sdhc.c revision 1.7 1 /* $NetBSD: sdhc.c,v 1.7 2010/03/27 03:04:52 nonaka Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.7 2010/03/27 03:04:52 nonaka Exp $");
27
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 1;
45 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s) do {} while (0)
49 #endif
50
51 #define SDHC_COMMAND_TIMEOUT hz
52 #define SDHC_BUFFER_TIMEOUT hz
53 #define SDHC_TRANSFER_TIMEOUT hz
54 #define SDHC_DMA_TIMEOUT hz
55
56 struct sdhc_host {
57 struct sdhc_softc *sc; /* host controller device */
58
59 bus_space_tag_t iot; /* host register set tag */
60 bus_space_handle_t ioh; /* host register set handle */
61 bus_dma_tag_t dmat; /* host DMA tag */
62
63 device_t sdmmc; /* generic SD/MMC device */
64
65 struct kmutex host_mtx;
66
67 u_int clkbase; /* base clock frequency in KHz */
68 int maxblklen; /* maximum block length */
69 uint32_t ocr; /* OCR value from capabilities */
70
71 uint8_t regs[14]; /* host controller state */
72
73 uint16_t intr_status; /* soft interrupt status */
74 uint16_t intr_error_status; /* soft error status */
75 struct kmutex intr_mtx;
76 struct kcondvar intr_cv;
77
78 uint32_t flags; /* flags for this host */
79 #define SHF_USE_DMA 0x0001
80 #define SHF_USE_4BIT_MODE 0x0002
81 };
82
83 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
84
85 #define HREAD1(hp, reg) \
86 (bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg) \
88 (bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg) \
90 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val) \
92 bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val) \
94 bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val) \
96 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits) \
98 HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits) \
100 HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits) \
102 HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits) \
104 HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105
106 static int sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
116 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
117 static void sdhc_exec_command(sdmmc_chipset_handle_t,
118 struct sdmmc_command *);
119 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
120 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
121 static int sdhc_soft_reset(struct sdhc_host *, int);
122 static int sdhc_wait_intr(struct sdhc_host *, int, int);
123 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
124 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
125 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
126 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
127 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
128
129 static struct sdmmc_chip_functions sdhc_functions = {
130 /* host controller reset */
131 sdhc_host_reset,
132
133 /* host controller capabilities */
134 sdhc_host_ocr,
135 sdhc_host_maxblklen,
136
137 /* card detection */
138 sdhc_card_detect,
139
140 /* write protect */
141 sdhc_write_protect,
142
143 /* bus power, clock frequency and width */
144 sdhc_bus_power,
145 sdhc_bus_clock,
146 sdhc_bus_width,
147
148 /* command execution */
149 sdhc_exec_command,
150
151 /* card interrupt */
152 sdhc_card_enable_intr,
153 sdhc_card_intr_ack
154 };
155
156 /*
157 * Called by attachment driver. For each SD card slot there is one SD
158 * host controller standard register set. (1.3)
159 */
160 int
161 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
162 bus_space_handle_t ioh, bus_size_t iosize)
163 {
164 struct sdmmcbus_attach_args saa;
165 struct sdhc_host *hp;
166 uint32_t caps;
167 #ifdef SDHC_DEBUG
168 uint16_t sdhcver;
169
170 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
171 aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
172 switch (SDHC_SPEC_VERSION(sdhcver)) {
173 case 0x00:
174 aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
175 break;
176
177 default:
178 aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
179 break;
180 }
181 #endif
182
183 /* Allocate one more host structure. */
184 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
185 if (hp == NULL) {
186 aprint_error_dev(sc->sc_dev,
187 "couldn't alloc memory (sdhc host)\n");
188 goto err1;
189 }
190 sc->sc_host[sc->sc_nhosts++] = hp;
191
192 /* Fill in the new host structure. */
193 hp->sc = sc;
194 hp->iot = iot;
195 hp->ioh = ioh;
196 hp->dmat = sc->sc_dmat;
197
198 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
199 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
200 cv_init(&hp->intr_cv, "sdhcintr");
201
202 /*
203 * Reset the host controller and enable interrupts.
