Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.73
      1 /*	$NetBSD: sdhc.c,v 1.73 2015/08/03 00:19:27 jmcneill Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.73 2015/08/03 00:19:27 jmcneill Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 
     40 #include <dev/sdmmc/sdhcreg.h>
     41 #include <dev/sdmmc/sdhcvar.h>
     42 #include <dev/sdmmc/sdmmcchip.h>
     43 #include <dev/sdmmc/sdmmcreg.h>
     44 #include <dev/sdmmc/sdmmcvar.h>
     45 
     46 #ifdef SDHC_DEBUG
     47 int sdhcdebug = 1;
     48 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     49 void	sdhc_dump_regs(struct sdhc_host *);
     50 #else
     51 #define DPRINTF(n,s)	do {} while (0)
     52 #endif
     53 
     54 #define SDHC_COMMAND_TIMEOUT	hz
     55 #define SDHC_BUFFER_TIMEOUT	hz
     56 #define SDHC_TRANSFER_TIMEOUT	hz
     57 #define SDHC_DMA_TIMEOUT	(hz*3)
     58 
     59 struct sdhc_host {
     60 	struct sdhc_softc *sc;		/* host controller device */
     61 
     62 	bus_space_tag_t iot;		/* host register set tag */
     63 	bus_space_handle_t ioh;		/* host register set handle */
     64 	bus_size_t ios;			/* host register space size */
     65 	bus_dma_tag_t dmat;		/* host DMA tag */
     66 
     67 	device_t sdmmc;			/* generic SD/MMC device */
     68 
     69 	u_int clkbase;			/* base clock frequency in KHz */
     70 	int maxblklen;			/* maximum block length */
     71 	uint32_t ocr;			/* OCR value from capabilities */
     72 
     73 	uint8_t regs[14];		/* host controller state */
     74 
     75 	uint16_t intr_status;		/* soft interrupt status */
     76 	uint16_t intr_error_status;	/* soft error status */
     77 	kmutex_t intr_lock;
     78 	kcondvar_t intr_cv;
     79 
     80 	int specver;			/* spec. version */
     81 
     82 	uint32_t flags;			/* flags for this host */
     83 #define SHF_USE_DMA		0x0001
     84 #define SHF_USE_4BIT_MODE	0x0002
     85 #define SHF_USE_8BIT_MODE	0x0004
     86 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     87 #define SHF_USE_ADMA2_32	0x0010
     88 #define SHF_USE_ADMA2_64	0x0020
     89 #define SHF_USE_ADMA2_MASK	0x0030
     90 
     91 	bus_dmamap_t		adma_map;
     92 	bus_dma_segment_t	adma_segs[1];
     93 	void			*adma2;
     94 };
     95 
     96 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     97 
     98 static uint8_t
     99 hread1(struct sdhc_host *hp, bus_size_t reg)
    100 {
    101 
    102 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    103 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    104 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    105 }
    106 
    107 static uint16_t
    108 hread2(struct sdhc_host *hp, bus_size_t reg)
    109 {
    110 
    111 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    112 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    113 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    114 }
    115 
    116 #define HREAD1(hp, reg)		hread1(hp, reg)
    117 #define HREAD2(hp, reg)		hread2(hp, reg)
    118 #define HREAD4(hp, reg)		\
    119 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    120 
    121 
    122 static void
    123 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    124 {
    125 
    126 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    127 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    128 	} else {
    129 		const size_t shift = 8 * (o & 3);
    130 		o &= -4;
    131 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    132 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    133 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    134 	}
    135 }
    136 
    137 static void
    138 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    139 {
    140 
    141 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    142 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    143 	} else {
    144 		const size_t shift = 8 * (o & 2);
    145 		o &= -4;
    146 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    147 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    148 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    149 	}
    150 }
    151 
    152 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    153 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    154 #define HWRITE4(hp, reg, val)						\
    155 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    156 
    157 #define HCLR1(hp, reg, bits)						\
    158 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    159 #define HCLR2(hp, reg, bits)						\
    160 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    161 #define HCLR4(hp, reg, bits)						\
    162 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    163 #define HSET1(hp, reg, bits)						\
    164 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    165 #define HSET2(hp, reg, bits)						\
    166 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    167 #define HSET4(hp, reg, bits)						\
    168 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    169 
    170 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    171 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    172 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    173 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    174 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    175 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    176 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    177 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    178 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    179 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    180 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    181 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    182 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    183 		    struct sdmmc_command *);
    184 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    185 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    186 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    187 static int	sdhc_soft_reset(struct sdhc_host *, int);
    188 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    189 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    190 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    191 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    192 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    193 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    194 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    195 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    196 
    197 static struct sdmmc_chip_functions sdhc_functions = {
    198 	/* host controller reset */
    199 	.host_reset = sdhc_host_reset,
    200 
    201 	/* host controller capabilities */
    202 	.host_ocr = sdhc_host_ocr,
    203 	.host_maxblklen = sdhc_host_maxblklen,
    204 
    205 	/* card detection */
    206 	.card_detect = sdhc_card_detect,
    207 
    208 	/* write protect */
    209 	.write_protect = sdhc_write_protect,
    210 
    211 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    212 	.bus_power = sdhc_bus_power,
    213 	.bus_clock = sdhc_bus_clock,
    214 	.bus_width = sdhc_bus_width,
    215 	.bus_rod = sdhc_bus_rod,
    216 
    217 	/* command execution */
    218 	.exec_command = sdhc_exec_command,
    219 
    220 	/* card interrupt */
    221 	.card_enable_intr = sdhc_card_enable_intr,
    222 	.card_intr_ack = sdhc_card_intr_ack,
    223 
    224 	/* UHS functions */
    225 	.signal_voltage = sdhc_signal_voltage,
    226 };
    227 
    228 static int
    229 sdhc_cfprint(void *aux, const char *pnp)
    230 {
    231 	const struct sdmmcbus_attach_args * const saa = aux;
    232 	const struct sdhc_host * const hp = saa->saa_sch;
    233 
    234 	if (pnp) {
    235 		aprint_normal("sdmmc at %s", pnp);
    236 	}
    237 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    238 		if (hp->sc->sc_host[host] == hp) {
    239 			aprint_normal(" slot %zu", host);
    240 		}
    241 	}
    242 
    243 	return UNCONF;
    244 }
    245 
    246 /*
    247  * Called by attachment driver.  For each SD card slot there is one SD
    248  * host controller standard register set. (1.3)
    249  */
    250 int
    251 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    252     bus_space_handle_t ioh, bus_size_t iosize)
    253 {
    254 	struct sdmmcbus_attach_args saa;
    255 	struct sdhc_host *hp;
    256 	uint32_t caps, caps2;
    257 	uint16_t sdhcver;
    258 	int error;
    259 
    260 	/* Allocate one more host structure. */
    261 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    262 	if (hp == NULL) {
    263 		aprint_error_dev(sc->sc_dev,
    264 		    "couldn't alloc memory (sdhc host)\n");
    265 		goto err1;
    266 	}
    267 	sc->sc_host[sc->sc_nhosts++] = hp;
    268 
    269 	/* Fill in the new host structure. */
    270 	hp->sc = sc;
    271 	hp->iot = iot;
    272 	hp->ioh = ioh;
    273 	hp->ios = iosize;
    274 	hp->dmat = sc->sc_dmat;
    275 
    276 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    277 	cv_init(&hp->intr_cv, "sdhcintr");
    278 
    279 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    280 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    281 	} else {
    282 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    283 	}
    284 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    285 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    286 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    287 	case SDHC_SPEC_VERS_100:
    288 		aprint_normal("1.0");
    289 		break;
    290 
    291 	case SDHC_SPEC_VERS_200:
    292 		aprint_normal("2.0");
    293 		break;
    294 
    295 	case SDHC_SPEC_VERS_300:
    296 		aprint_normal("3.0");
    297 		break;
    298 
    299 	case SDHC_SPEC_VERS_400:
    300 		aprint_normal("4.0");
    301 		break;
    302 
    303 	default:
    304 		aprint_normal("unknown version(0x%x)",
    305 		    SDHC_SPEC_VERSION(sdhcver));
    306 		break;
    307 	}
    308 	aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    309 
    310 	/*
    311 	 * Reset the host controller and enable interrupts.
