sdhc.c revision 1.78 1 /* $NetBSD: sdhc.c,v 1.78 2015/08/05 07:31:52 mlelstv Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.78 2015/08/05 07:31:52 mlelstv Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39
40 #include <dev/sdmmc/sdhcreg.h>
41 #include <dev/sdmmc/sdhcvar.h>
42 #include <dev/sdmmc/sdmmcchip.h>
43 #include <dev/sdmmc/sdmmcreg.h>
44 #include <dev/sdmmc/sdmmcvar.h>
45
46 #ifdef SDHC_DEBUG
47 int sdhcdebug = 1;
48 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
49 void sdhc_dump_regs(struct sdhc_host *);
50 #else
51 #define DPRINTF(n,s) do {} while (0)
52 #endif
53
54 #define SDHC_COMMAND_TIMEOUT hz
55 #define SDHC_BUFFER_TIMEOUT hz
56 #define SDHC_TRANSFER_TIMEOUT hz
57 #define SDHC_DMA_TIMEOUT (hz*3)
58
59 struct sdhc_host {
60 struct sdhc_softc *sc; /* host controller device */
61
62 bus_space_tag_t iot; /* host register set tag */
63 bus_space_handle_t ioh; /* host register set handle */
64 bus_size_t ios; /* host register space size */
65 bus_dma_tag_t dmat; /* host DMA tag */
66
67 device_t sdmmc; /* generic SD/MMC device */
68
69 u_int clkbase; /* base clock frequency in KHz */
70 int maxblklen; /* maximum block length */
71 uint32_t ocr; /* OCR value from capabilities */
72
73 uint8_t regs[14]; /* host controller state */
74
75 uint16_t intr_status; /* soft interrupt status */
76 uint16_t intr_error_status; /* soft error status */
77 kmutex_t intr_lock;
78 kcondvar_t intr_cv;
79
80 int specver; /* spec. version */
81
82 uint32_t flags; /* flags for this host */
83 #define SHF_USE_DMA 0x0001
84 #define SHF_USE_4BIT_MODE 0x0002
85 #define SHF_USE_8BIT_MODE 0x0004
86 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
87 #define SHF_USE_ADMA2_32 0x0010
88 #define SHF_USE_ADMA2_64 0x0020
89 #define SHF_USE_ADMA2_MASK 0x0030
90
91 bus_dmamap_t adma_map;
92 bus_dma_segment_t adma_segs[1];
93 void *adma2;
94 };
95
96 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
97
98 static uint8_t
99 hread1(struct sdhc_host *hp, bus_size_t reg)
100 {
101
102 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
103 return bus_space_read_1(hp->iot, hp->ioh, reg);
104 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
105 }
106
107 static uint16_t
108 hread2(struct sdhc_host *hp, bus_size_t reg)
109 {
110
111 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
112 return bus_space_read_2(hp->iot, hp->ioh, reg);
113 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
114 }
115
116 #define HREAD1(hp, reg) hread1(hp, reg)
117 #define HREAD2(hp, reg) hread2(hp, reg)
118 #define HREAD4(hp, reg) \
119 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
120
121
122 static void
123 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
124 {
125
126 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
127 bus_space_write_1(hp->iot, hp->ioh, o, val);
128 } else {
129 const size_t shift = 8 * (o & 3);
130 o &= -4;
131 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
132 tmp = (val << shift) | (tmp & ~(0xff << shift));
133 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
134 }
135 }
136
137 static void
138 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
139 {
140
141 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
142 bus_space_write_2(hp->iot, hp->ioh, o, val);
143 } else {
144 const size_t shift = 8 * (o & 2);
145 o &= -4;
146 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
147 tmp = (val << shift) | (tmp & ~(0xffff << shift));
148 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
149 }
150 }
151
152 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
153 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
154 #define HWRITE4(hp, reg, val) \
155 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
156
157 #define HCLR1(hp, reg, bits) \
158 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
159 #define HCLR2(hp, reg, bits) \
160 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
161 #define HCLR4(hp, reg, bits) \
162 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
163 #define HSET1(hp, reg, bits) \
164 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
165 #define HSET2(hp, reg, bits) \
166 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
167 #define HSET4(hp, reg, bits) \
168 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
169
170 static int sdhc_host_reset(sdmmc_chipset_handle_t);
171 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
172 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
173 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
174 static int sdhc_card_detect(sdmmc_chipset_handle_t);
175 static int sdhc_write_protect(sdmmc_chipset_handle_t);
176 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
177 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
178 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
179 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
180 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
181 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
182 static void sdhc_exec_command(sdmmc_chipset_handle_t,
183 struct sdmmc_command *);
184 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
185 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
186 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
187 static int sdhc_soft_reset(struct sdhc_host *, int);
188 static int sdhc_wait_intr(struct sdhc_host *, int, int);
189 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
190 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
191 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
192 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
193 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
194 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
195 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
196
197 static struct sdmmc_chip_functions sdhc_functions = {
198 /* host controller reset */
199 .host_reset = sdhc_host_reset,
200
201 /* host controller capabilities */
202 .host_ocr = sdhc_host_ocr,
203 .host_maxblklen = sdhc_host_maxblklen,
204
205 /* card detection */
206 .card_detect = sdhc_card_detect,
207
208 /* write protect */
209 .write_protect = sdhc_write_protect,
210
211 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
212 .bus_power = sdhc_bus_power,
213 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
214 .bus_width = sdhc_bus_width,
215 .bus_rod = sdhc_bus_rod,
216
217 /* command execution */
218 .exec_command = sdhc_exec_command,
219
220 /* card interrupt */
221 .card_enable_intr = sdhc_card_enable_intr,
222 .card_intr_ack = sdhc_card_intr_ack,
223
224 /* UHS functions */
225 .signal_voltage = sdhc_signal_voltage,
226 .bus_clock_ddr = sdhc_bus_clock_ddr,
227 };
228
229 static int
230 sdhc_cfprint(void *aux, const char *pnp)
231 {
232 const struct sdmmcbus_attach_args * const saa = aux;
233 const struct sdhc_host * const hp = saa->saa_sch;
234
235 if (pnp) {
236 aprint_normal("sdmmc at %s", pnp);
237 }
238 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
239 if (hp->sc->sc_host[host] == hp) {
240 aprint_normal(" slot %zu", host);
241 }
242 }
243
244 return UNCONF;
245 }
246
247 /*
248 * Called by attachment driver. For each SD card slot there is one SD
249 * host controller standard register set. (1.3)
250 */
251 int
252 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
253 bus_space_handle_t ioh, bus_size_t iosize)
254 {
255 struct sdmmcbus_attach_args saa;
256 struct sdhc_host *hp;
257 uint32_t caps, caps2;
258 uint16_t sdhcver;
259 int error;
260
261 /* Allocate one more host structure. */
262 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
263 if (hp == NULL) {
264 aprint_error_dev(sc->sc_dev,
265 "couldn't alloc memory (sdhc host)\n");
266 goto err1;
267 }
268 sc->sc_host[sc->sc_nhosts++] = hp;
269
270 /* Fill in the new host structure. */
271 hp->sc = sc;
272 hp->iot = iot;
273 hp->ioh = ioh;
274 hp->ios = iosize;
275 hp->dmat = sc->sc_dmat;
276
277 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
278 cv_init(&hp->intr_cv, "sdhcintr");
279
280 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
281 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
282 } else {
283 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
284 }
285 aprint_normal_dev(sc->sc_dev, "SDHC ");
286 hp->specver = SDHC_SPEC_VERSION(sdhcver);
287 switch (SDHC_SPEC_VERSION(sdhcver)) {
288 case SDHC_SPEC_VERS_100:
289 aprint_normal("1.0");
290 break;
291
292 case SDHC_SPEC_VERS_200:
293 aprint_normal("2.0");
294 break;
295
296 case SDHC_SPEC_VERS_300:
297 aprint_normal("3.0");
298 break;
299
300 case SDHC_SPEC_VERS_400:
301 aprint_normal("4.0");
302 break;
303
304 default:
305 aprint_normal("unknown version(0x%x)",
306 SDHC_SPEC_VERSION(sdhcver));
307 break;
308 }
309 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
310
311 /*
312 * Reset the host controller and enable interrupts.
