sdhc.c revision 1.54 1 /* $NetBSD: sdhc.c,v 1.54 2015/02/27 15:53:09 nonaka Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.54 2015/02/27 15:53:09 nonaka Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/malloc.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT hz
59
60 struct sdhc_host {
61 struct sdhc_softc *sc; /* host controller device */
62
63 bus_space_tag_t iot; /* host register set tag */
64 bus_space_handle_t ioh; /* host register set handle */
65 bus_size_t ios; /* host register space size */
66 bus_dma_tag_t dmat; /* host DMA tag */
67
68 device_t sdmmc; /* generic SD/MMC device */
69
70 struct kmutex host_mtx;
71
72 u_int clkbase; /* base clock frequency in KHz */
73 int maxblklen; /* maximum block length */
74 uint32_t ocr; /* OCR value from capabilities */
75
76 uint8_t regs[14]; /* host controller state */
77
78 uint16_t intr_status; /* soft interrupt status */
79 uint16_t intr_error_status; /* soft error status */
80 struct kmutex intr_mtx;
81 struct kcondvar intr_cv;
82
83 int specver; /* spec. version */
84
85 uint32_t flags; /* flags for this host */
86 #define SHF_USE_DMA 0x0001
87 #define SHF_USE_4BIT_MODE 0x0002
88 #define SHF_USE_8BIT_MODE 0x0004
89 };
90
91 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
92
93 static uint8_t
94 hread1(struct sdhc_host *hp, bus_size_t reg)
95 {
96
97 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
98 return bus_space_read_1(hp->iot, hp->ioh, reg);
99 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
100 }
101
102 static uint16_t
103 hread2(struct sdhc_host *hp, bus_size_t reg)
104 {
105
106 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
107 return bus_space_read_2(hp->iot, hp->ioh, reg);
108 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
109 }
110
111 #define HREAD1(hp, reg) hread1(hp, reg)
112 #define HREAD2(hp, reg) hread2(hp, reg)
113 #define HREAD4(hp, reg) \
114 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
115
116
117 static void
118 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
119 {
120
121 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
122 bus_space_write_1(hp->iot, hp->ioh, o, val);
123 } else {
124 const size_t shift = 8 * (o & 3);
125 o &= -4;
126 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
127 tmp = (val << shift) | (tmp & ~(0xff << shift));
128 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
129 }
130 }
131
132 static void
133 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
134 {
135
136 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 bus_space_write_2(hp->iot, hp->ioh, o, val);
138 } else {
139 const size_t shift = 8 * (o & 2);
140 o &= -4;
141 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 tmp = (val << shift) | (tmp & ~(0xffff << shift));
143 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 }
145 }
146
147 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
148 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
149 #define HWRITE4(hp, reg, val) \
150 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
151
152 #define HCLR1(hp, reg, bits) \
153 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
154 #define HCLR2(hp, reg, bits) \
155 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
156 #define HCLR4(hp, reg, bits) \
157 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
158 #define HSET1(hp, reg, bits) \
159 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
160 #define HSET2(hp, reg, bits) \
161 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
162 #define HSET4(hp, reg, bits) \
163 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
164
165 static int sdhc_host_reset(sdmmc_chipset_handle_t);
166 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
167 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
168 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
169 static int sdhc_card_detect(sdmmc_chipset_handle_t);
170 static int sdhc_write_protect(sdmmc_chipset_handle_t);
171 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
172 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
173 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
174 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
175 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
176 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
177 static void sdhc_exec_command(sdmmc_chipset_handle_t,
178 struct sdmmc_command *);
179 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
180 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
181 static int sdhc_soft_reset(struct sdhc_host *, int);
182 static int sdhc_wait_intr(struct sdhc_host *, int, int);
183 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
184 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
186 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
187 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
188 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
189 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
190
191
192 static struct sdmmc_chip_functions sdhc_functions = {
193 /* host controller reset */
194 sdhc_host_reset,
195
196 /* host controller capabilities */
197 sdhc_host_ocr,
198 sdhc_host_maxblklen,
199
200 /* card detection */
201 sdhc_card_detect,
202
203 /* write protect */
204 sdhc_write_protect,
205
206 /* bus power, clock frequency and width */
207 sdhc_bus_power,
208 sdhc_bus_clock,
209 sdhc_bus_width,
210 sdhc_bus_rod,
211
212 /* command execution */
213 sdhc_exec_command,
214
215 /* card interrupt */
216 sdhc_card_enable_intr,
217 sdhc_card_intr_ack
218 };
219
220 static int
221 sdhc_cfprint(void *aux, const char *pnp)
222 {
223 const struct sdmmcbus_attach_args * const saa = aux;
224 const struct sdhc_host * const hp = saa->saa_sch;
225
226 if (pnp) {
227 aprint_normal("sdmmc at %s", pnp);
228 }
229 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
230 if (hp->sc->sc_host[host] == hp) {
231 aprint_normal(" slot %zu", host);
232 }
233 }
234
235 return UNCONF;
236 }
237
238 /*
239 * Called by attachment driver. For each SD card slot there is one SD
240 * host controller standard register set. (1.3)
241 */
242 int
243 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
244 bus_space_handle_t ioh, bus_size_t iosize)
245 {
246 struct sdmmcbus_attach_args saa;
247 struct sdhc_host *hp;
248 uint32_t caps;
249 uint16_t sdhcver;
250
251 /* Allocate one more host structure. */
252 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
253 if (hp == NULL) {
254 aprint_error_dev(sc->sc_dev,
255 "couldn't alloc memory (sdhc host)\n");
256 goto err1;
257 }
258 sc->sc_host[sc->sc_nhosts++] = hp;
259
260 /* Fill in the new host structure. */
261 hp->sc = sc;
262 hp->iot = iot;
263 hp->ioh = ioh;
264 hp->ios = iosize;
265 hp->dmat = sc->sc_dmat;
266
267 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
268 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
269 cv_init(&hp->intr_cv, "sdhcintr");
270
271 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
272 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
273 } else {
274 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
275 }
276 aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
277 hp->specver = SDHC_SPEC_VERSION(sdhcver);
278 switch (SDHC_SPEC_VERSION(sdhcver)) {
279 case SDHC_SPEC_VERS_100:
280 aprint_normal("1.0");
281 break;
282
283 case SDHC_SPEC_VERS_200:
284 aprint_normal("2.0");
285 break;
286
287 case SDHC_SPEC_VERS_300:
288 aprint_normal("3.0");
289 break;
290
291 default:
292 aprint_normal("unknown version(0x%x)",
293 SDHC_SPEC_VERSION(sdhcver));
294 break;
295 }
296 aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
297
298 /*
299 * Reset the host controller and enable interrupts.
