sdhc.c revision 1.76 1 /* $NetBSD: sdhc.c,v 1.76 2015/08/03 10:08:51 jmcneill Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.76 2015/08/03 10:08:51 jmcneill Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39
40 #include <dev/sdmmc/sdhcreg.h>
41 #include <dev/sdmmc/sdhcvar.h>
42 #include <dev/sdmmc/sdmmcchip.h>
43 #include <dev/sdmmc/sdmmcreg.h>
44 #include <dev/sdmmc/sdmmcvar.h>
45
46 #ifdef SDHC_DEBUG
47 int sdhcdebug = 1;
48 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 void sdhc_dump_regs(struct sdhc_host *);
50 #else
51 #define DPRINTF(n,s) do {} while (0)
52 #endif
53
54 #define SDHC_COMMAND_TIMEOUT hz
55 #define SDHC_BUFFER_TIMEOUT hz
56 #define SDHC_TRANSFER_TIMEOUT hz
57 #define SDHC_DMA_TIMEOUT (hz*3)
58
59 struct sdhc_host {
60 struct sdhc_softc *sc; /* host controller device */
61
62 bus_space_tag_t iot; /* host register set tag */
63 bus_space_handle_t ioh; /* host register set handle */
64 bus_size_t ios; /* host register space size */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 u_int clkbase; /* base clock frequency in KHz */
70 int maxblklen; /* maximum block length */
71 uint32_t ocr; /* OCR value from capabilities */
72
73 uint8_t regs[14]; /* host controller state */
74
75 uint16_t intr_status; /* soft interrupt status */
76 uint16_t intr_error_status; /* soft error status */
77 kmutex_t intr_lock;
78 kcondvar_t intr_cv;
79
80 int specver; /* spec. version */
81
82 uint32_t flags; /* flags for this host */
83 #define SHF_USE_DMA 0x0001
84 #define SHF_USE_4BIT_MODE 0x0002
85 #define SHF_USE_8BIT_MODE 0x0004
86 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
87 #define SHF_USE_ADMA2_32 0x0010
88 #define SHF_USE_ADMA2_64 0x0020
89 #define SHF_USE_ADMA2_MASK 0x0030
90
91 bus_dmamap_t adma_map;
92 bus_dma_segment_t adma_segs[1];
93 void *adma2;
94 };
95
96 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
97
98 static uint8_t
99 hread1(struct sdhc_host *hp, bus_size_t reg)
100 {
101
102 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
103 return bus_space_read_1(hp->iot, hp->ioh, reg);
104 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
105 }
106
107 static uint16_t
108 hread2(struct sdhc_host *hp, bus_size_t reg)
109 {
110
111 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 return bus_space_read_2(hp->iot, hp->ioh, reg);
113 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
114 }
115
116 #define HREAD1(hp, reg) hread1(hp, reg)
117 #define HREAD2(hp, reg) hread2(hp, reg)
118 #define HREAD4(hp, reg) \
119 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
120
121
122 static void
123 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
124 {
125
126 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
127 bus_space_write_1(hp->iot, hp->ioh, o, val);
128 } else {
129 const size_t shift = 8 * (o & 3);
130 o &= -4;
131 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
132 tmp = (val << shift) | (tmp & ~(0xff << shift));
133 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
134 }
135 }
136
137 static void
138 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
139 {
140
141 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
142 bus_space_write_2(hp->iot, hp->ioh, o, val);
143 } else {
144 const size_t shift = 8 * (o & 2);
145 o &= -4;
146 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
147 tmp = (val << shift) | (tmp & ~(0xffff << shift));
148 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
149 }
150 }
151
152 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
153 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
154 #define HWRITE4(hp, reg, val) \
155 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
156
157 #define HCLR1(hp, reg, bits) \
158 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
159 #define HCLR2(hp, reg, bits) \
160 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
161 #define HCLR4(hp, reg, bits) \
162 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
163 #define HSET1(hp, reg, bits) \
164 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
165 #define HSET2(hp, reg, bits) \
166 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
167 #define HSET4(hp, reg, bits) \
168 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
169
170 static int sdhc_host_reset(sdmmc_chipset_handle_t);
171 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
172 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
173 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
174 static int sdhc_card_detect(sdmmc_chipset_handle_t);
175 static int sdhc_write_protect(sdmmc_chipset_handle_t);
176 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
177 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
178 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
179 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
180 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
181 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
182 static void sdhc_exec_command(sdmmc_chipset_handle_t,
183 struct sdmmc_command *);
184 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
185 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
186 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
187 static int sdhc_soft_reset(struct sdhc_host *, int);
188 static int sdhc_wait_intr(struct sdhc_host *, int, int);
189 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
190 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
191 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
192 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
193 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
196
197 static struct sdmmc_chip_functions sdhc_functions = {
198 /* host controller reset */
199 .host_reset = sdhc_host_reset,
200
201 /* host controller capabilities */
202 .host_ocr = sdhc_host_ocr,
203 .host_maxblklen = sdhc_host_maxblklen,
204
205 /* card detection */
206 .card_detect = sdhc_card_detect,
207
208 /* write protect */
209 .write_protect = sdhc_write_protect,
210
211 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
212 .bus_power = sdhc_bus_power,
213 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
214 .bus_width = sdhc_bus_width,
215 .bus_rod = sdhc_bus_rod,
216
217 /* command execution */
218 .exec_command = sdhc_exec_command,
219
220 /* card interrupt */
221 .card_enable_intr = sdhc_card_enable_intr,
222 .card_intr_ack = sdhc_card_intr_ack,
223
224 /* UHS functions */
225 .signal_voltage = sdhc_signal_voltage,
226 .bus_clock_ddr = sdhc_bus_clock_ddr,
227 };
228
229 static int
230 sdhc_cfprint(void *aux, const char *pnp)
231 {
232 const struct sdmmcbus_attach_args * const saa = aux;
233 const struct sdhc_host * const hp = saa->saa_sch;
234
235 if (pnp) {
236 aprint_normal("sdmmc at %s", pnp);
237 }
238 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
239 if (hp->sc->sc_host[host] == hp) {
240 aprint_normal(" slot %zu", host);
241 }
242 }
243
244 return UNCONF;
245 }
246
247 /*
248 * Called by attachment driver. For each SD card slot there is one SD
249 * host controller standard register set. (1.3)
250 */
251 int
252 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
253 bus_space_handle_t ioh, bus_size_t iosize)
254 {
255 struct sdmmcbus_attach_args saa;
256 struct sdhc_host *hp;
257 uint32_t caps, caps2;
258 uint16_t sdhcver;
259 int error;
260
261 /* Allocate one more host structure. */
262 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
263 if (hp == NULL) {
264 aprint_error_dev(sc->sc_dev,
265 "couldn't alloc memory (sdhc host)\n");
266 goto err1;
267 }
268 sc->sc_host[sc->sc_nhosts++] = hp;
269
270 /* Fill in the new host structure. */
271 hp->sc = sc;
272 hp->iot = iot;
273 hp->ioh = ioh;
274 hp->ios = iosize;
275 hp->dmat = sc->sc_dmat;
276
277 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
278 cv_init(&hp->intr_cv, "sdhcintr");
279
280 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
281 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
282 } else {
283 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
284 }
285 aprint_normal_dev(sc->sc_dev, "SDHC ");
286 hp->specver = SDHC_SPEC_VERSION(sdhcver);
287 switch (SDHC_SPEC_VERSION(sdhcver)) {
288 case SDHC_SPEC_VERS_100:
289 aprint_normal("1.0");
290 break;
291
292 case SDHC_SPEC_VERS_200:
293 aprint_normal("2.0");
294 break;
295
296 case SDHC_SPEC_VERS_300:
297 aprint_normal("3.0");
298 break;
299
300 case SDHC_SPEC_VERS_400:
301 aprint_normal("4.0");
302 break;
303
304 default:
305 aprint_normal("unknown version(0x%x)",
306 SDHC_SPEC_VERSION(sdhcver));
307 break;
308 }
309 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
310
311 /*
312 * Reset the host controller and enable interrupts.
