sdhc.c revision 1.9 1 /* $NetBSD: sdhc.c,v 1.9 2011/06/29 06:21:16 matt Exp $ */
2 /* $OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $ */
3
4 /*
5 * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * SD Host Controller driver based on the SD Host Controller Standard
22 * Simplified Specification Version 1.00 (www.sdcard.com).
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.9 2011/06/29 06:21:16 matt Exp $");
27
28 #include <sys/param.h>
29 #include <sys/device.h>
30 #include <sys/kernel.h>
31 #include <sys/kthread.h>
32 #include <sys/malloc.h>
33 #include <sys/systm.h>
34 #include <sys/mutex.h>
35 #include <sys/condvar.h>
36
37 #include <dev/sdmmc/sdhcreg.h>
38 #include <dev/sdmmc/sdhcvar.h>
39 #include <dev/sdmmc/sdmmcchip.h>
40 #include <dev/sdmmc/sdmmcreg.h>
41 #include <dev/sdmmc/sdmmcvar.h>
42
43 #ifdef SDHC_DEBUG
44 int sdhcdebug = 1;
45 #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0)
46 void sdhc_dump_regs(struct sdhc_host *);
47 #else
48 #define DPRINTF(n,s) do {} while (0)
49 #endif
50
51 #define SDHC_COMMAND_TIMEOUT hz
52 #define SDHC_BUFFER_TIMEOUT hz
53 #define SDHC_TRANSFER_TIMEOUT hz
54 #define SDHC_DMA_TIMEOUT hz
55
56 struct sdhc_host {
57 struct sdhc_softc *sc; /* host controller device */
58
59 bus_space_tag_t iot; /* host register set tag */
60 bus_space_handle_t ioh; /* host register set handle */
61 bus_dma_tag_t dmat; /* host DMA tag */
62
63 device_t sdmmc; /* generic SD/MMC device */
64
65 struct kmutex host_mtx;
66
67 u_int clkbase; /* base clock frequency in KHz */
68 int maxblklen; /* maximum block length */
69 uint32_t ocr; /* OCR value from capabilities */
70
71 uint8_t regs[14]; /* host controller state */
72
73 uint16_t intr_status; /* soft interrupt status */
74 uint16_t intr_error_status; /* soft error status */
75 struct kmutex intr_mtx;
76 struct kcondvar intr_cv;
77
78 uint32_t flags; /* flags for this host */
79 #define SHF_USE_DMA 0x0001
80 #define SHF_USE_4BIT_MODE 0x0002
81 };
82
83 #define HDEVNAME(hp) (device_xname((hp)->sc->sc_dev))
84
85 #define HREAD1(hp, reg) \
86 (bus_space_read_1((hp)->iot, (hp)->ioh, (reg)))
87 #define HREAD2(hp, reg) \
88 (bus_space_read_2((hp)->iot, (hp)->ioh, (reg)))
89 #define HREAD4(hp, reg) \
90 (bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
91 #define HWRITE1(hp, reg, val) \
92 bus_space_write_1((hp)->iot, (hp)->ioh, (reg), (val))
93 #define HWRITE2(hp, reg, val) \
94 bus_space_write_2((hp)->iot, (hp)->ioh, (reg), (val))
95 #define HWRITE4(hp, reg, val) \
96 bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
97 #define HCLR1(hp, reg, bits) \
98 HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
99 #define HCLR2(hp, reg, bits) \
100 HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
101 #define HSET1(hp, reg, bits) \
102 HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
103 #define HSET2(hp, reg, bits) \
104 HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
105
106 static int sdhc_host_reset(sdmmc_chipset_handle_t);
107 static int sdhc_host_reset1(sdmmc_chipset_handle_t);
108 static uint32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
109 static int sdhc_host_maxblklen(sdmmc_chipset_handle_t);
110 static int sdhc_card_detect(sdmmc_chipset_handle_t);
111 static int sdhc_write_protect(sdmmc_chipset_handle_t);
112 static int sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
113 static int sdhc_bus_clock(sdmmc_chipset_handle_t, int);
114 static int sdhc_bus_width(sdmmc_chipset_handle_t, int);
115 static int sdhc_bus_rod(sdmmc_chipset_handle_t, int);
116 static void sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
117 static void sdhc_card_intr_ack(sdmmc_chipset_handle_t);
118 static void sdhc_exec_command(sdmmc_chipset_handle_t,
119 struct sdmmc_command *);
120 static int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
121 static int sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
122 static int sdhc_soft_reset(struct sdhc_host *, int);
123 static int sdhc_wait_intr(struct sdhc_host *, int, int);
124 static void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
125 static int sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
126 static int sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
127 static void sdhc_read_data_pio(struct sdhc_host *, uint8_t *, int);
128 static void sdhc_write_data_pio(struct sdhc_host *, uint8_t *, int);
129
130 static struct sdmmc_chip_functions sdhc_functions = {
131 /* host controller reset */
132 sdhc_host_reset,
133
134 /* host controller capabilities */
135 sdhc_host_ocr,
136 sdhc_host_maxblklen,
137