300 */
301 (void)sdhc_host_reset(hp);
302
303 /* Determine host capabilities. */
304 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
305 caps = sc->sc_caps;
306 } else {
307 mutex_enter(&hp->host_mtx);
308 caps = HREAD4(hp, SDHC_CAPABILITIES);
309 mutex_exit(&hp->host_mtx);
310 }
311
312 /* Use DMA if the host system and the controller support it. */
313 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
314 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
315 ISSET(caps, SDHC_DMA_SUPPORT)))) {
316 SET(hp->flags, SHF_USE_DMA);
317 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
318 }
319
320 /*
321 * Determine the base clock frequency. (2.2.24)
322 */
323 if (hp->specver == SDHC_SPEC_VERS_300) {
324 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
325 } else {
326 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
327 }
328 if (hp->clkbase == 0) {
329 if (sc->sc_clkbase == 0) {
330 /* The attachment driver must tell us. */
331 aprint_error_dev(sc->sc_dev,
332 "unknown base clock frequency\n");
333 goto err;
334 }
335 hp->clkbase = sc->sc_clkbase;
336 }
337 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
338 /* SDHC 1.0 supports only 10-63 MHz. */
339 aprint_error_dev(sc->sc_dev,
340 "base clock frequency out of range: %u MHz\n",
341 hp->clkbase / 1000);
342 goto err;
343 }
344 DPRINTF(1,("%s: base clock frequency %u MHz\n",
345 device_xname(sc->sc_dev), hp->clkbase / 1000));
346
347 /*
348 * XXX Set the data timeout counter value according to
349 * capabilities. (2.2.15)
350 */
351 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
352 #if 1
353 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
354 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
355 #endif
356
357 /*
358 * Determine SD bus voltage levels supported by the controller.
359 */
360 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
361 (hp->specver < SDHC_SPEC_VERS_300 ||
362 ISSET(caps, SDHC_EMBEDDED_SLOT))) {
363 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
364 }
365 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
366 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
367 }
368 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
369 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
370 }
371
372 /*
373 * Determine the maximum block length supported by the host
374 * controller. (2.2.24)
375 */
376 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
377 case SDHC_MAX_BLK_LEN_512:
378 hp->maxblklen = 512;
379 break;
380
381 case SDHC_MAX_BLK_LEN_1024:
382 hp->maxblklen = 1024;
383 break;
384
385 case SDHC_MAX_BLK_LEN_2048:
386 hp->maxblklen = 2048;
387 break;
388
389 case SDHC_MAX_BLK_LEN_4096:
390 hp->maxblklen = 4096;
391 break;
392
393 default:
394 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
395 goto err;
396 }
397 DPRINTF(1, ("%s: max block length %u byte%s\n",
398 device_xname(sc->sc_dev), hp->maxblklen,
399 hp->maxblklen > 1 ? "s" : ""));
400
401 /*
402 * Attach the generic SD/MMC bus driver. (The bus driver must
403 * not invoke any chipset functions before it is attached.)
404 */
405 memset(&saa, 0, sizeof(saa));
406 saa.saa_busname = "sdmmc";
407 saa.saa_sct = &sdhc_functions;
408 saa.saa_sch = hp;
409 saa.saa_dmat = hp->dmat;
410 saa.saa_clkmax = hp->clkbase;
411 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
412 saa.saa_clkmin = hp->clkbase / 256 / 2046;
413 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
414 saa.saa_clkmin = hp->clkbase / 256 / 16;
415 else if (hp->sc->sc_clkmsk != 0)
416 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
417 (ffs(hp->sc->sc_clkmsk) - 1));
418 else if (hp->specver == SDHC_SPEC_VERS_300)
419 saa.saa_clkmin = hp->clkbase / 0x3ff;
420 else
421 saa.saa_clkmin = hp->clkbase / 256;
422 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
423 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
424 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
425 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
426 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
427 if (ISSET(hp->flags, SHF_USE_DMA)) {
428 saa.saa_caps |= SMC_CAPS_DMA;
429 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
430 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
431 }
432 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
433 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
434 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
435
436 return 0;
437
438 err:
439 cv_destroy(&hp->intr_cv);
440 mutex_destroy(&hp->intr_mtx);
441 mutex_destroy(&hp->host_mtx);
442 free(hp, M_DEVBUF);
443 sc->sc_host[--sc->sc_nhosts] = NULL;
444 err1:
445 return 1;
446 }
447
448 int
449 sdhc_detach(struct sdhc_softc *sc, int flags)
450 {
451 struct sdhc_host *hp;
452 int rv = 0;
453
454 for (size_t n = 0; n < sc->sc_nhosts; n++) {
455 hp = sc->sc_host[n];
456 if (hp == NULL)
457 continue;
458 if (hp->sdmmc != NULL) {
459 rv = config_detach(hp->sdmmc, flags);
460 if (rv)
461 break;
462 hp->sdmmc = NULL;
463 }
464 /* disable interrupts */
465 if ((flags & DETACH_FORCE) == 0) {
466 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
467 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
468 } else {
469 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
470 }
471 sdhc_soft_reset(hp, SDHC_RESET_ALL);
472 }
473 cv_destroy(&hp->intr_cv);
474 mutex_destroy(&hp->intr_mtx);
475 mutex_destroy(&hp->host_mtx);