313 */
314 (void)sdhc_host_reset(hp);
315
316 /* Determine host capabilities. */
317 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
318 caps = sc->sc_caps;
319 caps2 = sc->sc_caps2;
320 } else {
321 caps = HREAD4(hp, SDHC_CAPABILITIES);
322 if (hp->specver >= SDHC_SPEC_VERS_300) {
323 caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
324 } else {
325 caps2 = 0;
326 }
327 }
328
329 /*
330 * Use DMA if the host system and the controller support it.
331 * Suports integrated or external DMA egine, with or without
332 * SDHC_DMA_ENABLE in the command.
333 */
334 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
335 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
336 ISSET(caps, SDHC_DMA_SUPPORT)))) {
337 SET(hp->flags, SHF_USE_DMA);
338
339 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
340 ISSET(caps, SDHC_ADMA2_SUPP)) {
341 SET(hp->flags, SHF_MODE_DMAEN);
342 /*
343 * 64-bit mode was present in the 2.00 spec, removed
344 * from 3.00, and re-added in 4.00 with a different
345 * descriptor layout. We only support 2.00 and 3.00
346 * descriptors for now.
347 */
348 if (hp->specver == SDHC_SPEC_VERS_200 &&
349 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
350 SET(hp->flags, SHF_USE_ADMA2_64);
351 aprint_normal(", 64-bit ADMA2");
352 } else {
353 SET(hp->flags, SHF_USE_ADMA2_32);
354 aprint_normal(", 32-bit ADMA2");
355 }
356 } else {
357 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
358 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
359 SET(hp->flags, SHF_MODE_DMAEN);
360 if (sc->sc_vendor_transfer_data_dma) {
361 aprint_normal(", platform DMA");
362 } else {
363 aprint_normal(", SDMA");
364 }
365 }
366 } else {
367 aprint_normal(", PIO");
368 }
369
370 /*
371 * Determine the base clock frequency. (2.2.24)
372 */
373 if (hp->specver >= SDHC_SPEC_VERS_300) {
374 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
375 } else {
376 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
377 }
378 if (hp->clkbase == 0 ||
379 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
380 if (sc->sc_clkbase == 0) {
381 /* The attachment driver must tell us. */
382 aprint_error_dev(sc->sc_dev,
383 "unknown base clock frequency\n");
384 goto err;
385 }
386 hp->clkbase = sc->sc_clkbase;
387 }
388 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
389 /* SDHC 1.0 supports only 10-63 MHz. */
390 aprint_error_dev(sc->sc_dev,
391 "base clock frequency out of range: %u MHz\n",
392 hp->clkbase / 1000);
393 goto err;
394 }
395 aprint_normal(", %u kHz", hp->clkbase);
396
397 /*
398 * XXX Set the data timeout counter value according to
399 * capabilities. (2.2.15)
400 */
401 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
402 #if 1
403 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
404 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
405 #endif
406
407 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
408 aprint_normal(", embedded slot");
409
410 /*
411 * Determine SD bus voltage levels supported by the controller.
412 */
413 aprint_normal(",");
414 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
415 SET(hp->ocr, MMC_OCR_HCS);
416 aprint_normal(" HS");
417 }
418 if (ISSET(caps2, SDHC_SDR50_SUPP)) {
419 SET(hp->ocr, MMC_OCR_S18A);
420 aprint_normal(" SDR50");
421 }
422 if (ISSET(caps2, SDHC_DDR50_SUPP)) {
423 SET(hp->ocr, MMC_OCR_S18A);
424 aprint_normal(" DDR50");
425 }
426 if (ISSET(caps2, SDHC_SDR104_SUPP)) {
427 SET(hp->ocr, MMC_OCR_S18A);
428 aprint_normal(" SDR104 HS200");
429 }
430 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
431 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
432 aprint_normal(" 1.8V");
433 }
434 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
435 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
436 aprint_normal(" 3.0V");
437 }
438 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
439 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
440 aprint_normal(" 3.3V");
441 }
442
443 /*
444 * Determine the maximum block length supported by the host
445 * controller. (2.2.24)
446 */
447 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
448 case SDHC_MAX_BLK_LEN_512:
449 hp->maxblklen = 512;
450 break;
451
452 case SDHC_MAX_BLK_LEN_1024:
453 hp->maxblklen = 1024;
454 break;
455
456 case SDHC_MAX_BLK_LEN_2048:
457 hp->maxblklen = 2048;
458 break;
459
460 case SDHC_MAX_BLK_LEN_4096:
461 hp->maxblklen = 4096;
462 break;
463
464 default:
465 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
466 goto err;
467 }
468 aprint_normal(", %u byte blocks", hp->maxblklen);
469 aprint_normal("\n");
470
471 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
472 int rseg;
473
474 /* Allocate ADMA2 descriptor memory */
475 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
476 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
477 if (error) {
478 aprint_error_dev(sc->sc_dev,
479 "ADMA2 dmamem_alloc failed (%d)\n", error);
480 goto adma_done;
481 }
482 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
483 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
484 if (error) {
485 aprint_error_dev(sc->sc_dev,
486 "ADMA2 dmamem_map failed (%d)\n", error);
487 goto adma_done;
488 }
489 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
490 0, BUS_DMA_WAITOK, &hp->adma_map);
491 if (error) {
492 aprint_error_dev(sc->sc_dev,
493 "ADMA2 dmamap_create failed (%d)\n", error);
494 goto adma_done;
495 }
496 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
497 hp->adma2, PAGE_SIZE, NULL,
498 BUS_DMA_WAITOK|BUS_DMA_WRITE);
499 if (error) {
500 aprint_error_dev(sc->sc_dev,
501 "ADMA2 dmamap_load failed (%d)\n", error);
502 goto adma_done;
503 }
504
505 memset(hp->adma2, 0, PAGE_SIZE);
506
507 adma_done:
508 if (error)
509 CLR(hp->flags, SHF_USE_ADMA2_MASK);
510 }
511
512 /*
513 * Attach the generic SD/MMC bus driver. (The bus driver must
514 * not invoke any chipset functions before it is attached.)