138 /* card detection */
139 sdhc_card_detect,
140
141 /* write protect */
142 sdhc_write_protect,
143
144 /* bus power, clock frequency and width */
145 sdhc_bus_power,
146 sdhc_bus_clock,
147 sdhc_bus_width,
148 sdhc_bus_rod,
149
150 /* command execution */
151 sdhc_exec_command,
152
153 /* card interrupt */
154 sdhc_card_enable_intr,
155 sdhc_card_intr_ack
156 };
157
158 /*
159 * Called by attachment driver. For each SD card slot there is one SD
160 * host controller standard register set. (1.3)
161 */
162 int
163 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
164 bus_space_handle_t ioh, bus_size_t iosize)
165 {
166 struct sdmmcbus_attach_args saa;
167 struct sdhc_host *hp;
168 uint32_t caps;
169 #ifdef SDHC_DEBUG
170 uint16_t sdhcver;
171
172 sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
173 aprint_normal_dev(sc->sc_dev, "SD Host Specification/Vendor Version ");
174 switch (SDHC_SPEC_VERSION(sdhcver)) {
175 case 0x00:
176 aprint_normal("1.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
177 break;
178
179 case 0x01:
180 aprint_normal("2.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
181 break;
182
183 default:
184 aprint_normal(">2.0/%u\n", SDHC_VENDOR_VERSION(sdhcver));
185 break;
186 }
187 #endif
188
189 /* Allocate one more host structure. */
190 hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
191 if (hp == NULL) {
192 aprint_error_dev(sc->sc_dev,
193 "couldn't alloc memory (sdhc host)\n");
194 goto err1;
195 }
196 sc->sc_host[sc->sc_nhosts++] = hp;
197
198 /* Fill in the new host structure. */
199 hp->sc = sc;
200 hp->iot = iot;
201 hp->ioh = ioh;
202 hp->dmat = sc->sc_dmat;
203
204 mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
205 mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
206 cv_init(&hp->intr_cv, "sdhcintr");
207
208 /*
209 * Reset the host controller and enable interrupts.
210 */
211 (void)sdhc_host_reset(hp);
212
213 /* Determine host capabilities. */
214 mutex_enter(&hp->host_mtx);
215 caps = HREAD4(hp, SDHC_CAPABILITIES);
216 mutex_exit(&hp->host_mtx);
217
218 #if notyet
219 /* Use DMA if the host system and the controller support it. */
220 if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
221 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
222 && ISSET(caps, SDHC_DMA_SUPPORT)))) {
223 SET(hp->flags, SHF_USE_DMA);
224 aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
225 }
226 #endif
227
228 /*
229 * Determine the base clock frequency. (2.2.24)
230 */
231 if (SDHC_BASE_FREQ_KHZ(caps) != 0)
232 hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
233 if (hp->clkbase == 0) {
234 if (sc->sc_clkbase == 0) {
235 /* The attachment driver must tell us. */
236 aprint_error_dev(sc->sc_dev,"unknown base clock frequency\n");
237 goto err;
238 }
239 hp->clkbase = sc->sc_clkbase;
240 }
241 if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
242 /* SDHC 1.0 supports only 10-63 MHz. */
243 aprint_error_dev(sc->sc_dev,
244 "base clock frequency out of range: %u MHz\n",
245 hp->clkbase / 1000);
246 goto err;
247 }
248 DPRINTF(1,("%s: base clock frequency %u MHz\n",
249 device_xname(sc->sc_dev), hp->clkbase / 1000));
250
251 /*
252 * XXX Set the data timeout counter value according to
253 * capabilities. (2.2.15)
254 */
255 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
256
257 /*
258 * Determine SD bus voltage levels supported by the controller.
259 */
260 if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
261 SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
262 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
263 SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
264 if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
265 SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
266
267 /*
268 * Determine the maximum block length supported by the host
269 * controller. (2.2.24)
270 */
271 switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
272 case SDHC_MAX_BLK_LEN_512:
273 hp->maxblklen = 512;
274 break;
275
276 case SDHC_MAX_BLK_LEN_1024:
277 hp->maxblklen = 1024;
278 break;
279
280 case SDHC_MAX_BLK_LEN_2048:
281 hp->maxblklen = 2048;
282 break;
283
284 case SDHC_MAX_BLK_LEN_4096:
285 hp->maxblklen = 4096;
286 break;
287
288 default:
289 aprint_error_dev(sc->sc_dev, "max block length unknown\n");
290 goto err;
291 }
292 DPRINTF(1, ("%s: max block length %u byte%s\n",
293 device_xname(sc->sc_dev), hp->maxblklen,
294 hp->maxblklen > 1 ? "s" : ""));
295
296 /*
297 * Attach the generic SD/MMC bus driver. (The bus driver must
298 * not invoke any chipset functions before it is attached.)