313 */
314 (void)sdhc_host_reset(hp);
315
316 /* Determine host capabilities. */
317 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
318 caps = sc->sc_caps;
319 caps2 = sc->sc_caps2;
320 } else {
321 caps = HREAD4(hp, SDHC_CAPABILITIES);
322 if (hp->specver >= SDHC_SPEC_VERS_300) {
323 caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
324 } else {
325 caps2 = 0;
326 }
327 }
328
329 /*
330 * Use DMA if the host system and the controller support it.
331 * Suports integrated or external DMA egine, with or without
332 * SDHC_DMA_ENABLE in the command.
333 */
334 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
335 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
336 ISSET(caps, SDHC_DMA_SUPPORT)))) {
337 SET(hp->flags, SHF_USE_DMA);
338
339 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
340 ISSET(caps, SDHC_ADMA2_SUPP)) {
341 SET(hp->flags, SHF_MODE_DMAEN);
342 /*
343 * 64-bit mode was present in the 2.00 spec, removed
344 * from 3.00, and re-added in 4.00 with a different
345 * descriptor layout. We only support 2.00 and 3.00
346 * descriptors for now.
347 */
348 if (hp->specver == SDHC_SPEC_VERS_200 &&
349 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
350 SET(hp->flags, SHF_USE_ADMA2_64);
351 aprint_normal(", 64-bit ADMA2");
352 } else {
353 SET(hp->flags, SHF_USE_ADMA2_32);
354 aprint_normal(", 32-bit ADMA2");
355 }
356 } else {
357 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
358 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
359 SET(hp->flags, SHF_MODE_DMAEN);
360 if (sc->sc_vendor_transfer_data_dma) {
361 aprint_normal(", platform DMA");
362 } else {
363 aprint_normal(", SDMA");
364 }
365 }
366 } else {
367 aprint_normal(", PIO");
368 }
369
370 /*
371 * Determine the base clock frequency. (2.2.24)
372 */
373 if (hp->specver >= SDHC_SPEC_VERS_300) {
374 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
375 } else {
376 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
377 }
378 if (hp->clkbase == 0 ||
379 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
380 if (sc->sc_clkbase == 0) {
381 /* The attachment driver must tell us. */
382 aprint_error_dev(sc->sc_dev,
383 "unknown base clock frequency\n");
384 goto err;
385 }
386 hp->clkbase = sc->sc_clkbase;
387 }
388 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
389 /* SDHC 1.0 supports only 10-63 MHz. */
390 aprint_error_dev(sc->sc_dev,
391 "base clock frequency out of range: %u MHz\n",
392 hp->clkbase / 1000);
393 goto err;
394 }
395 aprint_normal(", %u kHz", hp->clkbase);
396
397 /*
398 * XXX Set the data timeout counter value according to
399 * capabilities. (2.2.15)
400 */
401 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
402 #if 1
403 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
404 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
405 #endif
406
407 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
408 aprint_normal(", embedded slot");
409
410 /*
411 * Determine SD bus voltage levels supported by the controller.
412 */
413 aprint_normal(",");
414 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
415 SET(hp->ocr, MMC_OCR_HCS);
416 aprint_normal(" HS");
417 }
418 if (ISSET(caps2, SDHC_SDR50_SUPP)) {
419 SET(hp->ocr, MMC_OCR_S18A);
420 aprint_normal(" SDR50");
421 }
422 if (ISSET(caps2, SDHC_DDR50_SUPP)) {
423 SET(hp->ocr, MMC_OCR_S18A);
424 aprint_normal(" DDR50");
425 }
426 if (ISSET(caps2, SDHC_SDR104_SUPP)) {
427 SET(hp->ocr, MMC_OCR_S18A);
428 aprint_normal(" SDR104 HS200");
429 }
430 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
431 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
432 aprint_normal(" 1.8V");
433 }
434 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
435 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
436 aprint_normal(" 3.0V");
437 }
438 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
439 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
440 aprint_normal(" 3.3V");
441 }
442
443 /*
444 * Determine the maximum block length supported by the host
445 * controller. (2.2.24)
446 */
447 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
448 case SDHC_MAX_BLK_LEN_512:
449 hp->maxblklen = 512;
450 break;
451
452 case SDHC_MAX_BLK_LEN_1024:
453 hp->maxblklen = 1024;
454 break;
455
456 case SDHC_MAX_BLK_LEN_2048:
457 hp->maxblklen = 2048;
458 break;
459
460 case SDHC_MAX_BLK_LEN_4096:
461 hp->maxblklen = 4096;
462 break;
463
464 default:
465 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
466 goto err;
467 }
468 aprint_normal(", %u byte blocks", hp->maxblklen);
469 aprint_normal("\n");
470
471 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
472 int rseg;
473
474 /* Allocate ADMA2 descriptor memory */
475 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
476 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
477 if (error) {
478 aprint_error_dev(sc->sc_dev,
479 "ADMA2 dmamem_alloc failed (%d)\n", error);
480 goto adma_done;
481 }
482 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
483 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
484 if (error) {
485 aprint_error_dev(sc->sc_dev,
486 "ADMA2 dmamem_map failed (%d)\n", error);
487 goto adma_done;
488 }
489 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
490 0, BUS_DMA_WAITOK, &hp->adma_map);
491 if (error) {
492 aprint_error_dev(sc->sc_dev,
493 "ADMA2 dmamap_create failed (%d)\n", error);
494 goto adma_done;
495 }
496 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
497 hp->adma2, PAGE_SIZE, NULL,
498 BUS_DMA_WAITOK|BUS_DMA_WRITE);
499 if (error) {
500 aprint_error_dev(sc->sc_dev,
501 "ADMA2 dmamap_load failed (%d)\n", error);
502 goto adma_done;
503 }
504
505 memset(hp->adma2, 0, PAGE_SIZE);
506
507 adma_done:
508 if (error)
509 CLR(hp->flags, SHF_USE_ADMA2_MASK);
510 }
511
512 /*
513 * Attach the generic SD/MMC bus driver. (The bus driver must
514 * not invoke any chipset functions before it is attached.)
