sdhc.c revision 1.7.2.3 1 /* $NetBSD: sdhc.c,v 1.7.2.3 2011/12/24 01:33:58 matt Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.7.2.3 2011/12/24 01:33:58 matt Exp $");
27
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 2;
45 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s) do {} while (0)
49 #endif
50
51 #define SDHC_COMMAND_TIMEOUT hz
52 #define SDHC_BUFFER_TIMEOUT hz
53 #define SDHC_TRANSFER_TIMEOUT hz
54 #define SDHC_DMA_TIMEOUT hz
55
56 struct sdhc_host {
57 struct sdhc_softc *sc; /* host controller device */
58
59 bus_space_tag_t iot; /* host register set tag */
60 bus_space_handle_t ioh; /* host register set handle */
61 bus_dma_tag_t dmat; /* host DMA tag */
62
63 device_t sdmmc; /* generic SD/MMC device */
64
65 struct kmutex host_mtx;
66
67 u_int clkbase; /* base clock frequency in KHz */
68 int maxblklen; /* maximum block length */
69 uint32_t ocr; /* OCR value from capabilities */
70
71 uint8_t regs[14]; /* host controller state */
72
73 uint16_t intr_status; /* soft interrupt status */
74 uint16_t intr_error_status; /* soft error status */
75 struct kmutex intr_mtx;
76 struct kcondvar intr_cv;
77
78 uint32_t flags; /* flags for this host */
79 #define SHF_USE_DMA 0x0001
80 #define SHF_USE_4BIT_MODE 0x0002
81 };
82
83 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
84
85 #define HREAD1(hp, reg) \
86 (bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg) \
88 (bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg) \
90 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val) \
92 bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val) \
94 bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val) \
96 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits) \
98 HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits) \
100 HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits) \
102 HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits) \
104 HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105
106 static int sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
116 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
117 static void sdhc_exec_command(sdmmc_chipset_handle_t,
118 struct sdmmc_command *);
119 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
120 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
121 static int sdhc_soft_reset(struct sdhc_host *, int);
122 static int sdhc_wait_intr(struct sdhc_host *, int, int);
123 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
124 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
125 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
126 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
127
128 static struct sdmmc_chip_functions sdhc_functions = {
129 /* host controller reset */
130 sdhc_host_reset,
131
132 /* host controller capabilities */
133 sdhc_host_ocr,
134 sdhc_host_maxblklen,
135
136 /* card detection */
137 sdhc_card_detect,
138
139 /* write protect */
140 sdhc_write_protect,
141
142 /* bus power, clock frequency and width */
143 sdhc_bus_power,
144 sdhc_bus_clock,
145 sdhc_bus_width,
146
147 /* command execution */
148 sdhc_exec_command,
149
150 /* card interrupt */
151 sdhc_card_enable_intr,
152 sdhc_card_intr_ack
153 };
154
155 /*
156 * Called by attachment driver. For each SD card slot there is one SD
157 * host controller standard register set. (1.3)
158 */
159 int
160 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
161 bus_space_handle_t ioh, bus_size_t iosize)
162 {
163 struct sdmmcbus_attach_args saa;
164 struct sdhc_host *hp;
165 uint32_t caps;
166 #ifdef SDHC_DEBUG
167 uint16_t sdhcver;
168
169 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
170 aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
171 switch (SDHC_SPEC_VERSION(sdhcver)) {
172 case 0x00:
173 aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
174 break;
175
176 default:
177 aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
178 break;
179 }
180 #endif
181
182 /* Allocate one more host structure. */
183 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
184 if (hp == NULL) {
185 aprint_error_dev(sc->sc_dev,
186 "couldn't alloc memory (sdhc host)\n");
187 goto err1;
188 }
189 sc->sc_host[sc->sc_nhosts++] = hp;
190
191 /* Fill in the new host structure. */
192 hp->sc = sc;
193 hp->iot = iot;
194 hp->ioh = ioh;
195 hp->dmat = sc->sc_dmat;
196
197 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
198 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
199 cv_init(&hp->intr_cv, "sdhcintr");
200
201 /*
202 * Reset the host controller and enable interrupts.
