Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.58
      1 /*	$NetBSD: sdhc.c,v 1.58 2015/05/03 22:37:27 jmcneill Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.58 2015/05/03 22:37:27 jmcneill Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_size_t ios;			/* host register space size */
     66 	bus_dma_tag_t dmat;		/* host DMA tag */
     67 
     68 	device_t sdmmc;			/* generic SD/MMC device */
     69 
     70 	struct kmutex host_mtx;
     71 
     72 	u_int clkbase;			/* base clock frequency in KHz */
     73 	int maxblklen;			/* maximum block length */
     74 	uint32_t ocr;			/* OCR value from capabilities */
     75 
     76 	uint8_t regs[14];		/* host controller state */
     77 
     78 	uint16_t intr_status;		/* soft interrupt status */
     79 	uint16_t intr_error_status;	/* soft error status */
     80 	struct kmutex intr_mtx;
     81 	struct kcondvar intr_cv;
     82 
     83 	int specver;			/* spec. version */
     84 
     85 	uint32_t flags;			/* flags for this host */
     86 #define SHF_USE_DMA		0x0001
     87 #define SHF_USE_4BIT_MODE	0x0002
     88 #define SHF_USE_8BIT_MODE	0x0004
     89 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     90 };
     91 
     92 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     93 
     94 static uint8_t
     95 hread1(struct sdhc_host *hp, bus_size_t reg)
     96 {
     97 
     98 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     99 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    100 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    101 }
    102 
    103 static uint16_t
    104 hread2(struct sdhc_host *hp, bus_size_t reg)
    105 {
    106 
    107 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    108 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    109 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    110 }
    111 
    112 #define HREAD1(hp, reg)		hread1(hp, reg)
    113 #define HREAD2(hp, reg)		hread2(hp, reg)
    114 #define HREAD4(hp, reg)		\
    115 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    116 
    117 
    118 static void
    119 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    120 {
    121 
    122 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    123 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    124 	} else {
    125 		const size_t shift = 8 * (o & 3);
    126 		o &= -4;
    127 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    128 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    129 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    130 	}
    131 }
    132 
    133 static void
    134 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    135 {
    136 
    137 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    138 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    139 	} else {
    140 		const size_t shift = 8 * (o & 2);
    141 		o &= -4;
    142 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    143 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    144 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    145 	}
    146 }
    147 
    148 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    149 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    150 #define HWRITE4(hp, reg, val)						\
    151 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    152 
    153 #define HCLR1(hp, reg, bits)						\
    154 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    155 #define HCLR2(hp, reg, bits)						\
    156 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    157 #define HCLR4(hp, reg, bits)						\
    158 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    159 #define HSET1(hp, reg, bits)						\
    160 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    161 #define HSET2(hp, reg, bits)						\
    162 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    163 #define HSET4(hp, reg, bits)						\
    164 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    165 
    166 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    167 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    168 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    169 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    170 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    171 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    172 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    173 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    174 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    175 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    176 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    177 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    178 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    179 		    struct sdmmc_command *);
    180 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    181 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    182 static int	sdhc_soft_reset(struct sdhc_host *, int);
    183 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    184 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    185 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    186 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    187 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    190 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    191 
    192 
    193 static struct sdmmc_chip_functions sdhc_functions = {
    194 	/* host controller reset */
    195 	sdhc_host_reset,
    196 
    197 	/* host controller capabilities */
    198 	sdhc_host_ocr,
    199 	sdhc_host_maxblklen,
    200 
    201 	/* card detection */
    202 	sdhc_card_detect,
    203 
    204 	/* write protect */
    205 	sdhc_write_protect,
    206 
    207 	/* bus power, clock frequency and width */
    208 	sdhc_bus_power,
    209 	sdhc_bus_clock,
    210 	sdhc_bus_width,
    211 	sdhc_bus_rod,
    212 
    213 	/* command execution */
    214 	sdhc_exec_command,
    215 
    216 	/* card interrupt */
    217 	sdhc_card_enable_intr,
    218 	sdhc_card_intr_ack
    219 };
    220 
    221 static int
    222 sdhc_cfprint(void *aux, const char *pnp)
    223 {
    224 	const struct sdmmcbus_attach_args * const saa = aux;
    225 	const struct sdhc_host * const hp = saa->saa_sch;
    226 
    227 	if (pnp) {
    228 		aprint_normal("sdmmc at %s", pnp);
    229 	}
    230 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    231 		if (hp->sc->sc_host[host] == hp) {
    232 			aprint_normal(" slot %zu", host);
    233 		}
    234 	}
    235 
    236 	return UNCONF;
    237 }
    238 
    239 /*
    240  * Called by attachment driver.  For each SD card slot there is one SD
    241  * host controller standard register set. (1.3)
    242  */
    243 int
    244 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    245     bus_space_handle_t ioh, bus_size_t iosize)
    246 {
    247 	struct sdmmcbus_attach_args saa;
    248 	struct sdhc_host *hp;
    249 	uint32_t caps;
    250 	uint16_t sdhcver;
    251 
    252 	/* Allocate one more host structure. */
    253 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    254 	if (hp == NULL) {
    255 		aprint_error_dev(sc->sc_dev,
    256 		    "couldn't alloc memory (sdhc host)\n");
    257 		goto err1;
    258 	}
    259 	sc->sc_host[sc->sc_nhosts++] = hp;
    260 
    261 	/* Fill in the new host structure. */
    262 	hp->sc = sc;
    263 	hp->iot = iot;
    264 	hp->ioh = ioh;
    265 	hp->ios = iosize;
    266 	hp->dmat = sc->sc_dmat;
    267 
    268 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    269 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    270 	cv_init(&hp->intr_cv, "sdhcintr");
    271 
    272 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    273 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    274 	} else {
    275 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    276 	}
    277 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    278 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    279 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    280 	case SDHC_SPEC_VERS_100:
    281 		aprint_normal("1.0");
    282 		break;
    283 
    284 	case SDHC_SPEC_VERS_200:
    285 		aprint_normal("2.0");
    286 		break;
    287 
    288 	case SDHC_SPEC_VERS_300:
    289 		aprint_normal("3.0");
    290 		break;
    291 
    292 	case SDHC_SPEC_VERS_400:
    293 		aprint_normal("4.0");
    294 		break;
    295 
    296 	default:
    297 		aprint_normal("unknown version(0x%x)",
    298 		    SDHC_SPEC_VERSION(sdhcver));
    299 		break;
    300 	}
    301 	aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    302 
    303 	/*
    304 	 * Reset the host controller and enable interrupts.
