sdhc.c revision 1.63 1 /* $NetBSD: sdhc.c,v 1.63 2015/07/29 12:11:13 jmcneill Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.63 2015/07/29 12:11:13 jmcneill Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39
40 #include <dev/sdmmc/sdhcreg.h>
41 #include <dev/sdmmc/sdhcvar.h>
42 #include <dev/sdmmc/sdmmcchip.h>
43 #include <dev/sdmmc/sdmmcreg.h>
44 #include <dev/sdmmc/sdmmcvar.h>
45
46 #ifdef SDHC_DEBUG
47 int sdhcdebug = 1;
48 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 void sdhc_dump_regs(struct sdhc_host *);
50 #else
51 #define DPRINTF(n,s) do {} while (0)
52 #endif
53
54 #define SDHC_COMMAND_TIMEOUT hz
55 #define SDHC_BUFFER_TIMEOUT hz
56 #define SDHC_TRANSFER_TIMEOUT hz
57 #define SDHC_DMA_TIMEOUT (hz*3)
58
59 struct sdhc_host {
60 struct sdhc_softc *sc; /* host controller device */
61
62 bus_space_tag_t iot; /* host register set tag */
63 bus_space_handle_t ioh; /* host register set handle */
64 bus_size_t ios; /* host register space size */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 struct kmutex host_mtx;
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 struct kmutex intr_mtx;
80 struct kcondvar intr_cv;
81
82 int specver; /* spec. version */
83
84 uint32_t flags; /* flags for this host */
85 #define SHF_USE_DMA 0x0001
86 #define SHF_USE_4BIT_MODE 0x0002
87 #define SHF_USE_8BIT_MODE 0x0004
88 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
89 #define SHF_USE_ADMA2_32 0x0010
90 #define SHF_USE_ADMA2_64 0x0020
91 #define SHF_USE_ADMA2_MASK 0x0030
92
93 bus_dmamap_t adma_map;
94 bus_dma_segment_t adma_segs[1];
95 void *adma2;
96 };
97
98 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
99
100 static uint8_t
101 hread1(struct sdhc_host *hp, bus_size_t reg)
102 {
103
104 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
105 return bus_space_read_1(hp->iot, hp->ioh, reg);
106 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
107 }
108
109 static uint16_t
110 hread2(struct sdhc_host *hp, bus_size_t reg)
111 {
112
113 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
114 return bus_space_read_2(hp->iot, hp->ioh, reg);
115 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
116 }
117
118 #define HREAD1(hp, reg) hread1(hp, reg)
119 #define HREAD2(hp, reg) hread2(hp, reg)
120 #define HREAD4(hp, reg) \
121 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
122
123
124 static void
125 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
126 {
127
128 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
129 bus_space_write_1(hp->iot, hp->ioh, o, val);
130 } else {
131 const size_t shift = 8 * (o & 3);
132 o &= -4;
133 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
134 tmp = (val << shift) | (tmp & ~(0xff << shift));
135 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
136 }
137 }
138
139 static void
140 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
141 {
142
143 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
144 bus_space_write_2(hp->iot, hp->ioh, o, val);
145 } else {
146 const size_t shift = 8 * (o & 2);
147 o &= -4;
148 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
149 tmp = (val << shift) | (tmp & ~(0xffff << shift));
150 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
151 }
152 }
153
154 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
155 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
156 #define HWRITE4(hp, reg, val) \
157 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
158
159 #define HCLR1(hp, reg, bits) \
160 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
161 #define HCLR2(hp, reg, bits) \
162 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
163 #define HCLR4(hp, reg, bits) \
164 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
165 #define HSET1(hp, reg, bits) \
166 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
167 #define HSET2(hp, reg, bits) \
168 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
169 #define HSET4(hp, reg, bits) \
170 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
171
172 static int sdhc_host_reset(sdmmc_chipset_handle_t);
173 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
174 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
175 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
176 static int sdhc_card_detect(sdmmc_chipset_handle_t);
177 static int sdhc_write_protect(sdmmc_chipset_handle_t);
178 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
179 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
180 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
181 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
182 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
183 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
184 static void sdhc_exec_command(sdmmc_chipset_handle_t,
185 struct sdmmc_command *);
186 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
187 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
188 static int sdhc_soft_reset(struct sdhc_host *, int);
189 static int sdhc_wait_intr(struct sdhc_host *, int, int);
190 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
191 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
192 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
193 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
196 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
197
198 static struct sdmmc_chip_functions sdhc_functions = {
199 /* host controller reset */
200 .host_reset = sdhc_host_reset,
201
202 /* host controller capabilities */
203 .host_ocr = sdhc_host_ocr,
204 .host_maxblklen = sdhc_host_maxblklen,
205
206 /* card detection */
207 .card_detect = sdhc_card_detect,
208
209 /* write protect */
210 .write_protect = sdhc_write_protect,
211
212 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
213 .bus_power = sdhc_bus_power,
214 .bus_clock = sdhc_bus_clock,
215 .bus_width = sdhc_bus_width,
216 .bus_rod = sdhc_bus_rod,
217
218 /* command execution */
219 .exec_command = sdhc_exec_command,
220
221 /* card interrupt */
222 .card_enable_intr = sdhc_card_enable_intr,
223 .card_intr_ack = sdhc_card_intr_ack
224 };
225
226 static int
227 sdhc_cfprint(void *aux, const char *pnp)
228 {
229 const struct sdmmcbus_attach_args * const saa = aux;
230 const struct sdhc_host * const hp = saa->saa_sch;
231
232 if (pnp) {
233 aprint_normal("sdmmc at %s", pnp);
234 }
235 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
236 if (hp->sc->sc_host[host] == hp) {
237 aprint_normal(" slot %zu", host);
238 }
239 }
240
241 return UNCONF;
242 }
243
244 /*
245 * Called by attachment driver. For each SD card slot there is one SD
246 * host controller standard register set. (1.3)
247 */
248 int
249 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
250 bus_space_handle_t ioh, bus_size_t iosize)
251 {
252 struct sdmmcbus_attach_args saa;
253 struct sdhc_host *hp;
254 uint32_t caps;
255 uint16_t sdhcver;
256 int error;
257
258 /* Allocate one more host structure. */
259 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
260 if (hp == NULL) {
261 aprint_error_dev(sc->sc_dev,
262 "couldn't alloc memory (sdhc host)\n");
263 goto err1;
264 }
265 sc->sc_host[sc->sc_nhosts++] = hp;
266
267 /* Fill in the new host structure. */
268 hp->sc = sc;
269 hp->iot = iot;
270 hp->ioh = ioh;
271 hp->ios = iosize;
272 hp->dmat = sc->sc_dmat;
273
274 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
275 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
276 cv_init(&hp->intr_cv, "sdhcintr");
277
278 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
279 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
280 } else {
281 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
282 }
283 aprint_normal_dev(sc->sc_dev, "SDHC ");
284 hp->specver = SDHC_SPEC_VERSION(sdhcver);
285 switch (SDHC_SPEC_VERSION(sdhcver)) {
286 case SDHC_SPEC_VERS_100:
287 aprint_normal("1.0");
288 break;
289
290 case SDHC_SPEC_VERS_200:
291 aprint_normal("2.0");
292 break;
293
294 case SDHC_SPEC_VERS_300:
295 aprint_normal("3.0");
296 break;
297
298 case SDHC_SPEC_VERS_400:
299 aprint_normal("4.0");
300 break;
301
302 default:
303 aprint_normal("unknown version(0x%x)",
304 SDHC_SPEC_VERSION(sdhcver));
305 break;
306 }
307 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
308
309 /*
310 * Reset the host controller and enable interrupts.
