sdhc.c revision 1.8 1 /* $NetBSD: sdhc.c,v 1.8 2010/10/07 12:06:10 kiyohara Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.8 2010/10/07 12:06:10 kiyohara Exp $");
27
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 1;
45 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s) do {} while (0)
49 #endif
50
51 #define SDHC_COMMAND_TIMEOUT hz
52 #define SDHC_BUFFER_TIMEOUT hz
53 #define SDHC_TRANSFER_TIMEOUT hz
54 #define SDHC_DMA_TIMEOUT hz
55
56 struct sdhc_host {
57 struct sdhc_softc *sc; /* host controller device */
58
59 bus_space_tag_t iot; /* host register set tag */
60 bus_space_handle_t ioh; /* host register set handle */
61 bus_dma_tag_t dmat; /* host DMA tag */
62
63 device_t sdmmc; /* generic SD/MMC device */
64
65 struct kmutex host_mtx;
66
67 u_int clkbase; /* base clock frequency in KHz */
68 int maxblklen; /* maximum block length */
69 uint32_t ocr; /* OCR value from capabilities */
70
71 uint8_t regs[14]; /* host controller state */
72
73 uint16_t intr_status; /* soft interrupt status */
74 uint16_t intr_error_status; /* soft error status */
75 struct kmutex intr_mtx;
76 struct kcondvar intr_cv;
77
78 uint32_t flags; /* flags for this host */
79 #define SHF_USE_DMA 0x0001
80 #define SHF_USE_4BIT_MODE 0x0002
81 };
82
83 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
84
85 #define HREAD1(hp, reg) \
86 (bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg) \
88 (bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg) \
90 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val) \
92 bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val) \
94 bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val) \
96 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits) \
98 HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits) \
100 HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits) \
102 HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits) \
104 HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105
106 static int sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
116 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
117 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
118 static void sdhc_exec_command(sdmmc_chipset_handle_t,
119 struct sdmmc_command *);
120 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
121 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
122 static int sdhc_soft_reset(struct sdhc_host *, int);
123 static int sdhc_wait_intr(struct sdhc_host *, int, int);
124 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
125 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
126 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
127 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
128 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
129
130 static struct sdmmc_chip_functions sdhc_functions = {
131 /* host controller reset */
132 sdhc_host_reset,
133
134 /* host controller capabilities */
135 sdhc_host_ocr,
136 sdhc_host_maxblklen,
137
138 /* card detection */
139 sdhc_card_detect,
140
141 /* write protect */
142 sdhc_write_protect,
143
144 /* bus power, clock frequency and width */
145 sdhc_bus_power,
146 sdhc_bus_clock,
147 sdhc_bus_width,
148 sdhc_bus_rod,
149
150 /* command execution */
151 sdhc_exec_command,
152
153 /* card interrupt */
154 sdhc_card_enable_intr,
155 sdhc_card_intr_ack
156 };
157
158 /*
159 * Called by attachment driver. For each SD card slot there is one SD
160 * host controller standard register set. (1.3)
161 */
162 int
163 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
164 bus_space_handle_t ioh, bus_size_t iosize)
165 {
166 struct sdmmcbus_attach_args saa;
167 struct sdhc_host *hp;
168 uint32_t caps;
169 #ifdef SDHC_DEBUG
170 uint16_t sdhcver;
171
172 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
173 aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
174 switch (SDHC_SPEC_VERSION(sdhcver)) {
175 case 0x00:
176 aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
177 break;
178
179 default:
180 aprint_normal(">1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
181 break;
182 }
183 #endif
184
185 /* Allocate one more host structure. */
186 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
187 if (hp == NULL) {
188 aprint_error_dev(sc->sc_dev,
189 "couldn't alloc memory (sdhc host)\n");
190 goto err1;
191 }
192 sc->sc_host[sc->sc_nhosts++] = hp;
193
194 /* Fill in the new host structure. */
195 hp->sc = sc;
196 hp->iot = iot;
197 hp->ioh = ioh;
198 hp->dmat = sc->sc_dmat;
199
200 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
201 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
202 cv_init(&hp->intr_cv, "sdhcintr");
203
204 /*
205 * Reset the host controller and enable interrupts.