515 */
516 memset(&saa, 0, sizeof(saa));
517 saa.saa_busname = "sdmmc";
518 saa.saa_sct = &sdhc_functions;
519 saa.saa_sch = hp;
520 saa.saa_dmat = hp->dmat;
521 saa.saa_clkmax = hp->clkbase;
522 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
523 saa.saa_clkmin = hp->clkbase / 256 / 2046;
524 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
525 saa.saa_clkmin = hp->clkbase / 256 / 16;
526 else if (hp->sc->sc_clkmsk != 0)
527 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
528 (ffs(hp->sc->sc_clkmsk) - 1));
529 else if (hp->specver >= SDHC_SPEC_VERS_300)
530 saa.saa_clkmin = hp->clkbase / 0x3ff;
531 else
532 saa.saa_clkmin = hp->clkbase / 256;
533 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
534 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
535 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
536 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
537 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
538 if (ISSET(caps2, SDHC_SDR104_SUPP))
539 saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
540 SMC_CAPS_UHS_SDR50 |
541 SMC_CAPS_MMC_HS200;
542 if (ISSET(caps2, SDHC_SDR50_SUPP))
543 saa.saa_caps |= SMC_CAPS_UHS_SDR50;
544 if (ISSET(caps2, SDHC_DDR50_SUPP))
545 saa.saa_caps |= SMC_CAPS_UHS_DDR50;
546 if (ISSET(hp->flags, SHF_USE_DMA)) {
547 saa.saa_caps |= SMC_CAPS_DMA;
548 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
549 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
550 }
551 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
552 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
553 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
554
555 return 0;
556
557 err:
558 cv_destroy(&hp->intr_cv);
559 mutex_destroy(&hp->intr_lock);
560 free(hp, M_DEVBUF);
561 sc->sc_host[--sc->sc_nhosts] = NULL;
562 err1:
563 return 1;
564 }
565
566 int
567 sdhc_detach(struct sdhc_softc *sc, int flags)
568 {
569 struct sdhc_host *hp;
570 int rv = 0;
571
572 for (size_t n = 0; n < sc->sc_nhosts; n++) {
573 hp = sc->sc_host[n];
574 if (hp == NULL)
575 continue;
576 if (hp->sdmmc != NULL) {
577 rv = config_detach(hp->sdmmc, flags);
578 if (rv)
579 break;
580 hp->sdmmc = NULL;
581 }
582 /* disable interrupts */
583 if ((flags & DETACH_FORCE) == 0) {
584 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
585 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
586 } else {
587 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
588 }
589 sdhc_soft_reset(hp, SDHC_RESET_ALL);
590 }
591 cv_destroy(&hp->intr_cv);
592 mutex_destroy(&hp->intr_lock);
593 if (hp->ios > 0) {
594 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
595 hp->ios = 0;
596 }
597 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
598 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
599 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
600 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
601 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
602 }
603 free(hp, M_DEVBUF);
604 sc->sc_host[n] = NULL;
605 }
606
607 return rv;
608 }
609
610 bool
611 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
612 {
613 struct sdhc_softc *sc = device_private(dev);
614 struct sdhc_host *hp;
615 size_t i;
616
617 /* XXX poll for command completion or suspend command
618 * in progress */
619
620 /* Save the host controller state. */
621 for (size_t n = 0; n < sc->sc_nhosts; n++) {
622 hp = sc->sc_host[n];
623 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
624 for (i = 0; i < sizeof hp->regs; i += 4) {
625 uint32_t v = HREAD4(hp, i);
626 hp->regs[i + 0] = (v >> 0);
627 hp->regs[i + 1] = (v >> 8);
628 if (i + 3 < sizeof hp->regs) {
629 hp->regs[i + 2] = (v >> 16);
630 hp->regs[i + 3] = (v >> 24);
631 }
632 }
633 } else {
634 for (i = 0; i < sizeof hp->regs; i++) {
635 hp->regs[i] = HREAD1(hp, i);
636 }
637 }
638 }
639 return true;
640 }
641
642 bool
643 sdhc_resume(device_t dev, const pmf_qual_t *qual)
644 {
645 struct sdhc_softc *sc = device_private(dev);
646 struct sdhc_host *hp;
647 size_t i;
648
649 /* Restore the host controller state. */
650 for (size_t n = 0; n < sc->sc_nhosts; n++) {
651 hp = sc->sc_host[n];
652 (void)sdhc_host_reset(hp);
653 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
654 for (i = 0; i < sizeof hp->regs; i += 4) {
655 if (i + 3 < sizeof hp->regs) {
656 HWRITE4(hp, i,
657 (hp->regs[i + 0] << 0)
658 | (hp->regs[i + 1] << 8)
659 | (hp->regs[i + 2] << 16)
660 | (hp->regs[i + 3] << 24));
661 } else {
662 HWRITE4(hp, i,
663 (hp->regs[i + 0] << 0)
664 | (hp->regs[i + 1] << 8));
665 }
666 }
667 } else {
668 for (i = 0; i < sizeof hp->regs; i++) {
669 HWRITE1(hp, i, hp->regs[i]);
670 }
671 }
672 }
673 return true;
674 }
675
676 bool
677 sdhc_shutdown(device_t dev, int flags)
678 {
679 struct sdhc_softc *sc = device_private(dev);
680 struct sdhc_host *hp;
681
682 /* XXX chip locks up if we don't disable it before reboot. */
683 for (size_t i = 0; i < sc->sc_nhosts; i++) {
684 hp = sc->sc_host[i];
685 (void)sdhc_host_reset(hp);
686 }
687 return true;
688 }
689
690 /*
691 * Reset the host controller. Called during initialization, when
692 * cards are removed, upon resume, and during error recovery.
