sdhc.c revision 1.70 1 /* $NetBSD: sdhc.c,v 1.70 2015/08/02 11:28:01 jmcneill Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.70 2015/08/02 11:28:01 jmcneill Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39
40 #include <dev/sdmmc/sdhcreg.h>
41 #include <dev/sdmmc/sdhcvar.h>
42 #include <dev/sdmmc/sdmmcchip.h>
43 #include <dev/sdmmc/sdmmcreg.h>
44 #include <dev/sdmmc/sdmmcvar.h>
45
46 #ifdef SDHC_DEBUG
47 int sdhcdebug = 1;
48 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 void sdhc_dump_regs(struct sdhc_host *);
50 #else
51 #define DPRINTF(n,s) do {} while (0)
52 #endif
53
54 #define SDHC_COMMAND_TIMEOUT hz
55 #define SDHC_BUFFER_TIMEOUT hz
56 #define SDHC_TRANSFER_TIMEOUT hz
57 #define SDHC_DMA_TIMEOUT (hz*3)
58
59 struct sdhc_host {
60 struct sdhc_softc *sc; /* host controller device */
61
62 bus_space_tag_t iot; /* host register set tag */
63 bus_space_handle_t ioh; /* host register set handle */
64 bus_size_t ios; /* host register space size */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 u_int clkbase; /* base clock frequency in KHz */
70 int maxblklen; /* maximum block length */
71 uint32_t ocr; /* OCR value from capabilities */
72
73 uint8_t regs[14]; /* host controller state */
74
75 uint16_t intr_status; /* soft interrupt status */
76 uint16_t intr_error_status; /* soft error status */
77 kmutex_t intr_lock;
78 kcondvar_t intr_cv;
79
80 int specver; /* spec. version */
81
82 uint32_t flags; /* flags for this host */
83 #define SHF_USE_DMA 0x0001
84 #define SHF_USE_4BIT_MODE 0x0002
85 #define SHF_USE_8BIT_MODE 0x0004
86 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
87 #define SHF_USE_ADMA2_32 0x0010
88 #define SHF_USE_ADMA2_64 0x0020
89 #define SHF_USE_ADMA2_MASK 0x0030
90
91 bus_dmamap_t adma_map;
92 bus_dma_segment_t adma_segs[1];
93 void *adma2;
94 };
95
96 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
97
98 static uint8_t
99 hread1(struct sdhc_host *hp, bus_size_t reg)
100 {
101
102 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
103 return bus_space_read_1(hp->iot, hp->ioh, reg);
104 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
105 }
106
107 static uint16_t
108 hread2(struct sdhc_host *hp, bus_size_t reg)
109 {
110
111 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 return bus_space_read_2(hp->iot, hp->ioh, reg);
113 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
114 }
115
116 #define HREAD1(hp, reg) hread1(hp, reg)
117 #define HREAD2(hp, reg) hread2(hp, reg)
118 #define HREAD4(hp, reg) \
119 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
120
121
122 static void
123 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
124 {
125
126 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
127 bus_space_write_1(hp->iot, hp->ioh, o, val);
128 } else {
129 const size_t shift = 8 * (o & 3);
130 o &= -4;
131 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
132 tmp = (val << shift) | (tmp & ~(0xff << shift));
133 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
134 }
135 }
136
137 static void
138 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
139 {
140
141 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
142 bus_space_write_2(hp->iot, hp->ioh, o, val);
143 } else {
144 const size_t shift = 8 * (o & 2);
145 o &= -4;
146 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
147 tmp = (val << shift) | (tmp & ~(0xffff << shift));
148 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
149 }
150 }
151
152 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
153 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
154 #define HWRITE4(hp, reg, val) \
155 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
156
157 #define HCLR1(hp, reg, bits) \
158 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
159 #define HCLR2(hp, reg, bits) \
160 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
161 #define HCLR4(hp, reg, bits) \
162 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
163 #define HSET1(hp, reg, bits) \
164 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
165 #define HSET2(hp, reg, bits) \
166 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
167 #define HSET4(hp, reg, bits) \
168 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
169
170 static int sdhc_host_reset(sdmmc_chipset_handle_t);
171 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
172 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
173 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
174 static int sdhc_card_detect(sdmmc_chipset_handle_t);
175 static int sdhc_write_protect(sdmmc_chipset_handle_t);
176 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
177 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
178 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
179 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
180 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
181 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
182 static void sdhc_exec_command(sdmmc_chipset_handle_t,
183 struct sdmmc_command *);
184 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
185 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
186 static int sdhc_soft_reset(struct sdhc_host *, int);
187 static int sdhc_wait_intr(struct sdhc_host *, int, int);
188 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
189 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
190 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
191 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
192 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
193 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
195
196 static struct sdmmc_chip_functions sdhc_functions = {
197 /* host controller reset */
198 .host_reset = sdhc_host_reset,
199
200 /* host controller capabilities */
201 .host_ocr = sdhc_host_ocr,
202 .host_maxblklen = sdhc_host_maxblklen,
203
204 /* card detection */
205 .card_detect = sdhc_card_detect,
206
207 /* write protect */
208 .write_protect = sdhc_write_protect,
209
210 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
211 .bus_power = sdhc_bus_power,
212 .bus_clock = sdhc_bus_clock,
213 .bus_width = sdhc_bus_width,
214 .bus_rod = sdhc_bus_rod,
215
216 /* command execution */
217 .exec_command = sdhc_exec_command,
218
219 /* card interrupt */
220 .card_enable_intr = sdhc_card_enable_intr,
221 .card_intr_ack = sdhc_card_intr_ack
222 };
223
224 static int
225 sdhc_cfprint(void *aux, const char *pnp)
226 {
227 const struct sdmmcbus_attach_args * const saa = aux;
228 const struct sdhc_host * const hp = saa->saa_sch;
229
230 if (pnp) {
231 aprint_normal("sdmmc at %s", pnp);
232 }
233 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
234 if (hp->sc->sc_host[host] == hp) {
235 aprint_normal(" slot %zu", host);
236 }
237 }
238
239 return UNCONF;
240 }
241
242 /*
243 * Called by attachment driver. For each SD card slot there is one SD
244 * host controller standard register set. (1.3)
245 */
246 int
247 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
248 bus_space_handle_t ioh, bus_size_t iosize)
249 {
250 struct sdmmcbus_attach_args saa;
251 struct sdhc_host *hp;
252 uint32_t caps;
253 uint16_t sdhcver;
254 int error;
255
256 /* Allocate one more host structure. */
257 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
258 if (hp == NULL) {
259 aprint_error_dev(sc->sc_dev,
260 "couldn't alloc memory (sdhc host)\n");
261 goto err1;
262 }
263 sc->sc_host[sc->sc_nhosts++] = hp;
264
265 /* Fill in the new host structure. */
266 hp->sc = sc;
267 hp->iot = iot;
268 hp->ioh = ioh;
269 hp->ios = iosize;
270 hp->dmat = sc->sc_dmat;
271
272 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
273 cv_init(&hp->intr_cv, "sdhcintr");
274
275 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
276 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
277 } else {
278 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
279 }
280 aprint_normal_dev(sc->sc_dev, "SDHC ");
281 hp->specver = SDHC_SPEC_VERSION(sdhcver);
282 switch (SDHC_SPEC_VERSION(sdhcver)) {
283 case SDHC_SPEC_VERS_100:
284 aprint_normal("1.0");
285 break;
286
287 case SDHC_SPEC_VERS_200:
288 aprint_normal("2.0");
289 break;
290
291 case SDHC_SPEC_VERS_300:
292 aprint_normal("3.0");
293 break;
294
295 case SDHC_SPEC_VERS_400:
296 aprint_normal("4.0");
297 break;
298
299 default:
300 aprint_normal("unknown version(0x%x)",
301 SDHC_SPEC_VERSION(sdhcver));
302 break;
303 }
304 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
305
306 /*
307 * Reset the host controller and enable interrupts.