    305 	 */
    306 	(void)sdhc_host_reset(hp);
    307 
    308 	/* Determine host capabilities. */
    309 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    310 		caps = sc->sc_caps;
    311 	} else {
    312 		mutex_enter(&hp->host_mtx);
    313 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    314 		mutex_exit(&hp->host_mtx);
    315 	}
    316 
    317 	/*
    318 	 * Use DMA if the host system and the controller support it.
    319 	 * Suports integrated or external DMA egine, with or without
    320 	 * SDHC_DMA_ENABLE in the command.
    321 	 */
    322 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    323 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    324 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    325 		SET(hp->flags, SHF_USE_DMA);
    326 		if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    327 		    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    328 			SET(hp->flags, SHF_MODE_DMAEN);
    329 
    330 		aprint_normal(", DMA");
    331 	} else {
    332 		aprint_normal(", PIO");
    333 	}
    334 
    335 	/*
    336 	 * Determine the base clock frequency. (2.2.24)
    337 	 */
    338 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    339 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    340 	} else {
    341 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    342 	}
    343 	if (hp->clkbase == 0 ||
    344 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    345 		if (sc->sc_clkbase == 0) {
    346 			/* The attachment driver must tell us. */
    347 			aprint_error_dev(sc->sc_dev,
    348 			    "unknown base clock frequency\n");
    349 			goto err;
    350 		}
    351 		hp->clkbase = sc->sc_clkbase;
    352 	}
    353 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    354 		/* SDHC 1.0 supports only 10-63 MHz. */
    355 		aprint_error_dev(sc->sc_dev,
    356 		    "base clock frequency out of range: %u MHz\n",
    357 		    hp->clkbase / 1000);
    358 		goto err;
    359 	}
    360 	aprint_normal(", %u kHz", hp->clkbase);
    361 
    362 	/*
    363 	 * XXX Set the data timeout counter value according to
    364 	 * capabilities. (2.2.15)
    365 	 */
    366 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    367 #if 1
    368 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    369 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    370 #endif
    371 
    372 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    373 		aprint_normal(", embedded slot");
    374 
    375 	/*
    376 	 * Determine SD bus voltage levels supported by the controller.
    377 	 */
    378 	aprint_normal(",");
    379 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
    380 	    (hp->specver < SDHC_SPEC_VERS_300 ||
    381 	     ISSET(caps, SDHC_EMBEDDED_SLOT))) {
    382 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    383 		aprint_normal(" 1.8V");
    384 	}
    385 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    386 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    387 		aprint_normal(" 3.0V");
    388 	}
    389 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    390 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    391 		aprint_normal(" 3.3V");
    392 	}
    393 
    394 	/*
    395 	 * Determine the maximum block length supported by the host
    396 	 * controller. (2.2.24)
    397 	 */
    398 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    399 	case SDHC_MAX_BLK_LEN_512:
    400 		hp->maxblklen = 512;
    401 		break;
    402 
    403 	case SDHC_MAX_BLK_LEN_1024:
    404 		hp->maxblklen = 1024;
    405 		break;
    406 
    407 	case SDHC_MAX_BLK_LEN_2048:
    408 		hp->maxblklen = 2048;
    409 		break;
    410 
    411 	case SDHC_MAX_BLK_LEN_4096:
    412 		hp->maxblklen = 4096;
    413 		break;
    414 
    415 	default:
    416 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    417 		goto err;
    418 	}
    419 	aprint_normal(", %u byte blocks", hp->maxblklen);
    420 	aprint_normal("\n");
    421 
    422 	/*
    423 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    424 	 * not invoke any chipset functions before it is attached.)
    425 	 */
    426 	memset(&saa, 0, sizeof(saa));
    427 	saa.saa_busname = "sdmmc";
    428 	saa.saa_sct = &sdhc_functions;
    429 	saa.saa_sch = hp;
    430 	saa.saa_dmat = hp->dmat;
    431 	saa.saa_clkmax = hp->clkbase;
    432 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    433 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    434 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    435 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    436 	else if (hp->sc->sc_clkmsk != 0)
    437 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    438 		    (ffs(hp->sc->sc_clkmsk) - 1));
    439 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    440 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    441 	else
    442 		saa.saa_clkmin = hp->clkbase / 256;
    443 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    444 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    445 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    446 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    447 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    448 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    449 		saa.saa_caps |= SMC_CAPS_DMA;
    450 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    451 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    452 	}
    453 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    454 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    455 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    456 
    457 	return 0;
    458 
    459 err:
    460 	cv_destroy(&hp->intr_cv);
    461 	mutex_destroy(&hp->intr_mtx);
    462 	mutex_destroy(&hp->host_mtx);
    463 	free(hp, M_DEVBUF);
    464 	sc->sc_host[--sc->sc_nhosts] = NULL;
    465 err1:
    466 	return 1;
    467 }
    468 
    469 int
    470 sdhc_detach(struct sdhc_softc *sc, int flags)
    471 {
    472 	struct sdhc_host *hp;
    473 	int rv = 0;
    474 
    475 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    476 		hp = sc->sc_host[n];
    477 		if (hp == NULL)
    478 			continue;
    479 		if (hp->sdmmc != NULL) {
    480 			rv = config_detach(hp->sdmmc, flags);
    481 			if (rv)
    482 				break;
    483 			hp->sdmmc = NULL;
    484 		}
    485 		/* disable interrupts */
    486 		if ((flags & DETACH_FORCE) == 0) {
    487 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    488 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    489 			} else {
    490 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    491 			}
    492 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    493 		}
    494 		cv_destroy(&hp->intr_cv);
    495 		mutex_destroy(&hp->intr_mtx);
    496 		mutex_destroy(&hp->host_mtx);
    497 		if (hp->ios > 0) {
    498 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    499 			hp->ios = 0;