    312 	 */
    313 	(void)sdhc_host_reset(hp);
    314 
    315 	/* Determine host capabilities. */
    316 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    317 		caps = sc->sc_caps;
    318 		caps2 = sc->sc_caps2;
    319 	} else {
    320 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    321 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    322 			caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    323 		} else {
    324 			caps2 = 0;
    325 		}
    326 	}
    327 
    328 	/*
    329 	 * Use DMA if the host system and the controller support it.
    330 	 * Suports integrated or external DMA egine, with or without
    331 	 * SDHC_DMA_ENABLE in the command.
    332 	 */
    333 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    334 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    335 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    336 		SET(hp->flags, SHF_USE_DMA);
    337 
    338 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    339 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    340 			SET(hp->flags, SHF_MODE_DMAEN);
    341 			/*
    342 			 * 64-bit mode was present in the 2.00 spec, removed
    343 			 * from 3.00, and re-added in 4.00 with a different
    344 			 * descriptor layout. We only support 2.00 and 3.00
    345 			 * descriptors for now.
    346 			 */
    347 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    348 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    349 				SET(hp->flags, SHF_USE_ADMA2_64);
    350 				aprint_normal(", 64-bit ADMA2");
    351 			} else {
    352 				SET(hp->flags, SHF_USE_ADMA2_32);
    353 				aprint_normal(", 32-bit ADMA2");
    354 			}
    355 		} else {
    356 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    357 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    358 				SET(hp->flags, SHF_MODE_DMAEN);
    359 			if (sc->sc_vendor_transfer_data_dma) {
    360 				aprint_normal(", platform DMA");
    361 			} else {
    362 				aprint_normal(", SDMA");
    363 			}
    364 		}
    365 	} else {
    366 		aprint_normal(", PIO");
    367 	}
    368 
    369 	/*
    370 	 * Determine the base clock frequency. (2.2.24)
    371 	 */
    372 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    373 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    374 	} else {
    375 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    376 	}
    377 	if (hp->clkbase == 0 ||
    378 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    379 		if (sc->sc_clkbase == 0) {
    380 			/* The attachment driver must tell us. */
    381 			aprint_error_dev(sc->sc_dev,
    382 			    "unknown base clock frequency\n");
    383 			goto err;
    384 		}
    385 		hp->clkbase = sc->sc_clkbase;
    386 	}
    387 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    388 		/* SDHC 1.0 supports only 10-63 MHz. */
    389 		aprint_error_dev(sc->sc_dev,
    390 		    "base clock frequency out of range: %u MHz\n",
    391 		    hp->clkbase / 1000);
    392 		goto err;
    393 	}
    394 	aprint_normal(", %u kHz", hp->clkbase);
    395 
    396 	/*
    397 	 * XXX Set the data timeout counter value according to
    398 	 * capabilities. (2.2.15)
    399 	 */
    400 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    401 #if 1
    402 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    403 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    404 #endif
    405 
    406 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    407 		aprint_normal(", embedded slot");
    408 
    409 	/*
    410 	 * Determine SD bus voltage levels supported by the controller.
    411 	 */
    412 	aprint_normal(",");
    413 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    414 		SET(hp->ocr, MMC_OCR_HCS);
    415 		aprint_normal(" HS");
    416 	}
    417 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    418 		SET(hp->ocr, MMC_OCR_S18A);
    419 		aprint_normal(" SDR50");
    420 	}
    421 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    422 		SET(hp->ocr, MMC_OCR_S18A);
    423 		aprint_normal(" SDR104");
    424 	}
    425 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    426 		SET(hp->ocr, MMC_OCR_S18A);
    427 		aprint_normal(" DDR50");
    428 	}
    429 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    430 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    431 		aprint_normal(" 1.8V");
    432 	}
    433 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    434 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    435 		aprint_normal(" 3.0V");
    436 	}
    437 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    438 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    439 		aprint_normal(" 3.3V");
    440 	}
    441 
    442 	/*
    443 	 * Determine the maximum block length supported by the host
    444 	 * controller. (2.2.24)
    445 	 */
    446 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    447 	case SDHC_MAX_BLK_LEN_512:
    448 		hp->maxblklen = 512;
    449 		break;
    450 
    451 	case SDHC_MAX_BLK_LEN_1024:
    452 		hp->maxblklen = 1024;
    453 		break;
    454 
    455 	case SDHC_MAX_BLK_LEN_2048:
    456 		hp->maxblklen = 2048;
    457 		break;
    458 
    459 	case SDHC_MAX_BLK_LEN_4096:
    460 		hp->maxblklen = 4096;
    461 		break;
    462 
    463 	default:
    464 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    465 		goto err;
    466 	}
    467 	aprint_normal(", %u byte blocks", hp->maxblklen);
    468 	aprint_normal("\n");
    469 
    470 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    471 		int rseg;
    472 
    473 		/* Allocate ADMA2 descriptor memory */
    474 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    475 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    476 		if (error) {
    477 			aprint_error_dev(sc->sc_dev,
    478 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    479 			goto adma_done;
    480 		}
    481 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    482 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    483 		if (error) {
    484 			aprint_error_dev(sc->sc_dev,
    485 			    "ADMA2 dmamem_map failed (%d)\n", error);
    486 			goto adma_done;
    487 		}
    488 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    489 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    490 		if (error) {
    491 			aprint_error_dev(sc->sc_dev,
    492 			    "ADMA2 dmamap_create failed (%d)\n", error);
    493 			goto adma_done;
    494 		}
    495 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    496 		    hp->adma2, PAGE_SIZE, NULL,
    497 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    498 		if (error) {
    499 			aprint_error_dev(sc->sc_dev,
    500 			    "ADMA2 dmamap_load failed (%d)\n", error);
    501 			goto adma_done;
    502 		}
    503 
    504 		memset(hp->adma2, 0, PAGE_SIZE);
    505 
    506 adma_done:
    507 		if (error)
    508 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    509 	}
    510 
    511 	/*
    512 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    513 	 * not invoke any chipset functions before it is attached.)