308 */
309 (void)sdhc_host_reset(hp);
310
311 /* Determine host capabilities. */
312 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
313 caps = sc->sc_caps;
314 } else {
315 caps = HREAD4(hp, SDHC_CAPABILITIES);
316 }
317
318 /*
319 * Use DMA if the host system and the controller support it.
320 * Suports integrated or external DMA egine, with or without
321 * SDHC_DMA_ENABLE in the command.
322 */
323 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
324 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
325 ISSET(caps, SDHC_DMA_SUPPORT)))) {
326 SET(hp->flags, SHF_USE_DMA);
327
328 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
329 ISSET(caps, SDHC_ADMA2_SUPP)) {
330 SET(hp->flags, SHF_MODE_DMAEN);
331 /*
332 * 64-bit mode was present in the 2.00 spec, removed
333 * from 3.00, and re-added in 4.00 with a different
334 * descriptor layout. We only support 2.00 and 3.00
335 * descriptors for now.
336 */
337 if (hp->specver == SDHC_SPEC_VERS_200 &&
338 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
339 SET(hp->flags, SHF_USE_ADMA2_64);
340 aprint_normal(", 64-bit ADMA2");
341 } else {
342 SET(hp->flags, SHF_USE_ADMA2_32);
343 aprint_normal(", 32-bit ADMA2");
344 }
345 } else {
346 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
347 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
348 SET(hp->flags, SHF_MODE_DMAEN);
349 if (sc->sc_vendor_transfer_data_dma) {
350 aprint_normal(", platform DMA");
351 } else {
352 aprint_normal(", SDMA");
353 }
354 }
355 } else {
356 aprint_normal(", PIO");
357 }
358
359 /*
360 * Determine the base clock frequency. (2.2.24)
361 */
362 if (hp->specver >= SDHC_SPEC_VERS_300) {
363 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
364 } else {
365 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
366 }
367 if (hp->clkbase == 0 ||
368 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
369 if (sc->sc_clkbase == 0) {
370 /* The attachment driver must tell us. */
371 aprint_error_dev(sc->sc_dev,
372 "unknown base clock frequency\n");
373 goto err;
374 }
375 hp->clkbase = sc->sc_clkbase;
376 }
377 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
378 /* SDHC 1.0 supports only 10-63 MHz. */
379 aprint_error_dev(sc->sc_dev,
380 "base clock frequency out of range: %u MHz\n",
381 hp->clkbase / 1000);
382 goto err;
383 }
384 aprint_normal(", %u kHz", hp->clkbase);
385
386 /*
387 * XXX Set the data timeout counter value according to
388 * capabilities. (2.2.15)
389 */
390 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
391 #if 1
392 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
393 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
394 #endif
395
396 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
397 aprint_normal(", embedded slot");
398
399 /*
400 * Determine SD bus voltage levels supported by the controller.
401 */
402 aprint_normal(",");
403 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
404 SET(hp->ocr, MMC_OCR_HCS);
405 aprint_normal(" High-Speed");
406 }
407 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V) &&
408 (hp->specver < SDHC_SPEC_VERS_300 ||
409 ISSET(caps, SDHC_EMBEDDED_SLOT))) {
410 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
411 aprint_normal(" 1.8V");
412 }
413 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
414 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
415 aprint_normal(" 3.0V");
416 }
417 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
418 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
419 aprint_normal(" 3.3V");
420 }
421
422 /*
423 * Determine the maximum block length supported by the host
424 * controller. (2.2.24)
425 */
426 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
427 case SDHC_MAX_BLK_LEN_512:
428 hp->maxblklen = 512;
429 break;
430
431 case SDHC_MAX_BLK_LEN_1024:
432 hp->maxblklen = 1024;
433 break;
434
435 case SDHC_MAX_BLK_LEN_2048:
436 hp->maxblklen = 2048;
437 break;
438
439 case SDHC_MAX_BLK_LEN_4096:
440 hp->maxblklen = 4096;
441 break;
442
443 default:
444 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
445 goto err;
446 }
447 aprint_normal(", %u byte blocks", hp->maxblklen);
448 aprint_normal("\n");
449
450 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
451 int rseg;
452
453 /* Allocate ADMA2 descriptor memory */
454 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
455 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
456 if (error) {
457 aprint_error_dev(sc->sc_dev,
458 "ADMA2 dmamem_alloc failed (%d)\n", error);
459 goto adma_done;
460 }
461 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
462 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
463 if (error) {
464 aprint_error_dev(sc->sc_dev,
465 "ADMA2 dmamem_map failed (%d)\n", error);
466 goto adma_done;
467 }
468 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
469 0, BUS_DMA_WAITOK, &hp->adma_map);
470 if (error) {
471 aprint_error_dev(sc->sc_dev,
472 "ADMA2 dmamap_create failed (%d)\n", error);
473 goto adma_done;
474 }
475 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
476 hp->adma2, PAGE_SIZE, NULL,
477 BUS_DMA_WAITOK|BUS_DMA_WRITE);
478 if (error) {
479 aprint_error_dev(sc->sc_dev,
480 "ADMA2 dmamap_load failed (%d)\n", error);
481 goto adma_done;
482 }
483
484 memset(hp->adma2, 0, PAGE_SIZE);
485
486 adma_done:
487 if (error)
488 CLR(hp->flags, SHF_USE_ADMA2_MASK);
489 }
490
491 /*
492 * Attach the generic SD/MMC bus driver. (The bus driver must
493 * not invoke any chipset functions before it is attached.)