311 */
312 (void)sdhc_host_reset(hp);
313
314 /* Determine host capabilities. */
315 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
316 caps = sc->sc_caps;
317 } else {
318 mutex_enter(&hp->host_mtx);
319 caps = HREAD4(hp, SDHC_CAPABILITIES);
320 mutex_exit(&hp->host_mtx);
321 }
322
323 /*
324 * Use DMA if the host system and the controller support it.
325 * Suports integrated or external DMA egine, with or without
326 * SDHC_DMA_ENABLE in the command.
327 */
328 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
329 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
330 ISSET(caps, SDHC_DMA_SUPPORT)))) {
331 SET(hp->flags, SHF_USE_DMA);
332
333 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
334 ISSET(caps, SDHC_ADMA2_SUPP)) {
335 SET(hp->flags, SHF_MODE_DMAEN);
336 /*
337 * 64-bit mode was present in the 2.00 spec, removed
338 * from 3.00, and re-added in 4.00 with a different
339 * descriptor layout. We only support 2.00 and 3.00
340 * descriptors for now.
341 */
342 if (hp->specver == SDHC_SPEC_VERS_200 &&
343 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
344 SET(hp->flags, SHF_USE_ADMA2_64);
345 aprint_normal(", 64-bit ADMA2");
346 } else {
347 SET(hp->flags, SHF_USE_ADMA2_32);
348 aprint_normal(", 32-bit ADMA2");
349 }
350 } else {
351 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
352 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
353 SET(hp->flags, SHF_MODE_DMAEN);
354 aprint_normal(", SDMA");
355 }
356 } else {
357 aprint_normal(", PIO");
358 }
359
360 /*
361 * Determine the base clock frequency. (2.2.24)
362 */
363 if (hp->specver >= SDHC_SPEC_VERS_300) {
364 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
365 } else {
366 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
367 }
368 if (hp->clkbase == 0 ||
369 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
370 if (sc->sc_clkbase == 0) {
371 /* The attachment driver must tell us. */
372 aprint_error_dev(sc->sc_dev,
373 "unknown base clock frequency\n");
374 goto err;
375 }
376 hp->clkbase = sc->sc_clkbase;
377 }
378 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
379 /* SDHC 1.0 supports only 10-63 MHz. */
380 aprint_error_dev(sc->sc_dev,
381 "base clock frequency out of range: %u MHz\n",
382 hp->clkbase / 1000);
383 goto err;
384 }
385 aprint_normal(", %u kHz", hp->clkbase);
386
387 /*
388 * XXX Set the data timeout counter value according to
389 * capabilities. (2.2.15)
390 */
391 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
392 #if 1
393 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
394 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
395 #endif
396
397 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
398 aprint_normal(", embedded slot");
399
400 /*
401 * Determine SD bus voltage levels supported by the controller.
402 */
403 aprint_normal(",");
404 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
405 (hp->specver < SDHC_SPEC_VERS_300 ||
406 ISSET(caps, SDHC_EMBEDDED_SLOT))) {
407 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
408 aprint_normal(" 1.8V");
409 }
410 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
411 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
412 aprint_normal(" 3.0V");
413 }
414 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
415 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
416 aprint_normal(" 3.3V");
417 }
418
419 /*
420 * Determine the maximum block length supported by the host
421 * controller. (2.2.24)
422 */
423 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
424 case SDHC_MAX_BLK_LEN_512:
425 hp->maxblklen = 512;
426 break;
427
428 case SDHC_MAX_BLK_LEN_1024:
429 hp->maxblklen = 1024;
430 break;
431
432 case SDHC_MAX_BLK_LEN_2048:
433 hp->maxblklen = 2048;
434 break;
435
436 case SDHC_MAX_BLK_LEN_4096:
437 hp->maxblklen = 4096;
438 break;
439
440 default:
441 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
442 goto err;
443 }
444 aprint_normal(", %u byte blocks", hp->maxblklen);
445 aprint_normal("\n");
446
447 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
448 int rseg;
449
450 /* Allocate ADMA2 descriptor memory */
451 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
452 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
453 if (error) {
454 aprint_error_dev(sc->sc_dev,
455 "ADMA2 dmamem_alloc failed (%d)\n", error);
456 goto adma_done;
457 }
458 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
459 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
460 if (error) {
461 aprint_error_dev(sc->sc_dev,
462 "ADMA2 dmamem_map failed (%d)\n", error);
463 goto adma_done;
464 }
465 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
466 0, BUS_DMA_WAITOK, &hp->adma_map);
467 if (error) {
468 aprint_error_dev(sc->sc_dev,
469 "ADMA2 dmamap_create failed (%d)\n", error);
470 goto adma_done;
471 }
472 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
473 hp->adma2, PAGE_SIZE, NULL,
474 BUS_DMA_WAITOK|BUS_DMA_WRITE);
475 if (error) {
476 aprint_error_dev(sc->sc_dev,
477 "ADMA2 dmamap_load failed (%d)\n", error);
478 goto adma_done;
479 }
480
481 memset(hp->adma2, 0, PAGE_SIZE);
482
483 adma_done:
484 if (error)
485 CLR(hp->flags, SHF_USE_ADMA2_MASK);
486 }
487
488 /*
489 * Attach the generic SD/MMC bus driver. (The bus driver must
490 * not invoke any chipset functions before it is attached.)
