sdhc.c revision 1.53 1 /* $NetBSD: sdhc.c,v 1.53 2015/02/27 01:52:15 nonaka Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.53 2015/02/27 01:52:15 nonaka Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_size_t ios; /* host register space size */
66 bus_dma_tag_t dmat; /* host DMA tag */
67
68 device_t sdmmc; /* generic SD/MMC device */
69
70 struct kmutex host_mtx;
71
72 u_int clkbase; /* base clock frequency in KHz */
73 int maxblklen; /* maximum block length */
74 uint32_t ocr; /* OCR value from capabilities */
75
76 uint8_t regs[14]; /* host controller state */
77
78 uint16_t intr_status; /* soft interrupt status */
79 uint16_t intr_error_status; /* soft error status */
80 struct kmutex intr_mtx;
81 struct kcondvar intr_cv;
82
83 int specver; /* spec. version */
84
85 uint32_t flags; /* flags for this host */
86 #define SHF_USE_DMA 0x0001
87 #define SHF_USE_4BIT_MODE 0x0002
88 #define SHF_USE_8BIT_MODE 0x0004
89 };
90
91 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args * const saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
230 if (hp->sc->sc_host[host] == hp) {
231 aprint_normal(" slot %zu", host);
232 }
233 }
234
235 return UNCONF;
236 }
237
238 /*
239 * Called by attachment driver. For each SD card slot there is one SD
240 * host controller standard register set. (1.3)
241 */
242 int
243 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
244 bus_space_handle_t ioh, bus_size_t iosize)
245 {
246 struct sdmmcbus_attach_args saa;
247 struct sdhc_host *hp;
248 uint32_t caps;
249 uint16_t sdhcver;
250
251 /* Allocate one more host structure. */
252 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
253 if (hp == NULL) {
254 aprint_error_dev(sc->sc_dev,
255 "couldn't alloc memory (sdhc host)\n");
256 goto err1;
257 }
258 sc->sc_host[sc->sc_nhosts++] = hp;
259
260 /* Fill in the new host structure. */
261 hp->sc = sc;
262 hp->iot = iot;
263 hp->ioh = ioh;
264 hp->ios = iosize;
265 hp->dmat = sc->sc_dmat;
266
267 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
268 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
269 cv_init(&hp->intr_cv, "sdhcintr");
270
271 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
272 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
273 } else {
274 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
275 }
276 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
277 hp->specver = SDHC_SPEC_VERSION(sdhcver);
278 switch (SDHC_SPEC_VERSION(sdhcver)) {
279 case SDHC_SPEC_VERS_100:
280 aprint_normal("1.0");
281 break;
282
283 case SDHC_SPEC_VERS_200:
284 aprint_normal("2.0");
285 break;
286
287 case SDHC_SPEC_VERS_300:
288 aprint_normal("3.0");
289 break;
290
291 default:
292 aprint_normal("unknown version(0x%x)",
293 SDHC_SPEC_VERSION(sdhcver));
294 break;
295 }
296 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
297
298 /*
299 * Reset the host controller and enable interrupts.
300 */
301 (void)sdhc_host_reset(hp);
302
303 /* Determine host capabilities. */
304 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
305 caps = sc->sc_caps;
306 } else {
307 mutex_enter(&hp->host_mtx);
308 caps = HREAD4(hp, SDHC_CAPABILITIES);
309 mutex_exit(&hp->host_mtx);
310 }
311
312 /* Use DMA if the host system and the controller support it. */
313 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
314 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
315 ISSET(caps, SDHC_DMA_SUPPORT)))) {
316 SET(hp->flags, SHF_USE_DMA);
317 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
318 }
319
320 /*
321 * Determine the base clock frequency. (2.2.24)
322 */
323 if (hp->specver == SDHC_SPEC_VERS_300) {
324 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
325 } else {
326 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
327 }
328 if (hp->clkbase == 0) {
329 if (sc->sc_clkbase == 0) {
330 /* The attachment driver must tell us. */
331 aprint_error_dev(sc->sc_dev,
332 "unknown base clock frequency\n");
333 goto err;
334 }
335 hp->clkbase = sc->sc_clkbase;
336 }
337 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
338 /* SDHC 1.0 supports only 10-63 MHz. */
339 aprint_error_dev(sc->sc_dev,
340 "base clock frequency out of range: %u MHz\n",
341 hp->clkbase / 1000);
342 goto err;
343 }
344 DPRINTF(1,("%s: base clock frequency %u MHz\n",
345 device_xname(sc->sc_dev), hp->clkbase / 1000));
346
347 /*
348 * XXX Set the data timeout counter value according to
349 * capabilities. (2.2.15)
350 */
351 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
352 #if 1
353 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
354 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
355 #endif
356
357 /*
358 * Determine SD bus voltage levels supported by the controller.