476 if (hp->ios > 0) {
477 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
478 hp->ios = 0;
479 }
480 free(hp, M_DEVBUF);
481 sc->sc_host[n] = NULL;
482 }
483
484 return rv;
485 }
486
487 bool
488 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
489 {
490 struct sdhc_softc *sc = device_private(dev);
491 struct sdhc_host *hp;
492 size_t i;
493
494 /* XXX poll for command completion or suspend command
495 * in progress */
496
497 /* Save the host controller state. */
498 for (size_t n = 0; n < sc->sc_nhosts; n++) {
499 hp = sc->sc_host[n];
500 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
501 for (i = 0; i < sizeof hp->regs; i += 4) {
502 uint32_t v = HREAD4(hp, i);
503 hp->regs[i + 0] = (v >> 0);
504 hp->regs[i + 1] = (v >> 8);
505 if (i + 3 < sizeof hp->regs) {
506 hp->regs[i + 2] = (v >> 16);
507 hp->regs[i + 3] = (v >> 24);
508 }
509 }
510 } else {
511 for (i = 0; i < sizeof hp->regs; i++) {
512 hp->regs[i] = HREAD1(hp, i);
513 }
514 }
515 }
516 return true;
517 }
518
519 bool
520 sdhc_resume(device_t dev, const pmf_qual_t *qual)
521 {
522 struct sdhc_softc *sc = device_private(dev);
523 struct sdhc_host *hp;
524 size_t i;
525
526 /* Restore the host controller state. */
527 for (size_t n = 0; n < sc->sc_nhosts; n++) {
528 hp = sc->sc_host[n];
529 (void)sdhc_host_reset(hp);
530 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
531 for (i = 0; i < sizeof hp->regs; i += 4) {
532 if (i + 3 < sizeof hp->regs) {
533 HWRITE4(hp, i,
534 (hp->regs[i + 0] << 0)
535 | (hp->regs[i + 1] << 8)
536 | (hp->regs[i + 2] << 16)
537 | (hp->regs[i + 3] << 24));
538 } else {
539 HWRITE4(hp, i,
540 (hp->regs[i + 0] << 0)
541 | (hp->regs[i + 1] << 8));
542 }
543 }
544 } else {
545 for (i = 0; i < sizeof hp->regs; i++) {
546 HWRITE1(hp, i, hp->regs[i]);
547 }
548 }
549 }
550 return true;
551 }
552
553 bool
554 sdhc_shutdown(device_t dev, int flags)
555 {
556 struct sdhc_softc *sc = device_private(dev);
557 struct sdhc_host *hp;
558
559 /* XXX chip locks up if we don't disable it before reboot. */
560 for (size_t i = 0; i < sc->sc_nhosts; i++) {
561 hp = sc->sc_host[i];
562 (void)sdhc_host_reset(hp);
563 }
564 return true;
565 }
566
567 /*
568 * Reset the host controller. Called during initialization, when
569 * cards are removed, upon resume, and during error recovery.
570 */
571 static int
572 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
573 {
574 struct sdhc_host *hp = (struct sdhc_host *)sch;
575 uint32_t sdhcimask;
576 int error;
577
578 /* Don't lock. */
579
580 /* Disable all interrupts. */
581 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
582 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
583 } else {
584 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
585 }
586
587 /*
588 * Reset the entire host controller and wait up to 100ms for
589 * the controller to clear the reset bit.
590 */
591 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
592 if (error)
593 goto out;
594
595 /* Set data timeout counter value to max for now. */
596 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
597 #if 1
598 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
599 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
600 #endif
601
602 /* Enable interrupts. */
603 mutex_enter(&hp->intr_mtx);
604 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
605 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
606 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
607 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
608 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
609 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
610 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
611 sdhcimask ^=
612 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
613 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
614 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
615 } else {
616 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
617 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
618 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
619 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
620 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
621 }
622 mutex_exit(&hp->intr_mtx);
623
624 out:
625 return error;
626 }
627
628 static int
629 sdhc_host_reset(sdmmc_chipset_handle_t sch)
630 {
631 struct sdhc_host *hp = (struct sdhc_host *)sch;
632 int error;
633
634 mutex_enter(&hp->host_mtx);
635 error = sdhc_host_reset1(sch);
636 mutex_exit(&hp->host_mtx);
637
638 return error;
639 }
640
641 static uint32_t
642 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
643 {
644 struct sdhc_host *hp = (struct sdhc_host *)sch;
645
646 return hp->ocr;
647 }
648
649 static int
650 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
651 {
652 struct sdhc_host *hp = (struct sdhc_host *)sch;
653
654 return hp->maxblklen;
655 }
656
657 /*
658 * Return non-zero if the card is currently inserted.
659 */
660 static int
661 sdhc_card_detect(sdmmc_chipset_handle_t sch)
662 {
663 struct sdhc_host *hp = (struct sdhc_host *)sch;
664 int r;
665
666 if (hp->sc->sc_vendor_card_detect)
667 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
668
669 mutex_enter(&hp->host_mtx);
670 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
671 mutex_exit(&hp->host_mtx);
672
673 return r ? 1 : 0;
674 }
675
676 /*
677 * Return non-zero if the card is currently write-protected.