491 */
492 memset(&saa, 0, sizeof(saa));
493 saa.saa_busname = "sdmmc";
494 saa.saa_sct = &sdhc_functions;
495 saa.saa_sch = hp;
496 saa.saa_dmat = hp->dmat;
497 saa.saa_clkmax = hp->clkbase;
498 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
499 saa.saa_clkmin = hp->clkbase / 256 / 2046;
500 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
501 saa.saa_clkmin = hp->clkbase / 256 / 16;
502 else if (hp->sc->sc_clkmsk != 0)
503 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
504 (ffs(hp->sc->sc_clkmsk) - 1));
505 else if (hp->specver >= SDHC_SPEC_VERS_300)
506 saa.saa_clkmin = hp->clkbase / 0x3ff;
507 else
508 saa.saa_clkmin = hp->clkbase / 256;
509 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
510 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
511 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
512 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
513 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
514 if (ISSET(hp->flags, SHF_USE_DMA)) {
515 saa.saa_caps |= SMC_CAPS_DMA;
516 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
517 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
518 }
519 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
520 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
521 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
522
523 return 0;
524
525 err:
526 cv_destroy(&hp->intr_cv);
527 mutex_destroy(&hp->intr_mtx);
528 mutex_destroy(&hp->host_mtx);
529 free(hp, M_DEVBUF);
530 sc->sc_host[--sc->sc_nhosts] = NULL;
531 err1:
532 return 1;
533 }
534
535 int
536 sdhc_detach(struct sdhc_softc *sc, int flags)
537 {
538 struct sdhc_host *hp;
539 int rv = 0;
540
541 for (size_t n = 0; n < sc->sc_nhosts; n++) {
542 hp = sc->sc_host[n];
543 if (hp == NULL)
544 continue;
545 if (hp->sdmmc != NULL) {
546 rv = config_detach(hp->sdmmc, flags);
547 if (rv)
548 break;
549 hp->sdmmc = NULL;
550 }
551 /* disable interrupts */
552 if ((flags & DETACH_FORCE) == 0) {
553 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
554 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
555 } else {
556 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
557 }
558 sdhc_soft_reset(hp, SDHC_RESET_ALL);
559 }
560 cv_destroy(&hp->intr_cv);
561 mutex_destroy(&hp->intr_mtx);
562 mutex_destroy(&hp->host_mtx);
563 if (hp->ios > 0) {
564 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
565 hp->ios = 0;
566 }
567 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
568 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
569 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
570 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
571 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
572 }
573 free(hp, M_DEVBUF);
574 sc->sc_host[n] = NULL;
575 }
576
577 return rv;
578 }
579
580 bool
581 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
582 {
583 struct sdhc_softc *sc = device_private(dev);
584 struct sdhc_host *hp;
585 size_t i;
586
587 /* XXX poll for command completion or suspend command
588 * in progress */
589
590 /* Save the host controller state. */
591 for (size_t n = 0; n < sc->sc_nhosts; n++) {
592 hp = sc->sc_host[n];
593 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
594 for (i = 0; i < sizeof hp->regs; i += 4) {
595 uint32_t v = HREAD4(hp, i);
596 hp->regs[i + 0] = (v >> 0);
597 hp->regs[i + 1] = (v >> 8);
598 if (i + 3 < sizeof hp->regs) {
599 hp->regs[i + 2] = (v >> 16);
600 hp->regs[i + 3] = (v >> 24);
601 }
602 }
603 } else {
604 for (i = 0; i < sizeof hp->regs; i++) {
605 hp->regs[i] = HREAD1(hp, i);
606 }
607 }
608 }
609 return true;
610 }
611
612 bool
613 sdhc_resume(device_t dev, const pmf_qual_t *qual)
614 {
615 struct sdhc_softc *sc = device_private(dev);
616 struct sdhc_host *hp;
617 size_t i;
618
619 /* Restore the host controller state. */
620 for (size_t n = 0; n < sc->sc_nhosts; n++) {
621 hp = sc->sc_host[n];
622 (void)sdhc_host_reset(hp);
623 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
624 for (i = 0; i < sizeof hp->regs; i += 4) {
625 if (i + 3 < sizeof hp->regs) {
626 HWRITE4(hp, i,
627 (hp->regs[i + 0] << 0)
628 | (hp->regs[i + 1] << 8)
629 | (hp->regs[i + 2] << 16)
630 | (hp->regs[i + 3] << 24));
631 } else {
632 HWRITE4(hp, i,
633 (hp->regs[i + 0] << 0)
634 | (hp->regs[i + 1] << 8));
635 }
636 }
637 } else {
638 for (i = 0; i < sizeof hp->regs; i++) {
639 HWRITE1(hp, i, hp->regs[i]);
640 }
641 }
642 }
643 return true;
644 }
645
646 bool
647 sdhc_shutdown(device_t dev, int flags)
648 {
649 struct sdhc_softc *sc = device_private(dev);
650 struct sdhc_host *hp;
651
652 /* XXX chip locks up if we don't disable it before reboot. */
653 for (size_t i = 0; i < sc->sc_nhosts; i++) {
654 hp = sc->sc_host[i];
655 (void)sdhc_host_reset(hp);
656 }
657 return true;
658 }
659
660 /*
661 * Reset the host controller. Called during initialization, when
662 * cards are removed, upon resume, and during error recovery.
663 */
664 static int
665 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
666 {
667 struct sdhc_host *hp = (struct sdhc_host *)sch;
668 uint32_t sdhcimask;
669 int error;
670
671 /* Don't lock. */
672
673 /* Disable all interrupts. */
674 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
675 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
676 } else {
677 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
678 }
679
680 /*
681 * Reset the entire host controller and wait up to 100ms for
682 * the controller to clear the reset bit.