693 */
694 static int
695 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
696 {
697 struct sdhc_host *hp = (struct sdhc_host *)sch;
698 uint32_t sdhcimask;
699 int error;
700
701 KASSERT(mutex_owned(&hp->intr_lock));
702
703 /* Disable all interrupts. */
704 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
705 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
706 } else {
707 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
708 }
709
710 /*
711 * Reset the entire host controller and wait up to 100ms for
712 * the controller to clear the reset bit.
713 */
714 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
715 if (error)
716 goto out;
717
718 /* Set data timeout counter value to max for now. */
719 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
720 #if 1
721 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
722 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
723 #endif
724
725 /* Enable interrupts. */
726 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
727 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
728 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
729 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
730 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
731 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
732 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
733 sdhcimask ^=
734 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
735 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
736 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
737 } else {
738 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
739 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
740 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
741 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
742 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
743 }
744
745 out:
746 return error;
747 }
748
749 static int
750 sdhc_host_reset(sdmmc_chipset_handle_t sch)
751 {
752 struct sdhc_host *hp = (struct sdhc_host *)sch;
753 int error;
754
755 mutex_enter(&hp->intr_lock);
756 error = sdhc_host_reset1(sch);
757 mutex_exit(&hp->intr_lock);
758
759 return error;
760 }
761
762 static uint32_t
763 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
764 {
765 struct sdhc_host *hp = (struct sdhc_host *)sch;
766
767 return hp->ocr;
768 }
769
770 static int
771 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
772 {
773 struct sdhc_host *hp = (struct sdhc_host *)sch;
774
775 return hp->maxblklen;
776 }
777
778 /*
779 * Return non-zero if the card is currently inserted.
780 */
781 static int
782 sdhc_card_detect(sdmmc_chipset_handle_t sch)
783 {
784 struct sdhc_host *hp = (struct sdhc_host *)sch;
785 int r;
786
787 if (hp->sc->sc_vendor_card_detect)
788 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
789
790 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
791
792 return r ? 1 : 0;
793 }
794
795 /*
796 * Return non-zero if the card is currently write-protected.
797 */
798 static int
799 sdhc_write_protect(sdmmc_chipset_handle_t sch)
800 {
801 struct sdhc_host *hp = (struct sdhc_host *)sch;
802 int r;
803
804 if (hp->sc->sc_vendor_write_protect)
805 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
806
807 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
808
809 return r ? 0 : 1;
810 }
811
812 /*
813 * Set or change SD bus voltage and enable or disable SD bus power.
814 * Return zero on success.
815 */
816 static int
817 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
818 {
819 struct sdhc_host *hp = (struct sdhc_host *)sch;
820 uint8_t vdd;
821 int error = 0;
822 const uint32_t pcmask =
823 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
824
825 mutex_enter(&hp->intr_lock);
826
827 /*
828 * Disable bus power before voltage change.
829 */
830 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
831 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
832 HWRITE1(hp, SDHC_POWER_CTL, 0);
833
834 /* If power is disabled, reset the host and return now. */
835 if (ocr == 0) {
836 (void)sdhc_host_reset1(hp);
837 goto out;
838 }
839
840 /*
841 * Select the lowest voltage according to capabilities.
842 */
843 ocr &= hp->ocr;
844 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
845 vdd = SDHC_VOLTAGE_1_8V;
846 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
847 vdd = SDHC_VOLTAGE_3_0V;
848 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
849 vdd = SDHC_VOLTAGE_3_3V;
850 } else {
851 /* Unsupported voltage level requested. */
852 error = EINVAL;
853 goto out;
854 }
855
856 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
857 /*
858 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
859 * voltage ramp until power rises.
860 */
861
862 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
863 HWRITE1(hp, SDHC_POWER_CTL,
864 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
865 } else {
866 HWRITE1(hp, SDHC_POWER_CTL,
867 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
868 sdmmc_delay(1);
869 HWRITE1(hp, SDHC_POWER_CTL,
870 (vdd << SDHC_VOLTAGE_SHIFT));
871 sdmmc_delay(1);
872 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
873 sdmmc_delay(10000);
874 }
875
876 /*
877 * The host system may not power the bus due to battery low,
878 * etc. In that case, the host controller should clear the
879 * bus power bit.
880 */
881 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
882 error = ENXIO;
883 goto out;
884 }
885 }
886
887 out:
888 mutex_exit(&hp->intr_lock);
889
890 return error;
891 }
892
893 /*
894 * Return the smallest possible base clock frequency divisor value
895 * for the CLOCK_CTL register to produce `freq' (KHz).
896 */
897 static bool
898 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
899 {
900 u_int div;
901
902 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
903 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
904 if ((hp->clkbase / div) <= freq) {
905 *divp = SDHC_SDCLK_CGM
906 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
907 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
908 //freq = hp->clkbase / div;
909 return true;
910 }
911 }
912 /* No divisor found. */
913 return false;
914 }
915 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
916 u_int dvs = (hp->clkbase + freq - 1) / freq;
917 u_int roundup = dvs & 1;
918 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
919 if (dvs + roundup <= 16) {
920 dvs += roundup - 1;
921 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
922 | (dvs << SDHC_SDCLK_DVS_SHIFT);
923 DPRINTF(2,
924 ("%s: divisor for freq %u is %u * %u\n",
925 HDEVNAME(hp), freq, div * 2, dvs + 1));
926 //freq = hp->clkbase / (div * 2) * (dvs + 1);
927 return true;
928 }
929 /*
930 * If we drop bits, we need to round up the divisor.
931 */
932 roundup |= dvs & 1;
933 }
934 /* No divisor found. */
935 return false;
936 }
937 if (hp->sc->sc_clkmsk != 0) {
938 div = howmany(hp->clkbase, freq);
939 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
940 return false;
941 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
942 //freq = hp->clkbase / div;
943 return true;
944 }
945 if (hp->specver >= SDHC_SPEC_VERS_300) {
946 div = howmany(hp->clkbase, freq);
947 div = div > 1 ? howmany(div, 2) : 0;
948 if (div > 0x3ff)
949 return false;
950 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
951 << SDHC_SDCLK_XDIV_SHIFT) |
952 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
953 << SDHC_SDCLK_DIV_SHIFT);
954 //freq = hp->clkbase / (div ? div * 2 : 1);
955 return true;
956 } else {
957 for (div = 1; div <= 256; div *= 2) {
958 if ((hp->clkbase / div) <= freq) {
959 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
960 //freq = hp->clkbase / div;
961 return true;
962 }
963 }
964 /* No divisor found. */
965 return false;
966 }
967 /* No divisor found. */
968 return false;
969 }
970
971 /*
972 * Set or change SDCLK frequency or disable the SD clock.
973 * Return zero on success.