678 */
679 static int
680 sdhc_write_protect(sdmmc_chipset_handle_t sch)
681 {
682 struct sdhc_host *hp = (struct sdhc_host *)sch;
683 int r;
684
685 if (hp->sc->sc_vendor_write_protect)
686 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
687
688 mutex_enter(&hp->host_mtx);
689 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
690 mutex_exit(&hp->host_mtx);
691
692 return r ? 0 : 1;
693 }
694
695 /*
696 * Set or change SD bus voltage and enable or disable SD bus power.
697 * Return zero on success.
698 */
699 static int
700 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
701 {
702 struct sdhc_host *hp = (struct sdhc_host *)sch;
703 uint8_t vdd;
704 int error = 0;
705 const uint32_t pcmask =
706 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
707
708 mutex_enter(&hp->host_mtx);
709
710 /*
711 * Disable bus power before voltage change.
712 */
713 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
714 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
715 HWRITE1(hp, SDHC_POWER_CTL, 0);
716
717 /* If power is disabled, reset the host and return now. */
718 if (ocr == 0) {
719 (void)sdhc_host_reset1(hp);
720 goto out;
721 }
722
723 /*
724 * Select the lowest voltage according to capabilities.
725 */
726 ocr &= hp->ocr;
727 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
728 vdd = SDHC_VOLTAGE_1_8V;
729 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
730 vdd = SDHC_VOLTAGE_3_0V;
731 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
732 vdd = SDHC_VOLTAGE_3_3V;
733 } else {
734 /* Unsupported voltage level requested. */
735 error = EINVAL;
736 goto out;
737 }
738
739 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
740 /*
741 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
742 * voltage ramp until power rises.
743 */
744 HWRITE1(hp, SDHC_POWER_CTL,
745 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
746 sdmmc_delay(1);
747 HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT));
748 sdmmc_delay(1);
749 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
750 sdmmc_delay(10000);
751
752 /*
753 * The host system may not power the bus due to battery low,
754 * etc. In that case, the host controller should clear the
755 * bus power bit.
756 */
757 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
758 error = ENXIO;
759 goto out;
760 }
761 }
762
763 out:
764 mutex_exit(&hp->host_mtx);
765
766 return error;
767 }
768
769 /*
770 * Return the smallest possible base clock frequency divisor value
771 * for the CLOCK_CTL register to produce `freq' (KHz).
772 */
773 static bool
774 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
775 {
776 u_int div;
777
778 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
779 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
780 if ((hp->clkbase / div) <= freq) {
781 *divp = SDHC_SDCLK_CGM
782 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
783 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
784 //freq = hp->clkbase / div;
785 return true;
786 }
787 }
788 /* No divisor found. */
789 return false;
790 }
791 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
792 u_int dvs = (hp->clkbase + freq - 1) / freq;
793 u_int roundup = dvs & 1;
794 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
795 if (dvs + roundup <= 16) {
796 dvs += roundup - 1;
797 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
798 | (dvs << SDHC_SDCLK_DVS_SHIFT);
799 DPRINTF(2,
800 ("%s: divisor for freq %u is %u * %u\n",
801 HDEVNAME(hp), freq, div * 2, dvs + 1));
802 //freq = hp->clkbase / (div * 2) * (dvs + 1);
803 return true;
804 }
805 /*
806 * If we drop bits, we need to round up the divisor.
807 */
808 roundup |= dvs & 1;
809 }
810 /* No divisor found. */
811 return false;
812 }
813 if (hp->sc->sc_clkmsk != 0) {
814 div = howmany(hp->clkbase, freq);
815 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
816 return false;
817 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
818 //freq = hp->clkbase / div;
819 return true;
820 }
821 if (hp->specver == SDHC_SPEC_VERS_300) {
822 div = howmany(hp->clkbase, freq);
823 div = div > 1 ? howmany(div, 2) : 0;
824 if (div > 0x3ff)
825 return false;
826 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
827 << SDHC_SDCLK_XDIV_SHIFT) |
828 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
829 << SDHC_SDCLK_DIV_SHIFT);
830 //freq = hp->clkbase / div;
831 return true;
832 } else {
833 for (div = 1; div <= 256; div *= 2) {
834 if ((hp->clkbase / div) <= freq) {
835 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
836 //freq = hp->clkbase / div;
837 return true;
838 }
839 }
840 /* No divisor found. */
841 return false;
842 }
843 /* No divisor found. */
844 return false;
845 }
846
847 /*
848 * Set or change SDCLK frequency or disable the SD clock.
849 * Return zero on success.
850 */
851 static int
852 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
853 {
854 struct sdhc_host *hp = (struct sdhc_host *)sch;
855 u_int div;
856 u_int timo;
857 int16_t reg;
858 int error = 0;
859 #ifdef DIAGNOSTIC
860 bool present;
861
862 mutex_enter(&hp->host_mtx);
863 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
864 mutex_exit(&hp->host_mtx);
865
866 /* Must not stop the clock if commands are in progress. */
867 if (present && sdhc_card_detect(hp)) {
868 aprint_normal_dev(hp->sc->sc_dev,
869 "%s: command in progress\n", __func__);
870 }
871 #endif
872
873 mutex_enter(&hp->host_mtx);
874
875 if (hp->sc->sc_vendor_bus_clock) {
876 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
877 if (error != 0)
878 goto out;
879 }
880
881 /*
882 * Stop SD clock before changing the frequency.
883 */
884 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
885 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
886 if (freq == SDMMC_SDCLK_OFF) {
887 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
888 goto out;
889 }
890 } else {
891 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
892 if (freq == SDMMC_SDCLK_OFF)
893 goto out;
894 }
895
896 /*
897 * Set the minimum base clock frequency divisor.