359 */
360 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
361 (hp->specver < SDHC_SPEC_VERS_300 ||
362 ISSET(caps, SDHC_EMBEDDED_SLOT))) {
363 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
364 }
365 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
366 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
367 }
368 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
369 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
370 }
371
372 /*
373 * Determine the maximum block length supported by the host
374 * controller. (2.2.24)
375 */
376 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
377 case SDHC_MAX_BLK_LEN_512:
378 hp->maxblklen = 512;
379 break;
380
381 case SDHC_MAX_BLK_LEN_1024:
382 hp->maxblklen = 1024;
383 break;
384
385 case SDHC_MAX_BLK_LEN_2048:
386 hp->maxblklen = 2048;
387 break;
388
389 case SDHC_MAX_BLK_LEN_4096:
390 hp->maxblklen = 4096;
391 break;
392
393 default:
394 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
395 goto err;
396 }
397 DPRINTF(1, ("%s: max block length %u byte%s\n",
398 device_xname(sc->sc_dev), hp->maxblklen,
399 hp->maxblklen > 1 ? "s" : ""));
400
401 /*
402 * Attach the generic SD/MMC bus driver. (The bus driver must
403 * not invoke any chipset functions before it is attached.)
404 */
405 memset(&saa, 0, sizeof(saa));
406 saa.saa_busname = "sdmmc";
407 saa.saa_sct = &sdhc_functions;
408 saa.saa_sch = hp;
409 saa.saa_dmat = hp->dmat;
410 saa.saa_clkmax = hp->clkbase;
411 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
412 saa.saa_clkmin = hp->clkbase / 256 / 2046;
413 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
414 saa.saa_clkmin = hp->clkbase / 256 / 16;
415 else if (hp->sc->sc_clkmsk != 0)
416 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
417 (ffs(hp->sc->sc_clkmsk) - 1));
418 else if (hp->specver == SDHC_SPEC_VERS_300)
419 saa.saa_clkmin = hp->clkbase / 0x3ff;
420 else
421 saa.saa_clkmin = hp->clkbase / 256;
422 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
423 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
424 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
425 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
426 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
427 if (ISSET(hp->flags, SHF_USE_DMA)) {
428 saa.saa_caps |= SMC_CAPS_DMA | SMC_CAPS_MULTI_SEG_DMA;
429 }
430 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
431 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
432 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
433
434 return 0;
435
436 err:
437 cv_destroy(&hp->intr_cv);
438 mutex_destroy(&hp->intr_mtx);
439 mutex_destroy(&hp->host_mtx);
440 free(hp, M_DEVBUF);
441 sc->sc_host[--sc->sc_nhosts] = NULL;
442 err1:
443 return 1;
444 }
445
446 int
447 sdhc_detach(struct sdhc_softc *sc, int flags)
448 {
449 struct sdhc_host *hp;
450 int rv = 0;
451
452 for (size_t n = 0; n < sc->sc_nhosts; n++) {
453 hp = sc->sc_host[n];
454 if (hp == NULL)
455 continue;
456 if (hp->sdmmc != NULL) {
457 rv = config_detach(hp->sdmmc, flags);
458 if (rv)
459 break;
460 hp->sdmmc = NULL;
461 }
462 /* disable interrupts */
463 if ((flags & DETACH_FORCE) == 0) {
464 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
465 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
466 } else {
467 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
468 }
469 sdhc_soft_reset(hp, SDHC_RESET_ALL);
470 }
471 cv_destroy(&hp->intr_cv);
472 mutex_destroy(&hp->intr_mtx);
473 mutex_destroy(&hp->host_mtx);
474 if (hp->ios > 0) {
475 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
476 hp->ios = 0;
477 }
478 free(hp, M_DEVBUF);
479 sc->sc_host[n] = NULL;
480 }
481
482 return rv;
483 }
484
485 bool
486 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
487 {
488 struct sdhc_softc *sc = device_private(dev);
489 struct sdhc_host *hp;
490 size_t i;
491
492 /* XXX poll for command completion or suspend command
493 * in progress */
494
495 /* Save the host controller state. */
496 for (size_t n = 0; n < sc->sc_nhosts; n++) {
497 hp = sc->sc_host[n];
498 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
499 for (i = 0; i < sizeof hp->regs; i += 4) {
500 uint32_t v = HREAD4(hp, i);
501 hp->regs[i + 0] = (v >> 0);
502 hp->regs[i + 1] = (v >> 8);
503 if (i + 3 < sizeof hp->regs) {
504 hp->regs[i + 2] = (v >> 16);
505 hp->regs[i + 3] = (v >> 24);
506 }
507 }
508 } else {
509 for (i = 0; i < sizeof hp->regs; i++) {
510 hp->regs[i] = HREAD1(hp, i);
511 }
512 }
513 }
514 return true;
515 }
516
517 bool
518 sdhc_resume(device_t dev, const pmf_qual_t *qual)
519 {
520 struct sdhc_softc *sc = device_private(dev);
521 struct sdhc_host *hp;
522 size_t i;
523
524 /* Restore the host controller state. */
525 for (size_t n = 0; n < sc->sc_nhosts; n++) {
526 hp = sc->sc_host[n];
527 (void)sdhc_host_reset(hp);
528 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
529 for (i = 0; i < sizeof hp->regs; i += 4) {
530 if (i + 3 < sizeof hp->regs) {
531 HWRITE4(hp, i,
532 (hp->regs[i + 0] << 0)
533 | (hp->regs[i + 1] << 8)
534 | (hp->regs[i + 2] << 16)
535 | (hp->regs[i + 3] << 24));
536 } else {
537 HWRITE4(hp, i,
538 (hp->regs[i + 0] << 0)
539 | (hp->regs[i + 1] << 8));
540 }
541 }
542 } else {
543 for (i = 0; i < sizeof hp->regs; i++) {
544 HWRITE1(hp, i, hp->regs[i]);
545 }
546 }
547 }
548 return true;
549 }
550
551 bool
552 sdhc_shutdown(device_t dev, int flags)
553 {
554 struct sdhc_softc *sc = device_private(dev);
555 struct sdhc_host *hp;
556
557 /* XXX chip locks up if we don't disable it before reboot. */
558 for (size_t i = 0; i < sc->sc_nhosts; i++) {
559 hp = sc->sc_host[i];
560 (void)sdhc_host_reset(hp);
561 }
562 return true;
563 }
564
565 /*
566 * Reset the host controller. Called during initialization, when
567 * cards are removed, upon resume, and during error recovery.