494 */
495 memset(&saa, 0, sizeof(saa));
496 saa.saa_busname = "sdmmc";
497 saa.saa_sct = &sdhc_functions;
498 saa.saa_sch = hp;
499 saa.saa_dmat = hp->dmat;
500 saa.saa_clkmax = hp->clkbase;
501 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
502 saa.saa_clkmin = hp->clkbase / 256 / 2046;
503 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
504 saa.saa_clkmin = hp->clkbase / 256 / 16;
505 else if (hp->sc->sc_clkmsk != 0)
506 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
507 (ffs(hp->sc->sc_clkmsk) - 1));
508 else if (hp->specver >= SDHC_SPEC_VERS_300)
509 saa.saa_clkmin = hp->clkbase / 0x3ff;
510 else
511 saa.saa_clkmin = hp->clkbase / 256;
512 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
513 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
514 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
515 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
516 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
517 if (ISSET(hp->flags, SHF_USE_DMA)) {
518 saa.saa_caps |= SMC_CAPS_DMA;
519 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
520 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
521 }
522 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
523 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
524 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
525
526 return 0;
527
528 err:
529 cv_destroy(&hp->intr_cv);
530 mutex_destroy(&hp->intr_lock);
531 free(hp, M_DEVBUF);
532 sc->sc_host[--sc->sc_nhosts] = NULL;
533 err1:
534 return 1;
535 }
536
537 int
538 sdhc_detach(struct sdhc_softc *sc, int flags)
539 {
540 struct sdhc_host *hp;
541 int rv = 0;
542
543 for (size_t n = 0; n < sc->sc_nhosts; n++) {
544 hp = sc->sc_host[n];
545 if (hp == NULL)
546 continue;
547 if (hp->sdmmc != NULL) {
548 rv = config_detach(hp->sdmmc, flags);
549 if (rv)
550 break;
551 hp->sdmmc = NULL;
552 }
553 /* disable interrupts */
554 if ((flags & DETACH_FORCE) == 0) {
555 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
556 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
557 } else {
558 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
559 }
560 sdhc_soft_reset(hp, SDHC_RESET_ALL);
561 }
562 cv_destroy(&hp->intr_cv);
563 mutex_destroy(&hp->intr_lock);
564 if (hp->ios > 0) {
565 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
566 hp->ios = 0;
567 }
568 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
569 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
570 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
571 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
572 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
573 }
574 free(hp, M_DEVBUF);
575 sc->sc_host[n] = NULL;
576 }
577
578 return rv;
579 }
580
581 bool
582 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
583 {
584 struct sdhc_softc *sc = device_private(dev);
585 struct sdhc_host *hp;
586 size_t i;
587
588 /* XXX poll for command completion or suspend command
589 * in progress */
590
591 /* Save the host controller state. */
592 for (size_t n = 0; n < sc->sc_nhosts; n++) {
593 hp = sc->sc_host[n];
594 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
595 for (i = 0; i < sizeof hp->regs; i += 4) {
596 uint32_t v = HREAD4(hp, i);
597 hp->regs[i + 0] = (v >> 0);
598 hp->regs[i + 1] = (v >> 8);
599 if (i + 3 < sizeof hp->regs) {
600 hp->regs[i + 2] = (v >> 16);
601 hp->regs[i + 3] = (v >> 24);
602 }
603 }
604 } else {
605 for (i = 0; i < sizeof hp->regs; i++) {
606 hp->regs[i] = HREAD1(hp, i);
607 }
608 }
609 }
610 return true;
611 }
612
613 bool
614 sdhc_resume(device_t dev, const pmf_qual_t *qual)
615 {
616 struct sdhc_softc *sc = device_private(dev);
617 struct sdhc_host *hp;
618 size_t i;
619
620 /* Restore the host controller state. */
621 for (size_t n = 0; n < sc->sc_nhosts; n++) {
622 hp = sc->sc_host[n];
623 (void)sdhc_host_reset(hp);
624 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
625 for (i = 0; i < sizeof hp->regs; i += 4) {
626 if (i + 3 < sizeof hp->regs) {
627 HWRITE4(hp, i,
628 (hp->regs[i + 0] << 0)
629 | (hp->regs[i + 1] << 8)
630 | (hp->regs[i + 2] << 16)
631 | (hp->regs[i + 3] << 24));
632 } else {
633 HWRITE4(hp, i,
634 (hp->regs[i + 0] << 0)
635 | (hp->regs[i + 1] << 8));
636 }
637 }
638 } else {
639 for (i = 0; i < sizeof hp->regs; i++) {
640 HWRITE1(hp, i, hp->regs[i]);
641 }
642 }
643 }
644 return true;
645 }
646
647 bool
648 sdhc_shutdown(device_t dev, int flags)
649 {
650 struct sdhc_softc *sc = device_private(dev);
651 struct sdhc_host *hp;
652
653 /* XXX chip locks up if we don't disable it before reboot. */
654 for (size_t i = 0; i < sc->sc_nhosts; i++) {
655 hp = sc->sc_host[i];
656 (void)sdhc_host_reset(hp);
657 }
658 return true;
659 }
660
661 /*
662 * Reset the host controller. Called during initialization, when
663 * cards are removed, upon resume, and during error recovery.
664 */
665 static int
666 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
667 {
668 struct sdhc_host *hp = (struct sdhc_host *)sch;
669 uint32_t sdhcimask;
670 int error;
671
672 KASSERT(mutex_owned(&hp->intr_lock));
673
674 /* Disable all interrupts. */
675 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
676 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
677 } else {
678 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
679 }
680
681 /*
682 * Reset the entire host controller and wait up to 100ms for
683 * the controller to clear the reset bit.