683 */
684 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
685 if (error)
686 goto out;
687
688 /* Set data timeout counter value to max for now. */
689 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
690 #if 1
691 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
692 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
693 #endif
694
695 /* Enable interrupts. */
696 mutex_enter(&hp->intr_mtx);
697 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
698 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
699 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
700 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
701 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
702 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
703 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
704 sdhcimask ^=
705 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
706 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
707 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
708 } else {
709 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
710 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
711 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
712 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
713 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
714 }
715 mutex_exit(&hp->intr_mtx);
716
717 out:
718 return error;
719 }
720
721 static int
722 sdhc_host_reset(sdmmc_chipset_handle_t sch)
723 {
724 struct sdhc_host *hp = (struct sdhc_host *)sch;
725 int error;
726
727 mutex_enter(&hp->host_mtx);
728 error = sdhc_host_reset1(sch);
729 mutex_exit(&hp->host_mtx);
730
731 return error;
732 }
733
734 static uint32_t
735 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
736 {
737 struct sdhc_host *hp = (struct sdhc_host *)sch;
738
739 return hp->ocr;
740 }
741
742 static int
743 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
744 {
745 struct sdhc_host *hp = (struct sdhc_host *)sch;
746
747 return hp->maxblklen;
748 }
749
750 /*
751 * Return non-zero if the card is currently inserted.
752 */
753 static int
754 sdhc_card_detect(sdmmc_chipset_handle_t sch)
755 {
756 struct sdhc_host *hp = (struct sdhc_host *)sch;
757 int r;
758
759 if (hp->sc->sc_vendor_card_detect)
760 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
761
762 mutex_enter(&hp->host_mtx);
763 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
764 mutex_exit(&hp->host_mtx);
765
766 return r ? 1 : 0;
767 }
768
769 /*
770 * Return non-zero if the card is currently write-protected.
771 */
772 static int
773 sdhc_write_protect(sdmmc_chipset_handle_t sch)
774 {
775 struct sdhc_host *hp = (struct sdhc_host *)sch;
776 int r;
777
778 if (hp->sc->sc_vendor_write_protect)
779 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
780
781 mutex_enter(&hp->host_mtx);
782 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
783 mutex_exit(&hp->host_mtx);
784
785 return r ? 0 : 1;
786 }
787
788 /*
789 * Set or change SD bus voltage and enable or disable SD bus power.
790 * Return zero on success.
791 */
792 static int
793 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
794 {
795 struct sdhc_host *hp = (struct sdhc_host *)sch;
796 uint8_t vdd;
797 int error = 0;
798 const uint32_t pcmask =
799 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
800
801 mutex_enter(&hp->host_mtx);
802
803 /*
804 * Disable bus power before voltage change.
805 */
806 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
807 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
808 HWRITE1(hp, SDHC_POWER_CTL, 0);
809
810 /* If power is disabled, reset the host and return now. */
811 if (ocr == 0) {
812 (void)sdhc_host_reset1(hp);
813 goto out;
814 }
815
816 /*
817 * Select the lowest voltage according to capabilities.
818 */
819 ocr &= hp->ocr;
820 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
821 vdd = SDHC_VOLTAGE_1_8V;
822 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
823 vdd = SDHC_VOLTAGE_3_0V;
824 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
825 vdd = SDHC_VOLTAGE_3_3V;
826 } else {
827 /* Unsupported voltage level requested. */
828 error = EINVAL;
829 goto out;
830 }
831
832 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
833 /*
834 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
835 * voltage ramp until power rises.
836 */
837
838 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
839 HWRITE1(hp, SDHC_POWER_CTL,
840 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
841 } else {
842 HWRITE1(hp, SDHC_POWER_CTL,
843 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
844 sdmmc_delay(1);
845 HWRITE1(hp, SDHC_POWER_CTL,
846 (vdd << SDHC_VOLTAGE_SHIFT));
847 sdmmc_delay(1);
848 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
849 sdmmc_delay(10000);
850 }
851
852 /*
853 * The host system may not power the bus due to battery low,
854 * etc. In that case, the host controller should clear the
855 * bus power bit.
856 */
857 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
858 error = ENXIO;
859 goto out;
860 }
861 }
862
863 out:
864 mutex_exit(&hp->host_mtx);
865
866 return error;
867 }
868
869 /*
870 * Return the smallest possible base clock frequency divisor value
871 * for the CLOCK_CTL register to produce `freq' (KHz).
872 */
873 static bool
874 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
875 {
876 u_int div;
877
878 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
879 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
880 if ((hp->clkbase / div) <= freq) {
881 *divp = SDHC_SDCLK_CGM
882 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
883 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
884 //freq = hp->clkbase / div;
885 return true;
886 }
887 }
888 /* No divisor found. */
889 return false;
890 }
891 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
892 u_int dvs = (hp->clkbase + freq - 1) / freq;
893 u_int roundup = dvs & 1;
894 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
895 if (dvs + roundup <= 16) {
896 dvs += roundup - 1;
897 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
898 | (dvs << SDHC_SDCLK_DVS_SHIFT);
899 DPRINTF(2,
900 ("%s: divisor for freq %u is %u * %u\n",
901 HDEVNAME(hp), freq, div * 2, dvs + 1));
902 //freq = hp->clkbase / (div * 2) * (dvs + 1);
903 return true;
904 }
905 /*
906 * If we drop bits, we need to round up the divisor.
907 */
908 roundup |= dvs & 1;
909 }
910 /* No divisor found. */
911 return false;
912 }
913 if (hp->sc->sc_clkmsk != 0) {
914 div = howmany(hp->clkbase, freq);
915 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
916 return false;
917 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
918 //freq = hp->clkbase / div;
919 return true;
920 }
921 if (hp->specver >= SDHC_SPEC_VERS_300) {
922 div = howmany(hp->clkbase, freq);
923 div = div > 1 ? howmany(div, 2) : 0;
924 if (div > 0x3ff)
925 return false;
926 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
927 << SDHC_SDCLK_XDIV_SHIFT) |
928 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
929 << SDHC_SDCLK_DIV_SHIFT);
930 //freq = hp->clkbase / div;
931 return true;
932 } else {
933 for (div = 1; div <= 256; div *= 2) {
934 if ((hp->clkbase / div) <= freq) {
935 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
936 //freq = hp->clkbase / div;
937 return true;
938 }
939 }
940 /* No divisor found. */
941 return false;
942 }
943 /* No divisor found. */
944 return false;
945 }
946
947 /*
948 * Set or change SDCLK frequency or disable the SD clock.
949 * Return zero on success.