206 */
207 (void)sdhc_host_reset(hp);
208
209 /* Determine host capabilities. */
210 mutex_enter(&hp->host_mtx);
211 caps = HREAD4(hp, SDHC_CAPABILITIES);
212 mutex_exit(&hp->host_mtx);
213
214 #if notyet
215 /* Use DMA if the host system and the controller support it. */
216 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
217 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
218 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
219 SET(hp->flags, SHF_USE_DMA);
220 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
221 }
222 #endif
223
224 /*
225 * Determine the base clock frequency. (2.2.24)
226 */
227 if (SDHC_BASE_FREQ_KHZ(caps) != 0)
228 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
229 if (hp->clkbase == 0) {
230 /* The attachment driver must tell us. */
231 aprint_error_dev(sc->sc_dev, "unknown base clock frequency\n");
232 goto err;
233 } else if (hp->clkbase < 10000 || hp->clkbase > 63000) {
234 /* SDHC 1.0 supports only 10-63 MHz. */
235 aprint_error_dev(sc->sc_dev,
236 "base clock frequency out of range: %u MHz\n",
237 hp->clkbase / 1000);
238 goto err;
239 }
240 DPRINTF(1,("%s: base clock frequency %u MHz\n",
241 device_xname(sc->sc_dev), hp->clkbase / 1000));
242
243 /*
244 * XXX Set the data timeout counter value according to
245 * capabilities. (2.2.15)
246 */
247 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
248
249 /*
250 * Determine SD bus voltage levels supported by the controller.
251 */
252 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
253 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
254 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
255 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
256 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
257 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
258
259 /*
260 * Determine the maximum block length supported by the host
261 * controller. (2.2.24)
262 */
263 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
264 case SDHC_MAX_BLK_LEN_512:
265 hp->maxblklen = 512;
266 break;
267
268 case SDHC_MAX_BLK_LEN_1024:
269 hp->maxblklen = 1024;
270 break;
271
272 case SDHC_MAX_BLK_LEN_2048:
273 hp->maxblklen = 2048;
274 break;
275
276 default:
277 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
278 goto err;
279 }
280 DPRINTF(1, ("%s: max block length %u byte%s\n",
281 device_xname(sc->sc_dev), hp->maxblklen,
282 hp->maxblklen > 1 ? "s" : ""));
283
284 /*
285 * Attach the generic SD/MMC bus driver. (The bus driver must
286 * not invoke any chipset functions before it is attached.)
287 */
288 memset(&saa, 0, sizeof(saa));
289 saa.saa_busname = "sdmmc";
290 saa.saa_sct = &sdhc_functions;
291 saa.saa_sch = hp;
292 saa.saa_dmat = hp->dmat;
293 saa.saa_clkmin = hp->clkbase / 256;
294 saa.saa_clkmax = hp->clkbase;
295 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
296 #if notyet
297 if (ISSET(hp->flags, SHF_USE_DMA))
298 saa.saa_caps |= SMC_CAPS_DMA;
299 #endif
300 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
301
302 return 0;
303
304 err:
305 cv_destroy(&hp->intr_cv);
306 mutex_destroy(&hp->intr_mtx);
307 mutex_destroy(&hp->host_mtx);
308 free(hp, M_DEVBUF);
309 sc->sc_host[--sc->sc_nhosts] = NULL;
310 err1:
311 return 1;
312 }
313
314 int
315 sdhc_detach(device_t dev, int flags)
316 {
317 struct sdhc_host *hp = (struct sdhc_host *)dev;
318 struct sdhc_softc *sc = hp->sc;
319 int rv = 0;
320
321 if (hp->sdmmc)
322 rv = config_detach(hp->sdmmc, flags);
323
324 cv_destroy(&hp->intr_cv);
325 mutex_destroy(&hp->intr_mtx);
326 mutex_destroy(&hp->host_mtx);
327 free(hp, M_DEVBUF);
328 sc->sc_host[--sc->sc_nhosts] = NULL;