203 */
204 (void)sdhc_host_reset(hp);
205
206 /* Determine host capabilities. */
207 mutex_enter(&hp->host_mtx);
208 caps = HREAD4(hp, SDHC_CAPABILITIES);
209 mutex_exit(&hp->host_mtx);
210
211 DPRINTF(1,("%s: caps=0x%08x\n", device_xname(sc->sc_dev), caps));
212
213 #if notyet
214 /* Use DMA if the host system and the controller support it. */
215 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
216 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
217 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
218 SET(hp->flags, SHF_USE_DMA);
219 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
220 }
221 #endif
222
223 /*
224 * Determine the base clock frequency. (2.2.24)
225 */
226 if (SDHC_BASE_FREQ_KHZ(caps) != 0)
227 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
228 if (hp->clkbase == 0) {
229 /* The attachment driver must tell us. */
230 aprint_error_dev(sc->sc_dev,"unknown base clock frequency\n");
231 goto err;
232 } else if (hp->clkbase < 10000 || hp->clkbase > 255000) {
233 /* SDHC 1.0 supports only 10-63 MHz. */
234 /* SDHC 1.0 supports only 10-255 MHz. */
235 aprint_error_dev(sc->sc_dev,
236 "base clock frequency out of range: %u MHz\n",
237 hp->clkbase / 1000);
238 goto err;
239 }
240 DPRINTF(1,("%s: base clock frequency %u MHz\n",
241 device_xname(sc->sc_dev), hp->clkbase / 1000));
242
243 /*
244 * XXX Set the data timeout counter value according to
245 * capabilities. (2.2.15)
246 */
247 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
248
249 /*
250 * Determine SD bus voltage levels supported by the controller.
251 */
252 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
253 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
254 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
255 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
256 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
257 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
258
259 /*
260 * Determine the maximum block length supported by the host
261 * controller. (2.2.24)
262 */
263 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
264 case SDHC_MAX_BLK_LEN_512:
265 hp->maxblklen = 512;
266 break;
267
268 case SDHC_MAX_BLK_LEN_1024:
269 hp->maxblklen = 1024;
270 break;
271
272 case SDHC_MAX_BLK_LEN_2048:
273 hp->maxblklen = 2048;
274 break;
275
276 case SDHC_MAX_BLK_LEN_4096:
277 hp->maxblklen = 4096;
278 break;
279
280 default:
281 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
282 goto err;
283 }
284 DPRINTF(1, ("%s: max block length %u byte%s\n",
285 device_xname(sc->sc_dev), hp->maxblklen,
286 hp->maxblklen > 1 ? "s" : ""));
287
288 #if 0
289 if (sc->sc_flags & SDHC_FLAG_HAS_CGM) {
290 uint16_t clk = HREAD2(hp, SDHC_CLOCK_CTL);
291 clk |= SDHC_SDCLK_CGM;
292 HWRITE2(hp, SDHC_CLOCK_CTL, clk);
293 clk = HREAD2(hp, SDHC_CLOCK_CTL);
294 if ((clk & SDHC_SDCLK_CGM) == 0) {
295 sc->sc_flags &= ~SDHC_FLAG_HAS_CGM;
296 DPRINTF(1, ("%s: CGM indicated but not supported\n",
297 device_xname(sc->sc_dev)));
298 }
299 }
300 #endif
301
302 /*
303 * Attach the generic SD/MMC bus driver. (The bus driver must
304 * not invoke any chipset functions before it is attached.)