204 */
205 (void)sdhc_host_reset(hp);
206
207 /* Determine host capabilities. */
208 mutex_enter(&hp->host_mtx);
209 caps = HREAD4(hp, SDHC_CAPABILITIES);
210 mutex_exit(&hp->host_mtx);
211
212 #if notyet
213 /* Use DMA if the host system and the controller support it. */
214 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
215 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
216 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
217 SET(hp->flags, SHF_USE_DMA);
218 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
219 }
220 #endif
221
222 /*
223 * Determine the base clock frequency. (2.2.24)
224 */
225 if (SDHC_BASE_FREQ_KHZ(caps) != 0)
226 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
227 if (hp->clkbase == 0) {
228 /* The attachment driver must tell us. */
229 aprint_error_dev(sc->sc_dev, "unknown base clock frequency\n");
230 goto err;
231 } else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
232 /* SDHC 1.0 supports only 10-63 MHz. */
233 aprint_error_dev(sc->sc_dev,
234 "base clock frequency out of range: %u MHz\n",
235 hp->clkbase / 1000);
236 goto err;
237 }
238 DPRINTF(1,("%s: base clock frequency %u MHz\n",
239 device_xname(sc->sc_dev), hp->clkbase / 1000));
240
241 /*
242 * XXX Set the data timeout counter value according to
243 * capabilities. (2.2.15)
244 */
245 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
246
247 /*
248 * Determine SD bus voltage levels supported by the controller.
249 */
250 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
251 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
252 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
253 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
254 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
255 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
256
257 /*
258 * Determine the maximum block length supported by the host
259 * controller. (2.2.24)
260 */
261 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
262 case SDHC_MAX_BLK_LEN_512:
263 hp->maxblklen = 512;
264 break;
265
266 case SDHC_MAX_BLK_LEN_1024:
267 hp->maxblklen = 1024;
268 break;
269
270 case SDHC_MAX_BLK_LEN_2048:
271 hp->maxblklen = 2048;
272 break;
273
274 default:
275 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
276 goto err;
277 }
278 DPRINTF(1, ("%s: max block length %u byte%s\n",
279 device_xname(sc->sc_dev), hp->maxblklen,
280 hp->maxblklen > 1 ? "s" : ""));
281
282 /*
283 * Attach the generic SD/MMC bus driver. (The bus driver must
284 * not invoke any chipset functions before it is attached.)
285 */
286 memset(&saa, 0, sizeof(saa));
287 saa.saa_busname = "sdmmc";
288 saa.saa_sct = &sdhc_functions;
289 saa.saa_sch = hp;
290 saa.saa_dmat = hp->dmat;
291 saa.saa_clkmin = hp->clkbase / 256;
292 saa.saa_clkmax = hp->clkbase;
293 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
294 #if notyet
295 if (ISSET(hp->flags, SHF_USE_DMA))
296 saa.saa_caps |= SMC_CAPS_DMA;
297 #endif
298 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
299
300 return 0;
301
302 err:
303 cv_destroy(&hp->intr_cv);
304 mutex_destroy(&hp->intr_mtx);
305 mutex_destroy(&hp->host_mtx);
306 free(hp, M_DEVBUF);
307 sc->sc_host[--sc->sc_nhosts] = NULL;
308 err1:
309 return 1;
310 }
311
312 int
313 sdhc_detach(device_t dev, int flags)
314 {
315 struct sdhc_host *hp = (struct sdhc_host *)dev;
316 struct sdhc_softc *sc = hp->sc;
317 int rv = 0;
318
319 if (hp->sdmmc)
320 rv = config_detach(hp->sdmmc, flags);
321
322 cv_destroy(&hp->intr_cv);
323 mutex_destroy(&hp->intr_mtx);
324 mutex_destroy(&hp->host_mtx);
325 free(hp, M_DEVBUF);
326 sc->sc_host[--sc->sc_nhosts] = NULL;