950 */
951 static int
952 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
953 {
954 struct sdhc_host *hp = (struct sdhc_host *)sch;
955 u_int div;
956 u_int timo;
957 int16_t reg;
958 int error = 0;
959 #ifdef DIAGNOSTIC
960 bool present;
961
962 mutex_enter(&hp->host_mtx);
963 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
964 mutex_exit(&hp->host_mtx);
965
966 /* Must not stop the clock if commands are in progress. */
967 if (present && sdhc_card_detect(hp)) {
968 aprint_normal_dev(hp->sc->sc_dev,
969 "%s: command in progress\n", __func__);
970 }
971 #endif
972
973 mutex_enter(&hp->host_mtx);
974
975 if (hp->sc->sc_vendor_bus_clock) {
976 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
977 if (error != 0)
978 goto out;
979 }
980
981 /*
982 * Stop SD clock before changing the frequency.
983 */
984 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
985 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
986 if (freq == SDMMC_SDCLK_OFF) {
987 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
988 goto out;
989 }
990 } else {
991 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
992 if (freq == SDMMC_SDCLK_OFF)
993 goto out;
994 }
995
996 /*
997 * Set the minimum base clock frequency divisor.
998 */
999 if (!sdhc_clock_divisor(hp, freq, &div)) {
1000 /* Invalid base clock frequency or `freq' value. */
1001 error = EINVAL;
1002 goto out;
1003 }
1004 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1005 HWRITE4(hp, SDHC_CLOCK_CTL,
1006 div | (SDHC_TIMEOUT_MAX << 16));
1007 } else {
1008 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1009 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1010 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1011 }
1012
1013 /*
1014 * Start internal clock. Wait 10ms for stabilization.
1015 */
1016 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1017 sdmmc_delay(10000);
1018 HSET4(hp, SDHC_CLOCK_CTL,
1019 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1020 } else {
1021 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1022 for (timo = 1000; timo > 0; timo--) {
1023 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1024 SDHC_INTCLK_STABLE))
1025 break;
1026 sdmmc_delay(10);
1027 }
1028 if (timo == 0) {
1029 error = ETIMEDOUT;
1030 goto out;
1031 }
1032 }
1033
1034 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1035 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1036 /*
1037 * Sending 80 clocks at 400kHz takes 200us.
1038 * So delay for that time + slop and then
1039 * check a few times for completion.
1040 */
1041 sdmmc_delay(210);
1042 for (timo = 10; timo > 0; timo--) {
1043 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1044 SDHC_INIT_ACTIVE))
1045 break;
1046 sdmmc_delay(10);
1047 }
1048 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1049
1050 /*
1051 * Enable SD clock.
1052 */
1053 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1054 } else {
1055 /*
1056 * Enable SD clock.
1057 */
1058 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1059
1060 if (freq > 25000 &&
1061 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1062 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1063 else
1064 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1065 }
1066
1067 out:
1068 mutex_exit(&hp->host_mtx);
1069
1070 return error;
1071 }
1072
1073 static int
1074 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1075 {
1076 struct sdhc_host *hp = (struct sdhc_host *)sch;
1077 int reg;
1078
1079 switch (width) {
1080 case 1:
1081 case 4:
1082 break;
1083
1084 case 8:
1085 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1086 break;
1087 /* FALLTHROUGH */
1088 default:
1089 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1090 HDEVNAME(hp), width));
1091 return 1;
1092 }
1093
1094 mutex_enter(&hp->host_mtx);
1095 reg = HREAD1(hp, SDHC_HOST_CTL);
1096 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1097 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1098 if (width == 4)
1099 reg |= SDHC_4BIT_MODE;
1100 else if (width == 8)
1101 reg |= SDHC_ESDHC_8BIT_MODE;
1102 } else {
1103 reg &= ~SDHC_4BIT_MODE;
1104 if (hp->specver >= SDHC_SPEC_VERS_300) {
1105 reg &= ~SDHC_8BIT_MODE;
1106 }
1107 if (width == 4) {
1108 reg |= SDHC_4BIT_MODE;
1109 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1110 reg |= SDHC_8BIT_MODE;
1111 }
1112 }
1113 HWRITE1(hp, SDHC_HOST_CTL, reg);
1114 mutex_exit(&hp->host_mtx);
1115
1116 return 0;
1117 }
1118
1119 static int
1120 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1121 {
1122 struct sdhc_host *hp = (struct sdhc_host *)sch;
1123
1124 if (hp->sc->sc_vendor_rod)
1125 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1126
1127 return 0;
1128 }
1129
1130 static void
1131 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1132 {
1133 struct sdhc_host *hp = (struct sdhc_host *)sch;
1134
1135 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1136 mutex_enter(&hp->intr_mtx);
1137 if (enable) {
1138 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1139 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1140 } else {
1141 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1142 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1143 }
1144 mutex_exit(&hp->intr_mtx);
1145 }
1146 }
1147
1148 static void
1149 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1150 {
1151 struct sdhc_host *hp = (struct sdhc_host *)sch;
1152
1153 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1154 mutex_enter(&hp->intr_mtx);
1155 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1156 mutex_exit(&hp->intr_mtx);
1157 }
1158 }
1159
1160 static int
1161 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1162 {
1163 uint32_t state;
1164 int timeout;
1165
1166 for (timeout = 10; timeout > 0; timeout--) {
1167 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1168 return 0;
1169 sdmmc_delay(10000);
1170 }
1171 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
1172 value, state));
1173 return ETIMEDOUT;
1174 }
1175
1176 static void
1177 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1178 {
1179 struct sdhc_host *hp = (struct sdhc_host *)sch;
1180 int error;
1181
1182 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1183 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1184 mutex_enter(&hp->intr_mtx);
1185 if (ISSET(hp->flags, SHF_USE_DMA)) {
1186 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1187 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1188 } else {
1189 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1190 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1191 }
1192 mutex_exit(&hp->intr_mtx);
1193 }
1194
1195 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1196 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1197 if (cmd->c_data != NULL) {
1198 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1199 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1200 } else {
1201 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1202 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1203 }
1204 }
1205
1206 /*
1207 * Start the MMC command, or mark `cmd' as failed and return.
1208 */
1209 error = sdhc_start_command(hp, cmd);
1210 if (error) {
1211 cmd->c_error = error;
1212 goto out;
1213 }
1214
1215 /*
1216 * Wait until the command phase is done, or until the command
1217 * is marked done for any other reason.