    500 		}
    501 		free(hp, M_DEVBUF);
    502 		sc->sc_host[n] = NULL;
    503 	}
    504 
    505 	return rv;
    506 }
    507 
    508 bool
    509 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    510 {
    511 	struct sdhc_softc *sc = device_private(dev);
    512 	struct sdhc_host *hp;
    513 	size_t i;
    514 
    515 	/* XXX poll for command completion or suspend command
    516 	 * in progress */
    517 
    518 	/* Save the host controller state. */
    519 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    520 		hp = sc->sc_host[n];
    521 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    522 			for (i = 0; i < sizeof hp->regs; i += 4) {
    523 				uint32_t v = HREAD4(hp, i);
    524 				hp->regs[i + 0] = (v >> 0);
    525 				hp->regs[i + 1] = (v >> 8);
    526 				if (i + 3 < sizeof hp->regs) {
    527 					hp->regs[i + 2] = (v >> 16);
    528 					hp->regs[i + 3] = (v >> 24);
    529 				}
    530 			}
    531 		} else {
    532 			for (i = 0; i < sizeof hp->regs; i++) {
    533 				hp->regs[i] = HREAD1(hp, i);
    534 			}
    535 		}
    536 	}
    537 	return true;
    538 }
    539 
    540 bool
    541 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    542 {
    543 	struct sdhc_softc *sc = device_private(dev);
    544 	struct sdhc_host *hp;
    545 	size_t i;
    546 
    547 	/* Restore the host controller state. */
    548 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    549 		hp = sc->sc_host[n];
    550 		(void)sdhc_host_reset(hp);
    551 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    552 			for (i = 0; i < sizeof hp->regs; i += 4) {
    553 				if (i + 3 < sizeof hp->regs) {
    554 					HWRITE4(hp, i,
    555 					    (hp->regs[i + 0] << 0)
    556 					    | (hp->regs[i + 1] << 8)
    557 					    | (hp->regs[i + 2] << 16)
    558 					    | (hp->regs[i + 3] << 24));
    559 				} else {
    560 					HWRITE4(hp, i,
    561 					    (hp->regs[i + 0] << 0)
    562 					    | (hp->regs[i + 1] << 8));
    563 				}
    564 			}
    565 		} else {
    566 			for (i = 0; i < sizeof hp->regs; i++) {
    567 				HWRITE1(hp, i, hp->regs[i]);
    568 			}
    569 		}
    570 	}
    571 	return true;
    572 }
    573 
    574 bool
    575 sdhc_shutdown(device_t dev, int flags)
    576 {
    577 	struct sdhc_softc *sc = device_private(dev);
    578 	struct sdhc_host *hp;
    579 
    580 	/* XXX chip locks up if we don't disable it before reboot. */
    581 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    582 		hp = sc->sc_host[i];
    583 		(void)sdhc_host_reset(hp);
    584 	}
    585 	return true;
    586 }
    587 
    588 /*
    589  * Reset the host controller.  Called during initialization, when
    590  * cards are removed, upon resume, and during error recovery.
    591  */
    592 static int
    593 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    594 {
    595 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    596 	uint32_t sdhcimask;
    597 	int error;
    598 
    599 	/* Don't lock. */
    600 
    601 	/* Disable all interrupts. */
    602 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    603 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    604 	} else {
    605 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    606 	}
    607 
    608 	/*
    609 	 * Reset the entire host controller and wait up to 100ms for
    610 	 * the controller to clear the reset bit.
    611 	 */
    612 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    613 	if (error)
    614 		goto out;
    615 
    616 	/* Set data timeout counter value to max for now. */
    617 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    618 #if 1
    619 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    620 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    621 #endif
    622 
    623 	/* Enable interrupts. */
    624 	mutex_enter(&hp->intr_mtx);
    625 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    626 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    627 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    628 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    629 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    630 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    631 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    632 		sdhcimask ^=
    633 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    634 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    635 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    636 	} else {
    637 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    638 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    639 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    640 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    641 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    642 	}
    643 	mutex_exit(&hp->intr_mtx);
    644 
    645 out:
    646 	return error;
    647 }
    648 
    649 static int
    650 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    651 {
    652 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    653 	int error;
    654 
    655 	mutex_enter(&hp->host_mtx);
    656 	error = sdhc_host_reset1(sch);
    657 	mutex_exit(&hp->host_mtx);
    658 
    659 	return error;
    660 }
    661 
    662 static uint32_t
    663 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    664 {
    665 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    666 
    667 	return hp->ocr;
    668 }
    669 
    670 static int
    671 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    672 {
    673 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    674 
    675 	return hp->maxblklen;
    676 }
    677 
    678 /*
    679  * Return non-zero if the card is currently inserted.
    680  */
    681 static int
    682 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    683 {
    684 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    685 	int r;
    686 
    687 	if (hp->sc->sc_vendor_card_detect)
    688 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    689 
    690 	mutex_enter(&hp->host_mtx);
    691 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    692 	mutex_exit(&hp->host_mtx);
    693 
    694 	return r ? 1 : 0;
    695 }
    696 
    697 /*
    698  * Return non-zero if the card is currently write-protected.
    699  */
    700 static int
    701 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    702 {
    703 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    704 	int r;
    705 
    706 	if (hp->sc->sc_vendor_write_protect)
    707 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    708 
    709 	mutex_enter(&hp->host_mtx);
    710 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    711 	mutex_exit(&hp->host_mtx);
    712 
    713 	return r ? 0 : 1;
    714 }
    715 
    716 /*
    717  * Set or change SD bus voltage and enable or disable SD bus power.
    718  * Return zero on success.