568 */
569 static int
570 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
571 {
572 struct sdhc_host *hp = (struct sdhc_host *)sch;
573 uint32_t sdhcimask;
574 int error;
575
576 /* Don't lock. */
577
578 /* Disable all interrupts. */
579 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
580 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
581 } else {
582 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
583 }
584
585 /*
586 * Reset the entire host controller and wait up to 100ms for
587 * the controller to clear the reset bit.
588 */
589 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
590 if (error)
591 goto out;
592
593 /* Set data timeout counter value to max for now. */
594 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
595 #if 1
596 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
597 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
598 #endif
599
600 /* Enable interrupts. */
601 mutex_enter(&hp->intr_mtx);
602 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
603 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
604 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
605 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
606 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
607 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
608 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
609 sdhcimask ^=
610 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
611 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
612 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
613 } else {
614 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
615 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
616 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
617 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
618 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
619 }
620 mutex_exit(&hp->intr_mtx);
621
622 out:
623 return error;
624 }
625
626 static int
627 sdhc_host_reset(sdmmc_chipset_handle_t sch)
628 {
629 struct sdhc_host *hp = (struct sdhc_host *)sch;
630 int error;
631
632 mutex_enter(&hp->host_mtx);
633 error = sdhc_host_reset1(sch);
634 mutex_exit(&hp->host_mtx);
635
636 return error;
637 }
638
639 static uint32_t
640 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
641 {
642 struct sdhc_host *hp = (struct sdhc_host *)sch;
643
644 return hp->ocr;
645 }
646
647 static int
648 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
649 {
650 struct sdhc_host *hp = (struct sdhc_host *)sch;
651
652 return hp->maxblklen;
653 }
654
655 /*
656 * Return non-zero if the card is currently inserted.
657 */
658 static int
659 sdhc_card_detect(sdmmc_chipset_handle_t sch)
660 {
661 struct sdhc_host *hp = (struct sdhc_host *)sch;
662 int r;
663
664 if (hp->sc->sc_vendor_card_detect)
665 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
666
667 mutex_enter(&hp->host_mtx);
668 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
669 mutex_exit(&hp->host_mtx);
670
671 return r ? 1 : 0;
672 }
673
674 /*
675 * Return non-zero if the card is currently write-protected.
676 */
677 static int
678 sdhc_write_protect(sdmmc_chipset_handle_t sch)
679 {
680 struct sdhc_host *hp = (struct sdhc_host *)sch;
681 int r;
682
683 if (hp->sc->sc_vendor_write_protect)
684 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
685
686 mutex_enter(&hp->host_mtx);
687 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
688 mutex_exit(&hp->host_mtx);
689
690 return r ? 0 : 1;
691 }
692
693 /*
694 * Set or change SD bus voltage and enable or disable SD bus power.
695 * Return zero on success.
696 */
697 static int
698 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
699 {
700 struct sdhc_host *hp = (struct sdhc_host *)sch;
701 uint8_t vdd;
702 int error = 0;
703 const uint32_t pcmask =
704 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
705
706 mutex_enter(&hp->host_mtx);
707
708 /*
709 * Disable bus power before voltage change.
710 */
711 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
712 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
713 HWRITE1(hp, SDHC_POWER_CTL, 0);
714
715 /* If power is disabled, reset the host and return now. */
716 if (ocr == 0) {
717 (void)sdhc_host_reset1(hp);
718 goto out;
719 }
720
721 /*
722 * Select the lowest voltage according to capabilities.
723 */
724 ocr &= hp->ocr;
725 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
726 vdd = SDHC_VOLTAGE_1_8V;
727 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
728 vdd = SDHC_VOLTAGE_3_0V;
729 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
730 vdd = SDHC_VOLTAGE_3_3V;
731 } else {
732 /* Unsupported voltage level requested. */
733 error = EINVAL;
734 goto out;
735 }
736
737 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
738 /*
739 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
740 * voltage ramp until power rises.
741 */
742 HWRITE1(hp, SDHC_POWER_CTL,
743 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
744 sdmmc_delay(1);
745 HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
746 sdmmc_delay(1);
747 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
748 sdmmc_delay(10000);
749
750 /*
751 * The host system may not power the bus due to battery low,
752 * etc. In that case, the host controller should clear the
753 * bus power bit.