329
330 return rv;
331 }
332
333 bool
334 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
335 {
336 struct sdhc_softc *sc = device_private(dev);
337 struct sdhc_host *hp;
338 int n, i;
339
340 /* XXX poll for command completion or suspend command
341 * in progress */
342
343 /* Save the host controller state. */
344 for (n = 0; n < sc->sc_nhosts; n++) {
345 hp = sc->sc_host[n];
346 for (i = 0; i < sizeof hp->regs; i++)
347 hp->regs[i] = HREAD1(hp, i);
348 }
349 return true;
350 }
351
352 bool
353 sdhc_resume(device_t dev, const pmf_qual_t *qual)
354 {
355 struct sdhc_softc *sc = device_private(dev);
356 struct sdhc_host *hp;
357 int n, i;
358
359 /* Restore the host controller state. */
360 for (n = 0; n < sc->sc_nhosts; n++) {
361 hp = sc->sc_host[n];
362 (void)sdhc_host_reset(hp);
363 for (i = 0; i < sizeof hp->regs; i++)
364 HWRITE1(hp, i, hp->regs[i]);
365 }
366 return true;
367 }
368
369 bool
370 sdhc_shutdown(device_t dev, int flags)
371 {
372 struct sdhc_softc *sc = device_private(dev);
373 struct sdhc_host *hp;
374 int i;
375
376 /* XXX chip locks up if we don't disable it before reboot. */
377 for (i = 0; i < sc->sc_nhosts; i++) {
378 hp = sc->sc_host[i];
379 (void)sdhc_host_reset(hp);
380 }
381 return true;
382 }
383
384 /*
385 * Reset the host controller. Called during initialization, when
386 * cards are removed, upon resume, and during error recovery.
387 */
388 static int
389 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
390 {
391 struct sdhc_host *hp = (struct sdhc_host *)sch;
392 uint16_t sdhcimask;
393 int error;
394
395 /* Don't lock. */
396
397 /* Disable all interrupts. */
398 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
399
400 /*
401 * Reset the entire host controller and wait up to 100ms for
402 * the controller to clear the reset bit.
403 */
404 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
405 if (error)
406 goto out;
407
408 /* Set data timeout counter value to max for now. */
409 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
410
411 /* Enable interrupts. */
412 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
413 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
414 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
415 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
416 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
417 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
418 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
419 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
420
421 out:
422 return error;
423 }
424
425 static int
426 sdhc_host_reset(sdmmc_chipset_handle_t sch)
427 {
428 struct sdhc_host *hp = (struct sdhc_host *)sch;
429 int error;
430
431 mutex_enter(&hp->host_mtx);
432 error = sdhc_host_reset1(sch);
433 mutex_exit(&hp->host_mtx);
434
435 return error;
436 }
437
438 static uint32_t
439 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
440 {
441 struct sdhc_host *hp = (struct sdhc_host *)sch;
442
443 return hp->ocr;
444 }
445
446 static int
447 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
448 {
449 struct sdhc_host *hp = (struct sdhc_host *)sch;
450
451 return hp->maxblklen;
452 }
453
454 /*
455 * Return non-zero if the card is currently inserted.
456 */
457 static int
458 sdhc_card_detect(sdmmc_chipset_handle_t sch)
459 {
460 struct sdhc_host *hp = (struct sdhc_host *)sch;
461 int r;
462
463 mutex_enter(&hp->host_mtx);
464 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
465 mutex_exit(&hp->host_mtx);
466
467 if (r)
468 return 1;
469 return 0;
470 }
471
472 /*
473 * Return non-zero if the card is currently write-protected.