515 */
516 memset(&saa, 0, sizeof(saa));
517 saa.saa_busname = "sdmmc";
518 saa.saa_sct = &sdhc_functions;
519 saa.saa_sch = hp;
520 saa.saa_dmat = hp->dmat;
521 saa.saa_clkmax = hp->clkbase;
522 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
523 saa.saa_clkmin = hp->clkbase / 256 / 2046;
524 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
525 saa.saa_clkmin = hp->clkbase / 256 / 16;
526 else if (hp->sc->sc_clkmsk != 0)
527 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
528 (ffs(hp->sc->sc_clkmsk) - 1));
529 else if (hp->specver >= SDHC_SPEC_VERS_300)
530 saa.saa_clkmin = hp->clkbase / 0x3ff;
531 else
532 saa.saa_clkmin = hp->clkbase / 256;
533 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
534 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
535 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
536 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
537 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
538 if (ISSET(caps2, SDHC_SDR104_SUPP))
539 saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
540 SMC_CAPS_UHS_SDR50 |
541 SMC_CAPS_MMC_HS200;
542 if (ISSET(caps2, SDHC_SDR50_SUPP))
543 saa.saa_caps |= SMC_CAPS_UHS_SDR50;
544 if (ISSET(caps2, SDHC_DDR50_SUPP))
545 saa.saa_caps |= SMC_CAPS_UHS_DDR50;
546 if (ISSET(hp->flags, SHF_USE_DMA)) {
547 saa.saa_caps |= SMC_CAPS_DMA;
548 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
549 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
550 }
551 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
552 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
553 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
554 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
555 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
556
557 return 0;
558
559 err:
560 cv_destroy(&hp->intr_cv);
561 mutex_destroy(&hp->intr_lock);
562 free(hp, M_DEVBUF);
563 sc->sc_host[--sc->sc_nhosts] = NULL;
564 err1:
565 return 1;
566 }
567
568 int
569 sdhc_detach(struct sdhc_softc *sc, int flags)
570 {
571 struct sdhc_host *hp;
572 int rv = 0;
573
574 for (size_t n = 0; n < sc->sc_nhosts; n++) {
575 hp = sc->sc_host[n];
576 if (hp == NULL)
577 continue;
578 if (hp->sdmmc != NULL) {
579 rv = config_detach(hp->sdmmc, flags);
580 if (rv)
581 break;
582 hp->sdmmc = NULL;
583 }
584 /* disable interrupts */
585 if ((flags & DETACH_FORCE) == 0) {
586 mutex_enter(&hp->intr_lock);
587 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
588 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
589 } else {
590 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
591 }
592 sdhc_soft_reset(hp, SDHC_RESET_ALL);
593 mutex_exit(&hp->intr_lock);
594 }
595 cv_destroy(&hp->intr_cv);
596 mutex_destroy(&hp->intr_lock);
597 if (hp->ios > 0) {
598 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
599 hp->ios = 0;
600 }
601 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
602 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
603 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
604 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
605 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
606 }
607 free(hp, M_DEVBUF);
608 sc->sc_host[n] = NULL;
609 }
610
611 return rv;
612 }
613
614 bool
615 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
616 {
617 struct sdhc_softc *sc = device_private(dev);
618 struct sdhc_host *hp;
619 size_t i;
620
621 /* XXX poll for command completion or suspend command
622 * in progress */
623
624 /* Save the host controller state. */
625 for (size_t n = 0; n < sc->sc_nhosts; n++) {
626 hp = sc->sc_host[n];
627 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
628 for (i = 0; i < sizeof hp->regs; i += 4) {
629 uint32_t v = HREAD4(hp, i);
630 hp->regs[i + 0] = (v >> 0);
631 hp->regs[i + 1] = (v >> 8);
632 if (i + 3 < sizeof hp->regs) {
633 hp->regs[i + 2] = (v >> 16);
634 hp->regs[i + 3] = (v >> 24);
635 }
636 }
637 } else {
638 for (i = 0; i < sizeof hp->regs; i++) {
639 hp->regs[i] = HREAD1(hp, i);
640 }
641 }
642 }
643 return true;
644 }
645
646 bool
647 sdhc_resume(device_t dev, const pmf_qual_t *qual)
648 {
649 struct sdhc_softc *sc = device_private(dev);
650 struct sdhc_host *hp;
651 size_t i;
652
653 /* Restore the host controller state. */
654 for (size_t n = 0; n < sc->sc_nhosts; n++) {
655 hp = sc->sc_host[n];
656 (void)sdhc_host_reset(hp);
657 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
658 for (i = 0; i < sizeof hp->regs; i += 4) {
659 if (i + 3 < sizeof hp->regs) {
660 HWRITE4(hp, i,
661 (hp->regs[i + 0] << 0)
662 | (hp->regs[i + 1] << 8)
663 | (hp->regs[i + 2] << 16)
664 | (hp->regs[i + 3] << 24));
665 } else {
666 HWRITE4(hp, i,
667 (hp->regs[i + 0] << 0)
668 | (hp->regs[i + 1] << 8));
669 }
670 }
671 } else {
672 for (i = 0; i < sizeof hp->regs; i++) {
673 HWRITE1(hp, i, hp->regs[i]);
674 }
675 }
676 }
677 return true;
678 }
679
680 bool
681 sdhc_shutdown(device_t dev, int flags)
682 {
683 struct sdhc_softc *sc = device_private(dev);
684 struct sdhc_host *hp;
685
686 /* XXX chip locks up if we don't disable it before reboot. */
687 for (size_t i = 0; i < sc->sc_nhosts; i++) {
688 hp = sc->sc_host[i];
689 (void)sdhc_host_reset(hp);
690 }
691 return true;
692 }
693
694 /*
695 * Reset the host controller. Called during initialization, when
696 * cards are removed, upon resume, and during error recovery.