898 */
899 if (!sdhc_clock_divisor(hp, freq, &div)) {
900 /* Invalid base clock frequency or `freq' value. */
901 error = EINVAL;
902 goto out;
903 }
904 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
905 HWRITE4(hp, SDHC_CLOCK_CTL,
906 div | (SDHC_TIMEOUT_MAX << 16));
907 } else {
908 reg = HREAD2(hp, SDHC_CLOCK_CTL);
909 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
910 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
911 }
912
913 /*
914 * Start internal clock. Wait 10ms for stabilization.
915 */
916 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
917 sdmmc_delay(10000);
918 HSET4(hp, SDHC_CLOCK_CTL,
919 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
920 } else {
921 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
922 for (timo = 1000; timo > 0; timo--) {
923 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
924 SDHC_INTCLK_STABLE))
925 break;
926 sdmmc_delay(10);
927 }
928 if (timo == 0) {
929 error = ETIMEDOUT;
930 goto out;
931 }
932 }
933
934 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
935 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
936 /*
937 * Sending 80 clocks at 400kHz takes 200us.
938 * So delay for that time + slop and then
939 * check a few times for completion.
940 */
941 sdmmc_delay(210);
942 for (timo = 10; timo > 0; timo--) {
943 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
944 SDHC_INIT_ACTIVE))
945 break;
946 sdmmc_delay(10);
947 }
948 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
949
950 /*
951 * Enable SD clock.
952 */
953 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
954 } else {
955 /*
956 * Enable SD clock.
957 */
958 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
959
960 if (freq > 25000 &&
961 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
962 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
963 else
964 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
965 }
966
967 out:
968 mutex_exit(&hp->host_mtx);
969
970 return error;
971 }
972
973 static int
974 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
975 {
976 struct sdhc_host *hp = (struct sdhc_host *)sch;
977 int reg;
978
979 switch (width) {
980 case 1:
981 case 4:
982 break;
983
984 case 8:
985 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
986 break;
987 /* FALLTHROUGH */
988 default:
989 DPRINTF(0,("%s: unsupported bus width (%d)\n",
990 HDEVNAME(hp), width));
991 return 1;
992 }
993
994 mutex_enter(&hp->host_mtx);
995 reg = HREAD1(hp, SDHC_HOST_CTL);
996 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
997 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
998 if (width == 4)
999 reg |= SDHC_4BIT_MODE;
1000 else if (width == 8)
1001 reg |= SDHC_ESDHC_8BIT_MODE;
1002 } else {
1003 reg &= ~SDHC_4BIT_MODE;
1004 if (width == 4)
1005 reg |= SDHC_4BIT_MODE;
1006 }
1007 HWRITE1(hp, SDHC_HOST_CTL, reg);
1008 mutex_exit(&hp->host_mtx);
1009
1010 return 0;
1011 }
1012
1013 static int
1014 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1015 {
1016 struct sdhc_host *hp = (struct sdhc_host *)sch;
1017
1018 if (hp->sc->sc_vendor_rod)
1019 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1020
1021 return 0;
1022 }
1023
1024 static void
1025 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1026 {
1027 struct sdhc_host *hp = (struct sdhc_host *)sch;
1028
1029 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1030 mutex_enter(&hp->intr_mtx);
1031 if (enable) {
1032 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1033 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1034 } else {
1035 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1036 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1037 }
1038 mutex_exit(&hp->intr_mtx);
1039 }
1040 }
1041
1042 static void
1043 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1044 {
1045 struct sdhc_host *hp = (struct sdhc_host *)sch;
1046
1047 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1048 mutex_enter(&hp->intr_mtx);
1049 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1050 mutex_exit(&hp->intr_mtx);
1051 }
1052 }
1053
1054 static int
1055 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1056 {
1057 uint32_t state;
1058 int timeout;
1059
1060 for (timeout = 10; timeout > 0; timeout--) {
1061 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1062 return 0;
1063 sdmmc_delay(10000);
1064 }
1065 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1066 value, state));
1067 return ETIMEDOUT;
1068 }
1069
1070 static void
1071 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1072 {
1073 struct sdhc_host *hp = (struct sdhc_host *)sch;
1074 int error;
1075
1076 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1077 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1078 mutex_enter(&hp->intr_mtx);
1079 if (ISSET(hp->flags, SHF_USE_DMA)) {
1080 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1081 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1082 } else {
1083 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1084 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1085 }
1086 mutex_exit(&hp->intr_mtx);
1087 }
1088
1089 /*
1090 * Start the MMC command, or mark `cmd' as failed and return.
1091 */
1092 error = sdhc_start_command(hp, cmd);
1093 if (error) {
1094 cmd->c_error = error;
1095 goto out;
1096 }
1097
1098 /*
1099 * Wait until the command phase is done, or until the command
1100 * is marked done for any other reason.
1101 */
1102 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1103 cmd->c_error = ETIMEDOUT;
1104 goto out;
1105 }
1106
1107 /*
1108 * The host controller removes bits [0:7] from the response
1109 * data (CRC) and we pass the data up unchanged to the bus
1110 * driver (without padding).
1111 */
1112 mutex_enter(&hp->host_mtx);
1113 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1114 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1115 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1116 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1117 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1118 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1119 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1120 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1121 (cmd->c_resp[1] << 24);
1122 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1123 (cmd->c_resp[2] << 24);
1124 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1125 (cmd->c_resp[3] << 24);
1126 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1127 }
1128 }
1129 }
1130 mutex_exit(&hp->host_mtx);
1131 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1132
1133 /*
1134 * If the command has data to transfer in any direction,
1135 * execute the transfer now.