474 */
475 static int
476 sdhc_write_protect(sdmmc_chipset_handle_t sch)
477 {
478 struct sdhc_host *hp = (struct sdhc_host *)sch;
479 int r;
480
481 mutex_enter(&hp->host_mtx);
482 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
483 mutex_exit(&hp->host_mtx);
484
485 if (!r)
486 return 1;
487 return 0;
488 }
489
490 /*
491 * Set or change SD bus voltage and enable or disable SD bus power.
492 * Return zero on success.
493 */
494 static int
495 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
496 {
497 struct sdhc_host *hp = (struct sdhc_host *)sch;
498 uint8_t vdd;
499 int error = 0;
500
501 mutex_enter(&hp->host_mtx);
502
503 /*
504 * Disable bus power before voltage change.
505 */
506 if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
507 HWRITE1(hp, SDHC_POWER_CTL, 0);
508
509 /* If power is disabled, reset the host and return now. */
510 if (ocr == 0) {
511 (void)sdhc_host_reset1(hp);
512 goto out;
513 }
514
515 /*
516 * Select the lowest voltage according to capabilities.
517 */
518 ocr &= hp->ocr;
519 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
520 vdd = SDHC_VOLTAGE_1_8V;
521 else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
522 vdd = SDHC_VOLTAGE_3_0V;
523 else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
524 vdd = SDHC_VOLTAGE_3_3V;
525 else {
526 /* Unsupported voltage level requested. */
527 error = EINVAL;
528 goto out;
529 }
530
531 /*
532 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
533 * voltage ramp until power rises.
534 */
535 HWRITE1(hp, SDHC_POWER_CTL,
536 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
537 sdmmc_delay(10000);
538
539 /*
540 * The host system may not power the bus due to battery low,
541 * etc. In that case, the host controller should clear the
542 * bus power bit.
543 */
544 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
545 error = ENXIO;
546 goto out;
547 }
548
549 out:
550 mutex_exit(&hp->host_mtx);
551
552 return error;
553 }
554
555 /*
556 * Return the smallest possible base clock frequency divisor value
557 * for the CLOCK_CTL register to produce `freq' (KHz).
558 */
559 static int
560 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
561 {
562 int div;
563
564 for (div = 1; div <= 256; div *= 2)
565 if ((hp->clkbase / div) <= freq)
566 return (div / 2);
567 /* No divisor found. */
568 return -1;
569 }
570
571 /*
572 * Set or change SDCLK frequency or disable the SD clock.
573 * Return zero on success.
574 */
575 static int
576 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
577 {
578 struct sdhc_host *hp = (struct sdhc_host *)sch;
579 int div;
580 int timo;
581 int error = 0;
582 #ifdef DIAGNOSTIC
583 int ispresent;
584 #endif
585
586 #ifdef DIAGNOSTIC
587 mutex_enter(&hp->host_mtx);
588 ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
589 mutex_exit(&hp->host_mtx);
590
591 /* Must not stop the clock if commands are in progress. */
592 if (ispresent && sdhc_card_detect(hp))
593 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
594 device_xname(hp->sc->sc_dev));
595 #endif
596
597 mutex_enter(&hp->host_mtx);
598
599 /*
600 * Stop SD clock before changing the frequency.
601 */
602 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
603 if (freq == SDMMC_SDCLK_OFF)
604 goto out;
605
606 /*
607 * Set the minimum base clock frequency divisor.
608 */
609 if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
610 /* Invalid base clock frequency or `freq' value. */
611 error = EINVAL;
612 goto out;
613 }
614 HWRITE2(hp, SDHC_CLOCK_CTL, div << SDHC_SDCLK_DIV_SHIFT);
615
616 /*
617 * Start internal clock. Wait 10ms for stabilization.
618 */
619 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
620 for (timo = 1000; timo > 0; timo--) {
621 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
622 break;
623 sdmmc_delay(10);
624 }
625 if (timo == 0) {
626 error = ETIMEDOUT;
627 goto out;
628 }
629
630 /*
631 * Enable SD clock.