327
328 return rv;
329 }
330
331 bool
332 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
333 {
334 struct sdhc_softc *sc = device_private(dev);
335 struct sdhc_host *hp;
336 int n, i;
337
338 /* XXX poll for command completion or suspend command
339 * in progress */
340
341 /* Save the host controller state. */
342 for (n = 0; n < sc->sc_nhosts; n++) {
343 hp = sc->sc_host[n];
344 for (i = 0; i < sizeof hp->regs; i++)
345 hp->regs[i] = HREAD1(hp, i);
346 }
347 return true;
348 }
349
350 bool
351 sdhc_resume(device_t dev, const pmf_qual_t *qual)
352 {
353 struct sdhc_softc *sc = device_private(dev);
354 struct sdhc_host *hp;
355 int n, i;
356
357 /* Restore the host controller state. */
358 for (n = 0; n < sc->sc_nhosts; n++) {
359 hp = sc->sc_host[n];
360 (void)sdhc_host_reset(hp);
361 for (i = 0; i < sizeof hp->regs; i++)
362 HWRITE1(hp, i, hp->regs[i]);
363 }
364 return true;
365 }
366
367 bool
368 sdhc_shutdown(device_t dev, int flags)
369 {
370 struct sdhc_softc *sc = device_private(dev);
371 struct sdhc_host *hp;
372 int i;
373
374 /* XXX chip locks up if we don't disable it before reboot. */
375 for (i = 0; i < sc->sc_nhosts; i++) {
376 hp = sc->sc_host[i];
377 (void)sdhc_host_reset(hp);
378 }
379 return true;
380 }
381
382 /*
383 * Reset the host controller. Called during initialization, when
384 * cards are removed, upon resume, and during error recovery.
385 */
386 static int
387 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
388 {
389 struct sdhc_host *hp = (struct sdhc_host *)sch;
390 uint16_t sdhcimask;
391 int error;
392
393 /* Don't lock. */
394
395 /* Disable all interrupts. */
396 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
397
398 /*
399 * Reset the entire host controller and wait up to 100ms for
400 * the controller to clear the reset bit.
401 */
402 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
403 if (error)
404 goto out;
405
406 /* Set data timeout counter value to max for now. */
407 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
408
409 /* Enable interrupts. */
410 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
411 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
412 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
413 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
414 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
415 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
416 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
417 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
418
419 out:
420 return error;
421 }
422
423 static int
424 sdhc_host_reset(sdmmc_chipset_handle_t sch)
425 {
426 struct sdhc_host *hp = (struct sdhc_host *)sch;
427 int error;
428
429 mutex_enter(&hp->host_mtx);
430 error = sdhc_host_reset1(sch);
431 mutex_exit(&hp->host_mtx);
432
433 return error;
434 }
435
436 static uint32_t
437 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
438 {
439 struct sdhc_host *hp = (struct sdhc_host *)sch;
440
441 return hp->ocr;
442 }
443
444 static int
445 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
446 {
447 struct sdhc_host *hp = (struct sdhc_host *)sch;
448
449 return hp->maxblklen;
450 }
451
452 /*
453 * Return non-zero if the card is currently inserted.
454 */
455 static int
456 sdhc_card_detect(sdmmc_chipset_handle_t sch)
457 {
458 struct sdhc_host *hp = (struct sdhc_host *)sch;
459 int r;
460
461 mutex_enter(&hp->host_mtx);
462 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
463 mutex_exit(&hp->host_mtx);
464
465 if (r)
466 return 1;
467 return 0;
468 }
469
470 /*
471 * Return non-zero if the card is currently write-protected.