697 */
698 static int
699 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
700 {
701 struct sdhc_host *hp = (struct sdhc_host *)sch;
702 uint32_t sdhcimask;
703 int error;
704
705 KASSERT(mutex_owned(&hp->intr_lock));
706
707 /* Disable all interrupts. */
708 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
709 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
710 } else {
711 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
712 }
713
714 /*
715 * Reset the entire host controller and wait up to 100ms for
716 * the controller to clear the reset bit.
717 */
718 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
719 if (error)
720 goto out;
721
722 /* Set data timeout counter value to max for now. */
723 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
724 #if 1
725 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
726 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
727 #endif
728
729 /* Enable interrupts. */
730 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
731 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
732 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
733 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
734 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
735 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
736 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
737 sdhcimask ^=
738 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
739 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
740 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
741 } else {
742 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
743 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
744 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
745 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
746 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
747 }
748
749 out:
750 return error;
751 }
752
753 static int
754 sdhc_host_reset(sdmmc_chipset_handle_t sch)
755 {
756 struct sdhc_host *hp = (struct sdhc_host *)sch;
757 int error;
758
759 mutex_enter(&hp->intr_lock);
760 error = sdhc_host_reset1(sch);
761 mutex_exit(&hp->intr_lock);
762
763 return error;
764 }
765
766 static uint32_t
767 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
768 {
769 struct sdhc_host *hp = (struct sdhc_host *)sch;
770
771 return hp->ocr;
772 }
773
774 static int
775 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
776 {
777 struct sdhc_host *hp = (struct sdhc_host *)sch;
778
779 return hp->maxblklen;
780 }
781
782 /*
783 * Return non-zero if the card is currently inserted.
784 */
785 static int
786 sdhc_card_detect(sdmmc_chipset_handle_t sch)
787 {
788 struct sdhc_host *hp = (struct sdhc_host *)sch;
789 int r;
790
791 if (hp->sc->sc_vendor_card_detect)
792 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
793
794 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
795
796 return r ? 1 : 0;
797 }
798
799 /*
800 * Return non-zero if the card is currently write-protected.
801 */
802 static int
803 sdhc_write_protect(sdmmc_chipset_handle_t sch)
804 {
805 struct sdhc_host *hp = (struct sdhc_host *)sch;
806 int r;
807
808 if (hp->sc->sc_vendor_write_protect)
809 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
810
811 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
812
813 return r ? 0 : 1;
814 }
815
816 /*
817 * Set or change SD bus voltage and enable or disable SD bus power.
818 * Return zero on success.
819 */
820 static int
821 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
822 {
823 struct sdhc_host *hp = (struct sdhc_host *)sch;
824 uint8_t vdd;
825 int error = 0;
826 const uint32_t pcmask =
827 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
828
829 mutex_enter(&hp->intr_lock);
830
831 /*
832 * Disable bus power before voltage change.
833 */
834 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
835 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
836 HWRITE1(hp, SDHC_POWER_CTL, 0);
837
838 /* If power is disabled, reset the host and return now. */
839 if (ocr == 0) {
840 (void)sdhc_host_reset1(hp);
841 goto out;
842 }
843
844 /*
845 * Select the lowest voltage according to capabilities.
846 */
847 ocr &= hp->ocr;
848 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
849 vdd = SDHC_VOLTAGE_1_8V;
850 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
851 vdd = SDHC_VOLTAGE_3_0V;
852 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
853 vdd = SDHC_VOLTAGE_3_3V;
854 } else {
855 /* Unsupported voltage level requested. */
856 error = EINVAL;
857 goto out;
858 }
859
860 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
861 /*
862 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
863 * voltage ramp until power rises.
864 */
865
866 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
867 HWRITE1(hp, SDHC_POWER_CTL,
868 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
869 } else {
870 HWRITE1(hp, SDHC_POWER_CTL,
871 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
872 sdmmc_delay(1);
873 HWRITE1(hp, SDHC_POWER_CTL,
874 (vdd << SDHC_VOLTAGE_SHIFT));
875 sdmmc_delay(1);
876 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
877 sdmmc_delay(10000);
878 }
879
880 /*
881 * The host system may not power the bus due to battery low,
882 * etc. In that case, the host controller should clear the
883 * bus power bit.
884 */
885 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
886 error = ENXIO;
887 goto out;
888 }
889 }
890
891 out:
892 mutex_exit(&hp->intr_lock);
893
894 return error;
895 }
896
897 /*
898 * Return the smallest possible base clock frequency divisor value
899 * for the CLOCK_CTL register to produce `freq' (KHz).
900 */
901 static bool
902 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
903 {
904 u_int div;
905
906 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
907 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
908 if ((hp->clkbase / div) <= freq) {
909 *divp = SDHC_SDCLK_CGM
910 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
911 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
912 //freq = hp->clkbase / div;
913 return true;
914 }
915 }
916 /* No divisor found. */
917 return false;
918 }
919 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
920 u_int dvs = (hp->clkbase + freq - 1) / freq;
921 u_int roundup = dvs & 1;
922 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
923 if (dvs + roundup <= 16) {
924 dvs += roundup - 1;
925 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
926 | (dvs << SDHC_SDCLK_DVS_SHIFT);
927 DPRINTF(2,
928 ("%s: divisor for freq %u is %u * %u\n",
929 HDEVNAME(hp), freq, div * 2, dvs + 1));
930 //freq = hp->clkbase / (div * 2) * (dvs + 1);
931 return true;
932 }
933 /*
934 * If we drop bits, we need to round up the divisor.
935 */
936 roundup |= dvs & 1;
937 }
938 /* No divisor found. */
939 return false;
940 }
941 if (hp->sc->sc_clkmsk != 0) {
942 div = howmany(hp->clkbase, freq);
943 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
944 return false;
945 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
946 //freq = hp->clkbase / div;
947 return true;
948 }
949 if (hp->specver >= SDHC_SPEC_VERS_300) {
950 div = howmany(hp->clkbase, freq);
951 div = div > 1 ? howmany(div, 2) : 0;
952 if (div > 0x3ff)
953 return false;
954 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
955 << SDHC_SDCLK_XDIV_SHIFT) |
956 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
957 << SDHC_SDCLK_DIV_SHIFT);
958 //freq = hp->clkbase / (div ? div * 2 : 1);
959 return true;
960 } else {
961 for (div = 1; div <= 256; div *= 2) {
962 if ((hp->clkbase / div) <= freq) {
963 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
964 //freq = hp->clkbase / div;
965 return true;
966 }
967 }
968 /* No divisor found. */
969 return false;
970 }
971 /* No divisor found. */
972 return false;
973 }
974
975 /*
976 * Set or change SDCLK frequency or disable the SD clock.
977 * Return zero on success.