299 */
300 memset(&saa, 0, sizeof(saa));
301 saa.saa_busname = "sdmmc";
302 saa.saa_sct = &sdhc_functions;
303 saa.saa_sch = hp;
304 saa.saa_dmat = hp->dmat;
305 saa.saa_clkmin = hp->clkbase / 256;
306 saa.saa_clkmax = hp->clkbase;
307 if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
308 saa.saa_clkmin /= 16;
309 saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
310 #if notyet
311 if (ISSET(hp->flags, SHF_USE_DMA))
312 saa.saa_caps |= SMC_CAPS_DMA;
313 #endif
314 hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
315
316 return 0;
317
318 err:
319 cv_destroy(&hp->intr_cv);
320 mutex_destroy(&hp->intr_mtx);
321 mutex_destroy(&hp->host_mtx);
322 free(hp, M_DEVBUF);
323 sc->sc_host[--sc->sc_nhosts] = NULL;
324 err1:
325 return 1;
326 }
327
328 int
329 sdhc_detach(device_t dev, int flags)
330 {
331 struct sdhc_host *hp = (struct sdhc_host *)dev;
332 struct sdhc_softc *sc = hp->sc;
333 int rv = 0;
334
335 if (hp->sdmmc)
336 rv = config_detach(hp->sdmmc, flags);
337
338 cv_destroy(&hp->intr_cv);
339 mutex_destroy(&hp->intr_mtx);
340 mutex_destroy(&hp->host_mtx);
341 free(hp, M_DEVBUF);
342 sc->sc_host[--sc->sc_nhosts] = NULL;
343
344 return rv;
345 }
346
347 bool
348 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
349 {
350 struct sdhc_softc *sc = device_private(dev);
351 struct sdhc_host *hp;
352 int n, i;
353
354 /* XXX poll for command completion or suspend command
355 * in progress */
356
357 /* Save the host controller state. */
358 for (n = 0; n < sc->sc_nhosts; n++) {
359 hp = sc->sc_host[n];
360 for (i = 0; i < sizeof hp->regs; i++)
361 hp->regs[i] = HREAD1(hp, i);
362 }
363 return true;
364 }
365
366 bool
367 sdhc_resume(device_t dev, const pmf_qual_t *qual)
368 {
369 struct sdhc_softc *sc = device_private(dev);
370 struct sdhc_host *hp;
371 int n, i;
372
373 /* Restore the host controller state. */
374 for (n = 0; n < sc->sc_nhosts; n++) {
375 hp = sc->sc_host[n];
376 (void)sdhc_host_reset(hp);
377 for (i = 0; i < sizeof hp->regs; i++)
378 HWRITE1(hp, i, hp->regs[i]);
379 }
380 return true;
381 }
382
383 bool
384 sdhc_shutdown(device_t dev, int flags)
385 {
386 struct sdhc_softc *sc = device_private(dev);
387 struct sdhc_host *hp;
388 int i;
389
390 /* XXX chip locks up if we don't disable it before reboot. */
391 for (i = 0; i < sc->sc_nhosts; i++) {
392 hp = sc->sc_host[i];
393 (void)sdhc_host_reset(hp);
394 }
395 return true;
396 }
397
398 /*
399 * Reset the host controller. Called during initialization, when
400 * cards are removed, upon resume, and during error recovery.
401 */
402 static int
403 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
404 {
405 struct sdhc_host *hp = (struct sdhc_host *)sch;
406 uint16_t sdhcimask;
407 int error;
408
409 /* Don't lock. */
410
411 /* Disable all interrupts. */
412 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
413
414 /*
415 * Reset the entire host controller and wait up to 100ms for
416 * the controller to clear the reset bit.
417 */
418 error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
419 if (error)
420 goto out;
421
422 /* Set data timeout counter value to max for now. */
423 HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
424
425 /* Enable interrupts. */
426 sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
427 SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
428 SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
429 SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
430 HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
431 HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
432 HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
433 HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
434
435 out:
436 return error;
437 }
438
439 static int
440 sdhc_host_reset(sdmmc_chipset_handle_t sch)
441 {
442 struct sdhc_host *hp = (struct sdhc_host *)sch;
443 int error;
444
445 mutex_enter(&hp->host_mtx);
446 error = sdhc_host_reset1(sch);
447 mutex_exit(&hp->host_mtx);
448
449 return error;
450 }
451
452 static uint32_t
453 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
454 {
455 struct sdhc_host *hp = (struct sdhc_host *)sch;
456
457 return hp->ocr;
458 }
459
460 static int
461 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
462 {
463 struct sdhc_host *hp = (struct sdhc_host *)sch;
464
465 return hp->maxblklen;
466 }
467
468 /*
469 * Return non-zero if the card is currently inserted.