684 */
685 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
686 if (error)
687 goto out;
688
689 /* Set data timeout counter value to max for now. */
690 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
691 #if 1
692 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
693 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
694 #endif
695
696 /* Enable interrupts. */
697 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
698 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
699 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
700 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
701 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
702 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
703 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
704 sdhcimask ^=
705 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
706 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
707 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
708 } else {
709 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
710 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
711 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
712 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
713 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
714 }
715
716 out:
717 return error;
718 }
719
720 static int
721 sdhc_host_reset(sdmmc_chipset_handle_t sch)
722 {
723 struct sdhc_host *hp = (struct sdhc_host *)sch;
724 int error;
725
726 mutex_enter(&hp->intr_lock);
727 error = sdhc_host_reset1(sch);
728 mutex_exit(&hp->intr_lock);
729
730 return error;
731 }
732
733 static uint32_t
734 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
735 {
736 struct sdhc_host *hp = (struct sdhc_host *)sch;
737
738 return hp->ocr;
739 }
740
741 static int
742 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
743 {
744 struct sdhc_host *hp = (struct sdhc_host *)sch;
745
746 return hp->maxblklen;
747 }
748
749 /*
750 * Return non-zero if the card is currently inserted.
751 */
752 static int
753 sdhc_card_detect(sdmmc_chipset_handle_t sch)
754 {
755 struct sdhc_host *hp = (struct sdhc_host *)sch;
756 int r;
757
758 if (hp->sc->sc_vendor_card_detect)
759 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
760
761 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
762
763 return r ? 1 : 0;
764 }
765
766 /*
767 * Return non-zero if the card is currently write-protected.
768 */
769 static int
770 sdhc_write_protect(sdmmc_chipset_handle_t sch)
771 {
772 struct sdhc_host *hp = (struct sdhc_host *)sch;
773 int r;
774
775 if (hp->sc->sc_vendor_write_protect)
776 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
777
778 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
779
780 return r ? 0 : 1;
781 }
782
783 /*
784 * Set or change SD bus voltage and enable or disable SD bus power.
785 * Return zero on success.
786 */
787 static int
788 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
789 {
790 struct sdhc_host *hp = (struct sdhc_host *)sch;
791 uint8_t vdd;
792 int error = 0;
793 const uint32_t pcmask =
794 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
795
796 mutex_enter(&hp->intr_lock);
797
798 /*
799 * Disable bus power before voltage change.
800 */
801 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
802 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
803 HWRITE1(hp, SDHC_POWER_CTL, 0);
804
805 /* If power is disabled, reset the host and return now. */
806 if (ocr == 0) {
807 (void)sdhc_host_reset1(hp);
808 goto out;
809 }
810
811 /*
812 * Select the lowest voltage according to capabilities.
813 */
814 ocr &= hp->ocr;
815 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
816 vdd = SDHC_VOLTAGE_1_8V;
817 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
818 vdd = SDHC_VOLTAGE_3_0V;
819 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
820 vdd = SDHC_VOLTAGE_3_3V;
821 } else {
822 /* Unsupported voltage level requested. */
823 error = EINVAL;
824 goto out;
825 }
826
827 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
828 /*
829 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
830 * voltage ramp until power rises.
831 */
832
833 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
834 HWRITE1(hp, SDHC_POWER_CTL,
835 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
836 } else {
837 HWRITE1(hp, SDHC_POWER_CTL,
838 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
839 sdmmc_delay(1);
840 HWRITE1(hp, SDHC_POWER_CTL,
841 (vdd << SDHC_VOLTAGE_SHIFT));
842 sdmmc_delay(1);
843 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
844 sdmmc_delay(10000);
845 }
846
847 /*
848 * The host system may not power the bus due to battery low,
849 * etc. In that case, the host controller should clear the
850 * bus power bit.
851 */
852 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
853 error = ENXIO;
854 goto out;
855 }
856 }
857
858 out:
859 mutex_exit(&hp->intr_lock);
860
861 return error;
862 }
863
864 /*
865 * Return the smallest possible base clock frequency divisor value
866 * for the CLOCK_CTL register to produce `freq' (KHz).
867 */
868 static bool
869 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
870 {
871 u_int div;
872
873 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
874 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
875 if ((hp->clkbase / div) <= freq) {
876 *divp = SDHC_SDCLK_CGM
877 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
878 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
879 //freq = hp->clkbase / div;
880 return true;
881 }
882 }
883 /* No divisor found. */
884 return false;
885 }
886 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
887 u_int dvs = (hp->clkbase + freq - 1) / freq;
888 u_int roundup = dvs & 1;
889 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
890 if (dvs + roundup <= 16) {
891 dvs += roundup - 1;
892 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
893 | (dvs << SDHC_SDCLK_DVS_SHIFT);
894 DPRINTF(2,
895 ("%s: divisor for freq %u is %u * %u\n",
896 HDEVNAME(hp), freq, div * 2, dvs + 1));
897 //freq = hp->clkbase / (div * 2) * (dvs + 1);
898 return true;
899 }
900 /*
901 * If we drop bits, we need to round up the divisor.
902 */
903 roundup |= dvs & 1;
904 }
905 /* No divisor found. */
906 return false;
907 }
908 if (hp->sc->sc_clkmsk != 0) {
909 div = howmany(hp->clkbase, freq);
910 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
911 return false;
912 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
913 //freq = hp->clkbase / div;
914 return true;
915 }
916 if (hp->specver >= SDHC_SPEC_VERS_300) {
917 div = howmany(hp->clkbase, freq);
918 div = div > 1 ? howmany(div, 2) : 0;
919 if (div > 0x3ff)
920 return false;
921 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
922 << SDHC_SDCLK_XDIV_SHIFT) |
923 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
924 << SDHC_SDCLK_DIV_SHIFT);
925 //freq = hp->clkbase / (div ? div * 2 : 1);
926 return true;
927 } else {
928 for (div = 1; div <= 256; div *= 2) {
929 if ((hp->clkbase / div) <= freq) {
930 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
931 //freq = hp->clkbase / div;
932 return true;
933 }
934 }
935 /* No divisor found. */
936 return false;
937 }
938 /* No divisor found. */
939 return false;
940 }
941
942 /*
943 * Set or change SDCLK frequency or disable the SD clock.
944 * Return zero on success.
