sdhc.c revision 1.82 1 /* $NetBSD: sdhc.c,v 1.82 2015/08/09 13:24:39 mlelstv Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.82 2015/08/09 13:24:39 mlelstv Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39 #include <sys/atomic.h>
40
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s) do {} while (0)
53 #endif
54
55 #define SDHC_COMMAND_TIMEOUT hz
56 #define SDHC_BUFFER_TIMEOUT hz
57 #define SDHC_TRANSFER_TIMEOUT hz
58 #define SDHC_DMA_TIMEOUT (hz*3)
59 #define SDHC_TUNING_TIMEOUT hz
60
61 struct sdhc_host {
62 struct sdhc_softc *sc; /* host controller device */
63
64 bus_space_tag_t iot; /* host register set tag */
65 bus_space_handle_t ioh; /* host register set handle */
66 bus_size_t ios; /* host register space size */
67 bus_dma_tag_t dmat; /* host DMA tag */
68
69 device_t sdmmc; /* generic SD/MMC device */
70
71 u_int clkbase; /* base clock frequency in KHz */
72 int maxblklen; /* maximum block length */
73 uint32_t ocr; /* OCR value from capabilities */
74
75 uint8_t regs[14]; /* host controller state */
76
77 uint16_t intr_status; /* soft interrupt status */
78 uint16_t intr_error_status; /* soft error status */
79 kmutex_t intr_lock;
80 kcondvar_t intr_cv;
81
82 callout_t tuning_timer;
83 int tuning_timing;
84 u_int tuning_timer_count;
85 u_int tuning_timer_pending;
86
87 int specver; /* spec. version */
88
89 uint32_t flags; /* flags for this host */
90 #define SHF_USE_DMA 0x0001
91 #define SHF_USE_4BIT_MODE 0x0002
92 #define SHF_USE_8BIT_MODE 0x0004
93 #define SHF_MODE_DMAEN 0x0008 /* needs SDHC_DMA_ENABLE in mode */
94 #define SHF_USE_ADMA2_32 0x0010
95 #define SHF_USE_ADMA2_64 0x0020
96 #define SHF_USE_ADMA2_MASK 0x0030
97
98 bus_dmamap_t adma_map;
99 bus_dma_segment_t adma_segs[1];
100 void *adma2;
101 };
102
103 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
104
105 static uint8_t
106 hread1(struct sdhc_host *hp, bus_size_t reg)
107 {
108
109 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
110 return bus_space_read_1(hp->iot, hp->ioh, reg);
111 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
112 }
113
114 static uint16_t
115 hread2(struct sdhc_host *hp, bus_size_t reg)
116 {
117
118 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
119 return bus_space_read_2(hp->iot, hp->ioh, reg);
120 return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
121 }
122
123 #define HREAD1(hp, reg) hread1(hp, reg)
124 #define HREAD2(hp, reg) hread2(hp, reg)
125 #define HREAD4(hp, reg) \
126 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
127
128
129 static void
130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
131 {
132
133 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
134 bus_space_write_1(hp->iot, hp->ioh, o, val);
135 } else {
136 const size_t shift = 8 * (o & 3);
137 o &= -4;
138 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
139 tmp = (val << shift) | (tmp & ~(0xff << shift));
140 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
141 }
142 }
143
144 static void
145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
146 {
147
148 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
149 bus_space_write_2(hp->iot, hp->ioh, o, val);
150 } else {
151 const size_t shift = 8 * (o & 2);
152 o &= -4;
153 uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
154 tmp = (val << shift) | (tmp & ~(0xffff << shift));
155 bus_space_write_4(hp->iot, hp->ioh, o, tmp);
156 }
157 }
158
159 #define HWRITE1(hp, reg, val) hwrite1(hp, reg, val)
160 #define HWRITE2(hp, reg, val) hwrite2(hp, reg, val)
161 #define HWRITE4(hp, reg, val) \
162 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
163
164 #define HCLR1(hp, reg, bits) \
165 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
166 #define HCLR2(hp, reg, bits) \
167 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
168 #define HCLR4(hp, reg, bits) \
169 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
170 #define HSET1(hp, reg, bits) \
171 do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
172 #define HSET2(hp, reg, bits) \
173 do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
174 #define HSET4(hp, reg, bits) \
175 do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
176
177 static int sdhc_host_reset(sdmmc_chipset_handle_t);
178 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
179 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
180 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
181 static int sdhc_card_detect(sdmmc_chipset_handle_t);
182 static int sdhc_write_protect(sdmmc_chipset_handle_t);
183 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
184 static int sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
185 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
186 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
187 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
188 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
189 static void sdhc_exec_command(sdmmc_chipset_handle_t,
190 struct sdmmc_command *);
191 static int sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
192 static int sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
193 static void sdhc_tuning_timer(void *);
194 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
195 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
196 static int sdhc_soft_reset(struct sdhc_host *, int);
197 static int sdhc_wait_intr(struct sdhc_host *, int, int);
198 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
199 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
200 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
201 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
202 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
203 static void esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
204 static void esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
205
206 static struct sdmmc_chip_functions sdhc_functions = {
207 /* host controller reset */
208 .host_reset = sdhc_host_reset,
209
210 /* host controller capabilities */
211 .host_ocr = sdhc_host_ocr,
212 .host_maxblklen = sdhc_host_maxblklen,
213
214 /* card detection */
215 .card_detect = sdhc_card_detect,
216
217 /* write protect */
218 .write_protect = sdhc_write_protect,
219
220 /* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
221 .bus_power = sdhc_bus_power,
222 .bus_clock = NULL, /* see sdhc_bus_clock_ddr */
223 .bus_width = sdhc_bus_width,
224 .bus_rod = sdhc_bus_rod,
225
226 /* command execution */
227 .exec_command = sdhc_exec_command,
228
229 /* card interrupt */
230 .card_enable_intr = sdhc_card_enable_intr,
231 .card_intr_ack = sdhc_card_intr_ack,
232
233 /* UHS functions */
234 .signal_voltage = sdhc_signal_voltage,
235 .bus_clock_ddr = sdhc_bus_clock_ddr,
236 .execute_tuning = sdhc_execute_tuning,
237 };
238
239 static int
240 sdhc_cfprint(void *aux, const char *pnp)
241 {
242 const struct sdmmcbus_attach_args * const saa = aux;
243 const struct sdhc_host * const hp = saa->saa_sch;
244
245 if (pnp) {
246 aprint_normal("sdmmc at %s", pnp);
247 }
248 for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
249 if (hp->sc->sc_host[host] == hp) {
250 aprint_normal(" slot %zu", host);
251 }
252 }
253
254 return UNCONF;
255 }
256
257 /*
258 * Called by attachment driver. For each SD card slot there is one SD
259 * host controller standard register set. (1.3)
260 */
261 int
262 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
263 bus_space_handle_t ioh, bus_size_t iosize)
264 {
265 struct sdmmcbus_attach_args saa;
266 struct sdhc_host *hp;
267 uint32_t caps, caps2;
268 uint16_t sdhcver;
269 int error;
270
271 /* Allocate one more host structure. */
272 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
273 if (hp == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "couldn't alloc memory (sdhc host)\n");
276 goto err1;
277 }
278 sc->sc_host[sc->sc_nhosts++] = hp;
279
280 /* Fill in the new host structure. */
281 hp->sc = sc;
282 hp->iot = iot;
283 hp->ioh = ioh;
284 hp->ios = iosize;
285 hp->dmat = sc->sc_dmat;
286
287 mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
288 cv_init(&hp->intr_cv, "sdhcintr");
289 callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
290 callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
291
292 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
293 sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
294 } else {
295 sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
296 }
297 aprint_normal_dev(sc->sc_dev, "SDHC ");
298 hp->specver = SDHC_SPEC_VERSION(sdhcver);
299 switch (SDHC_SPEC_VERSION(sdhcver)) {
300 case SDHC_SPEC_VERS_100:
301 aprint_normal("1.0");
302 break;
303
304 case SDHC_SPEC_VERS_200:
305 aprint_normal("2.0");
306 break;
307
308 case SDHC_SPEC_VERS_300:
309 aprint_normal("3.0");
310 break;
311
312 case SDHC_SPEC_VERS_400:
313 aprint_normal("4.0");
314 break;
315
316 default:
317 aprint_normal("unknown version(0x%x)",
318 SDHC_SPEC_VERSION(sdhcver));
319 break;
320 }
321 aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
322
323 /*
324 * Reset the host controller and enable interrupts.