1218 */
1219 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1220 cmd->c_error = ETIMEDOUT;
1221 goto out;
1222 }
1223
1224 /*
1225 * The host controller removes bits [0:7] from the response
1226 * data (CRC) and we pass the data up unchanged to the bus
1227 * driver (without padding).
1228 */
1229 mutex_enter(&hp->host_mtx);
1230 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1231 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1232 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1233 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1234 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1235 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1236 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1237 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1238 (cmd->c_resp[1] << 24);
1239 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1240 (cmd->c_resp[2] << 24);
1241 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1242 (cmd->c_resp[3] << 24);
1243 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1244 }
1245 }
1246 }
1247 mutex_exit(&hp->host_mtx);
1248 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1249
1250 /*
1251 * If the command has data to transfer in any direction,
1252 * execute the transfer now.
1253 */
1254 if (cmd->c_error == 0 && cmd->c_data != NULL)
1255 sdhc_transfer_data(hp, cmd);
1256 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1257 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1258 cmd->c_error = ETIMEDOUT;
1259 goto out;
1260 }
1261 }
1262
1263 out:
1264 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1265 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1266 mutex_enter(&hp->host_mtx);
1267 /* Turn off the LED. */
1268 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1269 mutex_exit(&hp->host_mtx);
1270 }
1271 SET(cmd->c_flags, SCF_ITSDONE);
1272
1273 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1274 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1275 cmd->c_flags, cmd->c_error));
1276 }
1277
1278 static int
1279 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1280 {
1281 struct sdhc_softc * const sc = hp->sc;
1282 uint16_t blksize = 0;
1283 uint16_t blkcount = 0;
1284 uint16_t mode;
1285 uint16_t command;
1286 int error;
1287
1288 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1289 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1290 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1291
1292 /*
1293 * The maximum block length for commands should be the minimum
1294 * of the host buffer size and the card buffer size. (1.7.2)
1295 */
1296
1297 /* Fragment the data into proper blocks. */
1298 if (cmd->c_datalen > 0) {
1299 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1300 blkcount = cmd->c_datalen / blksize;
1301 if (cmd->c_datalen % blksize > 0) {
1302 /* XXX: Split this command. (1.7.4) */
1303 aprint_error_dev(sc->sc_dev,
1304 "data not a multiple of %u bytes\n", blksize);
1305 return EINVAL;
1306 }
1307 }
1308
1309 /* Check limit imposed by 9-bit block count. (1.7.2) */
1310 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1311 aprint_error_dev(sc->sc_dev, "too much data\n");
1312 return EINVAL;
1313 }
1314
1315 /* Prepare transfer mode register value. (2.2.5) */
1316 mode = SDHC_BLOCK_COUNT_ENABLE;
1317 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1318 mode |= SDHC_READ_MODE;
1319 if (blkcount > 1) {
1320 mode |= SDHC_MULTI_BLOCK_MODE;
1321 /* XXX only for memory commands? */
1322 mode |= SDHC_AUTO_CMD12_ENABLE;
1323 }
1324 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1325 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1326 mode |= SDHC_DMA_ENABLE;
1327 }
1328
1329 /*
1330 * Prepare command register value. (2.2.6)
1331 */
1332 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1333
1334 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1335 command |= SDHC_CRC_CHECK_ENABLE;
1336 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1337 command |= SDHC_INDEX_CHECK_ENABLE;
1338 if (cmd->c_data != NULL)
1339 command |= SDHC_DATA_PRESENT_SELECT;
1340
1341 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1342 command |= SDHC_NO_RESPONSE;
1343 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1344 command |= SDHC_RESP_LEN_136;
1345 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1346 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1347 else
1348 command |= SDHC_RESP_LEN_48;
1349
1350 /* Wait until command and data inhibit bits are clear. (1.5) */
1351 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1352 if (error)
1353 return error;
1354
1355 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1356 HDEVNAME(hp), blksize, blkcount, mode, command));
1357
1358 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1359 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1360 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1361 }
1362
1363 mutex_enter(&hp->host_mtx);
1364
1365 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1366 /* Alert the user not to remove the card. */
1367 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1368 }
1369
1370 /* Set DMA start address. */
1371 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1372 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1373 paddr_t paddr =
1374 cmd->c_dmamap->dm_segs[seg].ds_addr;
1375 uint16_t len =
1376 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1377 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1378 uint16_t attr =
1379 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1380 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1381 attr |= SDHC_ADMA2_END;
1382 }
1383 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1384 struct sdhc_adma2_descriptor32 *desc =
1385 hp->adma2;
1386 desc[seg].attribute = htole16(attr);
1387 desc[seg].length = htole16(len);
1388 desc[seg].address = htole32(paddr);
1389 } else {
1390 struct sdhc_adma2_descriptor64 *desc =
1391 hp->adma2;
1392 desc[seg].attribute = htole16(attr);
1393 desc[seg].length = htole16(len);
1394 desc[seg].address = htole32(paddr & 0xffffffff);
1395 desc[seg].address_hi = htole32(
1396 (uint64_t)paddr >> 32);
1397 }
1398 }
1399 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1400 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1401 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1402 } else {
1403 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1404 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1405 }
1406 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1407 BUS_DMASYNC_PREWRITE);
1408 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1409 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1410
1411 const paddr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1412
1413 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1414 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1415 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1416 (uint64_t)desc_addr >> 32);
1417 }
1418 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1419 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1420 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1421 }
1422
1423 /*
1424 * Start a CPU data transfer. Writing to the high order byte
1425 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1426 */
1427 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1428 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1429 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1430 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1431 } else {