978 */
979 static int
980 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
981 {
982 struct sdhc_host *hp = (struct sdhc_host *)sch;
983 u_int div;
984 u_int timo;
985 int16_t reg;
986 int error = 0;
987 bool present __diagused;
988
989 mutex_enter(&hp->intr_lock);
990
991 #ifdef DIAGNOSTIC
992 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
993
994 /* Must not stop the clock if commands are in progress. */
995 if (present && sdhc_card_detect(hp)) {
996 aprint_normal_dev(hp->sc->sc_dev,
997 "%s: command in progress\n", __func__);
998 }
999 #endif
1000
1001 if (hp->sc->sc_vendor_bus_clock) {
1002 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1003 if (error != 0)
1004 goto out;
1005 }
1006
1007 /*
1008 * Stop SD clock before changing the frequency.
1009 */
1010 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1011 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1012 if (freq == SDMMC_SDCLK_OFF) {
1013 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1014 goto out;
1015 }
1016 } else {
1017 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1018 if (freq == SDMMC_SDCLK_OFF)
1019 goto out;
1020 }
1021
1022 if (hp->specver >= SDHC_SPEC_VERS_300) {
1023 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1024 if (freq > 100000) {
1025 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1026 } else if (freq > 50000) {
1027 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1028 } else if (freq > 25000) {
1029 if (ddr) {
1030 HSET2(hp, SDHC_HOST_CTL2,
1031 SDHC_UHS_MODE_SELECT_DDR50);
1032 } else {
1033 HSET2(hp, SDHC_HOST_CTL2,
1034 SDHC_UHS_MODE_SELECT_SDR25);
1035 }
1036 } else if (freq > 400) {
1037 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1038 }
1039 }
1040
1041 /*
1042 * Set the minimum base clock frequency divisor.
1043 */
1044 if (!sdhc_clock_divisor(hp, freq, &div)) {
1045 /* Invalid base clock frequency or `freq' value. */
1046 aprint_error_dev(hp->sc->sc_dev,
1047 "Invalid bus clock %d kHz\n", freq);
1048 error = EINVAL;
1049 goto out;
1050 }
1051 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1052 HWRITE4(hp, SDHC_CLOCK_CTL,
1053 div | (SDHC_TIMEOUT_MAX << 16));
1054 } else {
1055 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1056 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1057 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1058 }
1059
1060 /*
1061 * Start internal clock. Wait 10ms for stabilization.
1062 */
1063 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1064 sdmmc_delay(10000);
1065 HSET4(hp, SDHC_CLOCK_CTL,
1066 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1067 } else {
1068 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1069 for (timo = 1000; timo > 0; timo--) {
1070 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1071 SDHC_INTCLK_STABLE))
1072 break;
1073 sdmmc_delay(10);
1074 }
1075 if (timo == 0) {
1076 error = ETIMEDOUT;
1077 goto out;
1078 }
1079 }
1080
1081 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1082 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1083 /*
1084 * Sending 80 clocks at 400kHz takes 200us.
1085 * So delay for that time + slop and then
1086 * check a few times for completion.
1087 */
1088 sdmmc_delay(210);
1089 for (timo = 10; timo > 0; timo--) {
1090 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1091 SDHC_INIT_ACTIVE))
1092 break;
1093 sdmmc_delay(10);
1094 }
1095 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1096
1097 /*
1098 * Enable SD clock.
1099 */
1100 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1101 } else {
1102 /*
1103 * Enable SD clock.
1104 */
1105 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1106
1107 if (freq > 25000 &&
1108 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1109 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1110 else
1111 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1112 }
1113
1114 out:
1115 mutex_exit(&hp->intr_lock);
1116
1117 return error;
1118 }
1119
1120 static int
1121 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1122 {
1123 struct sdhc_host *hp = (struct sdhc_host *)sch;
1124 int reg;
1125
1126 switch (width) {
1127 case 1:
1128 case 4:
1129 break;
1130
1131 case 8:
1132 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1133 break;
1134 /* FALLTHROUGH */
1135 default:
1136 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1137 HDEVNAME(hp), width));
1138 return 1;
1139 }
1140
1141 mutex_enter(&hp->intr_lock);
1142
1143 reg = HREAD1(hp, SDHC_HOST_CTL);
1144 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1145 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1146 if (width == 4)
1147 reg |= SDHC_4BIT_MODE;
1148 else if (width == 8)
1149 reg |= SDHC_ESDHC_8BIT_MODE;
1150 } else {
1151 reg &= ~SDHC_4BIT_MODE;
1152 if (hp->specver >= SDHC_SPEC_VERS_300) {
1153 reg &= ~SDHC_8BIT_MODE;
1154 }
1155 if (width == 4) {
1156 reg |= SDHC_4BIT_MODE;
1157 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1158 reg |= SDHC_8BIT_MODE;
1159 }
1160 }
1161 HWRITE1(hp, SDHC_HOST_CTL, reg);
1162
1163 mutex_exit(&hp->intr_lock);
1164
1165 return 0;
1166 }
1167
1168 static int
1169 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1170 {
1171 struct sdhc_host *hp = (struct sdhc_host *)sch;
1172
1173 if (hp->sc->sc_vendor_rod)
1174 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1175
1176 return 0;
1177 }
1178
1179 static void
1180 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1181 {
1182 struct sdhc_host *hp = (struct sdhc_host *)sch;
1183
1184 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1185 mutex_enter(&hp->intr_lock);
1186 if (enable) {
1187 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1188 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1189 } else {
1190 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1191 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1192 }
1193 mutex_exit(&hp->intr_lock);
1194 }
1195 }
1196
1197 static void
1198 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1199 {
1200 struct sdhc_host *hp = (struct sdhc_host *)sch;
1201
1202 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1203 mutex_enter(&hp->intr_lock);
1204 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1205 mutex_exit(&hp->intr_lock);
1206 }
1207 }
1208
1209 static int
1210 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1211 {
1212 struct sdhc_host *hp = (struct sdhc_host *)sch;
1213
1214 mutex_enter(&hp->intr_lock);
1215 switch (signal_voltage) {
1216 case SDMMC_SIGNAL_VOLTAGE_180:
1217 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1218 break;
1219 case SDMMC_SIGNAL_VOLTAGE_330:
1220 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1221 break;
1222 default:
1223 return EINVAL;
1224 }
1225 mutex_exit(&hp->intr_lock);
1226
1227 return 0;
1228 }
1229
1230 static int
1231 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1232 {
1233 uint32_t state;
1234 int timeout;
1235
1236 for (timeout = 10000; timeout > 0; timeout--) {
1237 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1238 return 0;
1239 sdmmc_delay(10);
1240 }
1241 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1242 mask, value, state);
1243 return ETIMEDOUT;
1244 }
1245
1246 static void
1247 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1248 {
1249 struct sdhc_host *hp = (struct sdhc_host *)sch;
1250 int error;
1251
1252 mutex_enter(&hp->intr_lock);
1253
1254 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1255 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1256 if (ISSET(hp->flags, SHF_USE_DMA)) {
1257 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1258 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1259 } else {
1260 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1261 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1262 }
1263 }
1264
1265 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1266 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1267 if (cmd->c_data != NULL) {
1268 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1269 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1270 } else {
1271 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1272 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1273 }
1274 }
1275
1276 /*
1277 * Start the MMC command, or mark `cmd' as failed and return.