754 */
755 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
756 error = ENXIO;
757 goto out;
758 }
759 }
760
761 out:
762 mutex_exit(&hp->host_mtx);
763
764 return error;
765 }
766
767 /*
768 * Return the smallest possible base clock frequency divisor value
769 * for the CLOCK_CTL register to produce `freq' (KHz).
770 */
771 static bool
772 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
773 {
774 u_int div;
775
776 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
777 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
778 if ((hp->clkbase / div) <= freq) {
779 *divp = SDHC_SDCLK_CGM
780 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
781 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
782 //freq = hp->clkbase / div;
783 return true;
784 }
785 }
786 /* No divisor found. */
787 return false;
788 }
789 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
790 u_int dvs = (hp->clkbase + freq - 1) / freq;
791 u_int roundup = dvs & 1;
792 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
793 if (dvs + roundup <= 16) {
794 dvs += roundup - 1;
795 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
796 | (dvs << SDHC_SDCLK_DVS_SHIFT);
797 DPRINTF(2,
798 ("%s: divisor for freq %u is %u * %u\n",
799 HDEVNAME(hp), freq, div * 2, dvs + 1));
800 //freq = hp->clkbase / (div * 2) * (dvs + 1);
801 return true;
802 }
803 /*
804 * If we drop bits, we need to round up the divisor.
805 */
806 roundup |= dvs & 1;
807 }
808 /* No divisor found. */
809 return false;
810 }
811 if (hp->sc->sc_clkmsk != 0) {
812 div = howmany(hp->clkbase, freq);
813 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
814 return false;
815 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
816 //freq = hp->clkbase / div;
817 return true;
818 }
819 if (hp->specver == SDHC_SPEC_VERS_300) {
820 div = howmany(hp->clkbase, freq);
821 div = div > 1 ? howmany(div, 2) : 0;
822 if (div > 0x3ff)
823 return false;
824 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
825 << SDHC_SDCLK_XDIV_SHIFT) |
826 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
827 << SDHC_SDCLK_DIV_SHIFT);
828 //freq = hp->clkbase / div;
829 return true;
830 } else {
831 for (div = 1; div <= 256; div *= 2) {
832 if ((hp->clkbase / div) <= freq) {
833 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
834 //freq = hp->clkbase / div;
835 return true;
836 }
837 }
838 /* No divisor found. */
839 return false;
840 }
841 /* No divisor found. */
842 return false;
843 }
844
845 /*
846 * Set or change SDCLK frequency or disable the SD clock.
847 * Return zero on success.
848 */
849 static int
850 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
851 {
852 struct sdhc_host *hp = (struct sdhc_host *)sch;
853 u_int div;
854 u_int timo;
855 int16_t reg;
856 int error = 0;
857 #ifdef DIAGNOSTIC
858 bool present;
859
860 mutex_enter(&hp->host_mtx);
861 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
862 mutex_exit(&hp->host_mtx);
863
864 /* Must not stop the clock if commands are in progress. */
865 if (present && sdhc_card_detect(hp)) {
866 aprint_normal_dev(hp->sc->sc_dev,
867 "%s: command in progress\n", __func__);
868 }
869 #endif
870
871 mutex_enter(&hp->host_mtx);
872
873 if (hp->sc->sc_vendor_bus_clock) {
874 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
875 if (error != 0)
876 goto out;
877 }
878
879 /*
880 * Stop SD clock before changing the frequency.
881 */
882 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
883 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
884 if (freq == SDMMC_SDCLK_OFF) {
885 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
886 goto out;
887 }
888 } else {
889 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
890 if (freq == SDMMC_SDCLK_OFF)
891 goto out;
892 }
893
894 /*
895 * Set the minimum base clock frequency divisor.
896 */
897 if (!sdhc_clock_divisor(hp, freq, &div)) {
898 /* Invalid base clock frequency or `freq' value. */
899 error = EINVAL;
900 goto out;
901 }
902 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
903 HWRITE4(hp, SDHC_CLOCK_CTL,
904 div | (SDHC_TIMEOUT_MAX << 16));
905 } else {
906 reg = HREAD2(hp, SDHC_CLOCK_CTL);
907 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
908 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
909 }
910
911 /*
912 * Start internal clock. Wait 10ms for stabilization.
913 */
914 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
915 sdmmc_delay(10000);
916 HSET4(hp, SDHC_CLOCK_CTL,
917 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
918 } else {
919 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
920 for (timo = 1000; timo > 0; timo--) {
921 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
922 SDHC_INTCLK_STABLE))
923 break;
924 sdmmc_delay(10);
925 }
926 if (timo == 0) {
927 error = ETIMEDOUT;
928 goto out;
929 }
930 }
931
932 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
933 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
934 /*
935 * Sending 80 clocks at 400kHz takes 200us.
936 * So delay for that time + slop and then
937 * check a few times for completion.
938 */
939 sdmmc_delay(210);
940 for (timo = 10; timo > 0; timo--) {
941 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
942 SDHC_INIT_ACTIVE))
943 break;
944 sdmmc_delay(10);
945 }
946 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
947
948 /*
949 * Enable SD clock.
950 */
951 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
952 } else {
953 /*
954 * Enable SD clock.