632 */
633 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
634
635 if (freq > 25000)
636 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
637 else
638 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
639
640 out:
641 mutex_exit(&hp->host_mtx);
642
643 return error;
644 }
645
646 static int
647 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
648 {
649 struct sdhc_host *hp = (struct sdhc_host *)sch;
650 int reg;
651
652 switch (width) {
653 case 1:
654 case 4:
655 break;
656
657 default:
658 DPRINTF(0,("%s: unsupported bus width (%d)\n",
659 HDEVNAME(hp), width));
660 return 1;
661 }
662
663 mutex_enter(&hp->host_mtx);
664 reg = HREAD1(hp, SDHC_HOST_CTL);
665 reg &= ~SDHC_4BIT_MODE;
666 if (width == 4)
667 reg |= SDHC_4BIT_MODE;
668 HWRITE1(hp, SDHC_HOST_CTL, reg);
669 mutex_exit(&hp->host_mtx);
670
671 return 0;
672 }
673
674 static int
675 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
676 {
677
678 /* Nothing ?? */
679 return 0;
680 }
681
682 static void
683 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
684 {
685 struct sdhc_host *hp = (struct sdhc_host *)sch;
686
687 mutex_enter(&hp->host_mtx);
688 if (enable) {
689 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
690 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
691 } else {
692 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
693 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
694 }
695 mutex_exit(&hp->host_mtx);
696 }
697
698 static void
699 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
700 {
701 struct sdhc_host *hp = (struct sdhc_host *)sch;
702
703 mutex_enter(&hp->host_mtx);
704 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
705 mutex_exit(&hp->host_mtx);
706 }
707
708 static int
709 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
710 {
711 uint32_t state;
712 int timeout;
713
714 for (timeout = 10; timeout > 0; timeout--) {
715 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
716 return 0;
717 sdmmc_delay(10000);
718 }
719 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
720 value, state));
721 return ETIMEDOUT;
722 }
723
724 static void
725 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
726 {
727 struct sdhc_host *hp = (struct sdhc_host *)sch;
728 int error;
729
730 /*
731 * Start the MMC command, or mark `cmd' as failed and return.
732 */
733 error = sdhc_start_command(hp, cmd);
734 if (error) {
735 cmd->c_error = error;
736 goto out;
737 }
738
739 /*
740 * Wait until the command phase is done, or until the command
741 * is marked done for any other reason.
742 */
743 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
744 cmd->c_error = ETIMEDOUT;
745 goto out;
746 }
747
748 /*
749 * The host controller removes bits [0:7] from the response
750 * data (CRC) and we pass the data up unchanged to the bus
751 * driver (without padding).
752 */
753 mutex_enter(&hp->host_mtx);
754 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
755 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
756 uint8_t *p = (uint8_t *)cmd->c_resp;
757 int i;
758
759 for (i = 0; i < 15; i++)
760 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
761 } else {
762 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
763 }
764 }
765 mutex_exit(&hp->host_mtx);
766 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
767
768 /*
769 * If the command has data to transfer in any direction,
770 * execute the transfer now.