325 */
326 (void)sdhc_host_reset(hp);
327
328 /* Determine host capabilities. */
329 if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
330 caps = sc->sc_caps;
331 caps2 = sc->sc_caps2;
332 } else {
333 caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
334 if (hp->specver >= SDHC_SPEC_VERS_300) {
335 caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
336 } else {
337 caps2 = sc->sc_caps2 = 0;
338 }
339 }
340
341 const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
342 SDHC_RETUNING_MODES_MASK;
343 if (retuning_mode == SDHC_RETUNING_MODE_1) {
344 hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
345 SDHC_TIMER_COUNT_MASK;
346 if (hp->tuning_timer_count == 0xf)
347 hp->tuning_timer_count = 0;
348 if (hp->tuning_timer_count)
349 hp->tuning_timer_count =
350 1 << (hp->tuning_timer_count - 1);
351 }
352
353 /*
354 * Use DMA if the host system and the controller support it.
355 * Suports integrated or external DMA egine, with or without
356 * SDHC_DMA_ENABLE in the command.
357 */
358 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
359 (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
360 ISSET(caps, SDHC_DMA_SUPPORT)))) {
361 SET(hp->flags, SHF_USE_DMA);
362
363 if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
364 ISSET(caps, SDHC_ADMA2_SUPP)) {
365 SET(hp->flags, SHF_MODE_DMAEN);
366 /*
367 * 64-bit mode was present in the 2.00 spec, removed
368 * from 3.00, and re-added in 4.00 with a different
369 * descriptor layout. We only support 2.00 and 3.00
370 * descriptors for now.
371 */
372 if (hp->specver == SDHC_SPEC_VERS_200 &&
373 ISSET(caps, SDHC_64BIT_SYS_BUS)) {
374 SET(hp->flags, SHF_USE_ADMA2_64);
375 aprint_normal(", 64-bit ADMA2");
376 } else {
377 SET(hp->flags, SHF_USE_ADMA2_32);
378 aprint_normal(", 32-bit ADMA2");
379 }
380 } else {
381 if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
382 ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
383 SET(hp->flags, SHF_MODE_DMAEN);
384 if (sc->sc_vendor_transfer_data_dma) {
385 aprint_normal(", platform DMA");
386 } else {
387 aprint_normal(", SDMA");
388 }
389 }
390 } else {
391 aprint_normal(", PIO");
392 }
393
394 /*
395 * Determine the base clock frequency. (2.2.24)
396 */
397 if (hp->specver >= SDHC_SPEC_VERS_300) {
398 hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
399 } else {
400 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
401 }
402 if (hp->clkbase == 0 ||
403 ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
404 if (sc->sc_clkbase == 0) {
405 /* The attachment driver must tell us. */
406 aprint_error_dev(sc->sc_dev,
407 "unknown base clock frequency\n");
408 goto err;
409 }
410 hp->clkbase = sc->sc_clkbase;
411 }
412 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
413 /* SDHC 1.0 supports only 10-63 MHz. */
414 aprint_error_dev(sc->sc_dev,
415 "base clock frequency out of range: %u MHz\n",
416 hp->clkbase / 1000);
417 goto err;
418 }
419 aprint_normal(", %u kHz", hp->clkbase);
420
421 /*
422 * XXX Set the data timeout counter value according to
423 * capabilities. (2.2.15)
424 */
425 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
426 #if 1
427 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
428 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
429 #endif
430
431 if (ISSET(caps, SDHC_EMBEDDED_SLOT))
432 aprint_normal(", embedded slot");
433
434 /*
435 * Determine SD bus voltage levels supported by the controller.
436 */
437 aprint_normal(",");
438 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
439 SET(hp->ocr, MMC_OCR_HCS);
440 aprint_normal(" HS");
441 }
442 if (ISSET(caps2, SDHC_SDR50_SUPP)) {
443 SET(hp->ocr, MMC_OCR_S18A);
444 aprint_normal(" SDR50");
445 }
446 if (ISSET(caps2, SDHC_DDR50_SUPP)) {
447 SET(hp->ocr, MMC_OCR_S18A);
448 aprint_normal(" DDR50");
449 }
450 if (ISSET(caps2, SDHC_SDR104_SUPP)) {
451 SET(hp->ocr, MMC_OCR_S18A);
452 aprint_normal(" SDR104 HS200");
453 }
454 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
455 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
456 aprint_normal(" 1.8V");
457 }
458 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
459 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
460 aprint_normal(" 3.0V");
461 }
462 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
463 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
464 aprint_normal(" 3.3V");
465 }
466 if (hp->specver >= SDHC_SPEC_VERS_300) {
467 aprint_normal(", re-tuning mode %d", retuning_mode + 1);
468 if (hp->tuning_timer_count)
469 aprint_normal(" (%us timer)", hp->tuning_timer_count);
470 }
471
472 /*
473 * Determine the maximum block length supported by the host
474 * controller. (2.2.24)
475 */
476 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
477 case SDHC_MAX_BLK_LEN_512:
478 hp->maxblklen = 512;
479 break;
480
481 case SDHC_MAX_BLK_LEN_1024:
482 hp->maxblklen = 1024;
483 break;
484
485 case SDHC_MAX_BLK_LEN_2048:
486 hp->maxblklen = 2048;
487 break;
488
489 case SDHC_MAX_BLK_LEN_4096:
490 hp->maxblklen = 4096;
491 break;
492
493 default:
494 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
495 goto err;
496 }
497 aprint_normal(", %u byte blocks", hp->maxblklen);
498 aprint_normal("\n");
499
500 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
501 int rseg;
502
503 /* Allocate ADMA2 descriptor memory */
504 error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
505 PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
506 if (error) {
507 aprint_error_dev(sc->sc_dev,
508 "ADMA2 dmamem_alloc failed (%d)\n", error);
509 goto adma_done;
510 }
511 error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
512 PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
513 if (error) {
514 aprint_error_dev(sc->sc_dev,
515 "ADMA2 dmamem_map failed (%d)\n", error);
516 goto adma_done;
517 }
518 error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
519 0, BUS_DMA_WAITOK, &hp->adma_map);
520 if (error) {
521 aprint_error_dev(sc->sc_dev,
522 "ADMA2 dmamap_create failed (%d)\n", error);
523 goto adma_done;
524 }
525 error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
526 hp->adma2, PAGE_SIZE, NULL,
527 BUS_DMA_WAITOK|BUS_DMA_WRITE);
528 if (error) {
529 aprint_error_dev(sc->sc_dev,
530 "ADMA2 dmamap_load failed (%d)\n", error);
531 goto adma_done;
532 }
533
534 memset(hp->adma2, 0, PAGE_SIZE);
535
536 adma_done:
537 if (error)
538 CLR(hp->flags, SHF_USE_ADMA2_MASK);
539 }
540
541 /*
542 * Attach the generic SD/MMC bus driver. (The bus driver must
543 * not invoke any chipset functions before it is attached.)