1278 */
1279 error = sdhc_start_command(hp, cmd);
1280 if (error) {
1281 cmd->c_error = error;
1282 goto out;
1283 }
1284
1285 /*
1286 * Wait until the command phase is done, or until the command
1287 * is marked done for any other reason.
1288 */
1289 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1290 cmd->c_error = ETIMEDOUT;
1291 goto out;
1292 }
1293
1294 /*
1295 * The host controller removes bits [0:7] from the response
1296 * data (CRC) and we pass the data up unchanged to the bus
1297 * driver (without padding).
1298 */
1299 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1300 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1301 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1302 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1303 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1304 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1305 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1306 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1307 (cmd->c_resp[1] << 24);
1308 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1309 (cmd->c_resp[2] << 24);
1310 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1311 (cmd->c_resp[3] << 24);
1312 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1313 }
1314 }
1315 }
1316 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1317
1318 /*
1319 * If the command has data to transfer in any direction,
1320 * execute the transfer now.
1321 */
1322 if (cmd->c_error == 0 && cmd->c_data != NULL)
1323 sdhc_transfer_data(hp, cmd);
1324 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1325 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1326 cmd->c_error = ETIMEDOUT;
1327 goto out;
1328 }
1329 }
1330
1331 out:
1332 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1333 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1334 /* Turn off the LED. */
1335 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1336 }
1337 SET(cmd->c_flags, SCF_ITSDONE);
1338
1339 mutex_exit(&hp->intr_lock);
1340
1341 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1342 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1343 cmd->c_flags, cmd->c_error));
1344 }
1345
1346 static int
1347 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1348 {
1349 struct sdhc_softc * const sc = hp->sc;
1350 uint16_t blksize = 0;
1351 uint16_t blkcount = 0;
1352 uint16_t mode;
1353 uint16_t command;
1354 int error;
1355
1356 KASSERT(mutex_owned(&hp->intr_lock));
1357
1358 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1359 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1360 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1361
1362 /*
1363 * The maximum block length for commands should be the minimum
1364 * of the host buffer size and the card buffer size. (1.7.2)
1365 */
1366
1367 /* Fragment the data into proper blocks. */
1368 if (cmd->c_datalen > 0) {
1369 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1370 blkcount = cmd->c_datalen / blksize;
1371 if (cmd->c_datalen % blksize > 0) {
1372 /* XXX: Split this command. (1.7.4) */
1373 aprint_error_dev(sc->sc_dev,
1374 "data not a multiple of %u bytes\n", blksize);
1375 return EINVAL;
1376 }
1377 }
1378
1379 /* Check limit imposed by 9-bit block count. (1.7.2) */
1380 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1381 aprint_error_dev(sc->sc_dev, "too much data\n");
1382 return EINVAL;
1383 }
1384
1385 /* Prepare transfer mode register value. (2.2.5) */
1386 mode = SDHC_BLOCK_COUNT_ENABLE;
1387 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1388 mode |= SDHC_READ_MODE;
1389 if (blkcount > 1) {
1390 mode |= SDHC_MULTI_BLOCK_MODE;
1391 /* XXX only for memory commands? */
1392 mode |= SDHC_AUTO_CMD12_ENABLE;
1393 }
1394 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1395 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1396 mode |= SDHC_DMA_ENABLE;
1397 }
1398
1399 /*
1400 * Prepare command register value. (2.2.6)
1401 */
1402 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1403
1404 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1405 command |= SDHC_CRC_CHECK_ENABLE;
1406 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1407 command |= SDHC_INDEX_CHECK_ENABLE;
1408 if (cmd->c_data != NULL)
1409 command |= SDHC_DATA_PRESENT_SELECT;
1410
1411 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1412 command |= SDHC_NO_RESPONSE;
1413 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1414 command |= SDHC_RESP_LEN_136;
1415 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1416 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1417 else
1418 command |= SDHC_RESP_LEN_48;
1419
1420 /* Wait until command and data inhibit bits are clear. (1.5) */
1421 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1422 if (error) {
1423 aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1424 return error;
1425 }
1426
1427 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1428 HDEVNAME(hp), blksize, blkcount, mode, command));
1429
1430 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1431 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1432 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1433 }
1434
1435 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1436 /* Alert the user not to remove the card. */
1437 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1438 }
1439
1440 /* Set DMA start address. */
1441 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_datalen > 0) {
1442 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1443 bus_addr_t paddr =
1444 cmd->c_dmamap->dm_segs[seg].ds_addr;
1445 uint16_t len =
1446 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1447 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1448 uint16_t attr =
1449 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1450 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1451 attr |= SDHC_ADMA2_END;
1452 }
1453 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1454 struct sdhc_adma2_descriptor32 *desc =
1455 hp->adma2;
1456 desc[seg].attribute = htole16(attr);
1457 desc[seg].length = htole16(len);
1458 desc[seg].address = htole32(paddr);
1459 } else {
1460 struct sdhc_adma2_descriptor64 *desc =
1461 hp->adma2;
1462 desc[seg].attribute = htole16(attr);
1463 desc[seg].length = htole16(len);
1464 desc[seg].address = htole32(paddr & 0xffffffff);
1465 desc[seg].address_hi = htole32(
1466 (uint64_t)paddr >> 32);
1467 }
1468 }
1469 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1470 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1471 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1472 } else {
1473 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1474 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1475 }
1476 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1477 BUS_DMASYNC_PREWRITE);
1478 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1479 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1480
1481 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1482
1483 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1484 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1485 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1486 (uint64_t)desc_addr >> 32);
1487 }
1488 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1489 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1490 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1491 }
1492
1493 /*
1494 * Start a CPU data transfer. Writing to the high order byte
1495 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1496 */