    514 	 */
    515 	memset(&saa, 0, sizeof(saa));
    516 	saa.saa_busname = "sdmmc";
    517 	saa.saa_sct = &sdhc_functions;
    518 	saa.saa_sch = hp;
    519 	saa.saa_dmat = hp->dmat;
    520 	saa.saa_clkmax = hp->clkbase;
    521 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    522 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    523 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    524 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    525 	else if (hp->sc->sc_clkmsk != 0)
    526 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    527 		    (ffs(hp->sc->sc_clkmsk) - 1));
    528 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    529 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    530 	else
    531 		saa.saa_clkmin = hp->clkbase / 256;
    532 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    533 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    534 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    535 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    536 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    537 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    538 		saa.saa_caps |= SMC_CAPS_DMA;
    539 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    540 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    541 	}
    542 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    543 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    544 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    545 
    546 	return 0;
    547 
    548 err:
    549 	cv_destroy(&hp->intr_cv);
    550 	mutex_destroy(&hp->intr_lock);
    551 	free(hp, M_DEVBUF);
    552 	sc->sc_host[--sc->sc_nhosts] = NULL;
    553 err1:
    554 	return 1;
    555 }
    556 
    557 int
    558 sdhc_detach(struct sdhc_softc *sc, int flags)
    559 {
    560 	struct sdhc_host *hp;
    561 	int rv = 0;
    562 
    563 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    564 		hp = sc->sc_host[n];
    565 		if (hp == NULL)
    566 			continue;
    567 		if (hp->sdmmc != NULL) {
    568 			rv = config_detach(hp->sdmmc, flags);
    569 			if (rv)
    570 				break;
    571 			hp->sdmmc = NULL;
    572 		}
    573 		/* disable interrupts */
    574 		if ((flags & DETACH_FORCE) == 0) {
    575 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    576 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    577 			} else {
    578 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    579 			}
    580 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    581 		}
    582 		cv_destroy(&hp->intr_cv);
    583 		mutex_destroy(&hp->intr_lock);
    584 		if (hp->ios > 0) {
    585 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    586 			hp->ios = 0;
    587 		}
    588 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    589 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    590 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    591 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    592 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    593 		}
    594 		free(hp, M_DEVBUF);
    595 		sc->sc_host[n] = NULL;
    596 	}
    597 
    598 	return rv;
    599 }
    600 
    601 bool
    602 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    603 {
    604 	struct sdhc_softc *sc = device_private(dev);
    605 	struct sdhc_host *hp;
    606 	size_t i;
    607 
    608 	/* XXX poll for command completion or suspend command
    609 	 * in progress */
    610 
    611 	/* Save the host controller state. */
    612 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    613 		hp = sc->sc_host[n];
    614 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    615 			for (i = 0; i < sizeof hp->regs; i += 4) {
    616 				uint32_t v = HREAD4(hp, i);
    617 				hp->regs[i + 0] = (v >> 0);
    618 				hp->regs[i + 1] = (v >> 8);
    619 				if (i + 3 < sizeof hp->regs) {
    620 					hp->regs[i + 2] = (v >> 16);
    621 					hp->regs[i + 3] = (v >> 24);
    622 				}
    623 			}
    624 		} else {
    625 			for (i = 0; i < sizeof hp->regs; i++) {
    626 				hp->regs[i] = HREAD1(hp, i);
    627 			}
    628 		}
    629 	}
    630 	return true;
    631 }
    632 
    633 bool
    634 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    635 {
    636 	struct sdhc_softc *sc = device_private(dev);
    637 	struct sdhc_host *hp;
    638 	size_t i;
    639 
    640 	/* Restore the host controller state. */
    641 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    642 		hp = sc->sc_host[n];
    643 		(void)sdhc_host_reset(hp);
    644 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    645 			for (i = 0; i < sizeof hp->regs; i += 4) {
    646 				if (i + 3 < sizeof hp->regs) {
    647 					HWRITE4(hp, i,
    648 					    (hp->regs[i + 0] << 0)
    649 					    | (hp->regs[i + 1] << 8)
    650 					    | (hp->regs[i + 2] << 16)
    651 					    | (hp->regs[i + 3] << 24));
    652 				} else {
    653 					HWRITE4(hp, i,
    654 					    (hp->regs[i + 0] << 0)
    655 					    | (hp->regs[i + 1] << 8));
    656 				}
    657 			}
    658 		} else {
    659 			for (i = 0; i < sizeof hp->regs; i++) {
    660 				HWRITE1(hp, i, hp->regs[i]);
    661 			}
    662 		}
    663 	}
    664 	return true;
    665 }
    666 
    667 bool
    668 sdhc_shutdown(device_t dev, int flags)
    669 {
    670 	struct sdhc_softc *sc = device_private(dev);
    671 	struct sdhc_host *hp;
    672 
    673 	/* XXX chip locks up if we don't disable it before reboot. */
    674 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    675 		hp = sc->sc_host[i];
    676 		(void)sdhc_host_reset(hp);
    677 	}
    678 	return true;
    679 }
    680 
    681 /*
    682  * Reset the host controller.  Called during initialization, when
    683  * cards are removed, upon resume, and during error recovery.
    684  */
    685 static int
    686 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    687 {
    688 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    689 	uint32_t sdhcimask;
    690 	int error;
    691 
    692 	KASSERT(mutex_owned(&hp->intr_lock));
    693 
    694 	/* Disable all interrupts. */
    695 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    696 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    697 	} else {
    698 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    699 	}
    700 
    701 	/*
    702 	 * Reset the entire host controller and wait up to 100ms for
    703 	 * the controller to clear the reset bit.