955 */
956 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
957
958 if (freq > 25000 &&
959 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
960 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
961 else
962 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
963 }
964
965 out:
966 mutex_exit(&hp->host_mtx);
967
968 return error;
969 }
970
971 static int
972 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
973 {
974 struct sdhc_host *hp = (struct sdhc_host *)sch;
975 int reg;
976
977 switch (width) {
978 case 1:
979 case 4:
980 break;
981
982 case 8:
983 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
984 break;
985 /* FALLTHROUGH */
986 default:
987 DPRINTF(0,("%s: unsupported bus width (%d)\n",
988 HDEVNAME(hp), width));
989 return 1;
990 }
991
992 mutex_enter(&hp->host_mtx);
993 reg = HREAD1(hp, SDHC_HOST_CTL);
994 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
995 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
996 if (width == 4)
997 reg |= SDHC_4BIT_MODE;
998 else if (width == 8)
999 reg |= SDHC_ESDHC_8BIT_MODE;
1000 } else {
1001 reg &= ~SDHC_4BIT_MODE;
1002 if (width == 4)
1003 reg |= SDHC_4BIT_MODE;
1004 }
1005 HWRITE1(hp, SDHC_HOST_CTL, reg);
1006 mutex_exit(&hp->host_mtx);
1007
1008 return 0;
1009 }
1010
1011 static int
1012 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1013 {
1014 struct sdhc_host *hp = (struct sdhc_host *)sch;
1015
1016 if (hp->sc->sc_vendor_rod)
1017 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1018
1019 return 0;
1020 }
1021
1022 static void
1023 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1024 {
1025 struct sdhc_host *hp = (struct sdhc_host *)sch;
1026
1027 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1028 mutex_enter(&hp->intr_mtx);
1029 if (enable) {
1030 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1031 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1032 } else {
1033 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1034 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1035 }
1036 mutex_exit(&hp->intr_mtx);
1037 }
1038 }
1039
1040 static void
1041 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1042 {
1043 struct sdhc_host *hp = (struct sdhc_host *)sch;
1044
1045 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1046 mutex_enter(&hp->intr_mtx);
1047 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1048 mutex_exit(&hp->intr_mtx);
1049 }
1050 }
1051
1052 static int
1053 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1054 {
1055 uint32_t state;
1056 int timeout;
1057
1058 for (timeout = 10; timeout > 0; timeout--) {
1059 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1060 return 0;
1061 sdmmc_delay(10000);
1062 }
1063 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1064 value, state));
1065 return ETIMEDOUT;
1066 }
1067
1068 static void
1069 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1070 {
1071 struct sdhc_host *hp = (struct sdhc_host *)sch;
1072 int error;
1073
1074 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1075 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1076 mutex_enter(&hp->intr_mtx);
1077 if (ISSET(hp->flags, SHF_USE_DMA)) {
1078 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1079 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1080 } else {
1081 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1082 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1083 }
1084 mutex_exit(&hp->intr_mtx);
1085 }
1086
1087 /*
1088 * Start the MMC command, or mark `cmd' as failed and return.
1089 */
1090 error = sdhc_start_command(hp, cmd);
1091 if (error) {
1092 cmd->c_error = error;
1093 goto out;
1094 }
1095
1096 /*
1097 * Wait until the command phase is done, or until the command
1098 * is marked done for any other reason.
1099 */
1100 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1101 cmd->c_error = ETIMEDOUT;
1102 goto out;
1103 }
1104
1105 /*
1106 * The host controller removes bits [0:7] from the response
1107 * data (CRC) and we pass the data up unchanged to the bus
1108 * driver (without padding).
1109 */
1110 mutex_enter(&hp->host_mtx);
1111 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1112 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1113 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1114 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1115 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1116 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1117 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1118 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1119 (cmd->c_resp[1] << 24);
1120 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1121 (cmd->c_resp[2] << 24);
1122 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1123 (cmd->c_resp[3] << 24);
1124 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1125 }
1126 }
1127 }
1128 mutex_exit(&hp->host_mtx);
1129 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1130
1131 /*
1132 * If the command has data to transfer in any direction,
1133 * execute the transfer now.