305 */
306 memset(&saa, 0, sizeof(saa));
307 saa.saa_busname = "sdmmc";
308 saa.saa_sct = &sdhc_functions;
309 saa.saa_sch = hp;
310 saa.saa_dmat = hp->dmat;
311 if (sc->sc_flags & SDHC_FLAG_HAS_CGM) {
312 saa.saa_clkmin = hp->clkbase / 2046;
313 } else {
314 saa.saa_clkmin = hp->clkbase / 256;
315 }
316 saa.saa_clkmax = hp->clkbase;
317 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
318 DPRINTF(1, ("%s: clkmin=%d clkmax=%d\n",
319 device_xname(sc->sc_dev), saa.saa_clkmin, saa.saa_clkmax));
320 #if notyet
321 if (ISSET(hp->flags, SHF_USE_DMA))
322 saa.saa_caps |= SMC_CAPS_DMA;
323 #endif
324
325 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
326
327 return 0;
328
329 err:
330 cv_destroy(&hp->intr_cv);
331 mutex_destroy(&hp->intr_mtx);
332 mutex_destroy(&hp->host_mtx);
333 free(hp, M_DEVBUF);
334 sc->sc_host[--sc->sc_nhosts] = NULL;
335 err1:
336 return 1;
337 }
338
339 bool
340 sdhc_suspend(device_t dev PMF_FN_ARGS)
341 {
342 struct sdhc_softc *sc = device_private(dev);
343 struct sdhc_host *hp;
344 int n, i;
345
346 /* XXX poll for command completion or suspend command
347 * in progress */
348
349 /* Save the host controller state. */
350 for (n = 0; n < sc->sc_nhosts; n++) {
351 hp = sc->sc_host[n];
352 for (i = 0; i < sizeof hp->regs; i++)
353 hp->regs[i] = HREAD1(hp, i);
354 }
355 return true;
356 }
357
358 bool
359 sdhc_resume(device_t dev PMF_FN_ARGS)
360 {
361 struct sdhc_softc *sc = device_private(dev);
362 struct sdhc_host *hp;
363 int n, i;
364
365 /* Restore the host controller state. */
366 for (n = 0; n < sc->sc_nhosts; n++) {
367 hp = sc->sc_host[n];
368 (void)sdhc_host_reset(hp);
369 for (i = 0; i < sizeof hp->regs; i++)
370 HWRITE1(hp, i, hp->regs[i]);
371 }
372 return true;
373 }
374
375 bool
376 sdhc_shutdown(device_t dev, int flags)
377 {
378 struct sdhc_softc *sc = device_private(dev);
379 struct sdhc_host *hp;
380 int i;
381
382 /* XXX chip locks up if we don't disable it before reboot. */
383 for (i = 0; i < sc->sc_nhosts; i++) {
384 hp = sc->sc_host[i];
385 (void)sdhc_host_reset(hp);
386 }
387 return true;
388 }
389
390 /*
391 * Reset the host controller. Called during initialization, when
392 * cards are removed, upon resume, and during error recovery.
393 */
394 static int
395 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
396 {
397 struct sdhc_host *hp = (struct sdhc_host *)sch;
398 uint16_t sdhcimask;
399 int error;
400
401 /* Don't lock. */
402
403 /* Disable all interrupts. */
404 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
405
406 /*
407 * Reset the entire host controller and wait up to 100ms for
408 * the controller to clear the reset bit.
409 */
410 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
411 if (error)
412 goto out;
413
414 /* Set data timeout counter value to max for now. */
415 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
416
417 /* Enable interrupts. */
418 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
419 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
420 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
421 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
422 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
423 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
424 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
425 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
426
427 out:
428 return error;
429 }
430
431 static int
432 sdhc_host_reset(sdmmc_chipset_handle_t sch)
433 {
434 struct sdhc_host *hp = (struct sdhc_host *)sch;
435 int error;
436
437 mutex_enter(&hp->host_mtx);
438 error = sdhc_host_reset1(sch);
439 mutex_exit(&hp->host_mtx);
440
441 return error;
442 }
443
444 static uint32_t
445 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
446 {
447 struct sdhc_host *hp = (struct sdhc_host *)sch;
448
449 return hp->ocr;
450 }
451
452 static int
453 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
454 {
455 struct sdhc_host *hp = (struct sdhc_host *)sch;
456
457 return hp->maxblklen;
458 }
459
460 /*
461 * Return non-zero if the card is currently inserted.