945 */
946 static int
947 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
948 {
949 struct sdhc_host *hp = (struct sdhc_host *)sch;
950 u_int div;
951 u_int timo;
952 int16_t reg;
953 int error = 0;
954 bool present __diagused;
955
956 mutex_enter(&hp->intr_lock);
957
958 #ifdef DIAGNOSTIC
959 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
960
961 /* Must not stop the clock if commands are in progress. */
962 if (present && sdhc_card_detect(hp)) {
963 aprint_normal_dev(hp->sc->sc_dev,
964 "%s: command in progress\n", __func__);
965 }
966 #endif
967
968 if (hp->sc->sc_vendor_bus_clock) {
969 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
970 if (error != 0)
971 goto out;
972 }
973
974 /*
975 * Stop SD clock before changing the frequency.
976 */
977 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
978 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
979 if (freq == SDMMC_SDCLK_OFF) {
980 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
981 goto out;
982 }
983 } else {
984 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
985 if (freq == SDMMC_SDCLK_OFF)
986 goto out;
987 }
988
989 /*
990 * Set the minimum base clock frequency divisor.
991 */
992 if (!sdhc_clock_divisor(hp, freq, &div)) {
993 /* Invalid base clock frequency or `freq' value. */
994 aprint_error_dev(hp->sc->sc_dev,
995 "Invalid bus clock %d kHz\n", freq);
996 error = EINVAL;
997 goto out;
998 }
999 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1000 HWRITE4(hp, SDHC_CLOCK_CTL,
1001 div | (SDHC_TIMEOUT_MAX << 16));
1002 } else {
1003 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1004 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1005 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1006 }
1007
1008 /*
1009 * Start internal clock. Wait 10ms for stabilization.
1010 */
1011 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1012 sdmmc_delay(10000);
1013 HSET4(hp, SDHC_CLOCK_CTL,
1014 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1015 } else {
1016 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1017 for (timo = 1000; timo > 0; timo--) {
1018 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1019 SDHC_INTCLK_STABLE))
1020 break;
1021 sdmmc_delay(10);
1022 }
1023 if (timo == 0) {
1024 error = ETIMEDOUT;
1025 goto out;
1026 }
1027 }
1028
1029 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1030 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1031 /*
1032 * Sending 80 clocks at 400kHz takes 200us.
1033 * So delay for that time + slop and then
1034 * check a few times for completion.
1035 */
1036 sdmmc_delay(210);
1037 for (timo = 10; timo > 0; timo--) {
1038 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1039 SDHC_INIT_ACTIVE))
1040 break;
1041 sdmmc_delay(10);
1042 }
1043 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1044
1045 /*
1046 * Enable SD clock.
1047 */
1048 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1049 } else {
1050 /*
1051 * Enable SD clock.
1052 */
1053 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1054
1055 if (freq > 25000 &&
1056 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1057 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1058 else
1059 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1060 }
1061
1062 out:
1063 mutex_exit(&hp->intr_lock);
1064
1065 return error;
1066 }
1067
1068 static int
1069 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1070 {
1071 struct sdhc_host *hp = (struct sdhc_host *)sch;
1072 int reg;
1073
1074 switch (width) {
1075 case 1:
1076 case 4:
1077 break;
1078
1079 case 8:
1080 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1081 break;
1082 /* FALLTHROUGH */
1083 default:
1084 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1085 HDEVNAME(hp), width));
1086 return 1;
1087 }
1088
1089 mutex_enter(&hp->intr_lock);
1090
1091 reg = HREAD1(hp, SDHC_HOST_CTL);
1092 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1093 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1094 if (width == 4)
1095 reg |= SDHC_4BIT_MODE;
1096 else if (width == 8)
1097 reg |= SDHC_ESDHC_8BIT_MODE;
1098 } else {
1099 reg &= ~SDHC_4BIT_MODE;
1100 if (hp->specver >= SDHC_SPEC_VERS_300) {
1101 reg &= ~SDHC_8BIT_MODE;
1102 }
1103 if (width == 4) {
1104 reg |= SDHC_4BIT_MODE;
1105 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1106 reg |= SDHC_8BIT_MODE;
1107 }
1108 }
1109 HWRITE1(hp, SDHC_HOST_CTL, reg);
1110
1111 mutex_exit(&hp->intr_lock);
1112
1113 return 0;
1114 }
1115
1116 static int
1117 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1118 {
1119 struct sdhc_host *hp = (struct sdhc_host *)sch;
1120
1121 if (hp->sc->sc_vendor_rod)
1122 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1123
1124 return 0;
1125 }
1126
1127 static void
1128 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1129 {
1130 struct sdhc_host *hp = (struct sdhc_host *)sch;
1131
1132 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1133 mutex_enter(&hp->intr_lock);
1134 if (enable) {
1135 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1136 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1137 } else {
1138 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1139 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1140 }
1141 mutex_exit(&hp->intr_lock);
1142 }
1143 }
1144
1145 static void
1146 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1147 {
1148 struct sdhc_host *hp = (struct sdhc_host *)sch;
1149
1150 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1151 mutex_enter(&hp->intr_lock);
1152 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1153 mutex_exit(&hp->intr_lock);
1154 }
1155 }
1156
1157 static int
1158 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1159 {
1160 uint32_t state;
1161 int timeout;
1162
1163 for (timeout = 10000; timeout > 0; timeout--) {
1164 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1165 return 0;
1166 sdmmc_delay(10);
1167 }
1168 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for %x (state=%x)\n",
1169 value, state);
1170 return ETIMEDOUT;
1171 }
1172
1173 static void
1174 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1175 {
1176 struct sdhc_host *hp = (struct sdhc_host *)sch;
1177 int error;
1178
1179 mutex_enter(&hp->intr_lock);
1180
1181 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1182 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1183 if (ISSET(hp->flags, SHF_USE_DMA)) {
1184 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1185 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1186 } else {
1187 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1188 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1189 }
1190 }
1191
1192 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1193 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1194 if (cmd->c_data != NULL) {
1195 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1196 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1197 } else {
1198 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1199 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1200 }
1201 }
1202
1203 /*
1204 * Start the MMC command, or mark `cmd' as failed and return.
1205 */
1206 error = sdhc_start_command(hp, cmd);
1207 if (error) {
1208 cmd->c_error = error;
1209 goto out;
1210 }
1211
1212 /*
1213 * Wait until the command phase is done, or until the command
1214 * is marked done for any other reason.