974 */
975 static int
976 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
977 {
978 struct sdhc_host *hp = (struct sdhc_host *)sch;
979 u_int div;
980 u_int timo;
981 int16_t reg;
982 int error = 0;
983 bool present __diagused;
984
985 mutex_enter(&hp->intr_lock);
986
987 #ifdef DIAGNOSTIC
988 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
989
990 /* Must not stop the clock if commands are in progress. */
991 if (present && sdhc_card_detect(hp)) {
992 aprint_normal_dev(hp->sc->sc_dev,
993 "%s: command in progress\n", __func__);
994 }
995 #endif
996
997 if (hp->sc->sc_vendor_bus_clock) {
998 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
999 if (error != 0)
1000 goto out;
1001 }
1002
1003 /*
1004 * Stop SD clock before changing the frequency.
1005 */
1006 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1007 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1008 if (freq == SDMMC_SDCLK_OFF) {
1009 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1010 goto out;
1011 }
1012 } else {
1013 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1014 if (freq == SDMMC_SDCLK_OFF)
1015 goto out;
1016 }
1017
1018 if (hp->specver >= SDHC_SPEC_VERS_300) {
1019 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1020 if (freq > 100000) {
1021 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1022 } else if (freq > 50000) {
1023 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1024 } else if (freq > 25000) {
1025 if (ddr) {
1026 HSET2(hp, SDHC_HOST_CTL2,
1027 SDHC_UHS_MODE_SELECT_DDR50);
1028 } else {
1029 HSET2(hp, SDHC_HOST_CTL2,
1030 SDHC_UHS_MODE_SELECT_SDR25);
1031 }
1032 } else if (freq > 400) {
1033 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1034 }
1035 }
1036
1037 /*
1038 * Set the minimum base clock frequency divisor.
1039 */
1040 if (!sdhc_clock_divisor(hp, freq, &div)) {
1041 /* Invalid base clock frequency or `freq' value. */
1042 aprint_error_dev(hp->sc->sc_dev,
1043 "Invalid bus clock %d kHz\n", freq);
1044 error = EINVAL;
1045 goto out;
1046 }
1047 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1048 HWRITE4(hp, SDHC_CLOCK_CTL,
1049 div | (SDHC_TIMEOUT_MAX << 16));
1050 } else {
1051 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1052 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1053 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1054 }
1055
1056 /*
1057 * Start internal clock. Wait 10ms for stabilization.
1058 */
1059 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1060 sdmmc_delay(10000);
1061 HSET4(hp, SDHC_CLOCK_CTL,
1062 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1063 } else {
1064 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1065 for (timo = 1000; timo > 0; timo--) {
1066 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1067 SDHC_INTCLK_STABLE))
1068 break;
1069 sdmmc_delay(10);
1070 }
1071 if (timo == 0) {
1072 error = ETIMEDOUT;
1073 goto out;
1074 }
1075 }
1076
1077 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1078 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1079 /*
1080 * Sending 80 clocks at 400kHz takes 200us.
1081 * So delay for that time + slop and then
1082 * check a few times for completion.
1083 */
1084 sdmmc_delay(210);
1085 for (timo = 10; timo > 0; timo--) {
1086 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1087 SDHC_INIT_ACTIVE))
1088 break;
1089 sdmmc_delay(10);
1090 }
1091 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1092
1093 /*
1094 * Enable SD clock.
1095 */
1096 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1097 } else {
1098 /*
1099 * Enable SD clock.
1100 */
1101 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1102
1103 if (freq > 25000 &&
1104 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1105 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1106 else
1107 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1108 }
1109
1110 out:
1111 mutex_exit(&hp->intr_lock);
1112
1113 return error;
1114 }
1115
1116 static int
1117 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1118 {
1119 struct sdhc_host *hp = (struct sdhc_host *)sch;
1120 int reg;
1121
1122 switch (width) {
1123 case 1:
1124 case 4:
1125 break;
1126
1127 case 8:
1128 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1129 break;
1130 /* FALLTHROUGH */
1131 default:
1132 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1133 HDEVNAME(hp), width));
1134 return 1;
1135 }
1136
1137 mutex_enter(&hp->intr_lock);
1138
1139 reg = HREAD1(hp, SDHC_HOST_CTL);
1140 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1141 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1142 if (width == 4)
1143 reg |= SDHC_4BIT_MODE;
1144 else if (width == 8)
1145 reg |= SDHC_ESDHC_8BIT_MODE;
1146 } else {
1147 reg &= ~SDHC_4BIT_MODE;
1148 if (hp->specver >= SDHC_SPEC_VERS_300) {
1149 reg &= ~SDHC_8BIT_MODE;
1150 }
1151 if (width == 4) {
1152 reg |= SDHC_4BIT_MODE;
1153 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1154 reg |= SDHC_8BIT_MODE;
1155 }
1156 }
1157 HWRITE1(hp, SDHC_HOST_CTL, reg);
1158
1159 mutex_exit(&hp->intr_lock);
1160
1161 return 0;
1162 }
1163
1164 static int
1165 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1166 {
1167 struct sdhc_host *hp = (struct sdhc_host *)sch;
1168
1169 if (hp->sc->sc_vendor_rod)
1170 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1171
1172 return 0;
1173 }
1174
1175 static void
1176 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1177 {
1178 struct sdhc_host *hp = (struct sdhc_host *)sch;
1179
1180 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1181 mutex_enter(&hp->intr_lock);
1182 if (enable) {
1183 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1184 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1185 } else {
1186 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1187 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1188 }
1189 mutex_exit(&hp->intr_lock);
1190 }
1191 }
1192
1193 static void
1194 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1195 {
1196 struct sdhc_host *hp = (struct sdhc_host *)sch;
1197
1198 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1199 mutex_enter(&hp->intr_lock);
1200 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1201 mutex_exit(&hp->intr_lock);
1202 }
1203 }
1204
1205 static int
1206 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1207 {
1208 struct sdhc_host *hp = (struct sdhc_host *)sch;
1209
1210 switch (signal_voltage) {
1211 case SDMMC_SIGNAL_VOLTAGE_180:
1212 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1213 break;
1214 case SDMMC_SIGNAL_VOLTAGE_330:
1215 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1216 break;
1217 default:
1218 return EINVAL;
1219 }
1220
1221 return 0;
1222 }
1223
1224 static int
1225 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1226 {
1227 uint32_t state;
1228 int timeout;
1229
1230 for (timeout = 10000; timeout > 0; timeout--) {
1231 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1232 return 0;
1233 sdmmc_delay(10);
1234 }
1235 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1236 mask, value, state);
1237 return ETIMEDOUT;
1238 }
1239
1240 static void
1241 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1242 {
1243 struct sdhc_host *hp = (struct sdhc_host *)sch;
1244 int error;
1245
1246 mutex_enter(&hp->intr_lock);
1247
1248 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1249 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1250 if (ISSET(hp->flags, SHF_USE_DMA)) {
1251 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1252 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1253 } else {
1254 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1255 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1256 }
1257 }
1258
1259 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1260 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1261 if (cmd->c_data != NULL) {
1262 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1263 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1264 } else {
1265 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1266 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1267 }
1268 }
1269
1270 /*
1271 * Start the MMC command, or mark `cmd' as failed and return.