462 */
463 static int
464 sdhc_card_detect(sdmmc_chipset_handle_t sch)
465 {
466 struct sdhc_host *hp = (struct sdhc_host *)sch;
467 int r;
468
469 mutex_enter(&hp->host_mtx);
470 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
471 mutex_exit(&hp->host_mtx);
472
473 if (r)
474 return 1;
475 return 0;
476 }
477
478 /*
479 * Return non-zero if the card is currently write-protected.
480 */
481 static int
482 sdhc_write_protect(sdmmc_chipset_handle_t sch)
483 {
484 struct sdhc_host *hp = (struct sdhc_host *)sch;
485 int r;
486
487 mutex_enter(&hp->host_mtx);
488 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
489 mutex_exit(&hp->host_mtx);
490
491 if (!r)
492 return 1;
493 return 0;
494 }
495
496 /*
497 * Set or change SD bus voltage and enable or disable SD bus power.
498 * Return zero on success.
499 */
500 static int
501 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
502 {
503 struct sdhc_host *hp = (struct sdhc_host *)sch;
504 uint8_t vdd;
505 int error = 0;
506
507 mutex_enter(&hp->host_mtx);
508
509 /*
510 * Disable bus power before voltage change.
511 */
512 if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
513 HWRITE1(hp, SDHC_POWER_CTL, 0);
514
515 /* If power is disabled, reset the host and return now. */
516 if (ocr == 0) {
517 (void)sdhc_host_reset1(hp);
518 goto out;
519 }
520
521 /*
522 * Select the lowest voltage according to capabilities.
523 */
524 ocr &= hp->ocr;
525 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
526 vdd = SDHC_VOLTAGE_1_8V;
527 else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
528 vdd = SDHC_VOLTAGE_3_0V;
529 else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
530 vdd = SDHC_VOLTAGE_3_3V;
531 else {
532 /* Unsupported voltage level requested. */
533 error = EINVAL;
534 goto out;
535 }
536
537 /*
538 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
539 * voltage ramp until power rises.
540 */
541 HWRITE1(hp, SDHC_POWER_CTL,
542 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
543 sdmmc_delay(10000);
544
545 /*
546 * The host system may not power the bus due to battery low,
547 * etc. In that case, the host controller should clear the
548 * bus power bit.
549 */
550 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
551 error = ENXIO;
552 goto out;
553 }
554
555 out:
556 mutex_exit(&hp->host_mtx);
557
558 return error;
559 }
560
561 /*
562 * Return the smallest possible base clock frequency divisor value
563 * for the CLOCK_CTL register to produce `freq' (KHz).
564 */
565 static int
566 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, int *divp)
567 {
568 int div;
569
570 if (hp->sc->sc_flags & SDHC_FLAG_HAS_CGM) {
571 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
572 if ((hp->clkbase / div) <= freq) {
573 *divp = SDHC_SDCLK_CGM
574 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
575 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
576 return false;
577 }
578 }
579 /* No divisor found. */
580 return true;
581 }
582 for (div = 1; div <= 256; div *= 2) {
583 if ((hp->clkbase / div) <= freq) {
584 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
585 return false;
586 }
587 }
588
589 /* No divisor found. */
590 return true;
591 }
592
593 /*
594 * Set or change SDCLK frequency or disable the SD clock.
595 * Return zero on success.
596 */
597 static int
598 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
599 {
600 struct sdhc_host *hp = (struct sdhc_host *)sch;
601 int div;
602 int timo;
603 int error = 0;
604 #ifdef DIAGNOSTIC
605 int ispresent;
606 #endif
607
608 #ifdef DIAGNOSTIC
609 mutex_enter(&hp->host_mtx);
610 ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
611 mutex_exit(&hp->host_mtx);
612
613 /* Must not stop the clock if commands are in progress. */
614 if (ispresent && sdhc_card_detect(hp))
615 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
616 device_xname(hp->sc->sc_dev));
617 #endif
618
619 mutex_enter(&hp->host_mtx);
620
621 /*
622 * Stop SD clock before changing the frequency.