1215 */
1216 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1217 cmd->c_error = ETIMEDOUT;
1218 goto out;
1219 }
1220
1221 /*
1222 * The host controller removes bits [0:7] from the response
1223 * data (CRC) and we pass the data up unchanged to the bus
1224 * driver (without padding).
1225 */
1226 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1227 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1228 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1229 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1230 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1231 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1232 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1233 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1234 (cmd->c_resp[1] << 24);
1235 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1236 (cmd->c_resp[2] << 24);
1237 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1238 (cmd->c_resp[3] << 24);
1239 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1240 }
1241 }
1242 }
1243 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1244
1245 /*
1246 * If the command has data to transfer in any direction,
1247 * execute the transfer now.
1248 */
1249 if (cmd->c_error == 0 && cmd->c_data != NULL)
1250 sdhc_transfer_data(hp, cmd);
1251 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1252 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1253 cmd->c_error = ETIMEDOUT;
1254 goto out;
1255 }
1256 }
1257
1258 out:
1259 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1260 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1261 /* Turn off the LED. */
1262 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1263 }
1264 SET(cmd->c_flags, SCF_ITSDONE);
1265
1266 mutex_exit(&hp->intr_lock);
1267
1268 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1269 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1270 cmd->c_flags, cmd->c_error));
1271 }
1272
1273 static int
1274 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1275 {
1276 struct sdhc_softc * const sc = hp->sc;
1277 uint16_t blksize = 0;
1278 uint16_t blkcount = 0;
1279 uint16_t mode;
1280 uint16_t command;
1281 int error;
1282
1283 KASSERT(mutex_owned(&hp->intr_lock));
1284
1285 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1286 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1287 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1288
1289 /*
1290 * The maximum block length for commands should be the minimum
1291 * of the host buffer size and the card buffer size. (1.7.2)
1292 */
1293
1294 /* Fragment the data into proper blocks. */
1295 if (cmd->c_datalen > 0) {
1296 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1297 blkcount = cmd->c_datalen / blksize;
1298 if (cmd->c_datalen % blksize > 0) {
1299 /* XXX: Split this command. (1.7.4) */
1300 aprint_error_dev(sc->sc_dev,
1301 "data not a multiple of %u bytes\n", blksize);
1302 return EINVAL;
1303 }
1304 }
1305
1306 /* Check limit imposed by 9-bit block count. (1.7.2) */
1307 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1308 aprint_error_dev(sc->sc_dev, "too much data\n");
1309 return EINVAL;
1310 }
1311
1312 /* Prepare transfer mode register value. (2.2.5) */
1313 mode = SDHC_BLOCK_COUNT_ENABLE;
1314 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1315 mode |= SDHC_READ_MODE;
1316 if (blkcount > 1) {
1317 mode |= SDHC_MULTI_BLOCK_MODE;
1318 /* XXX only for memory commands? */
1319 mode |= SDHC_AUTO_CMD12_ENABLE;
1320 }
1321 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1322 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1323 mode |= SDHC_DMA_ENABLE;
1324 }
1325
1326 /*
1327 * Prepare command register value. (2.2.6)
1328 */
1329 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1330
1331 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1332 command |= SDHC_CRC_CHECK_ENABLE;
1333 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1334 command |= SDHC_INDEX_CHECK_ENABLE;
1335 if (cmd->c_data != NULL)
1336 command |= SDHC_DATA_PRESENT_SELECT;
1337
1338 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1339 command |= SDHC_NO_RESPONSE;
1340 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1341 command |= SDHC_RESP_LEN_136;
1342 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1343 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1344 else
1345 command |= SDHC_RESP_LEN_48;
1346
1347 /* Wait until command and data inhibit bits are clear. (1.5) */
1348 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1349 if (error) {
1350 aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1351 return error;
1352 }
1353
1354 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1355 HDEVNAME(hp), blksize, blkcount, mode, command));
1356
1357 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1358 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1359 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1360 }
1361
1362 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1363 /* Alert the user not to remove the card. */
1364 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1365 }
1366
1367 /* Set DMA start address. */
1368 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1369 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1370 bus_addr_t paddr =
1371 cmd->c_dmamap->dm_segs[seg].ds_addr;
1372 uint16_t len =
1373 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1374 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1375 uint16_t attr =
1376 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1377 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1378 attr |= SDHC_ADMA2_END;
1379 }
1380 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1381 struct sdhc_adma2_descriptor32 *desc =
1382 hp->adma2;
1383 desc[seg].attribute = htole16(attr);
1384 desc[seg].length = htole16(len);
1385 desc[seg].address = htole32(paddr);
1386 } else {
1387 struct sdhc_adma2_descriptor64 *desc =
1388 hp->adma2;
1389 desc[seg].attribute = htole16(attr);
1390 desc[seg].length = htole16(len);
1391 desc[seg].address = htole32(paddr & 0xffffffff);
1392 desc[seg].address_hi = htole32(
1393 (uint64_t)paddr >> 32);
1394 }
1395 }
1396 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1397 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1398 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1399 } else {
1400 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1401 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1402 }
1403 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1404 BUS_DMASYNC_PREWRITE);
1405 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1406 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1407
1408 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1409
1410 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1411 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1412 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1413 (uint64_t)desc_addr >> 32);
1414 }
1415 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1416 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1417 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1418 }
1419
1420 /*
1421 * Start a CPU data transfer. Writing to the high order byte
1422 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1423 */
1424 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1425 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1426 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1427 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1428 } else {