472 */
473 static int
474 sdhc_write_protect(sdmmc_chipset_handle_t sch)
475 {
476 struct sdhc_host *hp = (struct sdhc_host *)sch;
477 int r;
478
479 mutex_enter(&hp->host_mtx);
480 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
481 mutex_exit(&hp->host_mtx);
482
483 if (!r)
484 return 1;
485 return 0;
486 }
487
488 /*
489 * Set or change SD bus voltage and enable or disable SD bus power.
490 * Return zero on success.
491 */
492 static int
493 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
494 {
495 struct sdhc_host *hp = (struct sdhc_host *)sch;
496 uint8_t vdd;
497 int error = 0;
498
499 mutex_enter(&hp->host_mtx);
500
501 /*
502 * Disable bus power before voltage change.
503 */
504 if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
505 HWRITE1(hp, SDHC_POWER_CTL, 0);
506
507 /* If power is disabled, reset the host and return now. */
508 if (ocr == 0) {
509 (void)sdhc_host_reset1(hp);
510 goto out;
511 }
512
513 /*
514 * Select the lowest voltage according to capabilities.
515 */
516 ocr &= hp->ocr;
517 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
518 vdd = SDHC_VOLTAGE_1_8V;
519 else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
520 vdd = SDHC_VOLTAGE_3_0V;
521 else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
522 vdd = SDHC_VOLTAGE_3_3V;
523 else {
524 /* Unsupported voltage level requested. */
525 error = EINVAL;
526 goto out;
527 }
528
529 /*
530 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
531 * voltage ramp until power rises.
532 */
533 HWRITE1(hp, SDHC_POWER_CTL,
534 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
535 sdmmc_delay(10000);
536
537 /*
538 * The host system may not power the bus due to battery low,
539 * etc. In that case, the host controller should clear the
540 * bus power bit.
541 */
542 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
543 error = ENXIO;
544 goto out;
545 }
546
547 out:
548 mutex_exit(&hp->host_mtx);
549
550 return error;
551 }
552
553 /*
554 * Return the smallest possible base clock frequency divisor value
555 * for the CLOCK_CTL register to produce `freq' (KHz).
556 */
557 static int
558 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
559 {
560 int div;
561
562 for (div = 1; div <= 256; div *= 2)
563 if ((hp->clkbase / div) <= freq)
564 return (div / 2);
565 /* No divisor found. */
566 return -1;
567 }
568
569 /*
570 * Set or change SDCLK frequency or disable the SD clock.
571 * Return zero on success.
572 */
573 static int
574 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
575 {
576 struct sdhc_host *hp = (struct sdhc_host *)sch;
577 int div;
578 int timo;
579 int error = 0;
580 #ifdef DIAGNOSTIC
581 int ispresent;
582 #endif
583
584 #ifdef DIAGNOSTIC
585 mutex_enter(&hp->host_mtx);
586 ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
587 mutex_exit(&hp->host_mtx);
588
589 /* Must not stop the clock if commands are in progress. */
590 if (ispresent && sdhc_card_detect(hp))
591 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
592 device_xname(hp->sc->sc_dev));
593 #endif
594
595 mutex_enter(&hp->host_mtx);
596
597 /*
598 * Stop SD clock before changing the frequency.
599 */
600 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
601 if (freq == SDMMC_SDCLK_OFF)
602 goto out;
603
604 /*
605 * Set the minimum base clock frequency divisor.
606 */
607 if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
608 /* Invalid base clock frequency or `freq' value. */
609 error = EINVAL;
610 goto out;
611 }
612 HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
613
614 /*
615 * Start internal clock. Wait 10ms for stabilization.
616 */
617 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
618 for (timo = 1000; timo > 0; timo--) {
619 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
620 break;
621 sdmmc_delay(10);
622 }
623 if (timo == 0) {
624 error = ETIMEDOUT;
625 goto out;
626 }
627
628 /*
629 * Enable SD clock.