623 */
624 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
625 if (freq == SDMMC_SDCLK_OFF)
626 goto out;
627
628 /*
629 * Set the minimum base clock frequency divisor.
630 */
631 if (sdhc_clock_divisor(hp, freq, &div)) {
632 /* Invalid base clock frequency or `freq' value. */
633 error = EINVAL;
634 goto out;
635 }
636 HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
637
638 /*
639 * Start internal clock. Wait 10ms for stabilization.
640 */
641 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
642 for (timo = 1000; timo > 0; timo--) {
643 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
644 break;
645 sdmmc_delay(10);
646 }
647 if (timo == 0) {
648 error = ETIMEDOUT;
649 goto out;
650 }
651
652 /*
653 * Enable SD clock.
654 */
655 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
656
657 out:
658 mutex_exit(&hp->host_mtx);
659
660 return error;
661 }
662
663 static int
664 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
665 {
666 struct sdhc_host *hp = (struct sdhc_host *)sch;
667 int reg;
668
669 switch (width) {
670 case 1:
671 case 4:
672 break;
673
674 default:
675 DPRINTF(0,("%s: unsupported bus width (%d)\n",
676 HDEVNAME(hp), width));
677 return 1;
678 }
679
680 mutex_enter(&hp->host_mtx);
681 reg = HREAD1(hp, SDHC_POWER_CTL);
682 reg &= ~SDHC_4BIT_MODE;
683 if (width == 4)
684 reg |= SDHC_4BIT_MODE;
685 HWRITE1(hp, SDHC_POWER_CTL, reg);
686 mutex_exit(&hp->host_mtx);
687
688 return 0;
689 }
690
691 static void
692 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
693 {
694 struct sdhc_host *hp = (struct sdhc_host *)sch;
695
696 mutex_enter(&hp->host_mtx);
697 if (enable) {
698 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
699 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
700 } else {
701 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
702 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
703 }
704 mutex_exit(&hp->host_mtx);
705 }
706
707 static void
708 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
709 {
710 struct sdhc_host *hp = (struct sdhc_host *)sch;
711
712 mutex_enter(&hp->host_mtx);
713 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
714 mutex_exit(&hp->host_mtx);
715 }
716
717 static int
718 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
719 {
720 uint32_t state;
721 int timeout;
722
723 for (timeout = 10; timeout > 0; timeout--) {
724 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
725 return 0;
726 sdmmc_delay(10000);
727 }
728 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
729 value, state));
730 return ETIMEDOUT;
731 }
732
733 static void
734 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
735 {
736 struct sdhc_host *hp = (struct sdhc_host *)sch;
737 int error;
738
739 /*
740 * Start the MMC command, or mark `cmd' as failed and return.
741 */
742 error = sdhc_start_command(hp, cmd);
743 if (error) {
744 cmd->c_error = error;
745 goto out;
746 }
747
748 /*
749 * Wait until the command phase is done, or until the command
750 * is marked done for any other reason.
751 */
752 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
753 cmd->c_error = ETIMEDOUT;
754 goto out;
755 }
756
757 /*
758 * The host controller removes bits [0:7] from the response
759 * data (CRC) and we pass the data up unchanged to the bus
760 * driver (without padding).
761 */
762 mutex_enter(&hp->host_mtx);
763 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
764 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
765 uint8_t *p = (uint8_t *)cmd->c_resp;
766 int i;
767
768 for (i = 0; i < 15; i++)
769 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
770 } else {
771 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
772 }
773 }
774 mutex_exit(&hp->host_mtx);
775 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
776
777 /*
778 * If the command has data to transfer in any direction,
779 * execute the transfer now.