1136 */
1137 if (cmd->c_error == 0 && cmd->c_data != NULL)
1138 sdhc_transfer_data(hp, cmd);
1139 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1140 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1141 cmd->c_error = ETIMEDOUT;
1142 goto out;
1143 }
1144 }
1145
1146 out:
1147 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1148 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1149 mutex_enter(&hp->host_mtx);
1150 /* Turn off the LED. */
1151 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1152 mutex_exit(&hp->host_mtx);
1153 }
1154 SET(cmd->c_flags, SCF_ITSDONE);
1155
1156 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1157 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1158 cmd->c_flags, cmd->c_error));
1159 }
1160
1161 static int
1162 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1163 {
1164 struct sdhc_softc * const sc = hp->sc;
1165 uint16_t blksize = 0;
1166 uint16_t blkcount = 0;
1167 uint16_t mode;
1168 uint16_t command;
1169 int error;
1170
1171 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1172 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1173 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1174
1175 /*
1176 * The maximum block length for commands should be the minimum
1177 * of the host buffer size and the card buffer size. (1.7.2)
1178 */
1179
1180 /* Fragment the data into proper blocks. */
1181 if (cmd->c_datalen > 0) {
1182 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1183 blkcount = cmd->c_datalen / blksize;
1184 if (cmd->c_datalen % blksize > 0) {
1185 /* XXX: Split this command. (1.7.4) */
1186 aprint_error_dev(sc->sc_dev,
1187 "data not a multiple of %u bytes\n", blksize);
1188 return EINVAL;
1189 }
1190 }
1191
1192 /* Check limit imposed by 9-bit block count. (1.7.2) */
1193 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1194 aprint_error_dev(sc->sc_dev, "too much data\n");
1195 return EINVAL;
1196 }
1197
1198 /* Prepare transfer mode register value. (2.2.5) */
1199 mode = SDHC_BLOCK_COUNT_ENABLE;
1200 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1201 mode |= SDHC_READ_MODE;
1202 if (blkcount > 1) {
1203 mode |= SDHC_MULTI_BLOCK_MODE;
1204 /* XXX only for memory commands? */
1205 mode |= SDHC_AUTO_CMD12_ENABLE;
1206 }
1207 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1208 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1209 mode |= SDHC_DMA_ENABLE;
1210 }
1211
1212 /*
1213 * Prepare command register value. (2.2.6)
1214 */
1215 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1216
1217 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1218 command |= SDHC_CRC_CHECK_ENABLE;
1219 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1220 command |= SDHC_INDEX_CHECK_ENABLE;
1221 if (cmd->c_data != NULL)
1222 command |= SDHC_DATA_PRESENT_SELECT;
1223
1224 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1225 command |= SDHC_NO_RESPONSE;
1226 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1227 command |= SDHC_RESP_LEN_136;
1228 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1229 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1230 else
1231 command |= SDHC_RESP_LEN_48;
1232
1233 /* Wait until command and data inhibit bits are clear. (1.5) */
1234 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1235 if (error)
1236 return error;
1237
1238 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1239 HDEVNAME(hp), blksize, blkcount, mode, command));
1240
1241 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1242 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1243 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1244 }
1245
1246 mutex_enter(&hp->host_mtx);
1247
1248 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1249 /* Alert the user not to remove the card. */
1250 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1251 }
1252
1253 /* Set DMA start address. */
1254 if (ISSET(mode, SDHC_DMA_ENABLE))
1255 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1256
1257 /*
1258 * Start a CPU data transfer. Writing to the high order byte
1259 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1260 */
1261 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1262 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1263 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1264 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1265 } else {
1266 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1267 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1268 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1269 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1270 HWRITE2(hp, SDHC_COMMAND, command);
1271 }
1272
1273 mutex_exit(&hp->host_mtx);
1274
1275 return 0;
1276 }
1277
1278 static void
1279 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1280 {
1281 struct sdhc_softc *sc = hp->sc;
1282 int error;
1283
1284 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1285 MMC_R1(cmd->c_resp), cmd->c_datalen));
1286
1287 #ifdef SDHC_DEBUG
1288 /* XXX I forgot why I wanted to know when this happens :-( */
1289 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1290 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1291 aprint_error_dev(hp->sc->sc_dev,
1292 "CMD52/53 error response flags %#x\n",
1293 MMC_R1(cmd->c_resp) & 0xff00);
1294 }
1295 #endif
1296
1297 if (cmd->c_dmamap != NULL) {
1298 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1299 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1300 if (error == 0 && !sdhc_wait_intr(hp,
1301 SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) {
1302 error = ETIMEDOUT;
1303 }
1304 } else {
1305 error = sdhc_transfer_data_dma(hp, cmd);
1306 }
1307 } else
1308 error = sdhc_transfer_data_pio(hp, cmd);
1309 if (error)
1310 cmd->c_error = error;
1311 SET(cmd->c_flags, SCF_ITSDONE);
1312
1313 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1314 HDEVNAME(hp), cmd->c_error));
1315 }
1316
1317 static int
1318 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1319 {
1320 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1321 bus_addr_t posaddr;
1322 bus_addr_t segaddr;
1323 bus_size_t seglen;
1324 u_int seg = 0;
1325 int error = 0;
1326 int status;
1327
1328 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1329 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1330 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1331 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1332
1333 for (;;) {
1334 status = sdhc_wait_intr(hp,
1335 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1336 SDHC_DMA_TIMEOUT);
1337
1338 if (status & SDHC_TRANSFER_COMPLETE) {
1339 break;
1340 }
1341 if (!status) {
1342 error = ETIMEDOUT;