    719  */
    720 static int
    721 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    722 {
    723 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    724 	uint8_t vdd;
    725 	int error = 0;
    726 	const uint32_t pcmask =
    727 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    728 
    729 	mutex_enter(&hp->host_mtx);
    730 
    731 	/*
    732 	 * Disable bus power before voltage change.
    733 	 */
    734 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    735 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    736 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    737 
    738 	/* If power is disabled, reset the host and return now. */
    739 	if (ocr == 0) {
    740 		(void)sdhc_host_reset1(hp);
    741 		goto out;
    742 	}
    743 
    744 	/*
    745 	 * Select the lowest voltage according to capabilities.
    746 	 */
    747 	ocr &= hp->ocr;
    748 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    749 		vdd = SDHC_VOLTAGE_1_8V;
    750 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    751 		vdd = SDHC_VOLTAGE_3_0V;
    752 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    753 		vdd = SDHC_VOLTAGE_3_3V;
    754 	} else {
    755 		/* Unsupported voltage level requested. */
    756 		error = EINVAL;
    757 		goto out;
    758 	}
    759 
    760 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    761 		/*
    762 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    763 		 * voltage ramp until power rises.
    764 		 */
    765 
    766 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    767 			HWRITE1(hp, SDHC_POWER_CTL,
    768 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    769 		} else {
    770 			HWRITE1(hp, SDHC_POWER_CTL,
    771 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    772 			sdmmc_delay(1);
    773 			HWRITE1(hp, SDHC_POWER_CTL,
    774 			    (vdd << SDHC_VOLTAGE_SHIFT));
    775 			sdmmc_delay(1);
    776 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    777 			sdmmc_delay(10000);
    778 		}
    779 
    780 		/*
    781 		 * The host system may not power the bus due to battery low,
    782 		 * etc.  In that case, the host controller should clear the
    783 		 * bus power bit.
    784 		 */
    785 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    786 			error = ENXIO;
    787 			goto out;
    788 		}
    789 	}
    790 
    791 out:
    792 	mutex_exit(&hp->host_mtx);
    793 
    794 	return error;
    795 }
    796 
    797 /*
    798  * Return the smallest possible base clock frequency divisor value
    799  * for the CLOCK_CTL register to produce `freq' (KHz).
    800  */
    801 static bool
    802 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    803 {
    804 	u_int div;
    805 
    806 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    807 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    808 			if ((hp->clkbase / div) <= freq) {
    809 				*divp = SDHC_SDCLK_CGM
    810 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    811 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    812 				//freq = hp->clkbase / div;
    813 				return true;
    814 			}
    815 		}
    816 		/* No divisor found. */
    817 		return false;
    818 	}
    819 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    820 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    821 		u_int roundup = dvs & 1;
    822 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    823 			if (dvs + roundup <= 16) {
    824 				dvs += roundup - 1;
    825 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    826 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    827 				DPRINTF(2,
    828 				    ("%s: divisor for freq %u is %u * %u\n",
    829 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    830 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    831 				return true;
    832 			}
    833 			/*
    834 			 * If we drop bits, we need to round up the divisor.
    835 			 */
    836 			roundup |= dvs & 1;
    837 		}
    838 		/* No divisor found. */
    839 		return false;
    840 	}
    841 	if (hp->sc->sc_clkmsk != 0) {
    842 		div = howmany(hp->clkbase, freq);
    843 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    844 			return false;
    845 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    846 		//freq = hp->clkbase / div;
    847 		return true;
    848 	}
    849 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    850 		div = howmany(hp->clkbase, freq);
    851 		div = div > 1 ? howmany(div, 2) : 0;
    852 		if (div > 0x3ff)
    853 			return false;
    854 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    855 			 << SDHC_SDCLK_XDIV_SHIFT) |
    856 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    857 			 << SDHC_SDCLK_DIV_SHIFT);
    858 		//freq = hp->clkbase / div;
    859 		return true;
    860 	} else {
    861 		for (div = 1; div <= 256; div *= 2) {
    862 			if ((hp->clkbase / div) <= freq) {
    863 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    864 				//freq = hp->clkbase / div;
    865 				return true;
    866 			}
    867 		}
    868 		/* No divisor found. */
    869 		return false;
    870 	}
    871 	/* No divisor found. */
    872 	return false;
    873 }
    874 
    875 /*
    876  * Set or change SDCLK frequency or disable the SD clock.
    877  * Return zero on success.
    878  */
    879 static int
    880 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    881 {
    882 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    883 	u_int div;
    884 	u_int timo;
    885 	int16_t reg;
    886 	int error = 0;
    887 #ifdef DIAGNOSTIC
    888 	bool present;
    889 
    890 	mutex_enter(&hp->host_mtx);
    891 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    892 	mutex_exit(&hp->host_mtx);
    893 
    894 	/* Must not stop the clock if commands are in progress. */
    895 	if (present && sdhc_card_detect(hp)) {
    896 		aprint_normal_dev(hp->sc->sc_dev,
    897 		    "%s: command in progress\n", __func__);
    898 	}
    899 #endif
    900 
    901 	mutex_enter(&hp->host_mtx);
    902 
    903 	if (hp->sc->sc_vendor_bus_clock) {
    904 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    905 		if (error != 0)
    906 			goto out;
    907 	}
    908 
    909 	/*
    910 	 * Stop SD clock before changing the frequency.
    911 	 */
    912 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    913 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    914 		if (freq == SDMMC_SDCLK_OFF) {
    915 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    916 			goto out;
    917 		}
    918 	} else {
    919 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    920 		if (freq == SDMMC_SDCLK_OFF)
    921 			goto out;
    922 	}
    923 
    924 	/*
    925 	 * Set the minimum base clock frequency divisor.
    926 	 */
    927 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    928 		/* Invalid base clock frequency or `freq' value. */
    929 		error = EINVAL;
    930 		goto out;
    931 	}
    932 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    933 		HWRITE4(hp, SDHC_CLOCK_CTL,
    934 		    div | (SDHC_TIMEOUT_MAX << 16));
    935 	} else {
    936 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
    937 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
    938 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
    939 	}
    940 
    941 	/*
    942 	 * Start internal clock.  Wait 10ms for stabilization.