1134 */
1135 if (cmd->c_error == 0 && cmd->c_data != NULL)
1136 sdhc_transfer_data(hp, cmd);
1137 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1138 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1139 cmd->c_error = ETIMEDOUT;
1140 goto out;
1141 }
1142 }
1143
1144 out:
1145 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1146 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1147 mutex_enter(&hp->host_mtx);
1148 /* Turn off the LED. */
1149 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1150 mutex_exit(&hp->host_mtx);
1151 }
1152 SET(cmd->c_flags, SCF_ITSDONE);
1153
1154 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1155 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1156 cmd->c_flags, cmd->c_error));
1157 }
1158
1159 static int
1160 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1161 {
1162 struct sdhc_softc * const sc = hp->sc;
1163 uint16_t blksize = 0;
1164 uint16_t blkcount = 0;
1165 uint16_t mode;
1166 uint16_t command;
1167 int error;
1168
1169 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1170 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1171 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1172
1173 /*
1174 * The maximum block length for commands should be the minimum
1175 * of the host buffer size and the card buffer size. (1.7.2)
1176 */
1177
1178 /* Fragment the data into proper blocks. */
1179 if (cmd->c_datalen > 0) {
1180 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1181 blkcount = cmd->c_datalen / blksize;
1182 if (cmd->c_datalen % blksize > 0) {
1183 /* XXX: Split this command. (1.7.4) */
1184 aprint_error_dev(sc->sc_dev,
1185 "data not a multiple of %u bytes\n", blksize);
1186 return EINVAL;
1187 }
1188 }
1189
1190 /* Check limit imposed by 9-bit block count. (1.7.2) */
1191 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1192 aprint_error_dev(sc->sc_dev, "too much data\n");
1193 return EINVAL;
1194 }
1195
1196 /* Prepare transfer mode register value. (2.2.5) */
1197 mode = SDHC_BLOCK_COUNT_ENABLE;
1198 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1199 mode |= SDHC_READ_MODE;
1200 if (blkcount > 1) {
1201 mode |= SDHC_MULTI_BLOCK_MODE;
1202 /* XXX only for memory commands? */
1203 mode |= SDHC_AUTO_CMD12_ENABLE;
1204 }
1205 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1206 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1207 mode |= SDHC_DMA_ENABLE;
1208 }
1209
1210 /*
1211 * Prepare command register value. (2.2.6)
1212 */
1213 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1214
1215 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1216 command |= SDHC_CRC_CHECK_ENABLE;
1217 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1218 command |= SDHC_INDEX_CHECK_ENABLE;
1219 if (cmd->c_data != NULL)
1220 command |= SDHC_DATA_PRESENT_SELECT;
1221
1222 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1223 command |= SDHC_NO_RESPONSE;
1224 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1225 command |= SDHC_RESP_LEN_136;
1226 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1227 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1228 else
1229 command |= SDHC_RESP_LEN_48;
1230
1231 /* Wait until command and data inhibit bits are clear. (1.5) */
1232 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1233 if (error)
1234 return error;
1235
1236 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1237 HDEVNAME(hp), blksize, blkcount, mode, command));
1238
1239 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1240 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1241 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1242 }
1243
1244 mutex_enter(&hp->host_mtx);
1245
1246 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1247 /* Alert the user not to remove the card. */
1248 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1249 }
1250
1251 /* Set DMA start address. */
1252 if (ISSET(mode, SDHC_DMA_ENABLE))
1253 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1254
1255 /*
1256 * Start a CPU data transfer. Writing to the high order byte
1257 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1258 */
1259 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1260 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1261 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1262 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1263 } else {
1264 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1265 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1266 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1267 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1268 HWRITE2(hp, SDHC_COMMAND, command);
1269 }
1270
1271 mutex_exit(&hp->host_mtx);
1272
1273 return 0;
1274 }
1275
1276 static void
1277 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1278 {
1279 struct sdhc_softc *sc = hp->sc;
1280 int error;
1281
1282 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1283 MMC_R1(cmd->c_resp), cmd->c_datalen));
1284
1285 #ifdef SDHC_DEBUG
1286 /* XXX I forgot why I wanted to know when this happens :-( */
1287 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1288 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1289 aprint_error_dev(hp->sc->sc_dev,
1290 "CMD52/53 error response flags %#x\n",
1291 MMC_R1(cmd->c_resp) & 0xff00);
1292 }
1293 #endif
1294
1295 if (cmd->c_dmamap != NULL) {
1296 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1297 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1298 if (error == 0 && !sdhc_wait_intr(hp,
1299 SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) {
1300 error = ETIMEDOUT;
1301 }
1302 } else {
1303 error = sdhc_transfer_data_dma(hp, cmd);
1304 }
1305 } else
1306 error = sdhc_transfer_data_pio(hp, cmd);
1307 if (error)
1308 cmd->c_error = error;
1309 SET(cmd->c_flags, SCF_ITSDONE);
1310
1311 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1312 HDEVNAME(hp), cmd->c_error));
1313 }
1314
1315 static int
1316 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1317 {
1318 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1319 bus_addr_t posaddr;
1320 bus_addr_t segaddr;
1321 bus_size_t seglen;
1322 u_int seg = 0;
1323 int error = 0;
1324 int status;
1325
1326 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1327 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1328 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1329 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1330
1331 for (;;) {
1332 status = sdhc_wait_intr(hp,
1333 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1334 SDHC_DMA_TIMEOUT);
1335
1336 if (status & SDHC_TRANSFER_COMPLETE) {
1337 break;
1338 }
1339 if (!status) {
1340 error = ETIMEDOUT;