470 */
471 static int
472 sdhc_card_detect(sdmmc_chipset_handle_t sch)
473 {
474 struct sdhc_host *hp = (struct sdhc_host *)sch;
475 int r;
476
477 mutex_enter(&hp->host_mtx);
478 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
479 mutex_exit(&hp->host_mtx);
480
481 if (r)
482 return 1;
483 return 0;
484 }
485
486 /*
487 * Return non-zero if the card is currently write-protected.
488 */
489 static int
490 sdhc_write_protect(sdmmc_chipset_handle_t sch)
491 {
492 struct sdhc_host *hp = (struct sdhc_host *)sch;
493 int r;
494
495 mutex_enter(&hp->host_mtx);
496 r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
497 mutex_exit(&hp->host_mtx);
498
499 if (!r)
500 return 1;
501 return 0;
502 }
503
504 /*
505 * Set or change SD bus voltage and enable or disable SD bus power.
506 * Return zero on success.
507 */
508 static int
509 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
510 {
511 struct sdhc_host *hp = (struct sdhc_host *)sch;
512 uint8_t vdd;
513 int error = 0;
514
515 mutex_enter(&hp->host_mtx);
516
517 /*
518 * Disable bus power before voltage change.
519 */
520 if (!(hp->sc->sc_flags & SDHC_FLAG_NO_PWR0))
521 HWRITE1(hp, SDHC_POWER_CTL, 0);
522
523 /* If power is disabled, reset the host and return now. */
524 if (ocr == 0) {
525 (void)sdhc_host_reset1(hp);
526 goto out;
527 }
528
529 /*
530 * Select the lowest voltage according to capabilities.
531 */
532 ocr &= hp->ocr;
533 if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V))
534 vdd = SDHC_VOLTAGE_1_8V;
535 else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
536 vdd = SDHC_VOLTAGE_3_0V;
537 else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
538 vdd = SDHC_VOLTAGE_3_3V;
539 else {
540 /* Unsupported voltage level requested. */
541 error = EINVAL;
542 goto out;
543 }
544
545 /*
546 * Enable bus power. Wait at least 1 ms (or 74 clocks) plus
547 * voltage ramp until power rises.
548 */
549 HWRITE1(hp, SDHC_POWER_CTL,
550 (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
551 sdmmc_delay(10000);
552
553 /*
554 * The host system may not power the bus due to battery low,
555 * etc. In that case, the host controller should clear the
556 * bus power bit.
557 */
558 if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
559 error = ENXIO;
560 goto out;
561 }
562
563 out:
564 mutex_exit(&hp->host_mtx);
565
566 return error;
567 }
568
569 /*
570 * Return the smallest possible base clock frequency divisor value
571 * for the CLOCK_CTL register to produce `freq' (KHz).
572 */
573 static int
574 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
575 {
576 int div;
577
578 if (hp->sc->sc_flags & SDHC_FLAG_HAVE_DVS) {
579 int dvs = (hp->clkbase + freq - 1) / freq;
580 div = 1;
581 for (div = 1; div <= 256; div <<= 1, dvs >>= 1) {
582 if (dvs <= 16) {
583 div <<= SDHC_SDCLK_DIV_SHIFT;
584 div |= (dvs - 1) << SDHC_SDCLK_DVS_SHIFT;
585 return div;
586 }
587 }
588 } else {
589 for (div = 1; div <= 256; div *= 2) {
590 if ((hp->clkbase / div) <= freq)
591 return (div / 2) << SDHC_SDCLK_DIV_SHIFT;
592 }
593 }
594
595 /* No divisor found. */
596 return -1;
597 }
598
599 /*
600 * Set or change SDCLK frequency or disable the SD clock.
601 * Return zero on success.
602 */
603 static int
604 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
605 {
606 struct sdhc_host *hp = (struct sdhc_host *)sch;
607 int div;
608 int timo;
609 int error = 0;
610 #ifdef DIAGNOSTIC
611 int ispresent;
612 #endif
613
614 #ifdef DIAGNOSTIC
615 mutex_enter(&hp->host_mtx);
616 ispresent = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
617 mutex_exit(&hp->host_mtx);
618
619 /* Must not stop the clock if commands are in progress. */
620 if (ispresent && sdhc_card_detect(hp))
621 printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
622 device_xname(hp->sc->sc_dev));
623 #endif
624
625 mutex_enter(&hp->host_mtx);
626
627 /*
628 * Stop SD clock before changing the frequency.