771 */
772 if (cmd->c_error == 0 && cmd->c_data != NULL)
773 sdhc_transfer_data(hp, cmd);
774
775 out:
776 mutex_enter(&hp->host_mtx);
777 /* Turn off the LED. */
778 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
779 mutex_exit(&hp->host_mtx);
780 SET(cmd->c_flags, SCF_ITSDONE);
781
782 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
783 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
784 cmd->c_flags, cmd->c_error));
785 }
786
787 static int
788 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
789 {
790 uint16_t blksize = 0;
791 uint16_t blkcount = 0;
792 uint16_t mode;
793 uint16_t command;
794 int error;
795
796 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
797 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
798 cmd->c_datalen, cmd->c_flags));
799
800 /*
801 * The maximum block length for commands should be the minimum
802 * of the host buffer size and the card buffer size. (1.7.2)
803 */
804
805 /* Fragment the data into proper blocks. */
806 if (cmd->c_datalen > 0) {
807 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
808 blkcount = cmd->c_datalen / blksize;
809 if (cmd->c_datalen % blksize > 0) {
810 /* XXX: Split this command. (1.7.4) */
811 aprint_error_dev(hp->sc->sc_dev,
812 "data not a multiple of %u bytes\n", blksize);
813 return EINVAL;
814 }
815 }
816
817 /* Check limit imposed by 9-bit block count. (1.7.2) */
818 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
819 aprint_error_dev(hp->sc->sc_dev, "too much data\n");
820 return EINVAL;
821 }
822
823 /* Prepare transfer mode register value. (2.2.5) */
824 mode = 0;
825 if (ISSET(cmd->c_flags, SCF_CMD_READ))
826 mode |= SDHC_READ_MODE;
827 if (blkcount > 0) {
828 mode |= SDHC_BLOCK_COUNT_ENABLE;
829 if (blkcount > 1) {
830 mode |= SDHC_MULTI_BLOCK_MODE;
831 /* XXX only for memory commands? */
832 mode |= SDHC_AUTO_CMD12_ENABLE;
833 }
834 }
835 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
836 if (cmd->c_dmamap->dm_nsegs == 1) {
837 mode |= SDHC_DMA_ENABLE;
838 } else {
839 cmd->c_dmamap = NULL;
840 }
841 }
842
843 /*
844 * Prepare command register value. (2.2.6)
845 */
846 command =
847 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
848
849 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
850 command |= SDHC_CRC_CHECK_ENABLE;
851 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
852 command |= SDHC_INDEX_CHECK_ENABLE;
853 if (cmd->c_data != NULL)
854 command |= SDHC_DATA_PRESENT_SELECT;
855
856 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
857 command |= SDHC_NO_RESPONSE;
858 else if (ISSET(cmd->c_flags, SCF_RSP_136))
859 command |= SDHC_RESP_LEN_136;
860 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
861 command |= SDHC_RESP_LEN_48_CHK_BUSY;
862 else
863 command |= SDHC_RESP_LEN_48;
864
865 /* Wait until command and data inhibit bits are clear. (1.5) */
866 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
867 if (error)
868 return error;
869
870 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
871 HDEVNAME(hp), blksize, blkcount, mode, command));
872
873 mutex_enter(&hp->host_mtx);
874
875 /* Alert the user not to remove the card. */
876 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
877
878 /* Set DMA start address. */
879 if (ISSET(mode, SDHC_DMA_ENABLE))
880 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
881
882 /*
883 * Start a CPU data transfer. Writing to the high order byte
884 * of the SDHC_COMMAND register triggers the SD command. (1.5)
885 */
886 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
887 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
888 if (blkcount > 1)
889 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
890 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
891 HWRITE2(hp, SDHC_COMMAND, command);
892
893 mutex_exit(&hp->host_mtx);
894
895 return 0;
896 }
897
898 static void
899 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
900 {
901 int error;
902
903 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
904 MMC_R1(cmd->c_resp), cmd->c_datalen));
905
906 #ifdef SDHC_DEBUG
907 /* XXX I forgot why I wanted to know when this happens :-( */
908 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
909 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
910 aprint_error_dev(hp->sc->sc_dev,
911 "CMD52/53 error response flags %#x\n",
912 MMC_R1(cmd->c_resp) & 0xff00);
913 }
914 #endif
915
916 if (cmd->c_dmamap != NULL)
917 error = sdhc_transfer_data_dma(hp, cmd);
918 else
919 error = sdhc_transfer_data_pio(hp, cmd);
920 if (error)
921 cmd->c_error = error;
922 SET(cmd->c_flags, SCF_ITSDONE);
923
924 DPRINTF(1,("%s: data transfer done (error=%d)\n",
925 HDEVNAME(hp), cmd->c_error));
926 }
927
928 static int
929 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
930 {
931 bus_dmamap_t dmap = cmd->c_dmamap;
932 uint16_t blklen = cmd->c_blklen;
933 uint16_t blkcnt = cmd->c_datalen / blklen;
934 uint16_t remain;
935 int error = 0;
936
937 for (;;) {
938 if (!sdhc_wait_intr(hp,