1272 */
1273 error = sdhc_start_command(hp, cmd);
1274 if (error) {
1275 cmd->c_error = error;
1276 goto out;
1277 }
1278
1279 /*
1280 * Wait until the command phase is done, or until the command
1281 * is marked done for any other reason.
1282 */
1283 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1284 cmd->c_error = ETIMEDOUT;
1285 goto out;
1286 }
1287
1288 /*
1289 * The host controller removes bits [0:7] from the response
1290 * data (CRC) and we pass the data up unchanged to the bus
1291 * driver (without padding).
1292 */
1293 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1294 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1295 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1296 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1297 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1298 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1299 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1300 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1301 (cmd->c_resp[1] << 24);
1302 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1303 (cmd->c_resp[2] << 24);
1304 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1305 (cmd->c_resp[3] << 24);
1306 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1307 }
1308 }
1309 }
1310 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1311
1312 /*
1313 * If the command has data to transfer in any direction,
1314 * execute the transfer now.
1315 */
1316 if (cmd->c_error == 0 && cmd->c_data != NULL)
1317 sdhc_transfer_data(hp, cmd);
1318 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1319 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1320 cmd->c_error = ETIMEDOUT;
1321 goto out;
1322 }
1323 }
1324
1325 out:
1326 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1327 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1328 /* Turn off the LED. */
1329 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1330 }
1331 SET(cmd->c_flags, SCF_ITSDONE);
1332
1333 mutex_exit(&hp->intr_lock);
1334
1335 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1336 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1337 cmd->c_flags, cmd->c_error));
1338 }
1339
1340 static int
1341 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1342 {
1343 struct sdhc_softc * const sc = hp->sc;
1344 uint16_t blksize = 0;
1345 uint16_t blkcount = 0;
1346 uint16_t mode;
1347 uint16_t command;
1348 int error;
1349
1350 KASSERT(mutex_owned(&hp->intr_lock));
1351
1352 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1353 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1354 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1355
1356 /*
1357 * The maximum block length for commands should be the minimum
1358 * of the host buffer size and the card buffer size. (1.7.2)
1359 */
1360
1361 /* Fragment the data into proper blocks. */
1362 if (cmd->c_datalen > 0) {
1363 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1364 blkcount = cmd->c_datalen / blksize;
1365 if (cmd->c_datalen % blksize > 0) {
1366 /* XXX: Split this command. (1.7.4) */
1367 aprint_error_dev(sc->sc_dev,
1368 "data not a multiple of %u bytes\n", blksize);
1369 return EINVAL;
1370 }
1371 }
1372
1373 /* Check limit imposed by 9-bit block count. (1.7.2) */
1374 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1375 aprint_error_dev(sc->sc_dev, "too much data\n");
1376 return EINVAL;
1377 }
1378
1379 /* Prepare transfer mode register value. (2.2.5) */
1380 mode = SDHC_BLOCK_COUNT_ENABLE;
1381 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1382 mode |= SDHC_READ_MODE;
1383 if (blkcount > 1) {
1384 mode |= SDHC_MULTI_BLOCK_MODE;
1385 /* XXX only for memory commands? */
1386 mode |= SDHC_AUTO_CMD12_ENABLE;
1387 }
1388 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1389 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1390 mode |= SDHC_DMA_ENABLE;
1391 }
1392
1393 /*
1394 * Prepare command register value. (2.2.6)
1395 */
1396 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1397
1398 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1399 command |= SDHC_CRC_CHECK_ENABLE;
1400 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1401 command |= SDHC_INDEX_CHECK_ENABLE;
1402 if (cmd->c_data != NULL)
1403 command |= SDHC_DATA_PRESENT_SELECT;
1404
1405 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1406 command |= SDHC_NO_RESPONSE;
1407 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1408 command |= SDHC_RESP_LEN_136;
1409 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1410 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1411 else
1412 command |= SDHC_RESP_LEN_48;
1413
1414 /* Wait until command and data inhibit bits are clear. (1.5) */
1415 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1416 if (error) {
1417 aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1418 return error;
1419 }
1420
1421 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1422 HDEVNAME(hp), blksize, blkcount, mode, command));
1423
1424 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1425 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1426 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1427 }
1428
1429 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1430 /* Alert the user not to remove the card. */
1431 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1432 }
1433
1434 /* Set DMA start address. */
1435 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1436 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1437 bus_addr_t paddr =
1438 cmd->c_dmamap->dm_segs[seg].ds_addr;
1439 uint16_t len =
1440 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1441 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1442 uint16_t attr =
1443 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1444 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1445 attr |= SDHC_ADMA2_END;
1446 }
1447 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1448 struct sdhc_adma2_descriptor32 *desc =
1449 hp->adma2;
1450 desc[seg].attribute = htole16(attr);
1451 desc[seg].length = htole16(len);
1452 desc[seg].address = htole32(paddr);
1453 } else {
1454 struct sdhc_adma2_descriptor64 *desc =
1455 hp->adma2;
1456 desc[seg].attribute = htole16(attr);
1457 desc[seg].length = htole16(len);
1458 desc[seg].address = htole32(paddr & 0xffffffff);
1459 desc[seg].address_hi = htole32(
1460 (uint64_t)paddr >> 32);
1461 }
1462 }
1463 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1464 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1465 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1466 } else {
1467 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1468 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1469 }
1470 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1471 BUS_DMASYNC_PREWRITE);
1472 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1473 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1474
1475 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1476
1477 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1478 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1479 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1480 (uint64_t)desc_addr >> 32);
1481 }
1482 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1483 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1484 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1485 }
1486
1487 /*
1488 * Start a CPU data transfer. Writing to the high order byte
1489 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1490 */