629 */
630 HWRITE2(hp, SDHC_CLOCK_CTL, 0);
631 if (freq == SDMMC_SDCLK_OFF)
632 goto out;
633
634 /*
635 * Set the minimum base clock frequency divisor.
636 */
637 if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
638 /* Invalid base clock frequency or `freq' value. */
639 error = EINVAL;
640 goto out;
641 }
642 HWRITE2(hp, SDHC_CLOCK_CTL, div);
643
644 /*
645 * Start internal clock. Wait 10ms for stabilization.
646 */
647 HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
648 for (timo = 1000; timo > 0; timo--) {
649 if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
650 break;
651 sdmmc_delay(10);
652 }
653 if (timo == 0) {
654 error = ETIMEDOUT;
655 goto out;
656 }
657
658 /*
659 * Enable SD clock.
660 */
661 HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
662
663 if (freq > 25000)
664 HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
665 else
666 HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
667
668 out:
669 mutex_exit(&hp->host_mtx);
670
671 return error;
672 }
673
674 static int
675 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
676 {
677 struct sdhc_host *hp = (struct sdhc_host *)sch;
678 int reg;
679
680 switch (width) {
681 case 1:
682 case 4:
683 break;
684
685 default:
686 DPRINTF(0,("%s: unsupported bus width (%d)\n",
687 HDEVNAME(hp), width));
688 return 1;
689 }
690
691 mutex_enter(&hp->host_mtx);
692 reg = HREAD1(hp, SDHC_HOST_CTL);
693 reg &= ~SDHC_4BIT_MODE;
694 if (width == 4)
695 reg |= SDHC_4BIT_MODE;
696 HWRITE1(hp, SDHC_HOST_CTL, reg);
697 mutex_exit(&hp->host_mtx);
698
699 return 0;
700 }
701
702 static int
703 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
704 {
705
706 /* Nothing ?? */
707 return 0;
708 }
709
710 static void
711 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
712 {
713 struct sdhc_host *hp = (struct sdhc_host *)sch;
714
715 mutex_enter(&hp->host_mtx);
716 if (enable) {
717 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
718 HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
719 } else {
720 HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
721 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
722 }
723 mutex_exit(&hp->host_mtx);
724 }
725
726 static void
727 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
728 {
729 struct sdhc_host *hp = (struct sdhc_host *)sch;
730
731 mutex_enter(&hp->host_mtx);
732 HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
733 mutex_exit(&hp->host_mtx);
734 }
735
736 static int
737 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
738 {
739 uint32_t state;
740 int timeout;
741
742 for (timeout = 10; timeout > 0; timeout--) {
743 if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
744 return 0;
745 sdmmc_delay(10000);
746 }
747 DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
748 value, state));
749 return ETIMEDOUT;
750 }
751
752 static void
753 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
754 {
755 struct sdhc_host *hp = (struct sdhc_host *)sch;
756 int error;
757
758 /*
759 * Start the MMC command, or mark `cmd' as failed and return.
760 */
761 error = sdhc_start_command(hp, cmd);
762 if (error) {
763 cmd->c_error = error;
764 goto out;
765 }
766
767 /*
768 * Wait until the command phase is done, or until the command
769 * is marked done for any other reason.
770 */
771 if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
772 cmd->c_error = ETIMEDOUT;
773 goto out;
774 }
775
776 /*
777 * The host controller removes bits [0:7] from the response
778 * data (CRC) and we pass the data up unchanged to the bus
779 * driver (without padding).
780 */
781 mutex_enter(&hp->host_mtx);
782 if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
783 if (ISSET(cmd->c_flags, SCF_RSP_136)) {
784 uint8_t *p = (uint8_t *)cmd->c_resp;
785 int i;
786
787 for (i = 0; i < 15; i++)
788 *p++ = HREAD1(hp, SDHC_RESPONSE + i);
789 } else {
790 cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
791 }
792 }
793 mutex_exit(&hp->host_mtx);
794 DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
795
796 /*
797 * If the command has data to transfer in any direction,
798 * execute the transfer now.