544 */
545 memset(&saa, 0, sizeof(saa));
546 saa.saa_busname = "sdmmc";
547 saa.saa_sct = &sdhc_functions;
548 saa.saa_sch = hp;
549 saa.saa_dmat = hp->dmat;
550 saa.saa_clkmax = hp->clkbase;
551 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
552 saa.saa_clkmin = hp->clkbase / 256 / 2046;
553 else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
554 saa.saa_clkmin = hp->clkbase / 256 / 16;
555 else if (hp->sc->sc_clkmsk != 0)
556 saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
557 (ffs(hp->sc->sc_clkmsk) - 1));
558 else if (hp->specver >= SDHC_SPEC_VERS_300)
559 saa.saa_clkmin = hp->clkbase / 0x3ff;
560 else
561 saa.saa_clkmin = hp->clkbase / 256;
562 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
563 if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
564 saa.saa_caps |= SMC_CAPS_8BIT_MODE;
565 if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
566 saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
567 if (ISSET(caps2, SDHC_SDR104_SUPP))
568 saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
569 SMC_CAPS_UHS_SDR50 |
570 SMC_CAPS_MMC_HS200;
571 if (ISSET(caps2, SDHC_SDR50_SUPP))
572 saa.saa_caps |= SMC_CAPS_UHS_SDR50;
573 if (ISSET(caps2, SDHC_DDR50_SUPP))
574 saa.saa_caps |= SMC_CAPS_UHS_DDR50;
575 if (ISSET(hp->flags, SHF_USE_DMA)) {
576 saa.saa_caps |= SMC_CAPS_DMA;
577 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
578 saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
579 }
580 if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
581 saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
582 if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
583 saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
584 hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
585
586 return 0;
587
588 err:
589 callout_destroy(&hp->tuning_timer);
590 cv_destroy(&hp->intr_cv);
591 mutex_destroy(&hp->intr_lock);
592 free(hp, M_DEVBUF);
593 sc->sc_host[--sc->sc_nhosts] = NULL;
594 err1:
595 return 1;
596 }
597
598 int
599 sdhc_detach(struct sdhc_softc *sc, int flags)
600 {
601 struct sdhc_host *hp;
602 int rv = 0;
603
604 for (size_t n = 0; n < sc->sc_nhosts; n++) {
605 hp = sc->sc_host[n];
606 if (hp == NULL)
607 continue;
608 if (hp->sdmmc != NULL) {
609 rv = config_detach(hp->sdmmc, flags);
610 if (rv)
611 break;
612 hp->sdmmc = NULL;
613 }
614 /* disable interrupts */
615 if ((flags & DETACH_FORCE) == 0) {
616 mutex_enter(&hp->intr_lock);
617 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
618 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
619 } else {
620 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
621 }
622 sdhc_soft_reset(hp, SDHC_RESET_ALL);
623 mutex_exit(&hp->intr_lock);
624 }
625 callout_halt(&hp->tuning_timer, NULL);
626 callout_destroy(&hp->tuning_timer);
627 cv_destroy(&hp->intr_cv);
628 mutex_destroy(&hp->intr_lock);
629 if (hp->ios > 0) {
630 bus_space_unmap(hp->iot, hp->ioh, hp->ios);
631 hp->ios = 0;
632 }
633 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
634 bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
635 bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
636 bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
637 bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
638 }
639 free(hp, M_DEVBUF);
640 sc->sc_host[n] = NULL;
641 }
642
643 return rv;
644 }
645
646 bool
647 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
648 {
649 struct sdhc_softc *sc = device_private(dev);
650 struct sdhc_host *hp;
651 size_t i;
652
653 /* XXX poll for command completion or suspend command
654 * in progress */
655
656 /* Save the host controller state. */
657 for (size_t n = 0; n < sc->sc_nhosts; n++) {
658 hp = sc->sc_host[n];
659 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
660 for (i = 0; i < sizeof hp->regs; i += 4) {
661 uint32_t v = HREAD4(hp, i);
662 hp->regs[i + 0] = (v >> 0);
663 hp->regs[i + 1] = (v >> 8);
664 if (i + 3 < sizeof hp->regs) {
665 hp->regs[i + 2] = (v >> 16);
666 hp->regs[i + 3] = (v >> 24);
667 }
668 }
669 } else {
670 for (i = 0; i < sizeof hp->regs; i++) {
671 hp->regs[i] = HREAD1(hp, i);
672 }
673 }
674 }
675 return true;
676 }
677
678 bool
679 sdhc_resume(device_t dev, const pmf_qual_t *qual)
680 {
681 struct sdhc_softc *sc = device_private(dev);
682 struct sdhc_host *hp;
683 size_t i;
684
685 /* Restore the host controller state. */
686 for (size_t n = 0; n < sc->sc_nhosts; n++) {
687 hp = sc->sc_host[n];
688 (void)sdhc_host_reset(hp);
689 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
690 for (i = 0; i < sizeof hp->regs; i += 4) {
691 if (i + 3 < sizeof hp->regs) {
692 HWRITE4(hp, i,
693 (hp->regs[i + 0] << 0)
694 | (hp->regs[i + 1] << 8)
695 | (hp->regs[i + 2] << 16)
696 | (hp->regs[i + 3] << 24));
697 } else {
698 HWRITE4(hp, i,
699 (hp->regs[i + 0] << 0)
700 | (hp->regs[i + 1] << 8));
701 }
702 }
703 } else {
704 for (i = 0; i < sizeof hp->regs; i++) {
705 HWRITE1(hp, i, hp->regs[i]);
706 }
707 }
708 }
709 return true;
710 }
711
712 bool
713 sdhc_shutdown(device_t dev, int flags)
714 {
715 struct sdhc_softc *sc = device_private(dev);
716 struct sdhc_host *hp;
717
718 /* XXX chip locks up if we don't disable it before reboot. */
719 for (size_t i = 0; i < sc->sc_nhosts; i++) {
720 hp = sc->sc_host[i];
721 (void)sdhc_host_reset(hp);
722 }
723 return true;
724 }
725
726 /*
727 * Reset the host controller. Called during initialization, when
728 * cards are removed, upon resume, and during error recovery.
729 */
730 static int
731 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
732 {
733 struct sdhc_host *hp = (struct sdhc_host *)sch;
734 uint32_t sdhcimask;
735 int error;
736
737 KASSERT(mutex_owned(&hp->intr_lock));
738
739 /* Disable all interrupts. */
740 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
741 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
742 } else {
743 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
744 }
745
746 /*
747 * Reset the entire host controller and wait up to 100ms for
748 * the controller to clear the reset bit.
749 */
750 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
751 if (error)
752 goto out;
753
754 /* Set data timeout counter value to max for now. */
755 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
756 #if 1
757 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
758 HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
759 #endif
760
761 /* Enable interrupts. */
762 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
763 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
764 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
765 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
766 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
767 sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
768 HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
769 sdhcimask ^=
770 (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
771 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
772 HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
773 } else {
774 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
775 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
776 sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
777 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
778 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
779 }
780
781 out:
782 return error;
783 }
784
785 static int
786 sdhc_host_reset(sdmmc_chipset_handle_t sch)
787 {
788 struct sdhc_host *hp = (struct sdhc_host *)sch;
789 int error;
790
791 mutex_enter(&hp->intr_lock);
792 error = sdhc_host_reset1(sch);
793 mutex_exit(&hp->intr_lock);
794
795 return error;
796 }
797
798 static uint32_t
799 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
800 {
801 struct sdhc_host *hp = (struct sdhc_host *)sch;
802
803 return hp->ocr;
804 }
805
806 static int
807 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
808 {
809 struct sdhc_host *hp = (struct sdhc_host *)sch;
810
811 return hp->maxblklen;
812 }
813
814 /*
815 * Return non-zero if the card is currently inserted.