1432 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1433 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1434 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1435 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1436 HWRITE2(hp, SDHC_COMMAND, command);
1437 }
1438
1439 mutex_exit(&hp->host_mtx);
1440
1441 return 0;
1442 }
1443
1444 static void
1445 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1446 {
1447 struct sdhc_softc *sc = hp->sc;
1448 int error;
1449
1450 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1451 MMC_R1(cmd->c_resp), cmd->c_datalen));
1452
1453 #ifdef SDHC_DEBUG
1454 /* XXX I forgot why I wanted to know when this happens :-( */
1455 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1456 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1457 aprint_error_dev(hp->sc->sc_dev,
1458 "CMD52/53 error response flags %#x\n",
1459 MMC_R1(cmd->c_resp) & 0xff00);
1460 }
1461 #endif
1462
1463 if (cmd->c_dmamap != NULL) {
1464 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1465 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1466 if (error == 0 && !sdhc_wait_intr(hp,
1467 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1468 error = ETIMEDOUT;
1469 }
1470 } else {
1471 error = sdhc_transfer_data_dma(hp, cmd);
1472 }
1473 } else
1474 error = sdhc_transfer_data_pio(hp, cmd);
1475 if (error)
1476 cmd->c_error = error;
1477 SET(cmd->c_flags, SCF_ITSDONE);
1478
1479 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1480 HDEVNAME(hp), cmd->c_error));
1481 }
1482
1483 static int
1484 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1485 {
1486 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1487 bus_addr_t posaddr;
1488 bus_addr_t segaddr;
1489 bus_size_t seglen;
1490 u_int seg = 0;
1491 int error = 0;
1492 int status;
1493
1494 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1495 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1496 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1497 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1498
1499 for (;;) {
1500 status = sdhc_wait_intr(hp,
1501 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1502 SDHC_DMA_TIMEOUT);
1503
1504 if (status & SDHC_TRANSFER_COMPLETE) {
1505 break;
1506 }
1507 if (!status) {
1508 error = ETIMEDOUT;
1509 break;
1510 }
1511
1512 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1513 continue;
1514 }
1515
1516 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1517 continue;
1518 }
1519
1520 /* DMA Interrupt (boundary crossing) */
1521
1522 segaddr = dm_segs[seg].ds_addr;
1523 seglen = dm_segs[seg].ds_len;
1524 mutex_enter(&hp->host_mtx);
1525 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1526 mutex_exit(&hp->host_mtx);
1527
1528 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1529 continue;
1530 }
1531 mutex_enter(&hp->host_mtx);
1532 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1533 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1534 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1535 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1536 mutex_exit(&hp->host_mtx);
1537 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1538 }
1539
1540 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1541 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1542 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1543 }
1544
1545 return error;
1546 }
1547
1548 static int
1549 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1550 {
1551 uint8_t *data = cmd->c_data;
1552 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1553 u_int len, datalen;
1554 u_int imask;
1555 u_int pmask;
1556 int error = 0;
1557
1558 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1559 imask = SDHC_BUFFER_READ_READY;
1560 pmask = SDHC_BUFFER_READ_ENABLE;
1561 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1562 pio_func = esdhc_read_data_pio;
1563 } else {
1564 pio_func = sdhc_read_data_pio;
1565 }
1566 } else {
1567 imask = SDHC_BUFFER_WRITE_READY;
1568 pmask = SDHC_BUFFER_WRITE_ENABLE;
1569 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1570 pio_func = esdhc_write_data_pio;
1571 } else {
1572 pio_func = sdhc_write_data_pio;
1573 }
1574 }
1575 datalen = cmd->c_datalen;
1576
1577 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1578 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1579 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1580
1581 while (datalen > 0) {
1582 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1583 mutex_enter(&hp->intr_mtx);
1584 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1585 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1586 } else {
1587 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1588 }
1589 mutex_exit(&hp->intr_mtx);
1590 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1591 error = ETIMEDOUT;
1592 break;
1593 }
1594
1595 error = sdhc_wait_state(hp, pmask, pmask);
1596 if (error)
1597 break;
1598 }
1599
1600 len = MIN(datalen, cmd->c_blklen);
1601 (*pio_func)(hp, data, len);
1602 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1603 HDEVNAME(hp), len, data));
1604
1605 data += len;
1606 datalen -= len;
1607 }
1608
1609 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1610 SDHC_TRANSFER_TIMEOUT))
1611 error = ETIMEDOUT;
1612
1613 return error;
1614 }
1615
1616 static void
1617 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1618 {
1619
1620 if (((__uintptr_t)data & 3) == 0) {
1621 while (datalen > 3) {
1622 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1623 data += 4;
1624 datalen -= 4;
1625 }
1626 if (datalen > 1) {
1627 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1628 data += 2;
1629 datalen -= 2;
1630 }
1631 if (datalen > 0) {
1632 *data = HREAD1(hp, SDHC_DATA);
1633 data += 1;
1634 datalen -= 1;
1635 }
1636 } else if (((__uintptr_t)data & 1) == 0) {
1637 while (datalen > 1) {
1638 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1639 data += 2;
1640 datalen -= 2;
1641 }
1642 if (datalen > 0) {
1643 *data = HREAD1(hp, SDHC_DATA);
1644 data += 1;
1645 datalen -= 1;
1646 }
1647 } else {
1648 while (datalen > 0) {
1649 *data = HREAD1(hp, SDHC_DATA);
1650 data += 1;
1651 datalen -= 1;
1652 }
1653 }
1654 }
1655
1656 static void
1657 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1658 {
1659
1660 if (((__uintptr_t)data & 3) == 0) {
1661 while (datalen > 3) {
1662 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1663 data += 4;
1664 datalen -= 4;
1665 }
1666 if (datalen > 1) {
1667 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1668 data += 2;
1669 datalen -= 2;
1670 }
1671 if (datalen > 0) {
1672 HWRITE1(hp, SDHC_DATA, *data);
1673 data += 1;
1674 datalen -= 1;
1675 }
1676 } else if (((__uintptr_t)data & 1) == 0) {
1677 while (datalen > 1) {
1678 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1679 data += 2;
1680 datalen -= 2;
1681 }
1682 if (datalen > 0) {
1683 HWRITE1(hp, SDHC_DATA, *data);
1684 data += 1;
1685 datalen -= 1;
1686 }
1687 } else {
1688 while (datalen > 0) {
1689 HWRITE1(hp, SDHC_DATA, *data);
1690 data += 1;
1691 datalen -= 1;
1692 }
1693 }
1694 }
1695
1696 static void
1697 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1698 {
1699 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1700 uint32_t v;
1701
1702 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1703 size_t count = 0;
1704
1705 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1706 if (count == 0) {
1707 /*
1708 * If we've drained "watermark" words, we need to wait
1709 * a little bit so the read FIFO can refill.