1497 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1498 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1499 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1500 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1501 } else {
1502 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1503 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1504 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1505 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1506 HWRITE2(hp, SDHC_COMMAND, command);
1507 }
1508
1509 return 0;
1510 }
1511
1512 static void
1513 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1514 {
1515 struct sdhc_softc *sc = hp->sc;
1516 int error;
1517
1518 KASSERT(mutex_owned(&hp->intr_lock));
1519
1520 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1521 MMC_R1(cmd->c_resp), cmd->c_datalen));
1522
1523 #ifdef SDHC_DEBUG
1524 /* XXX I forgot why I wanted to know when this happens :-( */
1525 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1526 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1527 aprint_error_dev(hp->sc->sc_dev,
1528 "CMD52/53 error response flags %#x\n",
1529 MMC_R1(cmd->c_resp) & 0xff00);
1530 }
1531 #endif
1532
1533 if (cmd->c_dmamap != NULL) {
1534 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1535 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1536 if (error == 0 && !sdhc_wait_intr(hp,
1537 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1538 error = ETIMEDOUT;
1539 }
1540 } else {
1541 error = sdhc_transfer_data_dma(hp, cmd);
1542 }
1543 } else
1544 error = sdhc_transfer_data_pio(hp, cmd);
1545 if (error)
1546 cmd->c_error = error;
1547 SET(cmd->c_flags, SCF_ITSDONE);
1548
1549 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1550 HDEVNAME(hp), cmd->c_error));
1551 }
1552
1553 static int
1554 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1555 {
1556 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1557 bus_addr_t posaddr;
1558 bus_addr_t segaddr;
1559 bus_size_t seglen;
1560 u_int seg = 0;
1561 int error = 0;
1562 int status;
1563
1564 KASSERT(mutex_owned(&hp->intr_lock));
1565 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1566 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1567 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1568 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1569
1570 for (;;) {
1571 status = sdhc_wait_intr(hp,
1572 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1573 SDHC_DMA_TIMEOUT);
1574
1575 if (status & SDHC_TRANSFER_COMPLETE) {
1576 break;
1577 }
1578 if (!status) {
1579 error = ETIMEDOUT;
1580 break;
1581 }
1582
1583 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1584 continue;
1585 }
1586
1587 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1588 continue;
1589 }
1590
1591 /* DMA Interrupt (boundary crossing) */
1592
1593 segaddr = dm_segs[seg].ds_addr;
1594 seglen = dm_segs[seg].ds_len;
1595 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1596
1597 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1598 continue;
1599 }
1600 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1601 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1602 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1603 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1604 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1605 }
1606
1607 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1608 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1609 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1610 }
1611
1612 return error;
1613 }
1614
1615 static int
1616 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1617 {
1618 uint8_t *data = cmd->c_data;
1619 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1620 u_int len, datalen;
1621 u_int imask;
1622 u_int pmask;
1623 int error = 0;
1624
1625 KASSERT(mutex_owned(&hp->intr_lock));
1626
1627 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1628 imask = SDHC_BUFFER_READ_READY;
1629 pmask = SDHC_BUFFER_READ_ENABLE;
1630 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1631 pio_func = esdhc_read_data_pio;
1632 } else {
1633 pio_func = sdhc_read_data_pio;
1634 }
1635 } else {
1636 imask = SDHC_BUFFER_WRITE_READY;
1637 pmask = SDHC_BUFFER_WRITE_ENABLE;
1638 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1639 pio_func = esdhc_write_data_pio;
1640 } else {
1641 pio_func = sdhc_write_data_pio;
1642 }
1643 }
1644 datalen = cmd->c_datalen;
1645
1646 KASSERT(mutex_owned(&hp->intr_lock));
1647 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1648 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1649 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1650
1651 while (datalen > 0) {
1652 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1653 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1654 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1655 } else {
1656 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1657 }
1658 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1659 error = ETIMEDOUT;
1660 break;
1661 }
1662
1663 error = sdhc_wait_state(hp, pmask, pmask);
1664 if (error)
1665 break;
1666 }
1667
1668 len = MIN(datalen, cmd->c_blklen);
1669 (*pio_func)(hp, data, len);
1670 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1671 HDEVNAME(hp), len, data));
1672
1673 data += len;
1674 datalen -= len;
1675 }
1676
1677 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1678 SDHC_TRANSFER_TIMEOUT))
1679 error = ETIMEDOUT;
1680
1681 return error;
1682 }
1683
1684 static void
1685 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1686 {
1687
1688 if (((__uintptr_t)data & 3) == 0) {
1689 while (datalen > 3) {
1690 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1691 data += 4;
1692 datalen -= 4;
1693 }
1694 if (datalen > 1) {
1695 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1696 data += 2;
1697 datalen -= 2;
1698 }
1699 if (datalen > 0) {
1700 *data = HREAD1(hp, SDHC_DATA);
1701 data += 1;
1702 datalen -= 1;
1703 }
1704 } else if (((__uintptr_t)data & 1) == 0) {
1705 while (datalen > 1) {
1706 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1707 data += 2;
1708 datalen -= 2;
1709 }
1710 if (datalen > 0) {
1711 *data = HREAD1(hp, SDHC_DATA);
1712 data += 1;
1713 datalen -= 1;
1714 }
1715 } else {
1716 while (datalen > 0) {
1717 *data = HREAD1(hp, SDHC_DATA);
1718 data += 1;
1719 datalen -= 1;
1720 }
1721 }
1722 }
1723
1724 static void
1725 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1726 {
1727
1728 if (((__uintptr_t)data & 3) == 0) {
1729 while (datalen > 3) {
1730 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1731 data += 4;
1732 datalen -= 4;
1733 }
1734 if (datalen > 1) {
1735 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1736 data += 2;
1737 datalen -= 2;
1738 }
1739 if (datalen > 0) {
1740 HWRITE1(hp, SDHC_DATA, *data);
1741 data += 1;
1742 datalen -= 1;
1743 }
1744 } else if (((__uintptr_t)data & 1) == 0) {
1745 while (datalen > 1) {
1746 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1747 data += 2;
1748 datalen -= 2;
1749 }
1750 if (datalen > 0) {
1751 HWRITE1(hp, SDHC_DATA, *data);
1752 data += 1;
1753 datalen -= 1;
1754 }
1755 } else {
1756 while (datalen > 0) {
1757 HWRITE1(hp, SDHC_DATA, *data);
1758 data += 1;
1759 datalen -= 1;
1760 }
1761 }
1762 }
1763
1764 static void
1765 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1766 {
1767 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1768 uint32_t v;
1769
1770 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1771 size_t count = 0;
1772
1773 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1774 if (count == 0) {
1775 /*
1776 * If we've drained "watermark" words, we need to wait
1777 * a little bit so the read FIFO can refill.