1429 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1430 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1431 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1432 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1433 HWRITE2(hp, SDHC_COMMAND, command);
1434 }
1435
1436 return 0;
1437 }
1438
1439 static void
1440 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1441 {
1442 struct sdhc_softc *sc = hp->sc;
1443 int error;
1444
1445 KASSERT(mutex_owned(&hp->intr_lock));
1446
1447 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1448 MMC_R1(cmd->c_resp), cmd->c_datalen));
1449
1450 #ifdef SDHC_DEBUG
1451 /* XXX I forgot why I wanted to know when this happens :-( */
1452 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1453 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1454 aprint_error_dev(hp->sc->sc_dev,
1455 "CMD52/53 error response flags %#x\n",
1456 MMC_R1(cmd->c_resp) & 0xff00);
1457 }
1458 #endif
1459
1460 if (cmd->c_dmamap != NULL) {
1461 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1462 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1463 if (error == 0 && !sdhc_wait_intr(hp,
1464 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1465 error = ETIMEDOUT;
1466 }
1467 } else {
1468 error = sdhc_transfer_data_dma(hp, cmd);
1469 }
1470 } else
1471 error = sdhc_transfer_data_pio(hp, cmd);
1472 if (error)
1473 cmd->c_error = error;
1474 SET(cmd->c_flags, SCF_ITSDONE);
1475
1476 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1477 HDEVNAME(hp), cmd->c_error));
1478 }
1479
1480 static int
1481 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1482 {
1483 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1484 bus_addr_t posaddr;
1485 bus_addr_t segaddr;
1486 bus_size_t seglen;
1487 u_int seg = 0;
1488 int error = 0;
1489 int status;
1490
1491 KASSERT(mutex_owned(&hp->intr_lock));
1492 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1493 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1494 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1495 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1496
1497 for (;;) {
1498 status = sdhc_wait_intr(hp,
1499 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1500 SDHC_DMA_TIMEOUT);
1501
1502 if (status & SDHC_TRANSFER_COMPLETE) {
1503 break;
1504 }
1505 if (!status) {
1506 error = ETIMEDOUT;
1507 break;
1508 }
1509
1510 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1511 continue;
1512 }
1513
1514 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1515 continue;
1516 }
1517
1518 /* DMA Interrupt (boundary crossing) */
1519
1520 segaddr = dm_segs[seg].ds_addr;
1521 seglen = dm_segs[seg].ds_len;
1522 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1523
1524 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1525 continue;
1526 }
1527 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1528 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1529 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1530 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1531 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1532 }
1533
1534 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1535 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1536 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1537 }
1538
1539 return error;
1540 }
1541
1542 static int
1543 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1544 {
1545 uint8_t *data = cmd->c_data;
1546 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1547 u_int len, datalen;
1548 u_int imask;
1549 u_int pmask;
1550 int error = 0;
1551
1552 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1553 imask = SDHC_BUFFER_READ_READY;
1554 pmask = SDHC_BUFFER_READ_ENABLE;
1555 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1556 pio_func = esdhc_read_data_pio;
1557 } else {
1558 pio_func = sdhc_read_data_pio;
1559 }
1560 } else {
1561 imask = SDHC_BUFFER_WRITE_READY;
1562 pmask = SDHC_BUFFER_WRITE_ENABLE;
1563 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1564 pio_func = esdhc_write_data_pio;
1565 } else {
1566 pio_func = sdhc_write_data_pio;
1567 }
1568 }
1569 datalen = cmd->c_datalen;
1570
1571 KASSERT(mutex_owned(&hp->intr_lock));
1572 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1573 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1574 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1575
1576 while (datalen > 0) {
1577 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1578 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1579 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1580 } else {
1581 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1582 }
1583 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1584 error = ETIMEDOUT;
1585 break;
1586 }
1587
1588 error = sdhc_wait_state(hp, pmask, pmask);
1589 if (error)
1590 break;
1591 }
1592
1593 len = MIN(datalen, cmd->c_blklen);
1594 (*pio_func)(hp, data, len);
1595 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1596 HDEVNAME(hp), len, data));
1597
1598 data += len;
1599 datalen -= len;
1600 }
1601
1602 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1603 SDHC_TRANSFER_TIMEOUT))
1604 error = ETIMEDOUT;
1605
1606 return error;
1607 }
1608
1609 static void
1610 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1611 {
1612
1613 if (((__uintptr_t)data & 3) == 0) {
1614 while (datalen > 3) {
1615 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1616 data += 4;
1617 datalen -= 4;
1618 }
1619 if (datalen > 1) {
1620 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1621 data += 2;
1622 datalen -= 2;
1623 }
1624 if (datalen > 0) {
1625 *data = HREAD1(hp, SDHC_DATA);
1626 data += 1;
1627 datalen -= 1;
1628 }
1629 } else if (((__uintptr_t)data & 1) == 0) {
1630 while (datalen > 1) {
1631 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1632 data += 2;
1633 datalen -= 2;
1634 }
1635 if (datalen > 0) {
1636 *data = HREAD1(hp, SDHC_DATA);
1637 data += 1;
1638 datalen -= 1;
1639 }
1640 } else {
1641 while (datalen > 0) {
1642 *data = HREAD1(hp, SDHC_DATA);
1643 data += 1;
1644 datalen -= 1;
1645 }
1646 }
1647 }
1648
1649 static void
1650 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1651 {
1652
1653 if (((__uintptr_t)data & 3) == 0) {
1654 while (datalen > 3) {
1655 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1656 data += 4;
1657 datalen -= 4;
1658 }
1659 if (datalen > 1) {
1660 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1661 data += 2;
1662 datalen -= 2;
1663 }
1664 if (datalen > 0) {
1665 HWRITE1(hp, SDHC_DATA, *data);
1666 data += 1;
1667 datalen -= 1;
1668 }
1669 } else if (((__uintptr_t)data & 1) == 0) {
1670 while (datalen > 1) {
1671 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1672 data += 2;
1673 datalen -= 2;
1674 }
1675 if (datalen > 0) {
1676 HWRITE1(hp, SDHC_DATA, *data);
1677 data += 1;
1678 datalen -= 1;
1679 }
1680 } else {
1681 while (datalen > 0) {
1682 HWRITE1(hp, SDHC_DATA, *data);
1683 data += 1;
1684 datalen -= 1;
1685 }
1686 }
1687 }
1688
1689 static void
1690 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1691 {
1692 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1693 uint32_t v;
1694
1695 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1696 size_t count = 0;
1697
1698 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1699 if (count == 0) {
1700 /*
1701 * If we've drained "watermark" words, we need to wait
1702 * a little bit so the read FIFO can refill.