    704 	 */
    705 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    706 	if (error)
    707 		goto out;
    708 
    709 	/* Set data timeout counter value to max for now. */
    710 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    711 #if 1
    712 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    713 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    714 #endif
    715 
    716 	/* Enable interrupts. */
    717 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    718 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    719 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    720 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    721 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    722 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    723 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    724 		sdhcimask ^=
    725 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    726 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    727 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    728 	} else {
    729 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    730 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    731 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    732 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    733 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    734 	}
    735 
    736 out:
    737 	return error;
    738 }
    739 
    740 static int
    741 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    742 {
    743 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    744 	int error;
    745 
    746 	mutex_enter(&hp->intr_lock);
    747 	error = sdhc_host_reset1(sch);
    748 	mutex_exit(&hp->intr_lock);
    749 
    750 	return error;
    751 }
    752 
    753 static uint32_t
    754 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    755 {
    756 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    757 
    758 	return hp->ocr;
    759 }
    760 
    761 static int
    762 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    763 {
    764 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    765 
    766 	return hp->maxblklen;
    767 }
    768 
    769 /*
    770  * Return non-zero if the card is currently inserted.
    771  */
    772 static int
    773 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    774 {
    775 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    776 	int r;
    777 
    778 	if (hp->sc->sc_vendor_card_detect)
    779 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    780 
    781 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    782 
    783 	return r ? 1 : 0;
    784 }
    785 
    786 /*
    787  * Return non-zero if the card is currently write-protected.
    788  */
    789 static int
    790 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    791 {
    792 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    793 	int r;
    794 
    795 	if (hp->sc->sc_vendor_write_protect)
    796 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    797 
    798 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    799 
    800 	return r ? 0 : 1;
    801 }
    802 
    803 /*
    804  * Set or change SD bus voltage and enable or disable SD bus power.
    805  * Return zero on success.
    806  */
    807 static int
    808 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    809 {
    810 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    811 	uint8_t vdd;
    812 	int error = 0;
    813 	const uint32_t pcmask =
    814 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    815 
    816 	mutex_enter(&hp->intr_lock);
    817 
    818 	/*
    819 	 * Disable bus power before voltage change.
    820 	 */
    821 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    822 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    823 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    824 
    825 	/* If power is disabled, reset the host and return now. */
    826 	if (ocr == 0) {
    827 		(void)sdhc_host_reset1(hp);
    828 		goto out;
    829 	}
    830 
    831 	/*
    832 	 * Select the lowest voltage according to capabilities.
    833 	 */
    834 	ocr &= hp->ocr;
    835 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    836 		vdd = SDHC_VOLTAGE_1_8V;
    837 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    838 		vdd = SDHC_VOLTAGE_3_0V;
    839 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    840 		vdd = SDHC_VOLTAGE_3_3V;
    841 	} else {
    842 		/* Unsupported voltage level requested. */
    843 		error = EINVAL;
    844 		goto out;
    845 	}
    846 
    847 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    848 		/*
    849 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    850 		 * voltage ramp until power rises.
    851 		 */
    852 
    853 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    854 			HWRITE1(hp, SDHC_POWER_CTL,
    855 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    856 		} else {
    857 			HWRITE1(hp, SDHC_POWER_CTL,
    858 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    859 			sdmmc_delay(1);
    860 			HWRITE1(hp, SDHC_POWER_CTL,
    861 			    (vdd << SDHC_VOLTAGE_SHIFT));
    862 			sdmmc_delay(1);
    863 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    864 			sdmmc_delay(10000);
    865 		}
    866 
    867 		/*
    868 		 * The host system may not power the bus due to battery low,
    869 		 * etc.  In that case, the host controller should clear the
    870 		 * bus power bit.
    871 		 */
    872 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    873 			error = ENXIO;
    874 			goto out;
    875 		}
    876 	}
    877 
    878 out:
    879 	mutex_exit(&hp->intr_lock);
    880 
    881 	return error;
    882 }
    883 
    884 /*
    885  * Return the smallest possible base clock frequency divisor value
    886  * for the CLOCK_CTL register to produce `freq' (KHz).
    887  */
    888 static bool
    889 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    890 {
    891 	u_int div;
    892 
    893 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    894 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    895 			if ((hp->clkbase / div) <= freq) {
    896 				*divp = SDHC_SDCLK_CGM
    897 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    898 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    899 				//freq = hp->clkbase / div;
    900 				return true;
    901 			}
    902 		}
    903 		/* No divisor found. */
    904 		return false;
    905 	}
    906 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    907 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    908 		u_int roundup = dvs & 1;
    909 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    910 			if (dvs + roundup <= 16) {
    911 				dvs += roundup - 1;
    912 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    913 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    914 				DPRINTF(2,
    915 				    ("%s: divisor for freq %u is %u * %u\n",
    916 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    917 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    918 				return true;
    919 			}
    920 			/*
    921 			 * If we drop bits, we need to round up the divisor.
    922 			 */
    923 			roundup |= dvs & 1;
    924 		}
    925 		/* No divisor found. */
    926 		return false;
    927 	}
    928 	if (hp->sc->sc_clkmsk != 0) {
    929 		div = howmany(hp->clkbase, freq);
    930 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
    931 			return false;
    932 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
    933 		//freq = hp->clkbase / div;
    934 		return true;
    935 	}
    936 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    937 		div = howmany(hp->clkbase, freq);
    938 		div = div > 1 ? howmany(div, 2) : 0;
    939 		if (div > 0x3ff)
    940 			return false;
    941 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
    942 			 << SDHC_SDCLK_XDIV_SHIFT) |
    943 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
    944 			 << SDHC_SDCLK_DIV_SHIFT);
    945 		//freq = hp->clkbase / (div ? div * 2 : 1);
    946 		return true;
    947 	} else {
    948 		for (div = 1; div <= 256; div *= 2) {
    949 			if ((hp->clkbase / div) <= freq) {
    950 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    951 				//freq = hp->clkbase / div;
    952 				return true;
    953 			}
    954 		}
    955 		/* No divisor found. */
    956 		return false;
    957 	}
    958 	/* No divisor found. */
    959 	return false;
    960 }
    961 
    962 /*
    963  * Set or change SDCLK frequency or disable the SD clock.
    964  * Return zero on success.
    965  */
    966 static int
    967 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    968 {
    969 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    970 	u_int div;
    971 	u_int timo;
    972 	int16_t reg;
    973 	int error = 0;
    974 	bool present __diagused;
    975 
    976 	mutex_enter(&hp->intr_lock);
    977 
    978 #ifdef DIAGNOSTIC
    979 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    980 
    981 	/* Must not stop the clock if commands are in progress. */
    982 	if (present && sdhc_card_detect(hp)) {
    983 		aprint_normal_dev(hp->sc->sc_dev,
    984 		    "%s: command in progress\n", __func__);
    985 	}
    986 #endif
    987 
    988 	if (hp->sc->sc_vendor_bus_clock) {
    989 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
    990 		if (error != 0)
    991 			goto out;
    992 	}
    993 
    994 	/*
    995 	 * Stop SD clock before changing the frequency.