1343 break;
1344 }
1345 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1346 continue;
1347 }
1348
1349 /* DMA Interrupt (boundary crossing) */
1350
1351 segaddr = dm_segs[seg].ds_addr;
1352 seglen = dm_segs[seg].ds_len;
1353 mutex_enter(&hp->host_mtx);
1354 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1355 mutex_exit(&hp->host_mtx);
1356
1357 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1358 continue;
1359 }
1360 mutex_enter(&hp->host_mtx);
1361 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1362 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1363 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1364 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1365 mutex_exit(&hp->host_mtx);
1366 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1367 }
1368
1369 return error;
1370 }
1371
1372 static int
1373 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1374 {
1375 uint8_t *data = cmd->c_data;
1376 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1377 u_int len, datalen;
1378 u_int imask;
1379 u_int pmask;
1380 int error = 0;
1381
1382 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1383 imask = SDHC_BUFFER_READ_READY;
1384 pmask = SDHC_BUFFER_READ_ENABLE;
1385 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1386 pio_func = esdhc_read_data_pio;
1387 } else {
1388 pio_func = sdhc_read_data_pio;
1389 }
1390 } else {
1391 imask = SDHC_BUFFER_WRITE_READY;
1392 pmask = SDHC_BUFFER_WRITE_ENABLE;
1393 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1394 pio_func = esdhc_write_data_pio;
1395 } else {
1396 pio_func = sdhc_write_data_pio;
1397 }
1398 }
1399 datalen = cmd->c_datalen;
1400
1401 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1402 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1403 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1404
1405 while (datalen > 0) {
1406 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1407 mutex_enter(&hp->intr_mtx);
1408 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1409 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1410 } else {
1411 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1412 }
1413 mutex_exit(&hp->intr_mtx);
1414 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1415 error = ETIMEDOUT;
1416 break;
1417 }
1418
1419 error = sdhc_wait_state(hp, pmask, pmask);
1420 if (error)
1421 break;
1422 }
1423
1424 len = MIN(datalen, cmd->c_blklen);
1425 (*pio_func)(hp, data, len);
1426 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1427 HDEVNAME(hp), len, data));
1428
1429 data += len;
1430 datalen -= len;
1431 }
1432
1433 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1434 SDHC_TRANSFER_TIMEOUT))
1435 error = ETIMEDOUT;
1436
1437 return error;
1438 }
1439
1440 static void
1441 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1442 {
1443
1444 if (((__uintptr_t)data & 3) == 0) {
1445 while (datalen > 3) {
1446 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1447 data += 4;
1448 datalen -= 4;
1449 }
1450 if (datalen > 1) {
1451 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1452 data += 2;
1453 datalen -= 2;
1454 }
1455 if (datalen > 0) {
1456 *data = HREAD1(hp, SDHC_DATA);
1457 data += 1;
1458 datalen -= 1;
1459 }
1460 } else if (((__uintptr_t)data & 1) == 0) {
1461 while (datalen > 1) {
1462 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1463 data += 2;
1464 datalen -= 2;
1465 }
1466 if (datalen > 0) {
1467 *data = HREAD1(hp, SDHC_DATA);
1468 data += 1;
1469 datalen -= 1;
1470 }
1471 } else {
1472 while (datalen > 0) {
1473 *data = HREAD1(hp, SDHC_DATA);
1474 data += 1;
1475 datalen -= 1;
1476 }
1477 }
1478 }
1479
1480 static void
1481 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1482 {
1483
1484 if (((__uintptr_t)data & 3) == 0) {
1485 while (datalen > 3) {
1486 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1487 data += 4;
1488 datalen -= 4;
1489 }
1490 if (datalen > 1) {
1491 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1492 data += 2;
1493 datalen -= 2;
1494 }
1495 if (datalen > 0) {
1496 HWRITE1(hp, SDHC_DATA, *data);
1497 data += 1;
1498 datalen -= 1;
1499 }
1500 } else if (((__uintptr_t)data & 1) == 0) {
1501 while (datalen > 1) {
1502 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1503 data += 2;
1504 datalen -= 2;
1505 }
1506 if (datalen > 0) {
1507 HWRITE1(hp, SDHC_DATA, *data);
1508 data += 1;
1509 datalen -= 1;
1510 }
1511 } else {
1512 while (datalen > 0) {
1513 HWRITE1(hp, SDHC_DATA, *data);
1514 data += 1;
1515 datalen -= 1;
1516 }
1517 }
1518 }
1519
1520 static void
1521 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1522 {
1523 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1524 uint32_t v;
1525
1526 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1527 size_t count = 0;
1528
1529 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1530 if (count == 0) {
1531 /*
1532 * If we've drained "watermark" words, we need to wait
1533 * a little bit so the read FIFO can refill.
1534 */
1535 sdmmc_delay(10);
1536 count = watermark;
1537 }
1538 v = HREAD4(hp, SDHC_DATA);
1539 v = le32toh(v);
1540 *(uint32_t *)data = v;
1541 data += 4;
1542 datalen -= 4;
1543 status = HREAD2(hp, SDHC_NINTR_STATUS);
1544 count--;
1545 }
1546 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1547 if (count == 0) {
1548 sdmmc_delay(10);
1549 }
1550 v = HREAD4(hp, SDHC_DATA);
1551 v = le32toh(v);
1552 do {
1553 *data++ = v;
1554 v >>= 8;
1555 } while (--datalen > 0);
1556 }
1557 }
1558
1559 static void
1560 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1561 {
1562 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1563 uint32_t v;
1564
1565 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1566 size_t count = watermark;
1567
1568 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1569 if (count == 0) {
1570 sdmmc_delay(10);
1571 count = watermark;
1572 }
1573 v = *(uint32_t *)data;
1574 v = htole32(v);
1575 HWRITE4(hp, SDHC_DATA, v);
1576 data += 4;
1577 datalen -= 4;
1578 status = HREAD2(hp, SDHC_NINTR_STATUS);
1579 count--;
1580 }
1581 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1582 if (count == 0) {
1583 sdmmc_delay(10);
1584 }
1585 v = *(uint32_t *)data;
1586 v = htole32(v);
1587 HWRITE4(hp, SDHC_DATA, v);
1588 }
1589 }
1590
1591 /* Prepare for another command. */
1592 static int
1593 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1594 {
1595 int timo;
1596
1597 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1598
1599 /* Request the reset. */
1600 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1601
1602 /*
1603 * If necessary, wait for the controller to set the bits to
1604 * acknowledge the reset.