    943 	 */
    944 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    945 		sdmmc_delay(10000);
    946 		HSET4(hp, SDHC_CLOCK_CTL,
    947 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    948 	} else {
    949 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    950 		for (timo = 1000; timo > 0; timo--) {
    951 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    952 			    SDHC_INTCLK_STABLE))
    953 				break;
    954 			sdmmc_delay(10);
    955 		}
    956 		if (timo == 0) {
    957 			error = ETIMEDOUT;
    958 			goto out;
    959 		}
    960 	}
    961 
    962 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    963 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    964 		/*
    965 		 * Sending 80 clocks at 400kHz takes 200us.
    966 		 * So delay for that time + slop and then
    967 		 * check a few times for completion.
    968 		 */
    969 		sdmmc_delay(210);
    970 		for (timo = 10; timo > 0; timo--) {
    971 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    972 			    SDHC_INIT_ACTIVE))
    973 				break;
    974 			sdmmc_delay(10);
    975 		}
    976 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    977 
    978 		/*
    979 		 * Enable SD clock.
    980 		 */
    981 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    982 	} else {
    983 		/*
    984 		 * Enable SD clock.
    985 		 */
    986 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    987 
    988 		if (freq > 25000 &&
    989 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
    990 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    991 		else
    992 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    993 	}
    994 
    995 out:
    996 	mutex_exit(&hp->host_mtx);
    997 
    998 	return error;
    999 }
   1000 
   1001 static int
   1002 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1003 {
   1004 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1005 	int reg;
   1006 
   1007 	switch (width) {
   1008 	case 1:
   1009 	case 4:
   1010 		break;
   1011 
   1012 	case 8:
   1013 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1014 			break;
   1015 		/* FALLTHROUGH */
   1016 	default:
   1017 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1018 		    HDEVNAME(hp), width));
   1019 		return 1;
   1020 	}
   1021 
   1022 	mutex_enter(&hp->host_mtx);
   1023 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1024 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1025 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1026 		if (width == 4)
   1027 			reg |= SDHC_4BIT_MODE;
   1028 		else if (width == 8)
   1029 			reg |= SDHC_ESDHC_8BIT_MODE;
   1030 	} else {
   1031 		reg &= ~SDHC_4BIT_MODE;
   1032 		if (width == 4)
   1033 			reg |= SDHC_4BIT_MODE;
   1034 	}
   1035 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1036 	mutex_exit(&hp->host_mtx);
   1037 
   1038 	return 0;
   1039 }
   1040 
   1041 static int
   1042 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1043 {
   1044 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1045 
   1046 	if (hp->sc->sc_vendor_rod)
   1047 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1048 
   1049 	return 0;
   1050 }
   1051 
   1052 static void
   1053 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1054 {
   1055 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1056 
   1057 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1058 		mutex_enter(&hp->intr_mtx);
   1059 		if (enable) {
   1060 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1061 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1062 		} else {
   1063 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1064 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1065 		}
   1066 		mutex_exit(&hp->intr_mtx);
   1067 	}
   1068 }
   1069 
   1070 static void
   1071 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1072 {
   1073 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1074 
   1075 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1076 		mutex_enter(&hp->intr_mtx);
   1077 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1078 		mutex_exit(&hp->intr_mtx);
   1079 	}
   1080 }
   1081 
   1082 static int
   1083 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1084 {
   1085 	uint32_t state;
   1086 	int timeout;
   1087 
   1088 	for (timeout = 10; timeout > 0; timeout--) {
   1089 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1090 			return 0;
   1091 		sdmmc_delay(10000);
   1092 	}
   1093 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
   1094 	    value, state));
   1095 	return ETIMEDOUT;
   1096 }
   1097 
   1098 static void
   1099 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1100 {
   1101 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1102 	int error;
   1103 
   1104 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1105 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1106 		mutex_enter(&hp->intr_mtx);
   1107 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1108 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1109 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1110 		} else {
   1111 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1112 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1113 		}
   1114 		mutex_exit(&hp->intr_mtx);
   1115 	}
   1116 
   1117 	/*
   1118 	 * Start the MMC command, or mark `cmd' as failed and return.
   1119 	 */
   1120 	error = sdhc_start_command(hp, cmd);
   1121 	if (error) {
   1122 		cmd->c_error = error;
   1123 		goto out;
   1124 	}
   1125 
   1126 	/*
   1127 	 * Wait until the command phase is done, or until the command
   1128 	 * is marked done for any other reason.
   1129 	 */
   1130 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1131 		cmd->c_error = ETIMEDOUT;
   1132 		goto out;
   1133 	}
   1134 
   1135 	/*
   1136 	 * The host controller removes bits [0:7] from the response
   1137 	 * data (CRC) and we pass the data up unchanged to the bus
   1138 	 * driver (without padding).
   1139 	 */
   1140 	mutex_enter(&hp->host_mtx);
   1141 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1142 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1143 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1144 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1145 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1146 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1147 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1148 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1149 				    (cmd->c_resp[1] << 24);
   1150 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1151 				    (cmd->c_resp[2] << 24);
   1152 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1153 				    (cmd->c_resp[3] << 24);
   1154 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1155 			}
   1156 		}
   1157 	}
   1158 	mutex_exit(&hp->host_mtx);
   1159 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1160 
   1161 	/*
   1162 	 * If the command has data to transfer in any direction,
   1163 	 * execute the transfer now.