    996 	 */
    997 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    998 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    999 		if (freq == SDMMC_SDCLK_OFF) {
   1000 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1001 			goto out;
   1002 		}
   1003 	} else {
   1004 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1005 		if (freq == SDMMC_SDCLK_OFF)
   1006 			goto out;
   1007 	}
   1008 
   1009 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1010 		/* XXX DDR */
   1011 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1012 		if (freq > 100000) {
   1013 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1014 		} else if (freq > 50000) {
   1015 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
   1016 		} else if (freq > 25000) {
   1017 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR25);
   1018 		} else {
   1019 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1020 		}
   1021 	}
   1022 
   1023 	/*
   1024 	 * Set the minimum base clock frequency divisor.
   1025 	 */
   1026 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1027 		/* Invalid base clock frequency or `freq' value. */
   1028 		aprint_error_dev(hp->sc->sc_dev,
   1029 			"Invalid bus clock %d kHz\n", freq);
   1030 		error = EINVAL;
   1031 		goto out;
   1032 	}
   1033 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1034 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1035 		    div | (SDHC_TIMEOUT_MAX << 16));
   1036 	} else {
   1037 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1038 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1039 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1040 	}
   1041 
   1042 	/*
   1043 	 * Start internal clock.  Wait 10ms for stabilization.
   1044 	 */
   1045 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1046 		sdmmc_delay(10000);
   1047 		HSET4(hp, SDHC_CLOCK_CTL,
   1048 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1049 	} else {
   1050 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1051 		for (timo = 1000; timo > 0; timo--) {
   1052 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1053 			    SDHC_INTCLK_STABLE))
   1054 				break;
   1055 			sdmmc_delay(10);
   1056 		}
   1057 		if (timo == 0) {
   1058 			error = ETIMEDOUT;
   1059 			goto out;
   1060 		}
   1061 	}
   1062 
   1063 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1064 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1065 		/*
   1066 		 * Sending 80 clocks at 400kHz takes 200us.
   1067 		 * So delay for that time + slop and then
   1068 		 * check a few times for completion.
   1069 		 */
   1070 		sdmmc_delay(210);
   1071 		for (timo = 10; timo > 0; timo--) {
   1072 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1073 			    SDHC_INIT_ACTIVE))
   1074 				break;
   1075 			sdmmc_delay(10);
   1076 		}
   1077 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1078 
   1079 		/*
   1080 		 * Enable SD clock.
   1081 		 */
   1082 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1083 	} else {
   1084 		/*
   1085 		 * Enable SD clock.
   1086 		 */
   1087 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1088 
   1089 		if (freq > 25000 &&
   1090 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1091 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1092 		else
   1093 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1094 	}
   1095 
   1096 out:
   1097 	mutex_exit(&hp->intr_lock);
   1098 
   1099 	return error;
   1100 }
   1101 
   1102 static int
   1103 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1104 {
   1105 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1106 	int reg;
   1107 
   1108 	switch (width) {
   1109 	case 1:
   1110 	case 4:
   1111 		break;
   1112 
   1113 	case 8:
   1114 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1115 			break;
   1116 		/* FALLTHROUGH */
   1117 	default:
   1118 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1119 		    HDEVNAME(hp), width));
   1120 		return 1;
   1121 	}
   1122 
   1123 	mutex_enter(&hp->intr_lock);
   1124 
   1125 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1126 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1127 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1128 		if (width == 4)
   1129 			reg |= SDHC_4BIT_MODE;
   1130 		else if (width == 8)
   1131 			reg |= SDHC_ESDHC_8BIT_MODE;
   1132 	} else {
   1133 		reg &= ~SDHC_4BIT_MODE;
   1134 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1135 			reg &= ~SDHC_8BIT_MODE;
   1136 		}
   1137 		if (width == 4) {
   1138 			reg |= SDHC_4BIT_MODE;
   1139 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1140 			reg |= SDHC_8BIT_MODE;
   1141 		}
   1142 	}
   1143 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1144 
   1145 	mutex_exit(&hp->intr_lock);
   1146 
   1147 	return 0;
   1148 }
   1149 
   1150 static int
   1151 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1152 {
   1153 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1154 
   1155 	if (hp->sc->sc_vendor_rod)
   1156 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1157 
   1158 	return 0;
   1159 }
   1160 
   1161 static void
   1162 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1163 {
   1164 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1165 
   1166 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1167 		mutex_enter(&hp->intr_lock);
   1168 		if (enable) {
   1169 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1170 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1171 		} else {
   1172 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1173 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1174 		}
   1175 		mutex_exit(&hp->intr_lock);
   1176 	}
   1177 }
   1178 
   1179 static void
   1180 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1181 {
   1182 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1183 
   1184 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1185 		mutex_enter(&hp->intr_lock);
   1186 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1187 		mutex_exit(&hp->intr_lock);
   1188 	}
   1189 }
   1190 
   1191 static int
   1192 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1193 {
   1194 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1195 
   1196 	switch (signal_voltage) {
   1197 	case SDMMC_SIGNAL_VOLTAGE_180:
   1198 		HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1199 		break;
   1200 	case SDMMC_SIGNAL_VOLTAGE_330:
   1201 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1202 		break;
   1203 	default:
   1204 		return EINVAL;
   1205 	}
   1206 
   1207 	return 0;
   1208 }
   1209 
   1210 static int
   1211 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1212 {
   1213 	uint32_t state;
   1214 	int timeout;
   1215 
   1216 	for (timeout = 10000; timeout > 0; timeout--) {
   1217 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1218 			return 0;
   1219 		sdmmc_delay(10);
   1220 	}
   1221 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for %x (state=%x)\n",
   1222 	    value, state);
   1223 	return ETIMEDOUT;
   1224 }
   1225 
   1226 static void
   1227 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1228 {
   1229 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1230 	int error;
   1231 
   1232 	mutex_enter(&hp->intr_lock);
   1233 
   1234 	if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1235 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1236 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1237 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1238 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1239 		} else {
   1240 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1241 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1242 		}
   1243 	}
   1244 
   1245 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1246 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1247 		if (cmd->c_data != NULL) {
   1248 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1249 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1250 		} else {
   1251 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1252 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1253 		}
   1254 	}
   1255 
   1256 	/*
   1257 	 * Start the MMC command, or mark `cmd' as failed and return.
   1258 	 */
   1259 	error = sdhc_start_command(hp, cmd);
   1260 	if (error) {
   1261 		cmd->c_error = error;
   1262 		goto out;
   1263 	}
   1264 
   1265 	/*
   1266 	 * Wait until the command phase is done, or until the command
   1267 	 * is marked done for any other reason.
   1268 	 */
   1269 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
   1270 		cmd->c_error = ETIMEDOUT;
   1271 		goto out;
   1272 	}
   1273 
   1274 	/*
   1275 	 * The host controller removes bits [0:7] from the response
   1276 	 * data (CRC) and we pass the data up unchanged to the bus
   1277 	 * driver (without padding).