1703 */
1704 sdmmc_delay(10);
1705 count = watermark;
1706 }
1707 v = HREAD4(hp, SDHC_DATA);
1708 v = le32toh(v);
1709 *(uint32_t *)data = v;
1710 data += 4;
1711 datalen -= 4;
1712 status = HREAD2(hp, SDHC_NINTR_STATUS);
1713 count--;
1714 }
1715 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1716 if (count == 0) {
1717 sdmmc_delay(10);
1718 }
1719 v = HREAD4(hp, SDHC_DATA);
1720 v = le32toh(v);
1721 do {
1722 *data++ = v;
1723 v >>= 8;
1724 } while (--datalen > 0);
1725 }
1726 }
1727
1728 static void
1729 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1730 {
1731 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1732 uint32_t v;
1733
1734 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1735 size_t count = watermark;
1736
1737 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1738 if (count == 0) {
1739 sdmmc_delay(10);
1740 count = watermark;
1741 }
1742 v = *(uint32_t *)data;
1743 v = htole32(v);
1744 HWRITE4(hp, SDHC_DATA, v);
1745 data += 4;
1746 datalen -= 4;
1747 status = HREAD2(hp, SDHC_NINTR_STATUS);
1748 count--;
1749 }
1750 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1751 if (count == 0) {
1752 sdmmc_delay(10);
1753 }
1754 v = *(uint32_t *)data;
1755 v = htole32(v);
1756 HWRITE4(hp, SDHC_DATA, v);
1757 }
1758 }
1759
1760 /* Prepare for another command. */
1761 static int
1762 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1763 {
1764 int timo;
1765
1766 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1767
1768 /* Request the reset. */
1769 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1770
1771 /*
1772 * If necessary, wait for the controller to set the bits to
1773 * acknowledge the reset.
1774 */
1775 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1776 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1777 for (timo = 10000; timo > 0; timo--) {
1778 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1779 break;
1780 /* Short delay because I worry we may miss it... */
1781 sdmmc_delay(1);
1782 }
1783 if (timo == 0)
1784 return ETIMEDOUT;
1785 }
1786
1787 /*
1788 * Wait for the controller to clear the bits to indicate that
1789 * the reset has completed.
1790 */
1791 for (timo = 10; timo > 0; timo--) {
1792 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1793 break;
1794 sdmmc_delay(10000);
1795 }
1796 if (timo == 0) {
1797 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1798 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1799 return ETIMEDOUT;
1800 }
1801
1802 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1803 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1804 }
1805
1806 return 0;
1807 }
1808
1809 static int
1810 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1811 {
1812 int status;
1813
1814 KASSERT(mutex_owned(&hp->intr_lock));
1815
1816 mask |= SDHC_ERROR_INTERRUPT;
1817
1818 status = hp->intr_status & mask;
1819 while (status == 0) {
1820 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
1821 == EWOULDBLOCK) {
1822 status |= SDHC_ERROR_INTERRUPT;
1823 break;
1824 }
1825 status = hp->intr_status & mask;
1826 }
1827 hp->intr_status &= ~status;
1828
1829 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1830 hp->intr_error_status));
1831
1832 /* Command timeout has higher priority than command complete. */
1833 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1834 hp->intr_error_status = 0;
1835 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1836 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1837 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1838 }
1839 status = 0;
1840 }
1841
1842 return status;
1843 }
1844
1845 /*
1846 * Established by attachment driver at interrupt priority IPL_SDMMC.
1847 */
1848 int
1849 sdhc_intr(void *arg)
1850 {
1851 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1852 struct sdhc_host *hp;
1853 int done = 0;
1854 uint16_t status;
1855 uint16_t error;
1856
1857 /* We got an interrupt, but we don't know from which slot. */
1858 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1859 hp = sc->sc_host[host];
1860 if (hp == NULL)
1861 continue;
1862
1863 mutex_enter(&hp->intr_lock);
1864
1865 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1866 /* Find out which interrupts are pending. */
1867 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1868 status = xstatus;
1869 error = xstatus >> 16;
1870 if (error)
1871 xstatus |= SDHC_ERROR_INTERRUPT;
1872 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1873 goto next_port; /* no interrupt for us */
1874 /* Acknowledge the interrupts we are about to handle. */
1875 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1876 } else {
1877 /* Find out which interrupts are pending. */
1878 error = 0;
1879 status = HREAD2(hp, SDHC_NINTR_STATUS);
1880 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1881 goto next_port; /* no interrupt for us */
1882 /* Acknowledge the interrupts we are about to handle. */
1883 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1884 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1885 /* Acknowledge error interrupts. */
1886 error = HREAD2(hp, SDHC_EINTR_STATUS);
1887 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1888 }
1889 }
1890
1891 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1892 status, error));
1893
1894 /* Claim this interrupt. */
1895 done = 1;
1896
1897 if (ISSET(error, SDHC_ADMA_ERROR)) {
1898 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1899 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1900 adma_err);
1901 }
1902
1903 /*
1904 * Service error interrupts.
1905 */
1906 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1907 SDHC_DATA_TIMEOUT_ERROR)) {
1908 hp->intr_error_status |= error;
1909 hp->intr_status |= status;
1910 cv_broadcast(&hp->intr_cv);
1911 }
1912
1913 /*
1914 * Wake up the sdmmc event thread to scan for cards.
1915 */
1916 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1917 if (hp->sdmmc != NULL) {
1918 sdmmc_needs_discover(hp->sdmmc);
1919 }
1920 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1921 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1922 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1923 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1924 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1925 }
1926 }
1927
1928 /*
1929 * Wake up the blocking process to service command
1930 * related interrupt(s).
1931 */
1932 if (ISSET(status, SDHC_COMMAND_COMPLETE|
1933 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
1934 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1935 hp->intr_status |= status;
1936 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1937 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1938 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
1939 }
1940 cv_broadcast(&hp->intr_cv);
1941 }
1942
1943 /*
1944 * Service SD card interrupts.
1945 */
1946 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
1947 && ISSET(status, SDHC_CARD_INTERRUPT)) {
1948 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1949 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1950 sdmmc_card_intr(hp->sdmmc);
1951 }
1952 next_port:
1953 mutex_exit(&hp->intr_lock);
1954 }
1955
1956 return done;
1957 }
1958
1959 kmutex_t *
1960 sdhc_host_lock(struct sdhc_host *hp)
1961 {
1962 return &hp->intr_lock;
1963 }
1964
1965 #ifdef SDHC_DEBUG
1966 void
1967 sdhc_dump_regs(struct sdhc_host *hp)
1968 {
1969
1970 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1971 HREAD4(hp, SDHC_PRESENT_STATE));
1972 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
1973 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1974 HREAD1(hp, SDHC_POWER_CTL));
1975 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1976 HREAD2(hp, SDHC_NINTR_STATUS));
1977 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1978 HREAD2(hp, SDHC_EINTR_STATUS));
1979 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1980 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1981 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1982 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1983 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1984 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1985 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1986 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1987 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1988 HREAD4(hp, SDHC_CAPABILITIES));
1989 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1990 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1991 }
1992 #endif
1993