1491 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1492 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1493 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1494 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1495 } else {
1496 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1497 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1498 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1499 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1500 HWRITE2(hp, SDHC_COMMAND, command);
1501 }
1502
1503 return 0;
1504 }
1505
1506 static void
1507 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1508 {
1509 struct sdhc_softc *sc = hp->sc;
1510 int error;
1511
1512 KASSERT(mutex_owned(&hp->intr_lock));
1513
1514 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1515 MMC_R1(cmd->c_resp), cmd->c_datalen));
1516
1517 #ifdef SDHC_DEBUG
1518 /* XXX I forgot why I wanted to know when this happens :-( */
1519 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1520 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1521 aprint_error_dev(hp->sc->sc_dev,
1522 "CMD52/53 error response flags %#x\n",
1523 MMC_R1(cmd->c_resp) & 0xff00);
1524 }
1525 #endif
1526
1527 if (cmd->c_dmamap != NULL) {
1528 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1529 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1530 if (error == 0 && !sdhc_wait_intr(hp,
1531 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1532 error = ETIMEDOUT;
1533 }
1534 } else {
1535 error = sdhc_transfer_data_dma(hp, cmd);
1536 }
1537 } else
1538 error = sdhc_transfer_data_pio(hp, cmd);
1539 if (error)
1540 cmd->c_error = error;
1541 SET(cmd->c_flags, SCF_ITSDONE);
1542
1543 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1544 HDEVNAME(hp), cmd->c_error));
1545 }
1546
1547 static int
1548 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1549 {
1550 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1551 bus_addr_t posaddr;
1552 bus_addr_t segaddr;
1553 bus_size_t seglen;
1554 u_int seg = 0;
1555 int error = 0;
1556 int status;
1557
1558 KASSERT(mutex_owned(&hp->intr_lock));
1559 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1560 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1561 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1562 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1563
1564 for (;;) {
1565 status = sdhc_wait_intr(hp,
1566 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1567 SDHC_DMA_TIMEOUT);
1568
1569 if (status & SDHC_TRANSFER_COMPLETE) {
1570 break;
1571 }
1572 if (!status) {
1573 error = ETIMEDOUT;
1574 break;
1575 }
1576
1577 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1578 continue;
1579 }
1580
1581 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1582 continue;
1583 }
1584
1585 /* DMA Interrupt (boundary crossing) */
1586
1587 segaddr = dm_segs[seg].ds_addr;
1588 seglen = dm_segs[seg].ds_len;
1589 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1590
1591 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1592 continue;
1593 }
1594 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1595 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1596 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1597 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1598 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1599 }
1600
1601 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1602 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1603 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1604 }
1605
1606 return error;
1607 }
1608
1609 static int
1610 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1611 {
1612 uint8_t *data = cmd->c_data;
1613 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1614 u_int len, datalen;
1615 u_int imask;
1616 u_int pmask;
1617 int error = 0;
1618
1619 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1620 imask = SDHC_BUFFER_READ_READY;
1621 pmask = SDHC_BUFFER_READ_ENABLE;
1622 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1623 pio_func = esdhc_read_data_pio;
1624 } else {
1625 pio_func = sdhc_read_data_pio;
1626 }
1627 } else {
1628 imask = SDHC_BUFFER_WRITE_READY;
1629 pmask = SDHC_BUFFER_WRITE_ENABLE;
1630 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1631 pio_func = esdhc_write_data_pio;
1632 } else {
1633 pio_func = sdhc_write_data_pio;
1634 }
1635 }
1636 datalen = cmd->c_datalen;
1637
1638 KASSERT(mutex_owned(&hp->intr_lock));
1639 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1640 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1641 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1642
1643 while (datalen > 0) {
1644 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1645 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1646 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1647 } else {
1648 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1649 }
1650 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1651 error = ETIMEDOUT;
1652 break;
1653 }
1654
1655 error = sdhc_wait_state(hp, pmask, pmask);
1656 if (error)
1657 break;
1658 }
1659
1660 len = MIN(datalen, cmd->c_blklen);
1661 (*pio_func)(hp, data, len);
1662 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1663 HDEVNAME(hp), len, data));
1664
1665 data += len;
1666 datalen -= len;
1667 }
1668
1669 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1670 SDHC_TRANSFER_TIMEOUT))
1671 error = ETIMEDOUT;
1672
1673 return error;
1674 }
1675
1676 static void
1677 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1678 {
1679
1680 if (((__uintptr_t)data & 3) == 0) {
1681 while (datalen > 3) {
1682 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1683 data += 4;
1684 datalen -= 4;
1685 }
1686 if (datalen > 1) {
1687 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1688 data += 2;
1689 datalen -= 2;
1690 }
1691 if (datalen > 0) {
1692 *data = HREAD1(hp, SDHC_DATA);
1693 data += 1;
1694 datalen -= 1;
1695 }
1696 } else if (((__uintptr_t)data & 1) == 0) {
1697 while (datalen > 1) {
1698 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1699 data += 2;
1700 datalen -= 2;
1701 }
1702 if (datalen > 0) {
1703 *data = HREAD1(hp, SDHC_DATA);
1704 data += 1;
1705 datalen -= 1;
1706 }
1707 } else {
1708 while (datalen > 0) {
1709 *data = HREAD1(hp, SDHC_DATA);
1710 data += 1;
1711 datalen -= 1;
1712 }
1713 }
1714 }
1715
1716 static void
1717 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1718 {
1719
1720 if (((__uintptr_t)data & 3) == 0) {
1721 while (datalen > 3) {
1722 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1723 data += 4;
1724 datalen -= 4;
1725 }
1726 if (datalen > 1) {
1727 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1728 data += 2;
1729 datalen -= 2;
1730 }
1731 if (datalen > 0) {
1732 HWRITE1(hp, SDHC_DATA, *data);
1733 data += 1;
1734 datalen -= 1;
1735 }
1736 } else if (((__uintptr_t)data & 1) == 0) {
1737 while (datalen > 1) {
1738 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1739 data += 2;
1740 datalen -= 2;
1741 }
1742 if (datalen > 0) {
1743 HWRITE1(hp, SDHC_DATA, *data);
1744 data += 1;
1745 datalen -= 1;
1746 }
1747 } else {
1748 while (datalen > 0) {
1749 HWRITE1(hp, SDHC_DATA, *data);
1750 data += 1;
1751 datalen -= 1;
1752 }
1753 }
1754 }
1755
1756 static void
1757 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1758 {
1759 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1760 uint32_t v;
1761
1762 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1763 size_t count = 0;
1764
1765 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1766 if (count == 0) {
1767 /*
1768 * If we've drained "watermark" words, we need to wait
1769 * a little bit so the read FIFO can refill.