   1278 	 */
   1279 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1280 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1281 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1282 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1283 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1284 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1285 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1286 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1287 				    (cmd->c_resp[1] << 24);
   1288 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1289 				    (cmd->c_resp[2] << 24);
   1290 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1291 				    (cmd->c_resp[3] << 24);
   1292 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1293 			}
   1294 		}
   1295 	}
   1296 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1297 
   1298 	/*
   1299 	 * If the command has data to transfer in any direction,
   1300 	 * execute the transfer now.
   1301 	 */
   1302 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1303 		sdhc_transfer_data(hp, cmd);
   1304 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1305 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
   1306 			cmd->c_error = ETIMEDOUT;
   1307 			goto out;
   1308 		}
   1309 	}
   1310 
   1311 out:
   1312 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1313 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1314 		/* Turn off the LED. */
   1315 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1316 	}
   1317 	SET(cmd->c_flags, SCF_ITSDONE);
   1318 
   1319 	mutex_exit(&hp->intr_lock);
   1320 
   1321 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1322 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1323 	    cmd->c_flags, cmd->c_error));
   1324 }
   1325 
   1326 static int
   1327 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1328 {
   1329 	struct sdhc_softc * const sc = hp->sc;
   1330 	uint16_t blksize = 0;
   1331 	uint16_t blkcount = 0;
   1332 	uint16_t mode;
   1333 	uint16_t command;
   1334 	int error;
   1335 
   1336 	KASSERT(mutex_owned(&hp->intr_lock));
   1337 
   1338 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1339 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1340 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1341 
   1342 	/*
   1343 	 * The maximum block length for commands should be the minimum
   1344 	 * of the host buffer size and the card buffer size. (1.7.2)
   1345 	 */
   1346 
   1347 	/* Fragment the data into proper blocks. */
   1348 	if (cmd->c_datalen > 0) {
   1349 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1350 		blkcount = cmd->c_datalen / blksize;
   1351 		if (cmd->c_datalen % blksize > 0) {
   1352 			/* XXX: Split this command. (1.7.4) */
   1353 			aprint_error_dev(sc->sc_dev,
   1354 			    "data not a multiple of %u bytes\n", blksize);
   1355 			return EINVAL;
   1356 		}
   1357 	}
   1358 
   1359 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1360 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1361 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1362 		return EINVAL;
   1363 	}
   1364 
   1365 	/* Prepare transfer mode register value. (2.2.5) */
   1366 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1367 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1368 		mode |= SDHC_READ_MODE;
   1369 	if (blkcount > 1) {
   1370 		mode |= SDHC_MULTI_BLOCK_MODE;
   1371 		/* XXX only for memory commands? */
   1372 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1373 	}
   1374 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1375 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1376 		mode |= SDHC_DMA_ENABLE;
   1377 	}
   1378 
   1379 	/*
   1380 	 * Prepare command register value. (2.2.6)
   1381 	 */
   1382 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1383 
   1384 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1385 		command |= SDHC_CRC_CHECK_ENABLE;
   1386 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1387 		command |= SDHC_INDEX_CHECK_ENABLE;
   1388 	if (cmd->c_data != NULL)
   1389 		command |= SDHC_DATA_PRESENT_SELECT;
   1390 
   1391 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1392 		command |= SDHC_NO_RESPONSE;
   1393 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1394 		command |= SDHC_RESP_LEN_136;
   1395 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1396 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1397 	else
   1398 		command |= SDHC_RESP_LEN_48;
   1399 
   1400 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1401 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1402 	if (error) {
   1403 		aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
   1404 		return error;
   1405 	}
   1406 
   1407 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1408 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1409 
   1410 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1411 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1412 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1413 	}
   1414 
   1415 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1416 		/* Alert the user not to remove the card. */
   1417 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1418 	}
   1419 
   1420 	/* Set DMA start address. */
   1421 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
   1422 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1423 			bus_addr_t paddr =
   1424 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1425 			uint16_t len =
   1426 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1427 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1428 			uint16_t attr =
   1429 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1430 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1431 				attr |= SDHC_ADMA2_END;
   1432 			}
   1433 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1434 				struct sdhc_adma2_descriptor32 *desc =
   1435 				    hp->adma2;
   1436 				desc[seg].attribute = htole16(attr);
   1437 				desc[seg].length = htole16(len);
   1438 				desc[seg].address = htole32(paddr);
   1439 			} else {
   1440 				struct sdhc_adma2_descriptor64 *desc =
   1441 				    hp->adma2;
   1442 				desc[seg].attribute = htole16(attr);
   1443 				desc[seg].length = htole16(len);
   1444 				desc[seg].address = htole32(paddr & 0xffffffff);
   1445 				desc[seg].address_hi = htole32(
   1446 				    (uint64_t)paddr >> 32);
   1447 			}
   1448 		}
   1449 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1450 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1451 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1452 		} else {
   1453 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1454 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1455 		}
   1456 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1457 		    BUS_DMASYNC_PREWRITE);
   1458 		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1459 		HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1460 
   1461 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1462 
   1463 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1464 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1465 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1466 			    (uint64_t)desc_addr >> 32);
   1467 		}
   1468 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1469 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1470 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1471 	}
   1472 
   1473 	/*
   1474 	 * Start a CPU data transfer.  Writing to the high order byte
   1475 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1476 	 */
   1477 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1478 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1479 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1480 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1481 	} else {
   1482 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1483 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1484 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1485 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1486 		HWRITE2(hp, SDHC_COMMAND, command);