816 */
817 static int
818 sdhc_card_detect(sdmmc_chipset_handle_t sch)
819 {
820 struct sdhc_host *hp = (struct sdhc_host *)sch;
821 int r;
822
823 if (hp->sc->sc_vendor_card_detect)
824 return (*hp->sc->sc_vendor_card_detect)(hp->sc);
825
826 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
827
828 return r ? 1 : 0;
829 }
830
831 /*
832 * Return non-zero if the card is currently write-protected.
833 */
834 static int
835 sdhc_write_protect(sdmmc_chipset_handle_t sch)
836 {
837 struct sdhc_host *hp = (struct sdhc_host *)sch;
838 int r;
839
840 if (hp->sc->sc_vendor_write_protect)
841 return (*hp->sc->sc_vendor_write_protect)(hp->sc);
842
843 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
844
845 return r ? 0 : 1;
846 }
847
848 /*
849 * Set or change SD bus voltage and enable or disable SD bus power.
850 * Return zero on success.
851 */
852 static int
853 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
854 {
855 struct sdhc_host *hp = (struct sdhc_host *)sch;
856 uint8_t vdd;
857 int error = 0;
858 const uint32_t pcmask =
859 ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
860
861 mutex_enter(&hp->intr_lock);
862
863 /*
864 * Disable bus power before voltage change.
865 */
866 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
867 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
868 HWRITE1(hp, SDHC_POWER_CTL, 0);
869
870 /* If power is disabled, reset the host and return now. */
871 if (ocr == 0) {
872 (void)sdhc_host_reset1(hp);
873 callout_halt(&hp->tuning_timer, &hp->intr_lock);
874 goto out;
875 }
876
877 /*
878 * Select the lowest voltage according to capabilities.
879 */
880 ocr &= hp->ocr;
881 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
882 vdd = SDHC_VOLTAGE_1_8V;
883 } else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
884 vdd = SDHC_VOLTAGE_3_0V;
885 } else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
886 vdd = SDHC_VOLTAGE_3_3V;
887 } else {
888 /* Unsupported voltage level requested. */
889 error = EINVAL;
890 goto out;
891 }
892
893 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
894 /*
895 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
896 * voltage ramp until power rises.
897 */
898
899 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
900 HWRITE1(hp, SDHC_POWER_CTL,
901 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
902 } else {
903 HWRITE1(hp, SDHC_POWER_CTL,
904 HREAD1(hp, SDHC_POWER_CTL) & pcmask);
905 sdmmc_delay(1);
906 HWRITE1(hp, SDHC_POWER_CTL,
907 (vdd << SDHC_VOLTAGE_SHIFT));
908 sdmmc_delay(1);
909 HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
910 sdmmc_delay(10000);
911 }
912
913 /*
914 * The host system may not power the bus due to battery low,
915 * etc. In that case, the host controller should clear the
916 * bus power bit.
917 */
918 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
919 error = ENXIO;
920 goto out;
921 }
922 }
923
924 out:
925 mutex_exit(&hp->intr_lock);
926
927 return error;
928 }
929
930 /*
931 * Return the smallest possible base clock frequency divisor value
932 * for the CLOCK_CTL register to produce `freq' (KHz).
933 */
934 static bool
935 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
936 {
937 u_int div;
938
939 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
940 for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
941 if ((hp->clkbase / div) <= freq) {
942 *divp = SDHC_SDCLK_CGM
943 | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
944 | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
945 //freq = hp->clkbase / div;
946 return true;
947 }
948 }
949 /* No divisor found. */
950 return false;
951 }
952 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
953 u_int dvs = (hp->clkbase + freq - 1) / freq;
954 u_int roundup = dvs & 1;
955 for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
956 if (dvs + roundup <= 16) {
957 dvs += roundup - 1;
958 *divp = (div << SDHC_SDCLK_DIV_SHIFT)
959 | (dvs << SDHC_SDCLK_DVS_SHIFT);
960 DPRINTF(2,
961 ("%s: divisor for freq %u is %u * %u\n",
962 HDEVNAME(hp), freq, div * 2, dvs + 1));
963 //freq = hp->clkbase / (div * 2) * (dvs + 1);
964 return true;
965 }
966 /*
967 * If we drop bits, we need to round up the divisor.
968 */
969 roundup |= dvs & 1;
970 }
971 /* No divisor found. */
972 return false;
973 }
974 if (hp->sc->sc_clkmsk != 0) {
975 div = howmany(hp->clkbase, freq);
976 if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
977 return false;
978 *divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
979 //freq = hp->clkbase / div;
980 return true;
981 }
982 if (hp->specver >= SDHC_SPEC_VERS_300) {
983 div = howmany(hp->clkbase, freq);
984 div = div > 1 ? howmany(div, 2) : 0;
985 if (div > 0x3ff)
986 return false;
987 *divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
988 << SDHC_SDCLK_XDIV_SHIFT) |
989 (((div >> 0) & SDHC_SDCLK_DIV_MASK)
990 << SDHC_SDCLK_DIV_SHIFT);
991 //freq = hp->clkbase / (div ? div * 2 : 1);
992 return true;
993 } else {
994 for (div = 1; div <= 256; div *= 2) {
995 if ((hp->clkbase / div) <= freq) {
996 *divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
997 //freq = hp->clkbase / div;
998 return true;
999 }
1000 }
1001 /* No divisor found. */
1002 return false;
1003 }
1004 /* No divisor found. */
1005 return false;
1006 }
1007
1008 /*
1009 * Set or change SDCLK frequency or disable the SD clock.
1010 * Return zero on success.
1011 */
1012 static int
1013 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1014 {
1015 struct sdhc_host *hp = (struct sdhc_host *)sch;
1016 u_int div;
1017 u_int timo;
1018 int16_t reg;
1019 int error = 0;
1020 bool present __diagused;
1021
1022 mutex_enter(&hp->intr_lock);
1023
1024 #ifdef DIAGNOSTIC
1025 present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1026
1027 /* Must not stop the clock if commands are in progress. */
1028 if (present && sdhc_card_detect(hp)) {
1029 aprint_normal_dev(hp->sc->sc_dev,
1030 "%s: command in progress\n", __func__);
1031 }
1032 #endif
1033
1034 if (hp->sc->sc_vendor_bus_clock) {
1035 error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1036 if (error != 0)
1037 goto out;
1038 }
1039
1040 /*
1041 * Stop SD clock before changing the frequency.
1042 */
1043 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1044 HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1045 if (freq == SDMMC_SDCLK_OFF) {
1046 HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1047 goto out;
1048 }
1049 } else {
1050 HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1051 if (freq == SDMMC_SDCLK_OFF)
1052 goto out;
1053 }
1054
1055 if (hp->specver >= SDHC_SPEC_VERS_300) {
1056 HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1057 if (freq > 100000) {
1058 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1059 } else if (freq > 50000) {
1060 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
1061 } else if (freq > 25000) {
1062 if (ddr) {
1063 HSET2(hp, SDHC_HOST_CTL2,
1064 SDHC_UHS_MODE_SELECT_DDR50);
1065 } else {
1066 HSET2(hp, SDHC_HOST_CTL2,
1067 SDHC_UHS_MODE_SELECT_SDR25);
1068 }
1069 } else if (freq > 400) {
1070 HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1071 }
1072 }
1073
1074 /*
1075 * Slow down Ricoh 5U823 controller that isn't reliable
1076 * at 100MHz bus clock.