630 */
631 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
632
633 out:
634 mutex_exit(&hp->host_mtx);
635
636 return error;
637 }
638
639 static int
640 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
641 {
642 struct sdhc_host *hp = (struct sdhc_host *)sch;
643 int reg;
644
645 switch (width) {
646 case 1:
647 case 4:
648 break;
649
650 default:
651 DPRINTF(0,("%s: unsupported bus width (%d)\n",
652 HDEVNAME(hp), width));
653 return 1;
654 }
655
656 mutex_enter(&hp->host_mtx);
657 reg = HREAD1(hp, SDHC_HOST_CTL);
658 reg &= ~SDHC_4BIT_MODE;
659 if (width == 4)
660 reg |= SDHC_4BIT_MODE;
661 HWRITE1(hp, SDHC_HOST_CTL, reg);
662 mutex_exit(&hp->host_mtx);
663
664 return 0;
665 }
666
667 static void
668 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
669 {
670 struct sdhc_host *hp = (struct sdhc_host *)sch;
671
672 mutex_enter(&hp->host_mtx);
673 if (enable) {
674 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
675 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
676 } else {
677 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
678 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
679 }
680 mutex_exit(&hp->host_mtx);
681 }
682
683 static void
684 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
685 {
686 struct sdhc_host *hp = (struct sdhc_host *)sch;
687
688 mutex_enter(&hp->host_mtx);
689 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
690 mutex_exit(&hp->host_mtx);
691 }
692
693 static int
694 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
695 {
696 uint32_t state;
697 int timeout;
698
699 for (timeout = 10; timeout > 0; timeout--) {
700 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
701 return 0;
702 sdmmc_delay(10000);
703 }
704 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
705 value, state));
706 return ETIMEDOUT;
707 }
708
709 static void
710 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
711 {
712 struct sdhc_host *hp = (struct sdhc_host *)sch;
713 int error;
714
715 /*
716 * Start the MMC command, or mark `cmd' as failed and return.
717 */
718 error = sdhc_start_command(hp, cmd);
719 if (error) {
720 cmd->c_error = error;
721 goto out;
722 }
723
724 /*
725 * Wait until the command phase is done, or until the command
726 * is marked done for any other reason.
727 */
728 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
729 cmd->c_error = ETIMEDOUT;
730 goto out;
731 }
732
733 /*
734 * The host controller removes bits [0:7] from the response
735 * data (CRC) and we pass the data up unchanged to the bus
736 * driver (without padding).
737 */
738 mutex_enter(&hp->host_mtx);
739 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
740 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
741 uint8_t *p = (uint8_t *)cmd->c_resp;
742 int i;
743
744 for (i = 0; i < 15; i++)
745 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
746 } else {
747 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
748 }
749 }
750 mutex_exit(&hp->host_mtx);
751 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
752
753 /*
754 * If the command has data to transfer in any direction,
755 * execute the transfer now.
756 */
757 if (cmd->c_error == 0 && cmd->c_data != NULL)
758 sdhc_transfer_data(hp, cmd);
759
760 out:
761 mutex_enter(&hp->host_mtx);
762 /* Turn off the LED. */
763 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
764 mutex_exit(&hp->host_mtx);
765 SET(cmd->c_flags, SCF_ITSDONE);
766
767 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
768 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
769 cmd->c_flags, cmd->c_error));
770 }
771
772 static int
773 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
774 {
775 uint16_t blksize = 0;
776 uint16_t blkcount = 0;
777 uint16_t mode;
778 uint16_t command;
779 int error;
780
781 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
782 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
783 cmd->c_datalen, cmd->c_flags));
784
785 /*
786 * The maximum block length for commands should be the minimum
787 * of the host buffer size and the card buffer size. (1.7.2)
788 */
789
790 /* Fragment the data into proper blocks. */
791 if (cmd->c_datalen > 0) {
792 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
793 blkcount = cmd->c_datalen / blksize;
794 if (cmd->c_datalen % blksize > 0) {
795 /* XXX: Split this command. (1.7.4) */