1710 */
1711 sdmmc_delay(10);
1712 count = watermark;
1713 }
1714 v = HREAD4(hp, SDHC_DATA);
1715 v = le32toh(v);
1716 *(uint32_t *)data = v;
1717 data += 4;
1718 datalen -= 4;
1719 status = HREAD2(hp, SDHC_NINTR_STATUS);
1720 count--;
1721 }
1722 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1723 if (count == 0) {
1724 sdmmc_delay(10);
1725 }
1726 v = HREAD4(hp, SDHC_DATA);
1727 v = le32toh(v);
1728 do {
1729 *data++ = v;
1730 v >>= 8;
1731 } while (--datalen > 0);
1732 }
1733 }
1734
1735 static void
1736 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1737 {
1738 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1739 uint32_t v;
1740
1741 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1742 size_t count = watermark;
1743
1744 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1745 if (count == 0) {
1746 sdmmc_delay(10);
1747 count = watermark;
1748 }
1749 v = *(uint32_t *)data;
1750 v = htole32(v);
1751 HWRITE4(hp, SDHC_DATA, v);
1752 data += 4;
1753 datalen -= 4;
1754 status = HREAD2(hp, SDHC_NINTR_STATUS);
1755 count--;
1756 }
1757 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1758 if (count == 0) {
1759 sdmmc_delay(10);
1760 }
1761 v = *(uint32_t *)data;
1762 v = htole32(v);
1763 HWRITE4(hp, SDHC_DATA, v);
1764 }
1765 }
1766
1767 /* Prepare for another command. */
1768 static int
1769 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1770 {
1771 int timo;
1772
1773 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1774
1775 /* Request the reset. */
1776 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1777
1778 /*
1779 * If necessary, wait for the controller to set the bits to
1780 * acknowledge the reset.
1781 */
1782 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1783 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1784 for (timo = 10000; timo > 0; timo--) {
1785 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1786 break;
1787 /* Short delay because I worry we may miss it... */
1788 sdmmc_delay(1);
1789 }
1790 if (timo == 0)
1791 return ETIMEDOUT;
1792 }
1793
1794 /*
1795 * Wait for the controller to clear the bits to indicate that
1796 * the reset has completed.
1797 */
1798 for (timo = 10; timo > 0; timo--) {
1799 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1800 break;
1801 sdmmc_delay(10000);
1802 }
1803 if (timo == 0) {
1804 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1805 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1806 return ETIMEDOUT;
1807 }
1808
1809 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1810 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1811 }
1812
1813 return 0;
1814 }
1815
1816 static int
1817 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1818 {
1819 int status;
1820
1821 mask |= SDHC_ERROR_INTERRUPT;
1822
1823 mutex_enter(&hp->intr_mtx);
1824 status = hp->intr_status & mask;
1825 while (status == 0) {
1826 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1827 == EWOULDBLOCK) {
1828 status |= SDHC_ERROR_INTERRUPT;
1829 break;
1830 }
1831 status = hp->intr_status & mask;
1832 }
1833 hp->intr_status &= ~status;
1834
1835 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1836 hp->intr_error_status));
1837
1838 /* Command timeout has higher priority than command complete. */
1839 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1840 hp->intr_error_status = 0;
1841 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1842 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1843 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1844 }
1845 status = 0;
1846 }
1847 mutex_exit(&hp->intr_mtx);
1848
1849 return status;
1850 }
1851
1852 /*
1853 * Established by attachment driver at interrupt priority IPL_SDMMC.
1854 */
1855 int
1856 sdhc_intr(void *arg)
1857 {
1858 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1859 struct sdhc_host *hp;
1860 int done = 0;
1861 uint16_t status;
1862 uint16_t error;
1863
1864 /* We got an interrupt, but we don't know from which slot. */
1865 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1866 hp = sc->sc_host[host];
1867 if (hp == NULL)
1868 continue;
1869
1870 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1871 /* Find out which interrupts are pending. */
1872 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1873 status = xstatus;
1874 error = xstatus >> 16;
1875 if (error)
1876 xstatus |= SDHC_ERROR_INTERRUPT;
1877 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1878 continue; /* no interrupt for us */
1879 /* Acknowledge the interrupts we are about to handle. */
1880 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1881 } else {
1882 /* Find out which interrupts are pending. */
1883 error = 0;
1884 status = HREAD2(hp, SDHC_NINTR_STATUS);
1885 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1886 continue; /* no interrupt for us */
1887 /* Acknowledge the interrupts we are about to handle. */
1888 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1889 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1890 /* Acknowledge error interrupts. */
1891 error = HREAD2(hp, SDHC_EINTR_STATUS);
1892 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1893 }
1894 }
1895
1896 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1897 status, error));
1898
1899 mutex_enter(&hp->intr_mtx);
1900
1901 /* Claim this interrupt. */
1902 done = 1;
1903
1904 if (ISSET(error, SDHC_ADMA_ERROR)) {
1905 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1906 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1907 adma_err);
1908 }
1909
1910 /*
1911 * Service error interrupts.
1912 */
1913 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1914 SDHC_DATA_TIMEOUT_ERROR)) {
1915 hp->intr_error_status |= error;
1916 hp->intr_status |= status;
1917 cv_broadcast(&hp->intr_cv);
1918 }
1919
1920 /*
1921 * Wake up the sdmmc event thread to scan for cards.
1922 */
1923 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1924 if (hp->sdmmc != NULL) {
1925 sdmmc_needs_discover(hp->sdmmc);
1926 }
1927 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1928 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1929 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1930 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1931 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1932 }
1933 }
1934
1935 /*
1936 * Wake up the blocking process to service command
1937 * related interrupt(s).
1938 */
1939 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1940 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1941 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1942 hp->intr_status |= status;
1943 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1944 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1945 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1946 }
1947 cv_broadcast(&hp->intr_cv);
1948 }
1949
1950 /*
1951 * Service SD card interrupts.
1952 */
1953 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1954 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1955 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1956 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1957 sdmmc_card_intr(hp->sdmmc);
1958 }
1959 mutex_exit(&hp->intr_mtx);
1960 }
1961
1962 return done;
1963 }
1964
1965 #ifdef SDHC_DEBUG
1966 void
1967 sdhc_dump_regs(struct sdhc_host *hp)
1968 {
1969
1970 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1971 HREAD4(hp, SDHC_PRESENT_STATE));
1972 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1973 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1974 HREAD1(hp, SDHC_POWER_CTL));
1975 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1976 HREAD2(hp, SDHC_NINTR_STATUS));
1977 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1978 HREAD2(hp, SDHC_EINTR_STATUS));
1979 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1980 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1981 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1982 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1983 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1984 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1985 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1986 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1987 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1988 HREAD4(hp, SDHC_CAPABILITIES));
1989 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1990 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1991 }
1992 #endif
1993