   1487 	}
   1488 
   1489 	return 0;
   1490 }
   1491 
   1492 static void
   1493 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1494 {
   1495 	struct sdhc_softc *sc = hp->sc;
   1496 	int error;
   1497 
   1498 	KASSERT(mutex_owned(&hp->intr_lock));
   1499 
   1500 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1501 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1502 
   1503 #ifdef SDHC_DEBUG
   1504 	/* XXX I forgot why I wanted to know when this happens :-( */
   1505 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1506 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1507 		aprint_error_dev(hp->sc->sc_dev,
   1508 		    "CMD52/53 error response flags %#x\n",
   1509 		    MMC_R1(cmd->c_resp) & 0xff00);
   1510 	}
   1511 #endif
   1512 
   1513 	if (cmd->c_dmamap != NULL) {
   1514 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1515 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1516 			if (error == 0 && !sdhc_wait_intr(hp,
   1517 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
   1518 				error = ETIMEDOUT;
   1519 			}
   1520 		} else {
   1521 			error = sdhc_transfer_data_dma(hp, cmd);
   1522 		}
   1523 	} else
   1524 		error = sdhc_transfer_data_pio(hp, cmd);
   1525 	if (error)
   1526 		cmd->c_error = error;
   1527 	SET(cmd->c_flags, SCF_ITSDONE);
   1528 
   1529 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1530 	    HDEVNAME(hp), cmd->c_error));
   1531 }
   1532 
   1533 static int
   1534 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1535 {
   1536 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1537 	bus_addr_t posaddr;
   1538 	bus_addr_t segaddr;
   1539 	bus_size_t seglen;
   1540 	u_int seg = 0;
   1541 	int error = 0;
   1542 	int status;
   1543 
   1544 	KASSERT(mutex_owned(&hp->intr_lock));
   1545 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1546 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1547 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1548 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1549 
   1550 	for (;;) {
   1551 		status = sdhc_wait_intr(hp,
   1552 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1553 		    SDHC_DMA_TIMEOUT);
   1554 
   1555 		if (status & SDHC_TRANSFER_COMPLETE) {
   1556 			break;
   1557 		}
   1558 		if (!status) {
   1559 			error = ETIMEDOUT;
   1560 			break;
   1561 		}
   1562 
   1563 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1564 			continue;
   1565 		}
   1566 
   1567 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1568 			continue;
   1569 		}
   1570 
   1571 		/* DMA Interrupt (boundary crossing) */
   1572 
   1573 		segaddr = dm_segs[seg].ds_addr;
   1574 		seglen = dm_segs[seg].ds_len;
   1575 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1576 
   1577 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1578 			continue;
   1579 		}
   1580 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1581 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1582 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1583 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1584 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1585 	}
   1586 
   1587 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1588 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1589 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1590 	}
   1591 
   1592 	return error;
   1593 }
   1594 
   1595 static int
   1596 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1597 {
   1598 	uint8_t *data = cmd->c_data;
   1599 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1600 	u_int len, datalen;
   1601 	u_int imask;
   1602 	u_int pmask;
   1603 	int error = 0;
   1604 
   1605 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1606 		imask = SDHC_BUFFER_READ_READY;
   1607 		pmask = SDHC_BUFFER_READ_ENABLE;
   1608 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1609 			pio_func = esdhc_read_data_pio;
   1610 		} else {
   1611 			pio_func = sdhc_read_data_pio;
   1612 		}
   1613 	} else {
   1614 		imask = SDHC_BUFFER_WRITE_READY;
   1615 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1616 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1617 			pio_func = esdhc_write_data_pio;
   1618 		} else {
   1619 			pio_func = sdhc_write_data_pio;
   1620 		}
   1621 	}
   1622 	datalen = cmd->c_datalen;
   1623 
   1624 	KASSERT(mutex_owned(&hp->intr_lock));
   1625 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1626 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1627 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1628 
   1629 	while (datalen > 0) {
   1630 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1631 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1632 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1633 			} else {
   1634 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1635 			}
   1636 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1637 				error = ETIMEDOUT;
   1638 				break;
   1639 			}
   1640 
   1641 			error = sdhc_wait_state(hp, pmask, pmask);
   1642 			if (error)
   1643 				break;
   1644 		}
   1645 
   1646 		len = MIN(datalen, cmd->c_blklen);
   1647 		(*pio_func)(hp, data, len);
   1648 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1649 		    HDEVNAME(hp), len, data));
   1650 
   1651 		data += len;
   1652 		datalen -= len;
   1653 	}
   1654 
   1655 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1656 	    SDHC_TRANSFER_TIMEOUT))
   1657 		error = ETIMEDOUT;
   1658 
   1659 	return error;
   1660 }
   1661 
   1662 static void
   1663 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1664 {
   1665 
   1666 	if (((__uintptr_t)data & 3) == 0) {
   1667 		while (datalen > 3) {
   1668 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1669 			data += 4;
   1670 			datalen -= 4;
   1671 		}
   1672 		if (datalen > 1) {
   1673 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1674 			data += 2;
   1675 			datalen -= 2;
   1676 		}
   1677 		if (datalen > 0) {
   1678 			*data = HREAD1(hp, SDHC_DATA);
   1679 			data += 1;
   1680 			datalen -= 1;
   1681 		}
   1682 	} else if (((__uintptr_t)data & 1) == 0) {
   1683 		while (datalen > 1) {
   1684 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1685 			data += 2;
   1686 			datalen -= 2;
   1687 		}
   1688 		if (datalen > 0) {
   1689 			*data = HREAD1(hp, SDHC_DATA);
   1690 			data += 1;
   1691 			datalen -= 1;
   1692 		}
   1693 	} else {
   1694 		while (datalen > 0) {
   1695 			*data = HREAD1(hp, SDHC_DATA);
   1696 			data += 1;
   1697 			datalen -= 1;
   1698 		}
   1699 	}
   1700 }
   1701 
   1702 static void
   1703 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1704 {
   1705 
   1706 	if (((__uintptr_t)data & 3) == 0) {
   1707 		while (datalen > 3) {
   1708 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   1709 			data += 4;
   1710 			datalen -= 4;
   1711 		}
   1712 		if (datalen > 1) {
   1713 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1714 			data += 2;
   1715 			datalen -= 2;
   1716 		}
   1717 		if (datalen > 0) {
   1718 			HWRITE1(hp, SDHC_DATA, *data);
   1719 			data += 1;
   1720 			datalen -= 1;
   1721 		}
   1722 	} else if (((__uintptr_t)data & 1) == 0) {
   1723 		while (datalen > 1) {
   1724 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   1725 			data += 2;
   1726 			datalen -= 2;
   1727 		}
   1728 		if (datalen > 0) {
   1729 			HWRITE1(hp, SDHC_DATA, *data);
   1730 			data += 1;
   1731 			datalen -= 1;
   1732 		}
   1733 	} else {
   1734 		while (datalen > 0) {
   1735 			HWRITE1(hp, SDHC_DATA, *data);
   1736 			data += 1;
   1737 			datalen -= 1;
   1738 		}
   1739 	}
   1740 }
   1741 
   1742 static void
   1743 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1744 {
   1745 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1746 	uint32_t v;
   1747 
   1748 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   1749 	size_t count = 0;
   1750 
   1751 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1752 		if (count == 0) {
   1753 			/*
   1754 			 * If we've drained "watermark" words, we need to wait
   1755 			 * a little bit so the read FIFO can refill.