796 aprint_error_dev(hp->sc->sc_dev,
797 "data not a multiple of %u bytes\n", blksize);
798 return EINVAL;
799 }
800 }
801
802 /* Check limit imposed by 9-bit block count. (1.7.2) */
803 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
804 aprint_error_dev(hp->sc->sc_dev, "too much data\n");
805 return EINVAL;
806 }
807
808 /* Prepare transfer mode register value. (2.2.5) */
809 mode = 0;
810 if (ISSET(cmd->c_flags, SCF_CMD_READ))
811 mode |= SDHC_READ_MODE;
812 if (blkcount > 0) {
813 mode |= SDHC_BLOCK_COUNT_ENABLE;
814 if (blkcount > 1) {
815 mode |= SDHC_MULTI_BLOCK_MODE;
816 /* XXX only for memory commands? */
817 mode |= SDHC_AUTO_CMD12_ENABLE;
818 }
819 }
820 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
821 if (cmd->c_dmamap->dm_nsegs == 1) {
822 mode |= SDHC_DMA_ENABLE;
823 } else {
824 cmd->c_dmamap = NULL;
825 }
826 }
827
828 /*
829 * Prepare command register value. (2.2.6)
830 */
831 command =
832 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
833
834 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
835 command |= SDHC_CRC_CHECK_ENABLE;
836 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
837 command |= SDHC_INDEX_CHECK_ENABLE;
838 if (cmd->c_data != NULL)
839 command |= SDHC_DATA_PRESENT_SELECT;
840
841 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
842 command |= SDHC_NO_RESPONSE;
843 else if (ISSET(cmd->c_flags, SCF_RSP_136))
844 command |= SDHC_RESP_LEN_136;
845 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
846 command |= SDHC_RESP_LEN_48_CHK_BUSY;
847 else
848 command |= SDHC_RESP_LEN_48;
849
850 /* Wait until command and data inhibit bits are clear. (1.5) */
851 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
852 if (error)
853 return error;
854
855 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
856 HDEVNAME(hp), blksize, blkcount, mode, command));
857
858 mutex_enter(&hp->host_mtx);
859
860 /* Alert the user not to remove the card. */
861 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
862
863 /* Set DMA start address. */
864 if (ISSET(mode, SDHC_DMA_ENABLE))
865 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
866
867 /*
868 * Start a CPU data transfer. Writing to the high order byte
869 * of the SDHC_COMMAND register triggers the SD command. (1.5)
870 */
871 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
872 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
873 if (blkcount > 1)
874 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
875 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
876 HWRITE2(hp, SDHC_COMMAND, command);
877
878 mutex_exit(&hp->host_mtx);
879
880 return 0;
881 }
882
883 static void
884 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
885 {
886 int error;
887
888 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
889 MMC_R1(cmd->c_resp), cmd->c_datalen));
890
891 #ifdef SDHC_DEBUG
892 /* XXX I forgot why I wanted to know when this happens :-( */
893 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
894 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
895 aprint_error_dev(hp->sc->sc_dev,
896 "CMD52/53 error response flags %#x\n",
897 MMC_R1(cmd->c_resp) & 0xff00);
898 }
899 #endif
900
901 if (cmd->c_dmamap != NULL)
902 error = sdhc_transfer_data_dma(hp, cmd);
903 else
904 error = sdhc_transfer_data_pio(hp, cmd);
905 if (error)
906 cmd->c_error = error;
907 SET(cmd->c_flags, SCF_ITSDONE);
908
909 DPRINTF(1,("%s: data transfer done (error=%d)\n",
910 HDEVNAME(hp), cmd->c_error));
911 }
912
913 static int
914 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
915 {
916 bus_dmamap_t dmap = cmd->c_dmamap;
917 uint16_t blklen = cmd->c_blklen;
918 uint16_t blkcnt = cmd->c_datalen / blklen;
919 uint16_t remain;
920 int error = 0;
921
922 for (;;) {
923 if (!sdhc_wait_intr(hp,
924 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
925 SDHC_DMA_TIMEOUT)) {
926 error = ETIMEDOUT;
927 break;
928 }
929
930 /* single block mode */
931 if (blkcnt == 1)
932 break;
933
934 /* multi block mode */
935 remain = HREAD2(hp, SDHC_BLOCK_COUNT);
936 if (remain == 0)
937 break;
938
939 HWRITE4(hp, SDHC_DMA_ADDR,
940 dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
941 }
942
943 #if 0
944 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
945 SDHC_TRANSFER_TIMEOUT))
946 error = ETIMEDOUT;
947 #endif
948
949 return error;
950 }
951
952 static int