1077 */
1078 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1079 if (freq == 100000)
1080 --freq;
1081 }
1082
1083 /*
1084 * Set the minimum base clock frequency divisor.
1085 */
1086 if (!sdhc_clock_divisor(hp, freq, &div)) {
1087 /* Invalid base clock frequency or `freq' value. */
1088 aprint_error_dev(hp->sc->sc_dev,
1089 "Invalid bus clock %d kHz\n", freq);
1090 error = EINVAL;
1091 goto out;
1092 }
1093 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1094 HWRITE4(hp, SDHC_CLOCK_CTL,
1095 div | (SDHC_TIMEOUT_MAX << 16));
1096 } else {
1097 reg = HREAD2(hp, SDHC_CLOCK_CTL);
1098 reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1099 HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1100 }
1101
1102 /*
1103 * Start internal clock. Wait 10ms for stabilization.
1104 */
1105 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1106 sdmmc_delay(10000);
1107 HSET4(hp, SDHC_CLOCK_CTL,
1108 8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1109 } else {
1110 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1111 for (timo = 1000; timo > 0; timo--) {
1112 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1113 SDHC_INTCLK_STABLE))
1114 break;
1115 sdmmc_delay(10);
1116 }
1117 if (timo == 0) {
1118 error = ETIMEDOUT;
1119 goto out;
1120 }
1121 }
1122
1123 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1124 HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1125 /*
1126 * Sending 80 clocks at 400kHz takes 200us.
1127 * So delay for that time + slop and then
1128 * check a few times for completion.
1129 */
1130 sdmmc_delay(210);
1131 for (timo = 10; timo > 0; timo--) {
1132 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1133 SDHC_INIT_ACTIVE))
1134 break;
1135 sdmmc_delay(10);
1136 }
1137 DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1138
1139 /*
1140 * Enable SD clock.
1141 */
1142 HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1143 } else {
1144 /*
1145 * Enable SD clock.
1146 */
1147 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1148
1149 if (freq > 25000 &&
1150 !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1151 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1152 else
1153 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1154 }
1155
1156 out:
1157 mutex_exit(&hp->intr_lock);
1158
1159 return error;
1160 }
1161
1162 static int
1163 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1164 {
1165 struct sdhc_host *hp = (struct sdhc_host *)sch;
1166 int reg;
1167
1168 switch (width) {
1169 case 1:
1170 case 4:
1171 break;
1172
1173 case 8:
1174 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1175 break;
1176 /* FALLTHROUGH */
1177 default:
1178 DPRINTF(0,("%s: unsupported bus width (%d)\n",
1179 HDEVNAME(hp), width));
1180 return 1;
1181 }
1182
1183 mutex_enter(&hp->intr_lock);
1184
1185 reg = HREAD1(hp, SDHC_HOST_CTL);
1186 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1187 reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1188 if (width == 4)
1189 reg |= SDHC_4BIT_MODE;
1190 else if (width == 8)
1191 reg |= SDHC_ESDHC_8BIT_MODE;
1192 } else {
1193 reg &= ~SDHC_4BIT_MODE;
1194 if (hp->specver >= SDHC_SPEC_VERS_300) {
1195 reg &= ~SDHC_8BIT_MODE;
1196 }
1197 if (width == 4) {
1198 reg |= SDHC_4BIT_MODE;
1199 } else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1200 reg |= SDHC_8BIT_MODE;
1201 }
1202 }
1203 HWRITE1(hp, SDHC_HOST_CTL, reg);
1204
1205 mutex_exit(&hp->intr_lock);
1206
1207 return 0;
1208 }
1209
1210 static int
1211 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1212 {
1213 struct sdhc_host *hp = (struct sdhc_host *)sch;
1214
1215 if (hp->sc->sc_vendor_rod)
1216 return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1217
1218 return 0;
1219 }
1220
1221 static void
1222 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1223 {
1224 struct sdhc_host *hp = (struct sdhc_host *)sch;
1225
1226 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1227 mutex_enter(&hp->intr_lock);
1228 if (enable) {
1229 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1230 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1231 } else {
1232 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1233 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1234 }
1235 mutex_exit(&hp->intr_lock);
1236 }
1237 }
1238
1239 static void
1240 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1241 {
1242 struct sdhc_host *hp = (struct sdhc_host *)sch;
1243
1244 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1245 mutex_enter(&hp->intr_lock);
1246 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1247 mutex_exit(&hp->intr_lock);
1248 }
1249 }
1250
1251 static int
1252 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1253 {
1254 struct sdhc_host *hp = (struct sdhc_host *)sch;
1255
1256 mutex_enter(&hp->intr_lock);
1257 switch (signal_voltage) {
1258 case SDMMC_SIGNAL_VOLTAGE_180:
1259 HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1260 break;
1261 case SDMMC_SIGNAL_VOLTAGE_330:
1262 HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1263 break;
1264 default:
1265 return EINVAL;
1266 }
1267 mutex_exit(&hp->intr_lock);
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * Sampling clock tuning procedure (UHS)
1274 */
1275 static int
1276 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1277 {
1278 struct sdhc_host *hp = (struct sdhc_host *)sch;
1279 struct sdmmc_command cmd;
1280 uint8_t hostctl;
1281 int opcode, error, retry = 40;
1282
1283 hp->tuning_timing = timing;
1284
1285 switch (timing) {
1286 case SDMMC_TIMING_MMC_HS200:
1287 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1288 break;
1289 case SDMMC_TIMING_UHS_SDR50:
1290 if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1291 return 0;
1292 /* FALLTHROUGH */
1293 case SDMMC_TIMING_UHS_SDR104:
1294 opcode = MMC_SEND_TUNING_BLOCK;
1295 break;
1296 default:
1297 return EINVAL;
1298 }
1299
1300 hostctl = HREAD1(hp, SDHC_HOST_CTL);
1301
1302 /* enable buffer read ready interrupt */
1303 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1304 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1305
1306 /* disable DMA */
1307 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1308
1309 /* reset tuning circuit */
1310 HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1311
1312 /* start of tuning */
1313 HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1314
1315 mutex_enter(&hp->intr_lock);
1316 do {
1317 memset(&cmd, 0, sizeof(cmd));
1318 cmd.c_opcode = opcode;
1319 cmd.c_arg = 0;
1320 cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1321 if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1322 cmd.c_blklen = cmd.c_datalen = 128;
1323 } else {
1324 cmd.c_blklen = cmd.c_datalen = 64;
1325 }
1326
1327 error = sdhc_start_command(hp, &cmd);
1328 if (error)
1329 break;
1330
1331 if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1332 SDHC_TUNING_TIMEOUT)) {
1333 break;
1334 }
1335
1336 delay(1000);
1337 } while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1338 mutex_exit(&hp->intr_lock);
1339
1340 /* disable buffer read ready interrupt */
1341 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1342 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1343
1344 if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1345 HCLR2(hp, SDHC_HOST_CTL2,
1346 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1347 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1348 aprint_error_dev(hp->sc->sc_dev,
1349 "tuning did not complete, using fixed sampling clock\n");
1350 return EIO; /* tuning did not complete */
1351 }
1352
1353 if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1354 HCLR2(hp, SDHC_HOST_CTL2,
1355 SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1356 sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1357 aprint_error_dev(hp->sc->sc_dev,
1358 "tuning failed, using fixed sampling clock\n");
1359 return EIO; /* tuning failed */
1360 }
1361
1362 if (hp->tuning_timer_count) {
1363 callout_schedule(&hp->tuning_timer,
1364 hz * hp->tuning_timer_count);
1365 }
1366
1367 return 0; /* tuning completed */
1368 }
1369
1370 static void
1371 sdhc_tuning_timer(void *arg)
1372 {
1373 struct sdhc_host *hp = arg;
1374
1375 atomic_swap_uint(&hp->tuning_timer_pending, 1);
1376 }
1377
1378 static int
1379 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1380 {
1381 uint32_t state;
1382 int timeout;
1383
1384 for (timeout = 10000; timeout > 0; timeout--) {
1385 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1386 return 0;
1387 sdmmc_delay(10);
1388 }
1389 aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1390 mask, value, state);
1391 return ETIMEDOUT;
1392 }
1393
1394 static void
1395 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1396 {
1397 struct sdhc_host *hp = (struct sdhc_host *)sch;
1398 int error;
1399
1400 if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1401 (void)sdhc_execute_tuning(hp, hp->tuning_timing);
1402 }
1403
1404 mutex_enter(&hp->intr_lock);
1405
1406 if (cmd->c_data && ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1407 const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1408 if (ISSET(hp->flags, SHF_USE_DMA)) {
1409 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1410 HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1411 } else {
1412 HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1413 HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1414 }
1415 }
1416
1417 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1418 const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1419 if (cmd->c_data != NULL) {
1420 HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1421 HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1422 } else {
1423 HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1424 HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1425 }
1426 }
1427
1428 /*
1429 * Start the MMC command, or mark `cmd' as failed and return.