   1164 	 */
   1165 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1166 		sdhc_transfer_data(hp, cmd);
   1167 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1168 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
   1169 			cmd->c_error = ETIMEDOUT;
   1170 			goto out;
   1171 		}
   1172 	}
   1173 
   1174 out:
   1175 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1176 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1177 		mutex_enter(&hp->host_mtx);
   1178 		/* Turn off the LED. */
   1179 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1180 		mutex_exit(&hp->host_mtx);
   1181 	}
   1182 	SET(cmd->c_flags, SCF_ITSDONE);
   1183 
   1184 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1185 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1186 	    cmd->c_flags, cmd->c_error));
   1187 }
   1188 
   1189 static int
   1190 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1191 {
   1192 	struct sdhc_softc * const sc = hp->sc;
   1193 	uint16_t blksize = 0;
   1194 	uint16_t blkcount = 0;
   1195 	uint16_t mode;
   1196 	uint16_t command;
   1197 	int error;
   1198 
   1199 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1200 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1201 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1202 
   1203 	/*
   1204 	 * The maximum block length for commands should be the minimum
   1205 	 * of the host buffer size and the card buffer size. (1.7.2)
   1206 	 */
   1207 
   1208 	/* Fragment the data into proper blocks. */
   1209 	if (cmd->c_datalen > 0) {
   1210 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1211 		blkcount = cmd->c_datalen / blksize;
   1212 		if (cmd->c_datalen % blksize > 0) {
   1213 			/* XXX: Split this command. (1.7.4) */
   1214 			aprint_error_dev(sc->sc_dev,
   1215 			    "data not a multiple of %u bytes\n", blksize);
   1216 			return EINVAL;
   1217 		}
   1218 	}
   1219 
   1220 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1221 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1222 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1223 		return EINVAL;
   1224 	}
   1225 
   1226 	/* Prepare transfer mode register value. (2.2.5) */
   1227 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1228 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1229 		mode |= SDHC_READ_MODE;
   1230 	if (blkcount > 1) {
   1231 		mode |= SDHC_MULTI_BLOCK_MODE;
   1232 		/* XXX only for memory commands? */
   1233 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1234 	}
   1235 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1236 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1237 		mode |= SDHC_DMA_ENABLE;
   1238 	}
   1239 
   1240 	/*
   1241 	 * Prepare command register value. (2.2.6)
   1242 	 */
   1243 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1244 
   1245 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1246 		command |= SDHC_CRC_CHECK_ENABLE;
   1247 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1248 		command |= SDHC_INDEX_CHECK_ENABLE;
   1249 	if (cmd->c_data != NULL)
   1250 		command |= SDHC_DATA_PRESENT_SELECT;
   1251 
   1252 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1253 		command |= SDHC_NO_RESPONSE;
   1254 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1255 		command |= SDHC_RESP_LEN_136;
   1256 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1257 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1258 	else
   1259 		command |= SDHC_RESP_LEN_48;
   1260 
   1261 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1262 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1263 	if (error)
   1264 		return error;
   1265 
   1266 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1267 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1268 
   1269 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1270 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1271 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1272 	}
   1273 
   1274 	mutex_enter(&hp->host_mtx);
   1275 
   1276 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1277 		/* Alert the user not to remove the card. */
   1278 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1279 	}
   1280 
   1281 	/* Set DMA start address. */
   1282 	if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1283 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA))
   1284 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1285 
   1286 	/*
   1287 	 * Start a CPU data transfer.  Writing to the high order byte
   1288 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1289 	 */
   1290 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1291 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1292 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1293 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1294 	} else {
   1295 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1296 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1297 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1298 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1299 		HWRITE2(hp, SDHC_COMMAND, command);
   1300 	}
   1301 
   1302 	mutex_exit(&hp->host_mtx);
   1303 
   1304 	return 0;
   1305 }
   1306 
   1307 static void
   1308 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1309 {
   1310 	struct sdhc_softc *sc = hp->sc;
   1311 	int error;
   1312 
   1313 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1314 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1315 
   1316 #ifdef SDHC_DEBUG
   1317 	/* XXX I forgot why I wanted to know when this happens :-( */
   1318 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1319 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1320 		aprint_error_dev(hp->sc->sc_dev,
   1321 		    "CMD52/53 error response flags %#x\n",
   1322 		    MMC_R1(cmd->c_resp) & 0xff00);
   1323 	}
   1324 #endif
   1325 
   1326 	if (cmd->c_dmamap != NULL) {
   1327 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1328 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1329 			if (error == 0 && !sdhc_wait_intr(hp,
   1330 			    SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) {
   1331 				error = ETIMEDOUT;
   1332 			}
   1333 		} else {
   1334 			error = sdhc_transfer_data_dma(hp, cmd);
   1335 		}
   1336 	} else
   1337 		error = sdhc_transfer_data_pio(hp, cmd);
   1338 	if (error)
   1339 		cmd->c_error = error;
   1340 	SET(cmd->c_flags, SCF_ITSDONE);
   1341 
   1342 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1343 	    HDEVNAME(hp), cmd->c_error));
   1344 }
   1345 
   1346 static int
   1347 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1348 {
   1349 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1350 	bus_addr_t posaddr;
   1351 	bus_addr_t segaddr;
   1352 	bus_size_t seglen;
   1353 	u_int seg = 0;
   1354 	int error = 0;
   1355 	int status;
   1356 
   1357 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1358 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1359 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1360 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1361 
   1362 	for (;;) {
   1363 		status = sdhc_wait_intr(hp,
   1364 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1365 		    SDHC_DMA_TIMEOUT);
   1366 
   1367 		if (status & SDHC_TRANSFER_COMPLETE) {
   1368 			break;
   1369 		}
   1370 		if (!status) {
   1371 			error = ETIMEDOUT;
   1372 			break;
   1373 		}
   1374 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1375 			continue;
   1376 		}
   1377 