1770 */
1771 sdmmc_delay(10);
1772 count = watermark;
1773 }
1774 v = HREAD4(hp, SDHC_DATA);
1775 v = le32toh(v);
1776 *(uint32_t *)data = v;
1777 data += 4;
1778 datalen -= 4;
1779 status = HREAD2(hp, SDHC_NINTR_STATUS);
1780 count--;
1781 }
1782 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1783 if (count == 0) {
1784 sdmmc_delay(10);
1785 }
1786 v = HREAD4(hp, SDHC_DATA);
1787 v = le32toh(v);
1788 do {
1789 *data++ = v;
1790 v >>= 8;
1791 } while (--datalen > 0);
1792 }
1793 }
1794
1795 static void
1796 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1797 {
1798 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1799 uint32_t v;
1800
1801 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1802 size_t count = watermark;
1803
1804 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1805 if (count == 0) {
1806 sdmmc_delay(10);
1807 count = watermark;
1808 }
1809 v = *(uint32_t *)data;
1810 v = htole32(v);
1811 HWRITE4(hp, SDHC_DATA, v);
1812 data += 4;
1813 datalen -= 4;
1814 status = HREAD2(hp, SDHC_NINTR_STATUS);
1815 count--;
1816 }
1817 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1818 if (count == 0) {
1819 sdmmc_delay(10);
1820 }
1821 v = *(uint32_t *)data;
1822 v = htole32(v);
1823 HWRITE4(hp, SDHC_DATA, v);
1824 }
1825 }
1826
1827 /* Prepare for another command. */
1828 static int
1829 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1830 {
1831 int timo;
1832
1833 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1834
1835 /* Request the reset. */
1836 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1837
1838 /*
1839 * If necessary, wait for the controller to set the bits to
1840 * acknowledge the reset.
1841 */
1842 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1843 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1844 for (timo = 10000; timo > 0; timo--) {
1845 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1846 break;
1847 /* Short delay because I worry we may miss it... */
1848 sdmmc_delay(1);
1849 }
1850 if (timo == 0)
1851 return ETIMEDOUT;
1852 }
1853
1854 /*
1855 * Wait for the controller to clear the bits to indicate that
1856 * the reset has completed.
1857 */
1858 for (timo = 10; timo > 0; timo--) {
1859 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1860 break;
1861 sdmmc_delay(10000);
1862 }
1863 if (timo == 0) {
1864 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1865 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1866 return ETIMEDOUT;
1867 }
1868
1869 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1870 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1871 }
1872
1873 return 0;
1874 }
1875
1876 static int
1877 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1878 {
1879 int status;
1880
1881 KASSERT(mutex_owned(&hp->intr_lock));
1882
1883 mask |= SDHC_ERROR_INTERRUPT;
1884
1885 status = hp->intr_status & mask;
1886 while (status == 0) {
1887 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
1888 == EWOULDBLOCK) {
1889 status |= SDHC_ERROR_INTERRUPT;
1890 break;
1891 }
1892 status = hp->intr_status & mask;
1893 }
1894 hp->intr_status &= ~status;
1895
1896 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1897 hp->intr_error_status));
1898
1899 /* Command timeout has higher priority than command complete. */
1900 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1901 hp->intr_error_status = 0;
1902 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1903 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1904 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1905 }
1906 status = 0;
1907 }
1908
1909 return status;
1910 }
1911
1912 /*
1913 * Established by attachment driver at interrupt priority IPL_SDMMC.
1914 */
1915 int
1916 sdhc_intr(void *arg)
1917 {
1918 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1919 struct sdhc_host *hp;
1920 int done = 0;
1921 uint16_t status;
1922 uint16_t error;
1923
1924 /* We got an interrupt, but we don't know from which slot. */
1925 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1926 hp = sc->sc_host[host];
1927 if (hp == NULL)
1928 continue;
1929
1930 mutex_enter(&hp->intr_lock);
1931
1932 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1933 /* Find out which interrupts are pending. */
1934 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1935 status = xstatus;
1936 error = xstatus >> 16;
1937 if (error)
1938 xstatus |= SDHC_ERROR_INTERRUPT;
1939 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1940 goto next_port; /* no interrupt for us */
1941 /* Acknowledge the interrupts we are about to handle. */
1942 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1943 } else {
1944 /* Find out which interrupts are pending. */
1945 error = 0;
1946 status = HREAD2(hp, SDHC_NINTR_STATUS);
1947 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1948 goto next_port; /* no interrupt for us */
1949 /* Acknowledge the interrupts we are about to handle. */
1950 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1951 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1952 /* Acknowledge error interrupts. */
1953 error = HREAD2(hp, SDHC_EINTR_STATUS);
1954 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1955 }
1956 }
1957
1958 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1959 status, error));
1960
1961 /* Claim this interrupt. */
1962 done = 1;
1963
1964 if (ISSET(error, SDHC_ADMA_ERROR)) {
1965 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1966 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1967 adma_err);
1968 }
1969
1970 /*
1971 * Service error interrupts.
1972 */
1973 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1974 SDHC_DATA_TIMEOUT_ERROR)) {
1975 hp->intr_error_status |= error;
1976 hp->intr_status |= status;
1977 cv_broadcast(&hp->intr_cv);
1978 }
1979
1980 /*
1981 * Wake up the sdmmc event thread to scan for cards.
1982 */
1983 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1984 if (hp->sdmmc != NULL) {
1985 sdmmc_needs_discover(hp->sdmmc);
1986 }
1987 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1988 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1989 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1990 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
1991 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1992 }
1993 }
1994
1995 /*
1996 * Wake up the blocking process to service command
1997 * related interrupt(s).
1998 */
1999 if (ISSET(status, SDHC_COMMAND_COMPLETE|
2000 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2001 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2002 hp->intr_status |= status;
2003 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2004 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2005 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2006 }
2007 cv_broadcast(&hp->intr_cv);
2008 }
2009
2010 /*
2011 * Service SD card interrupts.
2012 */
2013 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2014 && ISSET(status, SDHC_CARD_INTERRUPT)) {
2015 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2016 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2017 sdmmc_card_intr(hp->sdmmc);
2018 }
2019 next_port:
2020 mutex_exit(&hp->intr_lock);
2021 }
2022
2023 return done;
2024 }
2025
2026 kmutex_t *
2027 sdhc_host_lock(struct sdhc_host *hp)
2028 {
2029 return &hp->intr_lock;
2030 }
2031
2032 #ifdef SDHC_DEBUG
2033 void
2034 sdhc_dump_regs(struct sdhc_host *hp)
2035 {
2036
2037 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2038 HREAD4(hp, SDHC_PRESENT_STATE));
2039 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2040 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2041 HREAD1(hp, SDHC_POWER_CTL));
2042 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2043 HREAD2(hp, SDHC_NINTR_STATUS));
2044 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2045 HREAD2(hp, SDHC_EINTR_STATUS));
2046 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2047 HREAD2(hp, SDHC_NINTR_STATUS_EN));
2048 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2049 HREAD2(hp, SDHC_EINTR_STATUS_EN));
2050 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2051 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2052 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2053 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2054 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2055 HREAD4(hp, SDHC_CAPABILITIES));
2056 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2057 HREAD4(hp, SDHC_MAX_CAPABILITIES));
2058 }
2059 #endif
2060