1341 break;
1342 }
1343 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1344 continue;
1345 }
1346
1347 /* DMA Interrupt (boundary crossing) */
1348
1349 segaddr = dm_segs[seg].ds_addr;
1350 seglen = dm_segs[seg].ds_len;
1351 mutex_enter(&hp->host_mtx);
1352 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1353 mutex_exit(&hp->host_mtx);
1354
1355 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1356 continue;
1357 }
1358 mutex_enter(&hp->host_mtx);
1359 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1360 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1361 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1362 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1363 mutex_exit(&hp->host_mtx);
1364 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1365 }
1366
1367 return error;
1368 }
1369
1370 static int
1371 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1372 {
1373 uint8_t *data = cmd->c_data;
1374 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1375 u_int len, datalen;
1376 u_int imask;
1377 u_int pmask;
1378 int error = 0;
1379
1380 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1381 imask = SDHC_BUFFER_READ_READY;
1382 pmask = SDHC_BUFFER_READ_ENABLE;
1383 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1384 pio_func = esdhc_read_data_pio;
1385 } else {
1386 pio_func = sdhc_read_data_pio;
1387 }
1388 } else {
1389 imask = SDHC_BUFFER_WRITE_READY;
1390 pmask = SDHC_BUFFER_WRITE_ENABLE;
1391 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1392 pio_func = esdhc_write_data_pio;
1393 } else {
1394 pio_func = sdhc_write_data_pio;
1395 }
1396 }
1397 datalen = cmd->c_datalen;
1398
1399 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1400 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1401 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1402
1403 while (datalen > 0) {
1404 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1405 mutex_enter(&hp->intr_mtx);
1406 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1407 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1408 } else {
1409 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1410 }
1411 mutex_exit(&hp->intr_mtx);
1412 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1413 error = ETIMEDOUT;
1414 break;
1415 }
1416
1417 error = sdhc_wait_state(hp, pmask, pmask);
1418 if (error)
1419 break;
1420 }
1421
1422 len = MIN(datalen, cmd->c_blklen);
1423 (*pio_func)(hp, data, len);
1424 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1425 HDEVNAME(hp), len, data));
1426
1427 data += len;
1428 datalen -= len;
1429 }
1430
1431 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1432 SDHC_TRANSFER_TIMEOUT))
1433 error = ETIMEDOUT;
1434
1435 return error;
1436 }
1437
1438 static void
1439 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1440 {
1441
1442 if (((__uintptr_t)data & 3) == 0) {
1443 while (datalen > 3) {
1444 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1445 data += 4;
1446 datalen -= 4;
1447 }
1448 if (datalen > 1) {
1449 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1450 data += 2;
1451 datalen -= 2;
1452 }
1453 if (datalen > 0) {
1454 *data = HREAD1(hp, SDHC_DATA);
1455 data += 1;
1456 datalen -= 1;
1457 }
1458 } else if (((__uintptr_t)data & 1) == 0) {
1459 while (datalen > 1) {
1460 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1461 data += 2;
1462 datalen -= 2;
1463 }
1464 if (datalen > 0) {
1465 *data = HREAD1(hp, SDHC_DATA);
1466 data += 1;
1467 datalen -= 1;
1468 }
1469 } else {
1470 while (datalen > 0) {
1471 *data = HREAD1(hp, SDHC_DATA);
1472 data += 1;
1473 datalen -= 1;
1474 }
1475 }
1476 }
1477
1478 static void
1479 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1480 {
1481
1482 if (((__uintptr_t)data & 3) == 0) {
1483 while (datalen > 3) {
1484 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1485 data += 4;
1486 datalen -= 4;
1487 }
1488 if (datalen > 1) {
1489 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1490 data += 2;
1491 datalen -= 2;
1492 }
1493 if (datalen > 0) {
1494 HWRITE1(hp, SDHC_DATA, *data);
1495 data += 1;
1496 datalen -= 1;
1497 }
1498 } else if (((__uintptr_t)data & 1) == 0) {
1499 while (datalen > 1) {
1500 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1501 data += 2;
1502 datalen -= 2;
1503 }
1504 if (datalen > 0) {
1505 HWRITE1(hp, SDHC_DATA, *data);
1506 data += 1;
1507 datalen -= 1;
1508 }
1509 } else {
1510 while (datalen > 0) {
1511 HWRITE1(hp, SDHC_DATA, *data);
1512 data += 1;
1513 datalen -= 1;
1514 }
1515 }
1516 }
1517
1518 static void
1519 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1520 {
1521 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1522 uint32_t v;
1523
1524 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1525 size_t count = 0;
1526
1527 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1528 if (count == 0) {
1529 /*
1530 * If we've drained "watermark" words, we need to wait
1531 * a little bit so the read FIFO can refill.
1532 */
1533 sdmmc_delay(10);
1534 count = watermark;
1535 }
1536 v = HREAD4(hp, SDHC_DATA);
1537 v = le32toh(v);
1538 *(uint32_t *)data = v;
1539 data += 4;
1540 datalen -= 4;
1541 status = HREAD2(hp, SDHC_NINTR_STATUS);
1542 count--;
1543 }
1544 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1545 if (count == 0) {
1546 sdmmc_delay(10);
1547 }
1548 v = HREAD4(hp, SDHC_DATA);
1549 v = le32toh(v);
1550 do {
1551 *data++ = v;
1552 v >>= 8;
1553 } while (--datalen > 0);
1554 }
1555 }
1556
1557 static void
1558 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1559 {
1560 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1561 uint32_t v;
1562
1563 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1564 size_t count = watermark;
1565
1566 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1567 if (count == 0) {
1568 sdmmc_delay(10);
1569 count = watermark;
1570 }
1571 v = *(uint32_t *)data;
1572 v = htole32(v);
1573 HWRITE4(hp, SDHC_DATA, v);
1574 data += 4;
1575 datalen -= 4;
1576 status = HREAD2(hp, SDHC_NINTR_STATUS);
1577 count--;
1578 }
1579 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1580 if (count == 0) {
1581 sdmmc_delay(10);
1582 }
1583 v = *(uint32_t *)data;
1584 v = htole32(v);
1585 HWRITE4(hp, SDHC_DATA, v);
1586 }
1587 }
1588
1589 /* Prepare for another command. */
1590 static int
1591 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1592 {
1593 int timo;
1594
1595 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1596
1597 /* Request the reset. */
1598 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1599
1600 /*
1601 * If necessary, wait for the controller to set the bits to
1602 * acknowledge the reset.