   1756 			 */
   1757 			sdmmc_delay(10);
   1758 			count = watermark;
   1759 		}
   1760 		v = HREAD4(hp, SDHC_DATA);
   1761 		v = le32toh(v);
   1762 		*(uint32_t *)data = v;
   1763 		data += 4;
   1764 		datalen -= 4;
   1765 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1766 		count--;
   1767 	}
   1768 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1769 		if (count == 0) {
   1770 			sdmmc_delay(10);
   1771 		}
   1772 		v = HREAD4(hp, SDHC_DATA);
   1773 		v = le32toh(v);
   1774 		do {
   1775 			*data++ = v;
   1776 			v >>= 8;
   1777 		} while (--datalen > 0);
   1778 	}
   1779 }
   1780 
   1781 static void
   1782 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1783 {
   1784 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1785 	uint32_t v;
   1786 
   1787 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   1788 	size_t count = watermark;
   1789 
   1790 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1791 		if (count == 0) {
   1792 			sdmmc_delay(10);
   1793 			count = watermark;
   1794 		}
   1795 		v = *(uint32_t *)data;
   1796 		v = htole32(v);
   1797 		HWRITE4(hp, SDHC_DATA, v);
   1798 		data += 4;
   1799 		datalen -= 4;
   1800 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1801 		count--;
   1802 	}
   1803 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1804 		if (count == 0) {
   1805 			sdmmc_delay(10);
   1806 		}
   1807 		v = *(uint32_t *)data;
   1808 		v = htole32(v);
   1809 		HWRITE4(hp, SDHC_DATA, v);
   1810 	}
   1811 }
   1812 
   1813 /* Prepare for another command. */
   1814 static int
   1815 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1816 {
   1817 	int timo;
   1818 
   1819 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1820 
   1821 	/* Request the reset.  */
   1822 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1823 
   1824 	/*
   1825 	 * If necessary, wait for the controller to set the bits to
   1826 	 * acknowledge the reset.
   1827 	 */
   1828 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   1829 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   1830 		for (timo = 10000; timo > 0; timo--) {
   1831 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1832 				break;
   1833 			/* Short delay because I worry we may miss it...  */
   1834 			sdmmc_delay(1);
   1835 		}
   1836 		if (timo == 0)
   1837 			return ETIMEDOUT;
   1838 	}
   1839 
   1840 	/*
   1841 	 * Wait for the controller to clear the bits to indicate that
   1842 	 * the reset has completed.
   1843 	 */
   1844 	for (timo = 10; timo > 0; timo--) {
   1845 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1846 			break;
   1847 		sdmmc_delay(10000);
   1848 	}
   1849 	if (timo == 0) {
   1850 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1851 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1852 		return ETIMEDOUT;
   1853 	}
   1854 
   1855 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1856 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1857 	}
   1858 
   1859 	return 0;
   1860 }
   1861 
   1862 static int
   1863 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1864 {
   1865 	int status;
   1866 
   1867 	KASSERT(mutex_owned(&hp->intr_lock));
   1868 
   1869 	mask |= SDHC_ERROR_INTERRUPT;
   1870 
   1871 	status = hp->intr_status & mask;
   1872 	while (status == 0) {
   1873 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   1874 		    == EWOULDBLOCK) {
   1875 			status |= SDHC_ERROR_INTERRUPT;
   1876 			break;
   1877 		}
   1878 		status = hp->intr_status & mask;
   1879 	}
   1880 	hp->intr_status &= ~status;
   1881 
   1882 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1883 	    hp->intr_error_status));
   1884 
   1885 	/* Command timeout has higher priority than command complete. */
   1886 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1887 		hp->intr_error_status = 0;
   1888 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1889 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1890 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1891 		}
   1892 		status = 0;
   1893 	}
   1894 
   1895 	return status;
   1896 }
   1897 
   1898 /*
   1899  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1900  */
   1901 int
   1902 sdhc_intr(void *arg)
   1903 {
   1904 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1905 	struct sdhc_host *hp;
   1906 	int done = 0;
   1907 	uint16_t status;
   1908 	uint16_t error;
   1909 
   1910 	/* We got an interrupt, but we don't know from which slot. */
   1911 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1912 		hp = sc->sc_host[host];
   1913 		if (hp == NULL)
   1914 			continue;
   1915 
   1916 		mutex_enter(&hp->intr_lock);
   1917 
   1918 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1919 			/* Find out which interrupts are pending. */
   1920 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1921 			status = xstatus;
   1922 			error = xstatus >> 16;
   1923 			if (error)
   1924 				xstatus |= SDHC_ERROR_INTERRUPT;
   1925 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1926 				goto next_port; /* no interrupt for us */
   1927 			/* Acknowledge the interrupts we are about to handle. */
   1928 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1929 		} else {
   1930 			/* Find out which interrupts are pending. */
   1931 			error = 0;
   1932 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1933 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1934 				goto next_port; /* no interrupt for us */
   1935 			/* Acknowledge the interrupts we are about to handle. */
   1936 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1937 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1938 				/* Acknowledge error interrupts. */
   1939 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1940 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1941 			}
   1942 		}
   1943 
   1944 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1945 		    status, error));
   1946 
   1947 		/* Claim this interrupt. */
   1948 		done = 1;
   1949 
   1950 		if (ISSET(error, SDHC_ADMA_ERROR)) {
   1951 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   1952 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   1953 			    adma_err);
   1954 		}
   1955 
   1956 		/*
   1957 		 * Service error interrupts.
   1958 		 */
   1959 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1960 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1961 			hp->intr_error_status |= error;
   1962 			hp->intr_status |= status;
   1963 			cv_broadcast(&hp->intr_cv);
   1964 		}
   1965 
   1966 		/*
   1967 		 * Wake up the sdmmc event thread to scan for cards.
   1968 		 */
   1969 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1970 			if (hp->sdmmc != NULL) {
   1971 				sdmmc_needs_discover(hp->sdmmc);
   1972 			}
   1973 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1974 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1975 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1976 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1977 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1978 			}
   1979 		}
   1980 
   1981 		/*
   1982 		 * Wake up the blocking process to service command
   1983 		 * related interrupt(s).
   1984 		 */
   1985 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1986 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1987 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1988 			hp->intr_status |= status;
   1989 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1990 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1991 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1992 			}
   1993 			cv_broadcast(&hp->intr_cv);
   1994 		}
   1995 
   1996 		/*
   1997 		 * Service SD card interrupts.
   1998 		 */
   1999 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   2000 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2001 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2002 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2003 			sdmmc_card_intr(hp->sdmmc);
   2004 		}
   2005 next_port:
   2006 		mutex_exit(&hp->intr_lock);
   2007 	}
   2008 
   2009 	return done;
   2010 }
   2011 
   2012 kmutex_t *
   2013 sdhc_host_lock(struct sdhc_host *hp)
   2014 {
   2015 	return &hp->intr_lock;
   2016 }
   2017 
   2018 #ifdef SDHC_DEBUG
   2019 void
   2020 sdhc_dump_regs(struct sdhc_host *hp)
   2021 {
   2022 
   2023 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2024 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2025 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2026 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2027 		    HREAD1(hp, SDHC_POWER_CTL));
   2028 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2029 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2030 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2031 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2032 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2033 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2034 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2035 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2036 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2037 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2038 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2039 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2040 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2041 	    HREAD4(hp, SDHC_CAPABILITIES));
   2042 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2043 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2044 }
   2045 #endif
   2046