1430 */
1431 error = sdhc_start_command(hp, cmd);
1432 if (error) {
1433 cmd->c_error = error;
1434 goto out;
1435 }
1436
1437 /*
1438 * Wait until the command phase is done, or until the command
1439 * is marked done for any other reason.
1440 */
1441 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
1442 cmd->c_error = ETIMEDOUT;
1443 goto out;
1444 }
1445
1446 /*
1447 * The host controller removes bits [0:7] from the response
1448 * data (CRC) and we pass the data up unchanged to the bus
1449 * driver (without padding).
1450 */
1451 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1452 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1453 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1454 cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1455 cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1456 cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1457 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1458 cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1459 (cmd->c_resp[1] << 24);
1460 cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1461 (cmd->c_resp[2] << 24);
1462 cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1463 (cmd->c_resp[3] << 24);
1464 cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1465 }
1466 }
1467 }
1468 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1469
1470 /*
1471 * If the command has data to transfer in any direction,
1472 * execute the transfer now.
1473 */
1474 if (cmd->c_error == 0 && cmd->c_data != NULL)
1475 sdhc_transfer_data(hp, cmd);
1476 else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1477 if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10)) {
1478 cmd->c_error = ETIMEDOUT;
1479 goto out;
1480 }
1481 }
1482
1483 out:
1484 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1485 && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1486 /* Turn off the LED. */
1487 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1488 }
1489 SET(cmd->c_flags, SCF_ITSDONE);
1490
1491 mutex_exit(&hp->intr_lock);
1492
1493 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1494 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1495 cmd->c_flags, cmd->c_error));
1496 }
1497
1498 static int
1499 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1500 {
1501 struct sdhc_softc * const sc = hp->sc;
1502 uint16_t blksize = 0;
1503 uint16_t blkcount = 0;
1504 uint16_t mode;
1505 uint16_t command;
1506 int error;
1507
1508 KASSERT(mutex_owned(&hp->intr_lock));
1509
1510 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1511 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1512 cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1513
1514 /*
1515 * The maximum block length for commands should be the minimum
1516 * of the host buffer size and the card buffer size. (1.7.2)
1517 */
1518
1519 /* Fragment the data into proper blocks. */
1520 if (cmd->c_datalen > 0) {
1521 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1522 blkcount = cmd->c_datalen / blksize;
1523 if (cmd->c_datalen % blksize > 0) {
1524 /* XXX: Split this command. (1.7.4) */
1525 aprint_error_dev(sc->sc_dev,
1526 "data not a multiple of %u bytes\n", blksize);
1527 return EINVAL;
1528 }
1529 }
1530
1531 /* Check limit imposed by 9-bit block count. (1.7.2) */
1532 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1533 aprint_error_dev(sc->sc_dev, "too much data\n");
1534 return EINVAL;
1535 }
1536
1537 /* Prepare transfer mode register value. (2.2.5) */
1538 mode = SDHC_BLOCK_COUNT_ENABLE;
1539 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1540 mode |= SDHC_READ_MODE;
1541 if (blkcount > 1) {
1542 mode |= SDHC_MULTI_BLOCK_MODE;
1543 /* XXX only for memory commands? */
1544 mode |= SDHC_AUTO_CMD12_ENABLE;
1545 }
1546 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1547 ISSET(hp->flags, SHF_MODE_DMAEN)) {
1548 mode |= SDHC_DMA_ENABLE;
1549 }
1550
1551 /*
1552 * Prepare command register value. (2.2.6)
1553 */
1554 command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1555
1556 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1557 command |= SDHC_CRC_CHECK_ENABLE;
1558 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1559 command |= SDHC_INDEX_CHECK_ENABLE;
1560 if (cmd->c_datalen > 0)
1561 command |= SDHC_DATA_PRESENT_SELECT;
1562
1563 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1564 command |= SDHC_NO_RESPONSE;
1565 else if (ISSET(cmd->c_flags, SCF_RSP_136))
1566 command |= SDHC_RESP_LEN_136;
1567 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1568 command |= SDHC_RESP_LEN_48_CHK_BUSY;
1569 else
1570 command |= SDHC_RESP_LEN_48;
1571
1572 /* Wait until command and data inhibit bits are clear. (1.5) */
1573 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
1574 if (error) {
1575 aprint_error_dev(sc->sc_dev, "command or data phase inhibited\n");
1576 return error;
1577 }
1578
1579 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1580 HDEVNAME(hp), blksize, blkcount, mode, command));
1581
1582 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1583 blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1584 SDHC_DMA_BOUNDARY_SHIFT; /* PAGE_SIZE DMA boundary */
1585 }
1586
1587 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1588 /* Alert the user not to remove the card. */
1589 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1590 }
1591
1592 /* Set DMA start address. */
1593 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1594 for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1595 bus_addr_t paddr =
1596 cmd->c_dmamap->dm_segs[seg].ds_addr;
1597 uint16_t len =
1598 cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1599 0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1600 uint16_t attr =
1601 SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1602 if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1603 attr |= SDHC_ADMA2_END;
1604 }
1605 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1606 struct sdhc_adma2_descriptor32 *desc =
1607 hp->adma2;
1608 desc[seg].attribute = htole16(attr);
1609 desc[seg].length = htole16(len);
1610 desc[seg].address = htole32(paddr);
1611 } else {
1612 struct sdhc_adma2_descriptor64 *desc =
1613 hp->adma2;
1614 desc[seg].attribute = htole16(attr);
1615 desc[seg].length = htole16(len);
1616 desc[seg].address = htole32(paddr & 0xffffffff);
1617 desc[seg].address_hi = htole32(
1618 (uint64_t)paddr >> 32);
1619 }
1620 }
1621 if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1622 struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1623 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1624 } else {
1625 struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1626 desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1627 }
1628 bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1629 BUS_DMASYNC_PREWRITE);
1630 HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1631 HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1632
1633 const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1634
1635 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1636 if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1637 HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1638 (uint64_t)desc_addr >> 32);
1639 }
1640 } else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1641 !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1642 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1643 }
1644
1645 /*
1646 * Start a CPU data transfer. Writing to the high order byte
1647 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1648 */