780 */
781 if (cmd->c_error == 0 && cmd->c_data != NULL)
782 sdhc_transfer_data(hp, cmd);
783
784 out:
785 mutex_enter(&hp->host_mtx);
786 /* Turn off the LED. */
787 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
788 mutex_exit(&hp->host_mtx);
789 SET(cmd->c_flags, SCF_ITSDONE);
790
791 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
792 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
793 cmd->c_flags, cmd->c_error));
794 }
795
796 static int
797 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
798 {
799 uint16_t blksize = 0;
800 uint16_t blkcount = 0;
801 uint16_t mode;
802 uint16_t command;
803 int error;
804
805 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x "
806 "proc=%p \"%s\"\n", HDEVNAME(hp), cmd->c_opcode, cmd->c_arg,
807 cmd->c_data, cmd->c_datalen, cmd->c_flags, curproc,
808 curproc ? curproc->p_comm : ""));
809
810 /*
811 * The maximum block length for commands should be the minimum
812 * of the host buffer size and the card buffer size. (1.7.2)
813 */
814
815 /* Fragment the data into proper blocks. */
816 if (cmd->c_datalen > 0) {
817 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
818 blkcount = cmd->c_datalen / blksize;
819 if (cmd->c_datalen % blksize > 0) {
820 /* XXX: Split this command. (1.7.4) */
821 aprint_error_dev(hp->sc->sc_dev,
822 "data not a multiple of %u bytes\n", blksize);
823 return EINVAL;
824 }
825 }
826
827 /* Check limit imposed by 9-bit block count. (1.7.2) */
828 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
829 aprint_error_dev(hp->sc->sc_dev, "too much data\n");
830 return EINVAL;
831 }
832
833 /* Prepare transfer mode register value. (2.2.5) */
834 mode = 0;
835 if (ISSET(cmd->c_flags, SCF_CMD_READ))
836 mode |= SDHC_READ_MODE;
837 if (blkcount > 0) {
838 mode |= SDHC_BLOCK_COUNT_ENABLE;
839 if (blkcount > 1) {
840 mode |= SDHC_MULTI_BLOCK_MODE;
841 /* XXX only for memory commands? */
842 mode |= SDHC_AUTO_CMD12_ENABLE;
843 }
844 }
845 #if notyet
846 if (cmd->c_dmap != NULL && cmd->c_datalen > 0)
847 mode |= SDHC_DMA_ENABLE;
848 #endif
849
850 /*
851 * Prepare command register value. (2.2.6)
852 */
853 command =
854 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
855
856 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
857 command |= SDHC_CRC_CHECK_ENABLE;
858 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
859 command |= SDHC_INDEX_CHECK_ENABLE;
860 if (cmd->c_data != NULL)
861 command |= SDHC_DATA_PRESENT_SELECT;
862
863 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
864 command |= SDHC_NO_RESPONSE;
865 else if (ISSET(cmd->c_flags, SCF_RSP_136))
866 command |= SDHC_RESP_LEN_136;
867 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
868 command |= SDHC_RESP_LEN_48_CHK_BUSY;
869 else
870 command |= SDHC_RESP_LEN_48;
871
872 /* Wait until command and data inhibit bits are clear. (1.5) */
873 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
874 if (error)
875 return error;
876
877 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
878 HDEVNAME(hp), blksize, blkcount, mode, command));
879
880 mutex_enter(&hp->host_mtx);
881
882 /* Alert the user not to remove the card. */
883 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
884
885 /*
886 * Start a CPU data transfer. Writing to the high order byte
887 * of the SDHC_COMMAND register triggers the SD command. (1.5)
888 */
889 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
890 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
891 if (blkcount > 1)
892 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
893 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
894 HWRITE2(hp, SDHC_COMMAND, command);
895
896 mutex_exit(&hp->host_mtx);
897
898 return 0;
899 }
900
901 static void
902 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
903 {
904 int error;
905
906 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
907 MMC_R1(cmd->c_resp), cmd->c_datalen));
908
909 #ifdef SDHC_DEBUG
910 /* XXX I forgot why I wanted to know when this happens :-( */
911 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
912 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
913 aprint_error_dev(hp->sc->sc_dev,
914 "CMD52/53 error response flags %#x\n",
915 MMC_R1(cmd->c_resp) & 0xff00);
916 }
917 #endif
918
919 error = sdhc_transfer_data_pio(hp, cmd);
920 if (error)
921 cmd->c_error = error;
922 SET(cmd->c_flags, SCF_ITSDONE);
923
924 DPRINTF(1,("%s: data transfer done (error=%d)\n",