   1378 		/* DMA Interrupt (boundary crossing) */
   1379 
   1380 		segaddr = dm_segs[seg].ds_addr;
   1381 		seglen = dm_segs[seg].ds_len;
   1382 		mutex_enter(&hp->host_mtx);
   1383 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1384 		mutex_exit(&hp->host_mtx);
   1385 
   1386 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1387 			continue;
   1388 		}
   1389 		mutex_enter(&hp->host_mtx);
   1390 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1391 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1392 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1393 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1394 		mutex_exit(&hp->host_mtx);
   1395 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1396 	}
   1397 
   1398 	return error;
   1399 }
   1400 
   1401 static int
   1402 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1403 {
   1404 	uint8_t *data = cmd->c_data;
   1405 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1406 	u_int len, datalen;
   1407 	u_int imask;
   1408 	u_int pmask;
   1409 	int error = 0;
   1410 
   1411 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1412 		imask = SDHC_BUFFER_READ_READY;
   1413 		pmask = SDHC_BUFFER_READ_ENABLE;
   1414 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1415 			pio_func = esdhc_read_data_pio;
   1416 		} else {
   1417 			pio_func = sdhc_read_data_pio;
   1418 		}
   1419 	} else {
   1420 		imask = SDHC_BUFFER_WRITE_READY;
   1421 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1422 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1423 			pio_func = esdhc_write_data_pio;
   1424 		} else {
   1425 			pio_func = sdhc_write_data_pio;
   1426 		}
   1427 	}
   1428 	datalen = cmd->c_datalen;
   1429 
   1430 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1431 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1432 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1433 
   1434 	while (datalen > 0) {
   1435 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1436 			mutex_enter(&hp->intr_mtx);
   1437 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1438 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1439 			} else {
   1440 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1441 			}
   1442 			mutex_exit(&hp->intr_mtx);
   1443 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1444 				error = ETIMEDOUT;
   1445 				break;
   1446 			}
   1447 
   1448 			error = sdhc_wait_state(hp, pmask, pmask);
   1449 			if (error)
   1450 				break;
   1451 		}
   1452 
   1453 		len = MIN(datalen, cmd->c_blklen);
   1454 		(*pio_func)(hp, data, len);
   1455 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1456 		    HDEVNAME(hp), len, data));
   1457 
   1458 		data += len;
   1459 		datalen -= len;
   1460 	}
   1461 
   1462 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1463 	    SDHC_TRANSFER_TIMEOUT))
   1464 		error = ETIMEDOUT;
   1465 
   1466 	return error;
   1467 }
   1468 
   1469 static void
   1470 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1471 {
   1472 
   1473 	if (((__uintptr_t)data & 3) == 0) {
   1474 		while (datalen > 3) {
   1475 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1476 			data += 4;
   1477 			datalen -= 4;
   1478 		}
   1479 		if (datalen > 1) {
   1480 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1481 			data += 2;
   1482 			datalen -= 2;
   1483 		}
   1484 		if (datalen > 0) {
   1485 			*data = HREAD1(hp, SDHC_DATA);
   1486 			data += 1;
   1487 			datalen -= 1;
   1488 		}
   1489 	} else if (((__uintptr_t)data & 1) == 0) {
   1490 		while (datalen > 1) {
   1491 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1492 			data += 2;
   1493 			datalen -= 2;
   1494 		}
   1495 		if (datalen > 0) {
   1496 			*data = HREAD1(hp, SDHC_DATA);
   1497 			data += 1;
   1498 			datalen -= 1;
   1499 		}
   1500 	} else {
   1501 		while (datalen > 0) {
   1502 			*data = HREAD1(hp, SDHC_DATA);
   1503 			data += 1;
   1504 			datalen -= 1;
   1505 		}
   1506 	}
   1507 }
   1508 
   1509 static void
   1510 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1511 {
   1512 
   1513 	if (((__uintptr_t)data & 3) == 0) {
   1514 		while (datalen > 3) {
   1515 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1516 			data += 4;
   1517 			datalen -= 4;
   1518 		}
   1519 		if (datalen > 1) {
   1520 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1521 			data += 2;
   1522 			datalen -= 2;
   1523 		}
   1524 		if (datalen > 0) {
   1525 			HWRITE1(hp, SDHC_DATA, *data);
   1526 			data += 1;
   1527 			datalen -= 1;
   1528 		}
   1529 	} else if (((__uintptr_t)data & 1) == 0) {
   1530 		while (datalen > 1) {
   1531 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1532 			data += 2;
   1533 			datalen -= 2;
   1534 		}
   1535 		if (datalen > 0) {
   1536 			HWRITE1(hp, SDHC_DATA, *data);
   1537 			data += 1;
   1538 			datalen -= 1;
   1539 		}
   1540 	} else {
   1541 		while (datalen > 0) {
   1542 			HWRITE1(hp, SDHC_DATA, *data);
   1543 			data += 1;
   1544 			datalen -= 1;
   1545 		}
   1546 	}
   1547 }
   1548 
   1549 static void
   1550 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1551 {
   1552 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1553 	uint32_t v;
   1554 
   1555 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1556 	size_t count = 0;
   1557 
   1558 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1559 		if (count == 0) {
   1560 			/*
   1561 			 * If we've drained "watermark" words, we need to wait
   1562 			 * a little bit so the read FIFO can refill.
   1563 			 */
   1564 			sdmmc_delay(10);
   1565 			count = watermark;
   1566 		}
   1567 		v = HREAD4(hp, SDHC_DATA);
   1568 		v = le32toh(v);
   1569 		*(uint32_t *)data = v;
   1570 		data += 4;
   1571 		datalen -= 4;
   1572 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1573 		count--;
   1574 	}
   1575 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1576 		if (count == 0) {
   1577 			sdmmc_delay(10);
   1578 		}
   1579 		v = HREAD4(hp, SDHC_DATA);
   1580 		v = le32toh(v);
   1581 		do {
   1582 			*data++ = v;
   1583 			v >>= 8;
   1584 		} while (--datalen > 0);
   1585 	}
   1586 }
   1587 
   1588 static void
   1589 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1590 {
   1591 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1592 	uint32_t v;
   1593 
   1594 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1595 	size_t count = watermark;
   1596 
   1597 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1598 		if (count == 0) {
   1599 			sdmmc_delay(10);
   1600 			count = watermark;
   1601 		}
   1602 		v = *(uint32_t *)data;
   1603 		v = htole32(v);
   1604 		HWRITE4(hp, SDHC_DATA, v);
   1605 		data += 4;
   1606 		datalen -= 4;
   1607 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1608 		count--;
   1609 	}
   1610 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1611 		if (count == 0) {
   1612 			sdmmc_delay(10);
   1613 		}
   1614 		v = *(uint32_t *)data;
   1615 		v = htole32(v);
   1616 		HWRITE4(hp, SDHC_DATA, v);
   1617 	}
   1618 }
   1619 
   1620 /* Prepare for another command. */
   1621 static int
   1622 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1623 {
   1624 	int timo;
   1625 
   1626 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1627 
   1628 	/* Request the reset.  */
   1629 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1630 
   1631 	/*
   1632 	 * If necessary, wait for the controller to set the bits to
   1633 	 * acknowledge the reset.
