421 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1422 }
1423 mutex_exit(&hp->intr_mtx);
1424 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1425 error = ETIMEDOUT;
1426 break;
1427 }
1428
1429 error = sdhc_wait_state(hp, pmask, pmask);
1430 if (error)
1431 break;
1432 }
1433
1434 len = MIN(datalen, cmd->c_blklen);
1435 (*pio_func)(hp, data, len);
1436 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1437 HDEVNAME(hp), len, data));
1438
1439 data += len;
1440 datalen -= len;
1441 }
1442
1443 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1444 SDHC_TRANSFER_TIMEOUT))
1445 error = ETIMEDOUT;
1446
1447 return error;
1448 }
1449
1450 static void
1451 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1452 {
1453
1454 if (((__uintptr_t)data & 3) == 0) {
1455 while (datalen > 3) {
1456 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1457 data += 4;
1458 datalen -= 4;
1459 }
1460 if (datalen > 1) {
1461 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1462 data += 2;
1463 datalen -= 2;
1464 }
1465 if (datalen > 0) {
1466 *data = HREAD1(hp, SDHC_DATA);
1467 data += 1;
1468 datalen -= 1;
1469 }
1470 } else if (((__uintptr_t)data & 1) == 0) {
1471 while (datalen > 1) {
1472 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1473 data += 2;
1474 datalen -= 2;
1475 }
1476 if (datalen > 0) {
1477 *data = HREAD1(hp, SDHC_DATA);
1478 data += 1;
1479 datalen -= 1;
1480 }
1481 } else {
1482 while (datalen > 0) {
1483 *data = HREAD1(hp, SDHC_DATA);
1484 data += 1;
1485 datalen -= 1;
1486 }
1487 }
1488 }
1489
1490 static void
1491 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1492 {
1493
1494 if (((__uintptr_t)data & 3) == 0) {
1495 while (datalen > 3) {
1496 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1497 data += 4;
1498 datalen -= 4;
1499 }
1500 if (datalen > 1) {
1501 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1502 data += 2;
1503 datalen -= 2;
1504 }
1505 if (datalen > 0) {
1506 HWRITE1(hp, SDHC_DATA, *data);
1507 data += 1;
1508 datalen -= 1;
1509 }
1510 } else if (((__uintptr_t)data & 1) == 0) {
1511 while (datalen > 1) {
1512 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1513 data += 2;
1514 datalen -= 2;
1515 }
1516 if (datalen > 0) {
1517 HWRITE1(hp, SDHC_DATA, *data);
1518 data += 1;
1519 datalen -= 1;
1520 }
1521 } else {
1522 while (datalen > 0) {
1523 HWRITE1(hp, SDHC_DATA, *data);
1524 data += 1;
1525 datalen -= 1;
1526 }
1527 }
1528 }
1529
1530 static void
1531 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1532 {
1533 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1534 uint32_t v;
1535
1536 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1537 size_t count = 0;
1538
1539 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1540 if (count == 0) {
1541 /*
1542 * If we've drained "watermark" words, we need to wait
1543 * a little bit so the read FIFO can refill.
1544 */
1545 sdmmc_delay(10);
1546 count = watermark;
1547 }
1548 v = HREAD4(hp, SDHC_DATA);
1549 v = le32toh(v);
1550 *(uint32_t *)data = v;
1551 data += 4;
1552 datalen -= 4;
1553 status = HREAD2(hp, SDHC_NINTR_STATUS);
1554 count--;
1555 }
1556 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1557 if (count == 0) {
1558 sdmmc_delay(10);
1559 }
1560 v = HREAD4(hp, SDHC_DATA);
1561 v = le32toh(v);
1562 do {
1563 *data++ = v;
1564 v >>= 8;
1565 } while (--datalen > 0);
1566 }
1567 }
1568
1569 static void
1570 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1571 {
1572 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1573 uint32_t v;
1574
1575 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1576 size_t count = watermark;
1577
1578 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1579 if (count == 0) {
1580 sdmmc_delay(10);
1581 count = watermark;
1582 }
1583 v = *(uint32_t *)data;
1584 v = htole32(v);
1585 HWRITE4(hp, SDHC_DATA, v);
1586 data += 4;
1587 datalen -= 4;
1588 status = HREAD2(hp, SDHC_NINTR_STATUS);
1589 count--;
1590 }
1591 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1592 if (count == 0) {
1593 sdmmc_delay(10);
1594 }
1595 v = *(uint32_t *)data;
1596 v = htole32(v);
1597 HWRITE4(hp, SDHC_DATA, v);
1598 }
1599 }
1600
1601 /* Prepare for another command. */
1602 static int
1603 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1604 {
1605 int timo;
1606
1607 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1608
1609 /* Request the reset. */
1610 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1611
1612 /*
1613 * If necessary, wait for the controller to set the bits to
1614 * acknowledge the reset.