953 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
954 {
955 uint8_t *data = cmd->c_data;
956 int len, datalen;
957 int mask;
958 int error = 0;
959
960 mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
961 SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
962 datalen = cmd->c_datalen;
963
964 while (datalen > 0) {
965 if (!sdhc_wait_intr(hp,
966 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
967 SDHC_BUFFER_TIMEOUT)) {
968 error = ETIMEDOUT;
969 break;
970 }
971
972 error = sdhc_wait_state(hp, mask, mask);
973 if (error)
974 break;
975
976 len = MIN(datalen, cmd->c_blklen);
977 if (ISSET(cmd->c_flags, SCF_CMD_READ))
978 sdhc_read_data_pio(hp, data, len);
979 else
980 sdhc_write_data_pio(hp, data, len);
981
982 data += len;
983 datalen -= len;
984 }
985
986 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
987 SDHC_TRANSFER_TIMEOUT))
988 error = ETIMEDOUT;
989
990 return error;
991 }
992
993 static void
994 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
995 {
996
997 if (((__uintptr_t)data & 3) == 0) {
998 while (datalen > 3) {
999 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1000 data += 4;
1001 datalen -= 4;
1002 }
1003 if (datalen > 1) {
1004 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1005 data += 2;
1006 datalen -= 2;
1007 }
1008 if (datalen > 0) {
1009 *data = HREAD1(hp, SDHC_DATA);
1010 data += 1;
1011 datalen -= 1;
1012 }
1013 } else if (((__uintptr_t)data & 1) == 0) {
1014 while (datalen > 1) {
1015 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1016 data += 2;
1017 datalen -= 2;
1018 }
1019 if (datalen > 0) {
1020 *data = HREAD1(hp, SDHC_DATA);
1021 data += 1;
1022 datalen -= 1;
1023 }
1024 } else {
1025 while (datalen > 0) {
1026 *data = HREAD1(hp, SDHC_DATA);
1027 data += 1;
1028 datalen -= 1;
1029 }
1030 }
1031 }
1032
1033 static void
1034 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1035 {
1036
1037 if (((__uintptr_t)data & 3) == 0) {
1038 while (datalen > 3) {
1039 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1040 data += 4;
1041 datalen -= 4;
1042 }
1043 if (datalen > 1) {
1044 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1045 data += 2;
1046 datalen -= 2;
1047 }
1048 if (datalen > 0) {
1049 HWRITE1(hp, SDHC_DATA, *data);
1050 data += 1;
1051 datalen -= 1;
1052 }
1053 } else if (((__uintptr_t)data & 1) == 0) {
1054 while (datalen > 1) {
1055 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1056 data += 2;
1057 datalen -= 2;
1058 }
1059 if (datalen > 0) {
1060 HWRITE1(hp, SDHC_DATA, *data);
1061 data += 1;
1062 datalen -= 1;
1063 }
1064 } else {
1065 while (datalen > 0) {
1066 HWRITE1(hp, SDHC_DATA, *data);
1067 data += 1;
1068 datalen -= 1;
1069 }
1070 }
1071 }
1072
1073 /* Prepare for another command. */
1074 static int
1075 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1076 {
1077 int timo;
1078
1079 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1080
1081 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1082 for (timo = 10; timo > 0; timo--) {
1083 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1084 break;
1085 sdmmc_delay(10000);
1086 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1087 }
1088 if (timo == 0) {
1089 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1090 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1091 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1092 return ETIMEDOUT;
1093 }
1094
1095 return 0;
1096 }
1097
1098 static int
1099 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1100 {
1101 int status;
1102
1103 mask |= SDHC_ERROR_INTERRUPT;
1104
1105 mutex_enter(&hp->intr_mtx);
1106 status = hp->intr_status & mask;
1107 while (status == 0) {
1108 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1109 == EWOULDBLOCK) {
1110 status |= SDHC_ERROR_INTERRUPT;
1111 break;
1112 }
1113 status = hp->intr_status & mask;
1114 }
1115 hp->intr_status &= ~status;
1116
1117 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1118 hp->intr_error_status));
1119
1120 /* Command timeout has higher priority than command complete. */
1121 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1122 hp->intr_error_status = 0;
1123 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1124 status = 0;
1125 }
1126 mutex_exit(&hp->intr_mtx);
1127
1128 return status;
1129 }
1130
1131 /*
1132 * Established by attachment driver at interrupt priority IPL_SDMMC.