1649 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1650 HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1651 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1652 HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1653 } else {
1654 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1655 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1656 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1657 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1658 HWRITE2(hp, SDHC_COMMAND, command);
1659 }
1660
1661 return 0;
1662 }
1663
1664 static void
1665 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1666 {
1667 struct sdhc_softc *sc = hp->sc;
1668 int error;
1669
1670 KASSERT(mutex_owned(&hp->intr_lock));
1671
1672 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1673 MMC_R1(cmd->c_resp), cmd->c_datalen));
1674
1675 #ifdef SDHC_DEBUG
1676 /* XXX I forgot why I wanted to know when this happens :-( */
1677 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1678 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1679 aprint_error_dev(hp->sc->sc_dev,
1680 "CMD52/53 error response flags %#x\n",
1681 MMC_R1(cmd->c_resp) & 0xff00);
1682 }
1683 #endif
1684
1685 if (cmd->c_dmamap != NULL) {
1686 if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1687 error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1688 if (error == 0 && !sdhc_wait_intr(hp,
1689 SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT)) {
1690 error = ETIMEDOUT;
1691 }
1692 } else {
1693 error = sdhc_transfer_data_dma(hp, cmd);
1694 }
1695 } else
1696 error = sdhc_transfer_data_pio(hp, cmd);
1697 if (error)
1698 cmd->c_error = error;
1699 SET(cmd->c_flags, SCF_ITSDONE);
1700
1701 DPRINTF(1,("%s: data transfer done (error=%d)\n",
1702 HDEVNAME(hp), cmd->c_error));
1703 }
1704
1705 static int
1706 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1707 {
1708 bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1709 bus_addr_t posaddr;
1710 bus_addr_t segaddr;
1711 bus_size_t seglen;
1712 u_int seg = 0;
1713 int error = 0;
1714 int status;
1715
1716 KASSERT(mutex_owned(&hp->intr_lock));
1717 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1718 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1719 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1720 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1721
1722 for (;;) {
1723 status = sdhc_wait_intr(hp,
1724 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1725 SDHC_DMA_TIMEOUT);
1726
1727 if (status & SDHC_TRANSFER_COMPLETE) {
1728 break;
1729 }
1730 if (!status) {
1731 error = ETIMEDOUT;
1732 break;
1733 }
1734
1735 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1736 continue;
1737 }
1738
1739 if ((status & SDHC_DMA_INTERRUPT) == 0) {
1740 continue;
1741 }
1742
1743 /* DMA Interrupt (boundary crossing) */
1744
1745 segaddr = dm_segs[seg].ds_addr;
1746 seglen = dm_segs[seg].ds_len;
1747 posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1748
1749 if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1750 continue;
1751 }
1752 if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1753 HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1754 else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1755 HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1756 KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1757 }
1758
1759 if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1760 bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
1761 PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
1762 }
1763
1764 return error;
1765 }
1766
1767 static int
1768 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
1769 {
1770 uint8_t *data = cmd->c_data;
1771 void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
1772 u_int len, datalen;
1773 u_int imask;
1774 u_int pmask;
1775 int error = 0;
1776
1777 KASSERT(mutex_owned(&hp->intr_lock));
1778
1779 if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
1780 imask = SDHC_BUFFER_READ_READY;
1781 pmask = SDHC_BUFFER_READ_ENABLE;
1782 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1783 pio_func = esdhc_read_data_pio;
1784 } else {
1785 pio_func = sdhc_read_data_pio;
1786 }
1787 } else {
1788 imask = SDHC_BUFFER_WRITE_READY;
1789 pmask = SDHC_BUFFER_WRITE_ENABLE;
1790 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1791 pio_func = esdhc_write_data_pio;
1792 } else {
1793 pio_func = sdhc_write_data_pio;
1794 }
1795 }
1796 datalen = cmd->c_datalen;
1797
1798 KASSERT(mutex_owned(&hp->intr_lock));
1799 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
1800 KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1801 KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1802
1803 while (datalen > 0) {
1804 if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
1805 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1806 HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
1807 } else {
1808 HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
1809 }
1810 if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
1811 error = ETIMEDOUT;
1812 break;
1813 }
1814
1815 error = sdhc_wait_state(hp, pmask, pmask);
1816 if (error)
1817 break;
1818 }
1819
1820 len = MIN(datalen, cmd->c_blklen);
1821 (*pio_func)(hp, data, len);
1822 DPRINTF(2,("%s: pio data transfer %u @ %p\n",
1823 HDEVNAME(hp), len, data));
1824
1825 data += len;
1826 datalen -= len;
1827 }
1828
1829 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1830 SDHC_TRANSFER_TIMEOUT))
1831 error = ETIMEDOUT;
1832
1833 return error;
1834 }
1835
1836 static void
1837 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1838 {
1839
1840 if (((__uintptr_t)data & 3) == 0) {
1841 while (datalen > 3) {
1842 *(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
1843 data += 4;
1844 datalen -= 4;
1845 }
1846 if (datalen > 1) {
1847 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1848 data += 2;
1849 datalen -= 2;
1850 }
1851 if (datalen > 0) {
1852 *data = HREAD1(hp, SDHC_DATA);
1853 data += 1;
1854 datalen -= 1;
1855 }
1856 } else if (((__uintptr_t)data & 1) == 0) {
1857 while (datalen > 1) {
1858 *(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
1859 data += 2;
1860 datalen -= 2;
1861 }
1862 if (datalen > 0) {
1863 *data = HREAD1(hp, SDHC_DATA);
1864 data += 1;
1865 datalen -= 1;
1866 }
1867 } else {
1868 while (datalen > 0) {
1869 *data = HREAD1(hp, SDHC_DATA);
1870 data += 1;
1871 datalen -= 1;
1872 }
1873 }
1874 }
1875
1876 static void
1877 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1878 {
1879
1880 if (((__uintptr_t)data & 3) == 0) {
1881 while (datalen > 3) {
1882 HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
1883 data += 4;
1884 datalen -= 4;
1885 }
1886 if (datalen > 1) {
1887 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1888 data += 2;
1889 datalen -= 2;
1890 }
1891 if (datalen > 0) {
1892 HWRITE1(hp, SDHC_DATA, *data);
1893 data += 1;
1894 datalen -= 1;
1895 }
1896 } else if (((__uintptr_t)data & 1) == 0) {
1897 while (datalen > 1) {
1898 HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
1899 data += 2;
1900 datalen -= 2;
1901 }
1902 if (datalen > 0) {
1903 HWRITE1(hp, SDHC_DATA, *data);
1904 data += 1;
1905 datalen -= 1;
1906 }
1907 } else {
1908 while (datalen > 0) {
1909 HWRITE1(hp, SDHC_DATA, *data);
1910 data += 1;
1911 datalen -= 1;
1912 }
1913 }
1914 }
1915
1916 static void
1917 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1918 {
1919 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1920 uint32_t v;
1921
1922 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
1923 size_t count = 0;
1924
1925 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1926 if (count == 0) {
1927 /*
1928 * If we've drained "watermark" words, we need to wait
1929 * a little bit so the read FIFO can refill.