925 HDEVNAME(hp), cmd->c_error));
926 }
927
928 static int
929 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
930 {
931 uint8_t *data = cmd->c_data;
932 int len, datalen;
933 int mask;
934 int error = 0;
935
936 mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
937 SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
938 datalen = cmd->c_datalen;
939
940 while (datalen > 0) {
941 if (!sdhc_wait_intr(hp,
942 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
943 SDHC_BUFFER_TIMEOUT)) {
944 error = ETIMEDOUT;
945 break;
946 }
947
948 error = sdhc_wait_state(hp, mask, mask);
949 if (error)
950 break;
951
952 len = MIN(datalen, cmd->c_blklen);
953 if (ISSET(cmd->c_flags, SCF_CMD_READ))
954 sdhc_read_data_pio(hp, data, len);
955 else
956 sdhc_write_data_pio(hp, data, len);
957
958 data += len;
959 datalen -= len;
960 }
961
962 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
963 SDHC_TRANSFER_TIMEOUT))
964 error = ETIMEDOUT;
965
966 return error;
967 }
968
969 static void
970 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
971 {
972
973 if (((__uintptr_t)data & 3) == 0) {
974 while (datalen > 3) {
975 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
976 data += 4;
977 datalen -= 4;
978 }
979 if (datalen > 1) {
980 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
981 data += 2;
982 datalen -= 2;
983 }
984 if (datalen > 0) {
985 *data = HREAD1(hp, SDHC_DATA);
986 data += 1;
987 datalen -= 1;
988 }
989 } else if (((__uintptr_t)data & 1) == 0) {
990 while (datalen > 1) {
991 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
992 data += 2;
993 datalen -= 2;
994 }
995 if (datalen > 0) {
996 *data = HREAD1(hp, SDHC_DATA);
997 data += 1;
998 datalen -= 1;
999 }
1000 } else {
1001 while (datalen > 0) {
1002 *data = HREAD1(hp, SDHC_DATA);
1003 data += 1;
1004 datalen -= 1;
1005 }
1006 }
1007 }
1008
1009 static void
1010 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1011 {
1012
1013 if (((__uintptr_t)data & 3) == 0) {
1014 while (datalen > 3) {
1015 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1016 data += 4;
1017 datalen -= 4;
1018 }
1019 if (datalen > 1) {
1020 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1021 data += 2;
1022 datalen -= 2;
1023 }
1024 if (datalen > 0) {
1025 HWRITE1(hp, SDHC_DATA, *data);
1026 data += 1;
1027 datalen -= 1;
1028 }
1029 } else if (((__uintptr_t)data & 1) == 0) {
1030 while (datalen > 1) {
1031 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1032 data += 2;
1033 datalen -= 2;
1034 }
1035 if (datalen > 0) {
1036 HWRITE1(hp, SDHC_DATA, *data);
1037 data += 1;
1038 datalen -= 1;
1039 }
1040 } else {
1041 while (datalen > 0) {
1042 HWRITE1(hp, SDHC_DATA, *data);
1043 data += 1;
1044 datalen -= 1;
1045 }
1046 }
1047 }
1048
1049 /* Prepare for another command. */
1050 static int
1051 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1052 {
1053 int timo;
1054
1055 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1056
1057 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1058 for (timo = 10; timo > 0; timo--) {
1059 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1060 break;
1061 sdmmc_delay(10000);
1062 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1063 }
1064 if (timo == 0) {
1065 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1066 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1067 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1068 return ETIMEDOUT;
1069 }
1070
1071 return 0;
1072 }
1073
1074 static int
1075 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1076 {
1077 int status;
1078
1079 mask |= SDHC_ERROR_INTERRUPT;
1080
1081 mutex_enter(&hp->intr_mtx);
1082 status = hp->intr_status & mask;
1083 while (status == 0) {
1084 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1085 == EWOULDBLOCK) {
1086 status |= SDHC_ERROR_INTERRUPT;
1087 break;
1088 }
1089 status = hp->intr_status & mask;
1090 }
1091 hp->intr_status &= ~status;
1092
1093 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1094 hp->intr_error_status));
1095
1096 /* Command timeout has higher priority than command complete. */
1097 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1098 hp->intr_error_status = 0;
1099 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1100 status = 0;
1101 }
1102 mutex_exit(&hp->intr_mtx);
1103
1104 return status;
1105 }
1106
1107 /*
1108 * Established by attachment driver at interrupt priority IPL_SDMMC.