799 */
800 if (cmd->c_error == 0 && cmd->c_data != NULL)
801 sdhc_transfer_data(hp, cmd);
802
803 out:
804 mutex_enter(&hp->host_mtx);
805 /* Turn off the LED. */
806 HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
807 mutex_exit(&hp->host_mtx);
808 SET(cmd->c_flags, SCF_ITSDONE);
809
810 DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
811 cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
812 cmd->c_flags, cmd->c_error));
813 }
814
815 static int
816 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
817 {
818 uint16_t blksize = 0;
819 uint16_t blkcount = 0;
820 uint16_t mode;
821 uint16_t command;
822 int error;
823
824 DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x\n",
825 HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
826 cmd->c_datalen, cmd->c_flags));
827
828 /*
829 * The maximum block length for commands should be the minimum
830 * of the host buffer size and the card buffer size. (1.7.2)
831 */
832
833 /* Fragment the data into proper blocks. */
834 if (cmd->c_datalen > 0) {
835 blksize = MIN(cmd->c_datalen, cmd->c_blklen);
836 blkcount = cmd->c_datalen / blksize;
837 if (cmd->c_datalen % blksize > 0) {
838 /* XXX: Split this command. (1.7.4) */
839 aprint_error_dev(hp->sc->sc_dev,
840 "data not a multiple of %u bytes\n", blksize);
841 return EINVAL;
842 }
843 }
844
845 /* Check limit imposed by 9-bit block count. (1.7.2) */
846 if (blkcount > SDHC_BLOCK_COUNT_MAX) {
847 aprint_error_dev(hp->sc->sc_dev, "too much data\n");
848 return EINVAL;
849 }
850
851 /* Prepare transfer mode register value. (2.2.5) */
852 mode = 0;
853 if (ISSET(cmd->c_flags, SCF_CMD_READ))
854 mode |= SDHC_READ_MODE;
855 if (blkcount > 0) {
856 mode |= SDHC_BLOCK_COUNT_ENABLE;
857 if (blkcount > 1) {
858 mode |= SDHC_MULTI_BLOCK_MODE;
859 /* XXX only for memory commands? */
860 mode |= SDHC_AUTO_CMD12_ENABLE;
861 }
862 }
863 if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
864 if (cmd->c_dmamap->dm_nsegs == 1) {
865 mode |= SDHC_DMA_ENABLE;
866 } else {
867 cmd->c_dmamap = NULL;
868 }
869 }
870
871 /*
872 * Prepare command register value. (2.2.6)
873 */
874 command =
875 (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
876
877 if (ISSET(cmd->c_flags, SCF_RSP_CRC))
878 command |= SDHC_CRC_CHECK_ENABLE;
879 if (ISSET(cmd->c_flags, SCF_RSP_IDX))
880 command |= SDHC_INDEX_CHECK_ENABLE;
881 if (cmd->c_data != NULL)
882 command |= SDHC_DATA_PRESENT_SELECT;
883
884 if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
885 command |= SDHC_NO_RESPONSE;
886 else if (ISSET(cmd->c_flags, SCF_RSP_136))
887 command |= SDHC_RESP_LEN_136;
888 else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
889 command |= SDHC_RESP_LEN_48_CHK_BUSY;
890 else
891 command |= SDHC_RESP_LEN_48;
892
893 /* Wait until command and data inhibit bits are clear. (1.5) */
894 error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
895 if (error)
896 return error;
897
898 DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
899 HDEVNAME(hp), blksize, blkcount, mode, command));
900
901 mutex_enter(&hp->host_mtx);
902
903 /* Alert the user not to remove the card. */
904 HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
905
906 /* Set DMA start address. */
907 if (ISSET(mode, SDHC_DMA_ENABLE))
908 HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
909
910 /*
911 * Start a CPU data transfer. Writing to the high order byte
912 * of the SDHC_COMMAND register triggers the SD command. (1.5)
913 */
914 HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
915 HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
916 if (blkcount > 1)
917 HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
918 HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
919 HWRITE2(hp, SDHC_COMMAND, command);
920
921 mutex_exit(&hp->host_mtx);
922
923 return 0;
924 }
925
926 static void
927 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
928 {
929 int error;
930
931 DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
932 MMC_R1(cmd->c_resp), cmd->c_datalen));
933
934 #ifdef SDHC_DEBUG
935 /* XXX I forgot why I wanted to know when this happens :-( */
936 if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
937 ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
938 aprint_error_dev(hp->sc->sc_dev,
939 "CMD52/53 error response flags %#x\n",
940 MMC_R1(cmd->c_resp) & 0xff00);
941 }
942 #endif
943
944 if (cmd->c_dmamap != NULL)
945 error = sdhc_transfer_data_dma(hp, cmd);
946 else
947 error = sdhc_transfer_data_pio(hp, cmd);
948 if (error)
949 cmd->c_error = error;
950 SET(cmd->c_flags, SCF_ITSDONE);
951
952 DPRINTF(1,("%s: data transfer done (error=%d)\n",
953 HDEVNAME(hp), cmd->c_error));
954 }
955
956 static int
957 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
958 {
959 bus_dmamap_t dmap = cmd->c_dmamap;
960 uint16_t blklen = cmd->c_blklen;
961 uint16_t blkcnt = cmd->c_datalen / blklen;
962 uint16_t remain;
963 int error = 0;
964
965 for (;;) {
966 if (!sdhc_wait_intr(hp,