1778 */
1779 sdmmc_delay(10);
1780 count = watermark;
1781 }
1782 v = HREAD4(hp, SDHC_DATA);
1783 v = le32toh(v);
1784 *(uint32_t *)data = v;
1785 data += 4;
1786 datalen -= 4;
1787 status = HREAD2(hp, SDHC_NINTR_STATUS);
1788 count--;
1789 }
1790 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1791 if (count == 0) {
1792 sdmmc_delay(10);
1793 }
1794 v = HREAD4(hp, SDHC_DATA);
1795 v = le32toh(v);
1796 do {
1797 *data++ = v;
1798 v >>= 8;
1799 } while (--datalen > 0);
1800 }
1801 }
1802
1803 static void
1804 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1805 {
1806 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1807 uint32_t v;
1808
1809 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1810 size_t count = watermark;
1811
1812 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1813 if (count == 0) {
1814 sdmmc_delay(10);
1815 count = watermark;
1816 }
1817 v = *(uint32_t *)data;
1818 v = htole32(v);
1819 HWRITE4(hp, SDHC_DATA, v);
1820 data += 4;
1821 datalen -= 4;
1822 status = HREAD2(hp, SDHC_NINTR_STATUS);
1823 count--;
1824 }
1825 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1826 if (count == 0) {
1827 sdmmc_delay(10);
1828 }
1829 v = *(uint32_t *)data;
1830 v = htole32(v);
1831 HWRITE4(hp, SDHC_DATA, v);
1832 }
1833 }
1834
1835 /* Prepare for another command. */
1836 static int
1837 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1838 {
1839 int timo;
1840
1841 KASSERT(mutex_owned(&hp->intr_lock));
1842
1843 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1844
1845 /* Request the reset. */
1846 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1847
1848 /*
1849 * If necessary, wait for the controller to set the bits to
1850 * acknowledge the reset.
1851 */
1852 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
1853 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
1854 for (timo = 10000; timo > 0; timo--) {
1855 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1856 break;
1857 /* Short delay because I worry we may miss it... */
1858 sdmmc_delay(1);
1859 }
1860 if (timo == 0)
1861 return ETIMEDOUT;
1862 }
1863
1864 /*
1865 * Wait for the controller to clear the bits to indicate that
1866 * the reset has completed.
1867 */
1868 for (timo = 10; timo > 0; timo--) {
1869 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1870 break;
1871 sdmmc_delay(10000);
1872 }
1873 if (timo == 0) {
1874 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1875 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1876 return ETIMEDOUT;
1877 }
1878
1879 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1880 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
1881 }
1882
1883 return 0;
1884 }
1885
1886 static int
1887 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1888 {
1889 int status;
1890
1891 KASSERT(mutex_owned(&hp->intr_lock));
1892
1893 mask |= SDHC_ERROR_INTERRUPT;
1894
1895 status = hp->intr_status & mask;
1896 while (status == 0) {
1897 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
1898 == EWOULDBLOCK) {
1899 status |= SDHC_ERROR_INTERRUPT;
1900 break;
1901 }
1902 status = hp->intr_status & mask;
1903 }
1904 hp->intr_status &= ~status;
1905
1906 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1907 hp->intr_error_status));
1908
1909 /* Command timeout has higher priority than command complete. */
1910 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
1911 hp->intr_error_status = 0;
1912 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
1913 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1914 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1915 }
1916 status = 0;
1917 }
1918
1919 return status;
1920 }
1921
1922 /*
1923 * Established by attachment driver at interrupt priority IPL_SDMMC.
1924 */
1925 int
1926 sdhc_intr(void *arg)
1927 {
1928 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1929 struct sdhc_host *hp;
1930 int done = 0;
1931 uint16_t status;
1932 uint16_t error;
1933
1934 /* We got an interrupt, but we don't know from which slot. */
1935 for (size_t host = 0; host < sc->sc_nhosts; host++) {
1936 hp = sc->sc_host[host];
1937 if (hp == NULL)
1938 continue;
1939
1940 mutex_enter(&hp->intr_lock);
1941
1942 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1943 /* Find out which interrupts are pending. */
1944 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
1945 status = xstatus;
1946 error = xstatus >> 16;
1947 if (error)
1948 xstatus |= SDHC_ERROR_INTERRUPT;
1949 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1950 goto next_port; /* no interrupt for us */
1951 /* Acknowledge the interrupts we are about to handle. */
1952 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
1953 } else {
1954 /* Find out which interrupts are pending. */
1955 error = 0;
1956 status = HREAD2(hp, SDHC_NINTR_STATUS);
1957 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1958 goto next_port; /* no interrupt for us */
1959 /* Acknowledge the interrupts we are about to handle. */
1960 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1961 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1962 /* Acknowledge error interrupts. */
1963 error = HREAD2(hp, SDHC_EINTR_STATUS);
1964 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1965 }
1966 }
1967
1968 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
1969 status, error));
1970
1971 /* Claim this interrupt. */
1972 done = 1;
1973
1974 if (ISSET(error, SDHC_ADMA_ERROR)) {
1975 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
1976 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
1977 adma_err);
1978 }
1979
1980 /*
1981 * Service error interrupts.
1982 */
1983 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1984 SDHC_DATA_TIMEOUT_ERROR)) {
1985 hp->intr_error_status |= error;
1986 hp->intr_status |= status;
1987 cv_broadcast(&hp->intr_cv);
1988 }
1989
1990 /*
1991 * Wake up the sdmmc event thread to scan for cards.
1992 */
1993 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1994 if (hp->sdmmc != NULL) {
1995 sdmmc_needs_discover(hp->sdmmc);
1996 }
1997 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1998 HCLR4(hp, SDHC_NINTR_STATUS_EN,
1999 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2000 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2001 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2002 }
2003 }
2004
2005 /*
2006 * Wake up the blocking process to service command
2007 * related interrupt(s).
2008 */
2009 if (ISSET(status, SDHC_COMMAND_COMPLETE|
2010 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2011 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2012 hp->intr_status |= status;
2013 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2014 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2015 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2016 }
2017 cv_broadcast(&hp->intr_cv);
2018 }
2019
2020 /*
2021 * Service SD card interrupts.
2022 */
2023 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2024 && ISSET(status, SDHC_CARD_INTERRUPT)) {
2025 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2026 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2027 sdmmc_card_intr(hp->sdmmc);
2028 }
2029 next_port:
2030 mutex_exit(&hp->intr_lock);
2031 }
2032
2033 return done;
2034 }
2035
2036 kmutex_t *
2037 sdhc_host_lock(struct sdhc_host *hp)
2038 {
2039 return &hp->intr_lock;
2040 }
2041
2042 #ifdef SDHC_DEBUG
2043 void
2044 sdhc_dump_regs(struct sdhc_host *hp)
2045 {
2046
2047 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2048 HREAD4(hp, SDHC_PRESENT_STATE));
2049 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2050 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2051 HREAD1(hp, SDHC_POWER_CTL));
2052 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2053 HREAD2(hp, SDHC_NINTR_STATUS));
2054 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2055 HREAD2(hp, SDHC_EINTR_STATUS));
2056 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2057 HREAD2(hp, SDHC_NINTR_STATUS_EN));
2058 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2059 HREAD2(hp, SDHC_EINTR_STATUS_EN));
2060 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2061 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2062 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2063 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2064 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2065 HREAD4(hp, SDHC_CAPABILITIES));
2066 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2067 HREAD4(hp, SDHC_MAX_CAPABILITIES));
2068 }
2069 #endif
2070