1133 */
1134 int
1135 sdhc_intr(void *arg)
1136 {
1137 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1138 struct sdhc_host *hp;
1139 int host;
1140 int done = 0;
1141 uint16_t status;
1142 uint16_t error;
1143
1144 /* We got an interrupt, but we don't know from which slot. */
1145 for (host = 0; host < sc->sc_nhosts; host++) {
1146 hp = sc->sc_host[host];
1147 if (hp == NULL)
1148 continue;
1149
1150 /* Find out which interrupts are pending. */
1151 status = HREAD2(hp, SDHC_NINTR_STATUS);
1152 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1153 continue; /* no interrupt for us */
1154
1155 /* Acknowledge the interrupts we are about to handle. */
1156 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1157 DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1158 status));
1159
1160 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1161 continue;
1162
1163 /* Claim this interrupt. */
1164 done = 1;
1165
1166 /*
1167 * Service error interrupts.
1168 */
1169 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1170 /* Acknowledge error interrupts. */
1171 error = HREAD2(hp, SDHC_EINTR_STATUS);
1172 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1173 DPRINTF(2,("%s: error interrupt, status=%x\n",
1174 HDEVNAME(hp), error));
1175
1176 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1177 SDHC_DATA_TIMEOUT_ERROR)) {
1178 hp->intr_error_status |= error;
1179 hp->intr_status |= status;
1180 cv_broadcast(&hp->intr_cv);
1181 }
1182 }
1183
1184 /*
1185 * Wake up the sdmmc event thread to scan for cards.
1186 */
1187 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1188 sdmmc_needs_discover(hp->sdmmc);
1189
1190 /*
1191 * Wake up the blocking process to service command
1192 * related interrupt(s).
1193 */
1194 if (ISSET(status, SDHC_BUFFER_READ_READY|
1195 SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1196 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1197 hp->intr_status |= status;
1198 cv_broadcast(&hp->intr_cv);
1199 }
1200
1201 /*
1202 * Service SD card interrupts.
1203 */
1204 if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1205 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1206 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1207 sdmmc_card_intr(hp->sdmmc);
1208 }
1209 }
1210
1211 return done;
1212 }
1213
1214 #ifdef SDHC_DEBUG
1215 void
1216 sdhc_dump_regs(struct sdhc_host *hp)
1217 {
1218
1219 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1220 HREAD4(hp, SDHC_PRESENT_STATE));
1221 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1222 HREAD1(hp, SDHC_POWER_CTL));
1223 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1224 HREAD2(hp, SDHC_NINTR_STATUS));
1225 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1226 HREAD2(hp, SDHC_EINTR_STATUS));
1227 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1228 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1229 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1230 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1231 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1232 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1233 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1234 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1235 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1236 HREAD4(hp, SDHC_CAPABILITIES));
1237 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1238 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1239 }
1240 #endif
1241