   1634 	 */
   1635 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1636 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1637 		for (timo = 10000; timo > 0; timo--) {
   1638 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1639 				break;
   1640 			/* Short delay because I worry we may miss it...  */
   1641 			sdmmc_delay(1);
   1642 		}
   1643 		if (timo == 0)
   1644 			return ETIMEDOUT;
   1645 	}
   1646 
   1647 	/*
   1648 	 * Wait for the controller to clear the bits to indicate that
   1649 	 * the reset has completed.
   1650 	 */
   1651 	for (timo = 10; timo > 0; timo--) {
   1652 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1653 			break;
   1654 		sdmmc_delay(10000);
   1655 	}
   1656 	if (timo == 0) {
   1657 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1658 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1659 		return ETIMEDOUT;
   1660 	}
   1661 
   1662 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1663 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1664 	}
   1665 
   1666 	return 0;
   1667 }
   1668 
   1669 static int
   1670 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1671 {
   1672 	int status;
   1673 
   1674 	mask |= SDHC_ERROR_INTERRUPT;
   1675 
   1676 	mutex_enter(&hp->intr_mtx);
   1677 	status = hp->intr_status & mask;
   1678 	while (status == 0) {
   1679 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1680 		    == EWOULDBLOCK) {
   1681 			status |= SDHC_ERROR_INTERRUPT;
   1682 			break;
   1683 		}
   1684 		status = hp->intr_status & mask;
   1685 	}
   1686 	hp->intr_status &= ~status;
   1687 
   1688 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1689 	    hp->intr_error_status));
   1690 
   1691 	/* Command timeout has higher priority than command complete. */
   1692 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1693 		hp->intr_error_status = 0;
   1694 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1695 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1696 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1697 		}
   1698 		status = 0;
   1699 	}
   1700 	mutex_exit(&hp->intr_mtx);
   1701 
   1702 	return status;
   1703 }
   1704 
   1705 /*
   1706  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1707  */
   1708 int
   1709 sdhc_intr(void *arg)
   1710 {
   1711 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1712 	struct sdhc_host *hp;
   1713 	int done = 0;
   1714 	uint16_t status;
   1715 	uint16_t error;
   1716 
   1717 	/* We got an interrupt, but we don't know from which slot. */
   1718 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1719 		hp = sc->sc_host[host];
   1720 		if (hp == NULL)
   1721 			continue;
   1722 
   1723 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1724 			/* Find out which interrupts are pending. */
   1725 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1726 			status = xstatus;
   1727 			error = xstatus >> 16;
   1728 			if (error)
   1729 				xstatus |= SDHC_ERROR_INTERRUPT;
   1730 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1731 				continue; /* no interrupt for us */
   1732 			/* Acknowledge the interrupts we are about to handle. */
   1733 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1734 		} else {
   1735 			/* Find out which interrupts are pending. */
   1736 			error = 0;
   1737 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1738 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1739 				continue; /* no interrupt for us */
   1740 			/* Acknowledge the interrupts we are about to handle. */
   1741 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1742 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1743 				/* Acknowledge error interrupts. */
   1744 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1745 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1746 			}
   1747 		}
   1748 
   1749 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1750 		    status, error));
   1751 
   1752 		mutex_enter(&hp->intr_mtx);
   1753 
   1754 		/* Claim this interrupt. */
   1755 		done = 1;
   1756 
   1757 		/*
   1758 		 * Service error interrupts.
   1759 		 */
   1760 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1761 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1762 			hp->intr_error_status |= error;
   1763 			hp->intr_status |= status;
   1764 			cv_broadcast(&hp->intr_cv);
   1765 		}
   1766 
   1767 		/*
   1768 		 * Wake up the sdmmc event thread to scan for cards.
   1769 		 */
   1770 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1771 			if (hp->sdmmc != NULL) {
   1772 				sdmmc_needs_discover(hp->sdmmc);
   1773 			}
   1774 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1775 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1776 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1777 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1778 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1779 			}
   1780 		}
   1781 
   1782 		/*
   1783 		 * Wake up the blocking process to service command
   1784 		 * related interrupt(s).
   1785 		 */
   1786 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1787 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1788 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1789 			hp->intr_status |= status;
   1790 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1791 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1792 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1793 			}
   1794 			cv_broadcast(&hp->intr_cv);
   1795 		}
   1796 
   1797 		/*
   1798 		 * Service SD card interrupts.
   1799 		 */
   1800 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1801 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1802 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1803 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1804 			sdmmc_card_intr(hp->sdmmc);
   1805 		}
   1806 		mutex_exit(&hp->intr_mtx);
   1807 	}
   1808 
   1809 	return done;
   1810 }
   1811 
   1812 #ifdef SDHC_DEBUG
   1813 void
   1814 sdhc_dump_regs(struct sdhc_host *hp)
   1815 {
   1816 
   1817 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1818 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1819 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1820 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1821 		    HREAD1(hp, SDHC_POWER_CTL));
   1822 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1823 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1824 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1825 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1826 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1827 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1828 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1829 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1830 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1831 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1832 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1833 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1834 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1835 	    HREAD4(hp, SDHC_CAPABILITIES));
   1836 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1837 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1838 }
   1839 #endif
   1840