1615 */
1616 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1617 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1618 for (timo = 10000; timo > 0; timo--) {
1619 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1620 break;
1621 /* Short delay because I worry we may miss it... */
1622 sdmmc_delay(1);
1623 }
1624 if (timo == 0)
1625 return ETIMEDOUT;
1626 }
1627
1628 /*
1629 * Wait for the controller to clear the bits to indicate that
1630 * the reset has completed.
1631 */
1632 for (timo = 10; timo > 0; timo--) {
1633 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1634 break;
1635 sdmmc_delay(10000);
1636 }
1637 if (timo == 0) {
1638 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1639 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1640 return ETIMEDOUT;
1641 }
1642
1643 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1644 HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1645 }
1646
1647 return 0;
1648 }
1649
1650 static int
1651 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1652 {
1653 int status;
1654
1655 mask |= SDHC_ERROR_INTERRUPT;
1656
1657 mutex_enter(&hp->intr_mtx);
1658 status = hp->intr_status & mask;
1659 while (status == 0) {
1660 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1661 == EWOULDBLOCK) {
1662 status |= SDHC_ERROR_INTERRUPT;
1663 break;
1664 }
1665 status = hp->intr_status & mask;
1666 }
1667 hp->intr_status &= ~status;
1668
1669 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1670 hp->intr_error_status));
1671
1672 /* Command timeout has higher priority than command complete. */
1673 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1674 hp->intr_error_status = 0;
1675 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1676 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1677 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1678 }
1679 status = 0;
1680 }
1681 mutex_exit(&hp->intr_mtx);
1682
1683 return status;
1684 }
1685
1686 /*
1687 * Established by attachment driver at interrupt priority IPL_SDMMC.
1688 */
1689 int
1690 sdhc_intr(void *arg)
1691 {
1692 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1693 struct sdhc_host *hp;
1694 int done = 0;
1695 uint16_t status;
1696 uint16_t error;
1697
1698 /* We got an interrupt, but we don't know from which slot. */
1699 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1700 hp = sc->sc_host[host];
1701 if (hp == NULL)
1702 continue;
1703
1704 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1705 /* Find out which interrupts are pending. */
1706 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1707 status = xstatus;
1708 error = xstatus >> 16;
1709 if (error)
1710 xstatus |= SDHC_ERROR_INTERRUPT;
1711 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1712 continue; /* no interrupt for us */
1713 /* Acknowledge the interrupts we are about to handle. */
1714 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1715 } else {
1716 /* Find out which interrupts are pending. */
1717 error = 0;
1718 status = HREAD2(hp, SDHC_NINTR_STATUS);
1719 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1720 continue; /* no interrupt for us */
1721 /* Acknowledge the interrupts we are about to handle. */
1722 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1723 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1724 /* Acknowledge error interrupts. */
1725 error = HREAD2(hp, SDHC_EINTR_STATUS);
1726 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1727 }
1728 }
1729
1730 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1731 status, error));
1732
1733 mutex_enter(&hp->intr_mtx);
1734
1735 /* Claim this interrupt. */
1736 done = 1;
1737
1738 /*
1739 * Service error interrupts.
1740 */
1741 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1742 SDHC_DATA_TIMEOUT_ERROR)) {
1743 hp->intr_error_status |= error;
1744 hp->intr_status |= status;
1745 cv_broadcast(&hp->intr_cv);
1746 }
1747
1748 /*
1749 * Wake up the sdmmc event thread to scan for cards.
1750 */
1751 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1752 if (hp->sdmmc != NULL) {
1753 sdmmc_needs_discover(hp->sdmmc);
1754 }
1755 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1756 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1757 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1758 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1759 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1760 }
1761 }
1762
1763 /*
1764 * Wake up the blocking process to service command
1765 * related interrupt(s).
1766 */
1767 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1768 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1769 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1770 hp->intr_status |= status;
1771 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1772 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1773 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1774 }
1775 cv_broadcast(&hp->intr_cv);
1776 }
1777
1778 /*
1779 * Service SD card interrupts.
1780 */
1781 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1782 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1783 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1784 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1785 sdmmc_card_intr(hp->sdmmc);
1786 }
1787 mutex_exit(&hp->intr_mtx);
1788 }
1789
1790 return done;
1791 }
1792
1793 #ifdef SDHC_DEBUG
1794 void
1795 sdhc_dump_regs(struct sdhc_host *hp)
1796 {
1797
1798 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1799 HREAD4(hp, SDHC_PRESENT_STATE));
1800 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1801 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1802 HREAD1(hp, SDHC_POWER_CTL));
1803 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1804 HREAD2(hp, SDHC_NINTR_STATUS));
1805 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1806 HREAD2(hp, SDHC_EINTR_STATUS));
1807 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1808 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1809 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1810 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1811 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1812 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1813 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1814 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1815 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1816 HREAD4(hp, SDHC_CAPABILITIES));
1817 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1818 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1819 }
1820 #endif
1821