1605 */
1606 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1607 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1608 for (timo = 10000; timo > 0; timo--) {
1609 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1610 break;
1611 /* Short delay because I worry we may miss it... */
1612 sdmmc_delay(1);
1613 }
1614 if (timo == 0)
1615 return ETIMEDOUT;
1616 }
1617
1618 /*
1619 * Wait for the controller to clear the bits to indicate that
1620 * the reset has completed.
1621 */
1622 for (timo = 10; timo > 0; timo--) {
1623 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1624 break;
1625 sdmmc_delay(10000);
1626 }
1627 if (timo == 0) {
1628 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1629 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1630 return ETIMEDOUT;
1631 }
1632
1633 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1634 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1635 }
1636
1637 return 0;
1638 }
1639
1640 static int
1641 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1642 {
1643 int status;
1644
1645 mask |= SDHC_ERROR_INTERRUPT;
1646
1647 mutex_enter(&hp->intr_mtx);
1648 status = hp->intr_status & mask;
1649 while (status == 0) {
1650 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1651 == EWOULDBLOCK) {
1652 status |= SDHC_ERROR_INTERRUPT;
1653 break;
1654 }
1655 status = hp->intr_status & mask;
1656 }
1657 hp->intr_status &= ~status;
1658
1659 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1660 hp->intr_error_status));
1661
1662 /* Command timeout has higher priority than command complete. */
1663 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1664 hp->intr_error_status = 0;
1665 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1666 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1667 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1668 }
1669 status = 0;
1670 }
1671 mutex_exit(&hp->intr_mtx);
1672
1673 return status;
1674 }
1675
1676 /*
1677 * Established by attachment driver at interrupt priority IPL_SDMMC.
1678 */
1679 int
1680 sdhc_intr(void *arg)
1681 {
1682 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1683 struct sdhc_host *hp;
1684 int done = 0;
1685 uint16_t status;
1686 uint16_t error;
1687
1688 /* We got an interrupt, but we don't know from which slot. */
1689 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1690 hp = sc->sc_host[host];
1691 if (hp == NULL)
1692 continue;
1693
1694 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1695 /* Find out which interrupts are pending. */
1696 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1697 status = xstatus;
1698 error = xstatus >> 16;
1699 if (error)
1700 xstatus |= SDHC_ERROR_INTERRUPT;
1701 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1702 continue; /* no interrupt for us */
1703 /* Acknowledge the interrupts we are about to handle. */
1704 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1705 } else {
1706 /* Find out which interrupts are pending. */
1707 error = 0;
1708 status = HREAD2(hp, SDHC_NINTR_STATUS);
1709 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1710 continue; /* no interrupt for us */
1711 /* Acknowledge the interrupts we are about to handle. */
1712 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1713 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1714 /* Acknowledge error interrupts. */
1715 error = HREAD2(hp, SDHC_EINTR_STATUS);
1716 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1717 }
1718 }
1719
1720 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1721 status, error));
1722
1723 mutex_enter(&hp->intr_mtx);
1724
1725 /* Claim this interrupt. */
1726 done = 1;
1727
1728 /*
1729 * Service error interrupts.
1730 */
1731 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1732 SDHC_DATA_TIMEOUT_ERROR)) {
1733 hp->intr_error_status |= error;
1734 hp->intr_status |= status;
1735 cv_broadcast(&hp->intr_cv);
1736 }
1737
1738 /*
1739 * Wake up the sdmmc event thread to scan for cards.
1740 */
1741 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1742 if (hp->sdmmc != NULL) {
1743 sdmmc_needs_discover(hp->sdmmc);
1744 }
1745 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1746 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1747 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1748 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1749 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1750 }
1751 }
1752
1753 /*
1754 * Wake up the blocking process to service command
1755 * related interrupt(s).
1756 */
1757 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1758 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1759 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1760 hp->intr_status |= status;
1761 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1762 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1763 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1764 }
1765 cv_broadcast(&hp->intr_cv);
1766 }
1767
1768 /*
1769 * Service SD card interrupts.
1770 */
1771 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1772 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1773 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1774 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1775 sdmmc_card_intr(hp->sdmmc);
1776 }
1777 mutex_exit(&hp->intr_mtx);
1778 }
1779
1780 return done;
1781 }
1782
1783 #ifdef SDHC_DEBUG
1784 void
1785 sdhc_dump_regs(struct sdhc_host *hp)
1786 {
1787
1788 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1789 HREAD4(hp, SDHC_PRESENT_STATE));
1790 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1791 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1792 HREAD1(hp, SDHC_POWER_CTL));
1793 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1794 HREAD2(hp, SDHC_NINTR_STATUS));
1795 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1796 HREAD2(hp, SDHC_EINTR_STATUS));
1797 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1798 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1799 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1800 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1801 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1802 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1803 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1804 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1805 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1806 HREAD4(hp, SDHC_CAPABILITIES));
1807 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1808 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1809 }
1810 #endif
1811