967 SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
968 SDHC_DMA_TIMEOUT)) {
969 error = ETIMEDOUT;
970 break;
971 }
972
973 /* single block mode */
974 if (blkcnt == 1)
975 break;
976
977 /* multi block mode */
978 remain = HREAD2(hp, SDHC_BLOCK_COUNT);
979 if (remain == 0)
980 break;
981
982 HWRITE4(hp, SDHC_DMA_ADDR,
983 dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
984 }
985
986 #if 0
987 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
988 SDHC_TRANSFER_TIMEOUT))
989 error = ETIMEDOUT;
990 #endif
991
992 return error;
993 }
994
995 static int
996 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
997 {
998 uint8_t *data = cmd->c_data;
999 int len, datalen;
1000 int mask;
1001 int error = 0;
1002
1003 mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
1004 SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
1005 datalen = cmd->c_datalen;
1006
1007 while (datalen > 0) {
1008 if (!sdhc_wait_intr(hp,
1009 SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY,
1010 SDHC_BUFFER_TIMEOUT)) {
1011 error = ETIMEDOUT;
1012 break;
1013 }
1014
1015 error = sdhc_wait_state(hp, mask, mask);
1016 if (error)
1017 break;
1018
1019 len = MIN(datalen, cmd->c_blklen);
1020 if (ISSET(cmd->c_flags, SCF_CMD_READ))
1021 sdhc_read_data_pio(hp, data, len);
1022 else
1023 sdhc_write_data_pio(hp, data, len);
1024
1025 data += len;
1026 datalen -= len;
1027 }
1028
1029 if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1030 SDHC_TRANSFER_TIMEOUT))
1031 error = ETIMEDOUT;
1032
1033 return error;
1034 }
1035
1036 static void
1037 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1038 {
1039
1040 if (((__uintptr_t)data & 3) == 0) {
1041 while (datalen > 3) {
1042 *(uint32_t *)data = HREAD4(hp, SDHC_DATA);
1043 data += 4;
1044 datalen -= 4;
1045 }
1046 if (datalen > 1) {
1047 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1048 data += 2;
1049 datalen -= 2;
1050 }
1051 if (datalen > 0) {
1052 *data = HREAD1(hp, SDHC_DATA);
1053 data += 1;
1054 datalen -= 1;
1055 }
1056 } else if (((__uintptr_t)data & 1) == 0) {
1057 while (datalen > 1) {
1058 *(uint16_t *)data = HREAD2(hp, SDHC_DATA);
1059 data += 2;
1060 datalen -= 2;
1061 }
1062 if (datalen > 0) {
1063 *data = HREAD1(hp, SDHC_DATA);
1064 data += 1;
1065 datalen -= 1;
1066 }
1067 } else {
1068 while (datalen > 0) {
1069 *data = HREAD1(hp, SDHC_DATA);
1070 data += 1;
1071 datalen -= 1;
1072 }
1073 }
1074 }
1075
1076 static void
1077 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, int datalen)
1078 {
1079
1080 if (((__uintptr_t)data & 3) == 0) {
1081 while (datalen > 3) {
1082 HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
1083 data += 4;
1084 datalen -= 4;
1085 }
1086 if (datalen > 1) {
1087 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1088 data += 2;
1089 datalen -= 2;
1090 }
1091 if (datalen > 0) {
1092 HWRITE1(hp, SDHC_DATA, *data);
1093 data += 1;
1094 datalen -= 1;
1095 }
1096 } else if (((__uintptr_t)data & 1) == 0) {
1097 while (datalen > 1) {
1098 HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
1099 data += 2;
1100 datalen -= 2;
1101 }
1102 if (datalen > 0) {
1103 HWRITE1(hp, SDHC_DATA, *data);
1104 data += 1;
1105 datalen -= 1;
1106 }
1107 } else {
1108 while (datalen > 0) {
1109 HWRITE1(hp, SDHC_DATA, *data);
1110 data += 1;
1111 datalen -= 1;
1112 }
1113 }
1114 }
1115
1116 /* Prepare for another command. */
1117 static int
1118 sdhc_soft_reset(struct sdhc_host *hp, int mask)
1119 {
1120 int timo;
1121
1122 DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
1123
1124 HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1125 for (timo = 10; timo > 0; timo--) {
1126 if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1127 break;
1128 sdmmc_delay(10000);
1129 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1130 }
1131 if (timo == 0) {
1132 DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
1133 HREAD1(hp, SDHC_SOFTWARE_RESET)));
1134 HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1135 return ETIMEDOUT;
1136 }
1137
1138 return 0;
1139 }
1140
1141 static int
1142 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
1143 {
1144 int status;
1145
1146 mask |= SDHC_ERROR_INTERRUPT;
1147
1148 mutex_enter(&hp->intr_mtx);
1149 status = hp->intr_status & mask;
1150 while (status == 0) {
1151 if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
1152 == EWOULDBLOCK) {
1153 status |= SDHC_ERROR_INTERRUPT;
1154 break;
1155 }
1156 status = hp->intr_status & mask;
1157 }
1158 hp->intr_status &= ~status;
1159
1160 DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
1161 hp->intr_error_status));
1162
1163 /* Command timeout has higher priority than command complete. */
1164 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1165 hp->intr_error_status = 0;
1166 (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1167 status = 0;
1168 }
1169 mutex_exit(&hp->intr_mtx);
1170
1171 return status;
1172 }
1173
1174 /*
1175 * Established by attachment driver at interrupt priority IPL_SDMMC.