939 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
940 SDHC_DMA_TIMEOUT)) {
941 error = ETIMEDOUT;
942 break;
943 }
944
945 /* single block mode */
946 if (blkcnt == 1)
947 break;
948
949 /* multi block mode */
950 remain = HREAD2(hp, SDHC_BLOCK_COUNT);
951 if (remain == 0)
952 break;
953
954 HWRITE4(hp, SDHC_DMA_ADDR,
955 dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
956 }
957
958 #if 0
959 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
960 SDHC_TRANSFER_TIMEOUT))
961 error = ETIMEDOUT;
962 #endif
963
964 return error;
965 }
966
967 static int
968 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
969 {
970 uint8_t *data = cmd->c_data;
971 int len, datalen;
972 int mask;
973 int error = 0;
974
975 mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
976 SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
977 datalen = cmd->c_datalen;
978
979 while (datalen > 0) {
980 if (!sdhc_wait_intr(hp,
981 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
982 SDHC_BUFFER_TIMEOUT)) {
983 error = ETIMEDOUT;
984 break;
985 }
986
987 error = sdhc_wait_state(hp, mask, mask);
988 if (error)
989 break;
990
991 len = MIN(datalen, cmd->c_blklen);
992 if (ISSET(cmd->c_flags, SCF_CMD_READ))
993 sdhc_read_data_pio(hp, data, len);
994 else
995 sdhc_write_data_pio(hp, data, len);
996
997 data += len;
998 datalen -= len;
999 }
1000
1001 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1002 SDHC_TRANSFER_TIMEOUT))
1003 error = ETIMEDOUT;
1004
1005 return error;
1006 }
1007
1008 static void
1009 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1010 {
1011
1012 if (((__uintptr_t)data & 3) == 0) {
1013 while (datalen > 3) {
1014 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1015 data += 4;
1016 datalen -= 4;
1017 }
1018 if (datalen > 1) {
1019 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1020 data += 2;
1021 datalen -= 2;
1022 }
1023 if (datalen > 0) {
1024 *data = HREAD1(hp, SDHC_DATA);
1025 data += 1;
1026 datalen -= 1;
1027 }
1028 } else if (((__uintptr_t)data & 1) == 0) {
1029 while (datalen > 1) {
1030 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1031 data += 2;
1032 datalen -= 2;
1033 }
1034 if (datalen > 0) {
1035 *data = HREAD1(hp, SDHC_DATA);
1036 data += 1;
1037 datalen -= 1;
1038 }
1039 } else {
1040 while (datalen > 0) {
1041 *data = HREAD1(hp, SDHC_DATA);
1042 data += 1;
1043 datalen -= 1;
1044 }
1045 }
1046 }
1047
1048 static void
1049 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1050 {
1051
1052 if (((__uintptr_t)data & 3) == 0) {
1053 while (datalen > 3) {
1054 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1055 data += 4;
1056 datalen -= 4;
1057 }
1058 if (datalen > 1) {
1059 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1060 data += 2;
1061 datalen -= 2;
1062 }
1063 if (datalen > 0) {
1064 HWRITE1(hp, SDHC_DATA, *data);
1065 data += 1;
1066 datalen -= 1;
1067 }
1068 } else if (((__uintptr_t)data & 1) == 0) {
1069 while (datalen > 1) {
1070 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1071 data += 2;
1072 datalen -= 2;
1073 }
1074 if (datalen > 0) {
1075 HWRITE1(hp, SDHC_DATA, *data);
1076 data += 1;
1077 datalen -= 1;
1078 }
1079 } else {
1080 while (datalen > 0) {
1081 HWRITE1(hp, SDHC_DATA, *data);
1082 data += 1;
1083 datalen -= 1;
1084 }
1085 }
1086 }
1087
1088 /* Prepare for another command. */
1089 static int
1090 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1091 {
1092 int timo;
1093
1094 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1095
1096 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1097 for (timo = 10; timo > 0; timo--) {
1098 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1099 break;
1100 sdmmc_delay(10000);
1101 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1102 }
1103 if (timo == 0) {
1104 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1105 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1106 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1107 return ETIMEDOUT;
1108 }
1109
1110 return 0;
1111 }
1112
1113 static int
1114 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1115 {
1116 int status;
1117
1118 mask |= SDHC_ERROR_INTERRUPT;
1119
1120 mutex_enter(&hp->intr_mtx);
1121 status = hp->intr_status & mask;
1122 while (status == 0) {
1123 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1124 == EWOULDBLOCK) {
1125 status |= SDHC_ERROR_INTERRUPT;
1126 break;
1127 }
1128 status = hp->intr_status & mask;
1129 }
1130 hp->intr_status &= ~status;
1131
1132 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1133 hp->intr_error_status));
1134
1135 /* Command timeout has higher priority than command complete. */
1136 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1137 hp->intr_error_status = 0;
1138 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1139 status = 0;
1140 }
1141 mutex_exit(&hp->intr_mtx);
1142
1143 return status;
1144 }
1145
1146 /*
1147 * Established by attachment driver at interrupt priority IPL_SDMMC.