1603 */
1604 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1605 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1606 for (timo = 10000; timo > 0; timo--) {
1607 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1608 break;
1609 /* Short delay because I worry we may miss it... */
1610 sdmmc_delay(1);
1611 }
1612 if (timo == 0)
1613 return ETIMEDOUT;
1614 }
1615
1616 /*
1617 * Wait for the controller to clear the bits to indicate that
1618 * the reset has completed.
1619 */
1620 for (timo = 10; timo > 0; timo--) {
1621 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1622 break;
1623 sdmmc_delay(10000);
1624 }
1625 if (timo == 0) {
1626 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1627 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1628 return ETIMEDOUT;
1629 }
1630
1631 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1632 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1633 }
1634
1635 return 0;
1636 }
1637
1638 static int
1639 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1640 {
1641 int status;
1642
1643 mask |= SDHC_ERROR_INTERRUPT;
1644
1645 mutex_enter(&hp->intr_mtx);
1646 status = hp->intr_status & mask;
1647 while (status == 0) {
1648 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1649 == EWOULDBLOCK) {
1650 status |= SDHC_ERROR_INTERRUPT;
1651 break;
1652 }
1653 status = hp->intr_status & mask;
1654 }
1655 hp->intr_status &= ~status;
1656
1657 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1658 hp->intr_error_status));
1659
1660 /* Command timeout has higher priority than command complete. */
1661 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1662 hp->intr_error_status = 0;
1663 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1664 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1665 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1666 }
1667 status = 0;
1668 }
1669 mutex_exit(&hp->intr_mtx);
1670
1671 return status;
1672 }
1673
1674 /*
1675 * Established by attachment driver at interrupt priority IPL_SDMMC.
1676 */
1677 int
1678 sdhc_intr(void *arg)
1679 {
1680 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1681 struct sdhc_host *hp;
1682 int done = 0;
1683 uint16_t status;
1684 uint16_t error;
1685
1686 /* We got an interrupt, but we don't know from which slot. */
1687 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1688 hp = sc->sc_host[host];
1689 if (hp == NULL)
1690 continue;
1691
1692 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1693 /* Find out which interrupts are pending. */
1694 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1695 status = xstatus;
1696 error = xstatus >> 16;
1697 if (error)
1698 xstatus |= SDHC_ERROR_INTERRUPT;
1699 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1700 continue; /* no interrupt for us */
1701 /* Acknowledge the interrupts we are about to handle. */
1702 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1703 } else {
1704 /* Find out which interrupts are pending. */
1705 error = 0;
1706 status = HREAD2(hp, SDHC_NINTR_STATUS);
1707 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1708 continue; /* no interrupt for us */
1709 /* Acknowledge the interrupts we are about to handle. */
1710 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1711 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1712 /* Acknowledge error interrupts. */
1713 error = HREAD2(hp, SDHC_EINTR_STATUS);
1714 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1715 }
1716 }
1717
1718 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1719 status, error));
1720
1721 mutex_enter(&hp->intr_mtx);
1722
1723 /* Claim this interrupt. */
1724 done = 1;
1725
1726 /*
1727 * Service error interrupts.
1728 */
1729 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1730 SDHC_DATA_TIMEOUT_ERROR)) {
1731 hp->intr_error_status |= error;
1732 hp->intr_status |= status;
1733 cv_broadcast(&hp->intr_cv);
1734 }
1735
1736 /*
1737 * Wake up the sdmmc event thread to scan for cards.
1738 */
1739 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1740 if (hp->sdmmc != NULL) {
1741 sdmmc_needs_discover(hp->sdmmc);
1742 }
1743 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1744 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1745 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1746 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1747 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1748 }
1749 }
1750
1751 /*
1752 * Wake up the blocking process to service command
1753 * related interrupt(s).
1754 */
1755 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1756 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1757 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1758 hp->intr_status |= status;
1759 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1760 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1761 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1762 }
1763 cv_broadcast(&hp->intr_cv);
1764 }
1765
1766 /*
1767 * Service SD card interrupts.
1768 */
1769 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1770 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1771 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1772 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1773 sdmmc_card_intr(hp->sdmmc);
1774 }
1775 mutex_exit(&hp->intr_mtx);
1776 }
1777
1778 return done;
1779 }
1780
1781 #ifdef SDHC_DEBUG
1782 void
1783 sdhc_dump_regs(struct sdhc_host *hp)
1784 {
1785
1786 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1787 HREAD4(hp, SDHC_PRESENT_STATE));
1788 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1789 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1790 HREAD1(hp, SDHC_POWER_CTL));
1791 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1792 HREAD2(hp, SDHC_NINTR_STATUS));
1793 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1794 HREAD2(hp, SDHC_EINTR_STATUS));
1795 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1796 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1797 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1798 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1799 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1800 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1801 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1802 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1803 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1804 HREAD4(hp, SDHC_CAPABILITIES));
1805 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1806 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1807 }
1808 #endif
1809