1109 */
1110 int
1111 sdhc_intr(void *arg)
1112 {
1113 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1114 struct sdhc_host *hp;
1115 int host;
1116 int done = 0;
1117 uint16_t status;
1118 uint16_t error;
1119
1120 /* We got an interrupt, but we don't know from which slot. */
1121 for (host = 0; host < sc->sc_nhosts; host++) {
1122 hp = sc->sc_host[host];
1123 if (hp == NULL)
1124 continue;
1125
1126 /* Find out which interrupts are pending. */
1127 status = HREAD2(hp, SDHC_NINTR_STATUS);
1128 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1129 continue; /* no interrupt for us */
1130
1131 /* Acknowledge the interrupts we are about to handle. */
1132 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1133 DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1134 status));
1135
1136 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1137 continue;
1138
1139 /* Claim this interrupt. */
1140 done = 1;
1141
1142 /*
1143 * Service error interrupts.
1144 */
1145 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1146 /* Acknowledge error interrupts. */
1147 error = HREAD2(hp, SDHC_EINTR_STATUS);
1148 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1149 DPRINTF(2,("%s: error interrupt, status=%x\n",
1150 HDEVNAME(hp), error));
1151
1152 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1153 SDHC_DATA_TIMEOUT_ERROR)) {
1154 hp->intr_error_status |= error;
1155 hp->intr_status |= status;
1156 cv_broadcast(&hp->intr_cv);
1157 }
1158 }
1159
1160 /*
1161 * Wake up the sdmmc event thread to scan for cards.
1162 */
1163 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1164 sdmmc_needs_discover(hp->sdmmc);
1165
1166 /*
1167 * Wake up the blocking process to service command
1168 * related interrupt(s).
1169 */
1170 if (ISSET(status, SDHC_BUFFER_READ_READY|
1171 SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1172 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1173 hp->intr_status |= status;
1174 cv_broadcast(&hp->intr_cv);
1175 }
1176
1177 /*
1178 * Service SD card interrupts.
1179 */
1180 if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1181 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1182 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1183 sdmmc_card_intr(hp->sdmmc);
1184 }
1185 }
1186
1187 return done;
1188 }
1189
1190 #ifdef SDHC_DEBUG
1191 void
1192 sdhc_dump_regs(struct sdhc_host *hp)
1193 {
1194
1195 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1196 HREAD4(hp, SDHC_PRESENT_STATE));
1197 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1198 HREAD1(hp, SDHC_POWER_CTL));
1199 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1200 HREAD2(hp, SDHC_NINTR_STATUS));
1201 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1202 HREAD2(hp, SDHC_EINTR_STATUS));
1203 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1204 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1205 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1206 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1207 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1208 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1209 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1210 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1211 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1212 HREAD4(hp, SDHC_CAPABILITIES));
1213 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1214 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1215 }
1216 #endif
1217