1148 */
1149 int
1150 sdhc_intr(void *arg)
1151 {
1152 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1153 struct sdhc_host *hp;
1154 int host;
1155 int done = 0;
1156 uint16_t status;
1157 uint16_t error;
1158
1159 /* We got an interrupt, but we don't know from which slot. */
1160 for (host = 0; host < sc->sc_nhosts; host++) {
1161 hp = sc->sc_host[host];
1162 if (hp == NULL)
1163 continue;
1164
1165 /* Find out which interrupts are pending. */
1166 status = HREAD2(hp, SDHC_NINTR_STATUS);
1167 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1168 continue; /* no interrupt for us */
1169
1170 /* Acknowledge the interrupts we are about to handle. */
1171 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1172 DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1173 status));
1174
1175 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1176 continue;
1177
1178 /* Claim this interrupt. */
1179 done = 1;
1180
1181 /*
1182 * Service error interrupts.
1183 */
1184 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1185 /* Acknowledge error interrupts. */
1186 error = HREAD2(hp, SDHC_EINTR_STATUS);
1187 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1188 DPRINTF(2,("%s: error interrupt, status=%x\n",
1189 HDEVNAME(hp), error));
1190
1191 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1192 SDHC_DATA_TIMEOUT_ERROR)) {
1193 hp->intr_error_status |= error;
1194 hp->intr_status |= status;
1195 cv_broadcast(&hp->intr_cv);
1196 }
1197 }
1198
1199 /*
1200 * Wake up the sdmmc event thread to scan for cards.
1201 */
1202 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1203 sdmmc_needs_discover(hp->sdmmc);
1204
1205 /*
1206 * Wake up the blocking process to service command
1207 * related interrupt(s).
1208 */
1209 if (ISSET(status, SDHC_BUFFER_READ_READY|
1210 SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1211 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1212 hp->intr_status |= status;
1213 cv_broadcast(&hp->intr_cv);
1214 }
1215
1216 /*
1217 * Service SD card interrupts.
1218 */
1219 if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1220 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1221 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1222 sdmmc_card_intr(hp->sdmmc);
1223 }
1224 }
1225
1226 return done;
1227 }
1228
1229 #ifdef SDHC_DEBUG
1230 void
1231 sdhc_dump_regs(struct sdhc_host *hp)
1232 {
1233
1234 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1235 HREAD4(hp, SDHC_PRESENT_STATE));
1236 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1237 HREAD1(hp, SDHC_POWER_CTL));
1238 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1239 HREAD2(hp, SDHC_NINTR_STATUS));
1240 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1241 HREAD2(hp, SDHC_EINTR_STATUS));
1242 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1243 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1244 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1245 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1246 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1247 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1248 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1249 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1250 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1251 HREAD4(hp, SDHC_CAPABILITIES));
1252 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1253 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1254 }
1255 #endif
1256