1930 */
1931 sdmmc_delay(10);
1932 count = watermark;
1933 }
1934 v = HREAD4(hp, SDHC_DATA);
1935 v = le32toh(v);
1936 *(uint32_t *)data = v;
1937 data += 4;
1938 datalen -= 4;
1939 status = HREAD2(hp, SDHC_NINTR_STATUS);
1940 count--;
1941 }
1942 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1943 if (count == 0) {
1944 sdmmc_delay(10);
1945 }
1946 v = HREAD4(hp, SDHC_DATA);
1947 v = le32toh(v);
1948 do {
1949 *data++ = v;
1950 v >>= 8;
1951 } while (--datalen > 0);
1952 }
1953 }
1954
1955 static void
1956 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
1957 {
1958 uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
1959 uint32_t v;
1960
1961 const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
1962 size_t count = watermark;
1963
1964 while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1965 if (count == 0) {
1966 sdmmc_delay(10);
1967 count = watermark;
1968 }
1969 v = *(uint32_t *)data;
1970 v = htole32(v);
1971 HWRITE4(hp, SDHC_DATA, v);
1972 data += 4;
1973 datalen -= 4;
1974 status = HREAD2(hp, SDHC_NINTR_STATUS);
1975 count--;
1976 }
1977 if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
1978 if (count == 0) {
1979 sdmmc_delay(10);
1980 }
1981 v = *(uint32_t *)data;
1982 v = htole32(v);
1983 HWRITE4(hp, SDHC_DATA, v);
1984 }
1985 }
1986
1987 /* Prepare for another command. */
1988 static int
1989 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1990 {
1991 int timo;
1992
1993 KASSERT(mutex_owned(&hp->intr_lock));
1994
1995 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1996
1997 /* Request the reset. */
1998 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1999
2000 /*
2001 * If necessary, wait for the controller to set the bits to
2002 * acknowledge the reset.
2003 */
2004 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2005 ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2006 for (timo = 10000; timo > 0; timo--) {
2007 if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2008 break;
2009 /* Short delay because I worry we may miss it... */
2010 sdmmc_delay(1);
2011 }
2012 if (timo == 0)
2013 return ETIMEDOUT;
2014 }
2015
2016 /*
2017 * Wait for the controller to clear the bits to indicate that
2018 * the reset has completed.
2019 */
2020 for (timo = 10; timo > 0; timo--) {
2021 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2022 break;
2023 sdmmc_delay(10000);
2024 }
2025 if (timo == 0) {
2026 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2027 HREAD1(hp, SDHC_SOFTWARE_RESET)));
2028 return ETIMEDOUT;
2029 }
2030
2031 if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2032 HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2033 }
2034
2035 return 0;
2036 }
2037
2038 static int
2039 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
2040 {
2041 int status;
2042
2043 KASSERT(mutex_owned(&hp->intr_lock));
2044
2045 mask |= SDHC_ERROR_INTERRUPT;
2046
2047 status = hp->intr_status & mask;
2048 while (status == 0) {
2049 if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2050 == EWOULDBLOCK) {
2051 status |= SDHC_ERROR_INTERRUPT;
2052 break;
2053 }
2054 status = hp->intr_status & mask;
2055 }
2056 hp->intr_status &= ~status;
2057
2058 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2059 hp->intr_error_status));
2060
2061 /* Command timeout has higher priority than command complete. */
2062 if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
2063 hp->intr_error_status = 0;
2064 hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
2065 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2066 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
2067 }
2068 status = 0;
2069 }
2070
2071 return status;
2072 }
2073
2074 /*
2075 * Established by attachment driver at interrupt priority IPL_SDMMC.
2076 */
2077 int
2078 sdhc_intr(void *arg)
2079 {
2080 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2081 struct sdhc_host *hp;
2082 int done = 0;
2083 uint16_t status;
2084 uint16_t error;
2085
2086 /* We got an interrupt, but we don't know from which slot. */
2087 for (size_t host = 0; host < sc->sc_nhosts; host++) {
2088 hp = sc->sc_host[host];
2089 if (hp == NULL)
2090 continue;
2091
2092 mutex_enter(&hp->intr_lock);
2093
2094 if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2095 /* Find out which interrupts are pending. */
2096 uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2097 status = xstatus;
2098 error = xstatus >> 16;
2099 if (error)
2100 xstatus |= SDHC_ERROR_INTERRUPT;
2101 else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2102 goto next_port; /* no interrupt for us */
2103 /* Acknowledge the interrupts we are about to handle. */
2104 HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2105 } else {
2106 /* Find out which interrupts are pending. */
2107 error = 0;
2108 status = HREAD2(hp, SDHC_NINTR_STATUS);
2109 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2110 goto next_port; /* no interrupt for us */
2111 /* Acknowledge the interrupts we are about to handle. */
2112 HWRITE2(hp, SDHC_NINTR_STATUS, status);
2113 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2114 /* Acknowledge error interrupts. */
2115 error = HREAD2(hp, SDHC_EINTR_STATUS);
2116 HWRITE2(hp, SDHC_EINTR_STATUS, error);
2117 }
2118 }
2119
2120 DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2121 status, error));
2122
2123 /* Claim this interrupt. */
2124 done = 1;
2125
2126 if (ISSET(error, SDHC_ADMA_ERROR)) {
2127 uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2128 printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2129 adma_err);
2130 }
2131
2132 /*
2133 * Service error interrupts.
2134 */
2135 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
2136 SDHC_DATA_TIMEOUT_ERROR)) {
2137 hp->intr_error_status |= error;
2138 hp->intr_status |= status;
2139 cv_broadcast(&hp->intr_cv);
2140 }
2141
2142 /*
2143 * Wake up the sdmmc event thread to scan for cards.
2144 */
2145 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2146 if (hp->sdmmc != NULL) {
2147 sdmmc_needs_discover(hp->sdmmc);
2148 }
2149 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2150 HCLR4(hp, SDHC_NINTR_STATUS_EN,
2151 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2152 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2153 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2154 }
2155 }
2156
2157 /*
2158 * Schedule re-tuning process (UHS).
2159 */
2160 if (ISSET(status, SDHC_RETUNING_EVENT)) {
2161 atomic_swap_uint(&hp->tuning_timer_pending, 1);
2162 }
2163
2164 /*
2165 * Wake up the blocking process to service command
2166 * related interrupt(s).
2167 */
2168 if (ISSET(status, SDHC_COMMAND_COMPLETE|
2169 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2170 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2171 hp->intr_status |= status;
2172 if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2173 HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2174 status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2175 }
2176 cv_broadcast(&hp->intr_cv);
2177 }
2178
2179 /*
2180 * Service SD card interrupts.
2181 */
2182 if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
2183 && ISSET(status, SDHC_CARD_INTERRUPT)) {
2184 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2185 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2186 sdmmc_card_intr(hp->sdmmc);
2187 }
2188 next_port:
2189 mutex_exit(&hp->intr_lock);
2190 }
2191
2192 return done;
2193 }
2194
2195 kmutex_t *
2196 sdhc_host_lock(struct sdhc_host *hp)
2197 {
2198 return &hp->intr_lock;
2199 }
2200
2201 #ifdef SDHC_DEBUG
2202 void
2203 sdhc_dump_regs(struct sdhc_host *hp)
2204 {
2205
2206 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
2207 HREAD4(hp, SDHC_PRESENT_STATE));
2208 if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2209 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
2210 HREAD1(hp, SDHC_POWER_CTL));
2211 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
2212 HREAD2(hp, SDHC_NINTR_STATUS));
2213 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
2214 HREAD2(hp, SDHC_EINTR_STATUS));
2215 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
2216 HREAD2(hp, SDHC_NINTR_STATUS_EN));
2217 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
2218 HREAD2(hp, SDHC_EINTR_STATUS_EN));
2219 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
2220 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2221 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
2222 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2223 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
2224 HREAD4(hp, SDHC_CAPABILITIES));
2225 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2226 HREAD4(hp, SDHC_MAX_CAPABILITIES));
2227 }
2228 #endif
2229