1176 */
1177 int
1178 sdhc_intr(void *arg)
1179 {
1180 struct sdhc_softc *sc = (struct sdhc_softc *)arg;
1181 struct sdhc_host *hp;
1182 int host;
1183 int done = 0;
1184 uint16_t status;
1185 uint16_t error;
1186
1187 /* We got an interrupt, but we don't know from which slot. */
1188 for (host = 0; host < sc->sc_nhosts; host++) {
1189 hp = sc->sc_host[host];
1190 if (hp == NULL)
1191 continue;
1192
1193 /* Find out which interrupts are pending. */
1194 status = HREAD2(hp, SDHC_NINTR_STATUS);
1195 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1196 continue; /* no interrupt for us */
1197
1198 /* Acknowledge the interrupts we are about to handle. */
1199 HWRITE2(hp, SDHC_NINTR_STATUS, status);
1200 DPRINTF(2,("%s: interrupt status=%x\n", HDEVNAME(hp),
1201 status));
1202
1203 if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1204 continue;
1205
1206 /* Claim this interrupt. */
1207 done = 1;
1208
1209 /*
1210 * Service error interrupts.
1211 */
1212 if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1213 /* Acknowledge error interrupts. */
1214 error = HREAD2(hp, SDHC_EINTR_STATUS);
1215 HWRITE2(hp, SDHC_EINTR_STATUS, error);
1216 DPRINTF(2,("%s: error interrupt, status=%x\n",
1217 HDEVNAME(hp), error));
1218
1219 if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1220 SDHC_DATA_TIMEOUT_ERROR)) {
1221 hp->intr_error_status |= error;
1222 hp->intr_status |= status;
1223 cv_broadcast(&hp->intr_cv);
1224 }
1225 }
1226
1227 /*
1228 * Wake up the sdmmc event thread to scan for cards.
1229 */
1230 if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
1231 sdmmc_needs_discover(hp->sdmmc);
1232 #if 0
1233 HCLR2(hp, SDHC_NINTR_STATUS_EN,
1234 status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
1235 #endif
1236 }
1237
1238 /*
1239 * Wake up the blocking process to service command
1240 * related interrupt(s).
1241 */
1242 if (ISSET(status, SDHC_BUFFER_READ_READY|
1243 SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1244 SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
1245 hp->intr_status |= status;
1246 cv_broadcast(&hp->intr_cv);
1247 }
1248
1249 /*
1250 * Service SD card interrupts.
1251 */
1252 if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1253 DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
1254 HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1255 sdmmc_card_intr(hp->sdmmc);
1256 }
1257 }
1258
1259 return done;
1260 }
1261
1262 #ifdef SDHC_DEBUG
1263 void
1264 sdhc_dump_regs(struct sdhc_host *hp)
1265 {
1266
1267 printf("0x%02x PRESENT_STATE: %x\n", SDHC_PRESENT_STATE,
1268 HREAD4(hp, SDHC_PRESENT_STATE));
1269 printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL,
1270 HREAD1(hp, SDHC_POWER_CTL));
1271 printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS,
1272 HREAD2(hp, SDHC_NINTR_STATUS));
1273 printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS,
1274 HREAD2(hp, SDHC_EINTR_STATUS));
1275 printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN,
1276 HREAD2(hp, SDHC_NINTR_STATUS_EN));
1277 printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN,
1278 HREAD2(hp, SDHC_EINTR_STATUS_EN));
1279 printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN,
1280 HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1281 printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN,
1282 HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1283 printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES,
1284 HREAD4(hp, SDHC_CAPABILITIES));
1285 printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1286 HREAD4(hp, SDHC_MAX_CAPABILITIES));
1287 }
1288 #endif
1289