Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.9.6.3
      1 /*	$NetBSD: sdhc.c,v 1.9.6.3 2012/03/04 00:46:27 mrg Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.9.6.3 2012/03/04 00:46:27 mrg Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/kthread.h>
     36 #include <sys/malloc.h>
     37 #include <sys/systm.h>
     38 #include <sys/mutex.h>
     39 #include <sys/condvar.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	hz
     59 
     60 struct sdhc_host {
     61 	struct sdhc_softc *sc;		/* host controller device */
     62 
     63 	bus_space_tag_t iot;		/* host register set tag */
     64 	bus_space_handle_t ioh;		/* host register set handle */
     65 	bus_dma_tag_t dmat;		/* host DMA tag */
     66 
     67 	device_t sdmmc;			/* generic SD/MMC device */
     68 
     69 	struct kmutex host_mtx;
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	struct kmutex intr_mtx;
     80 	struct kcondvar intr_cv;
     81 
     82 	int specver;			/* spec. version */
     83 
     84 	uint32_t flags;			/* flags for this host */
     85 #define SHF_USE_DMA		0x0001
     86 #define SHF_USE_4BIT_MODE	0x0002
     87 #define SHF_USE_8BIT_MODE	0x0004
     88 };
     89 
     90 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
     91 
     92 static uint8_t
     93 hread1(struct sdhc_host *hp, bus_size_t reg)
     94 {
     95 
     96 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
     97 		return bus_space_read_1(hp->iot, hp->ioh, reg);
     98 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
     99 }
    100 
    101 static uint16_t
    102 hread2(struct sdhc_host *hp, bus_size_t reg)
    103 {
    104 
    105 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    106 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    107 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    108 }
    109 
    110 #define HREAD1(hp, reg)		hread1(hp, reg)
    111 #define HREAD2(hp, reg)		hread2(hp, reg)
    112 #define HREAD4(hp, reg)		\
    113 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    114 
    115 
    116 static void
    117 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    118 {
    119 
    120 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    121 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    122 	} else {
    123 		const size_t shift = 8 * (o & 3);
    124 		o &= -4;
    125 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    126 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    127 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    128 	}
    129 }
    130 
    131 static void
    132 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    133 {
    134 
    135 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    136 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    137 	} else {
    138 		const size_t shift = 8 * (o & 2);
    139 		o &= -4;
    140 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    141 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    142 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    143 	}
    144 }
    145 
    146 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    147 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    148 #define HWRITE4(hp, reg, val)						\
    149 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    150 
    151 #define HCLR1(hp, reg, bits)						\
    152 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    153 #define HCLR2(hp, reg, bits)						\
    154 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    155 #define HCLR4(hp, reg, bits)						\
    156 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    157 #define HSET1(hp, reg, bits)						\
    158 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    159 #define HSET2(hp, reg, bits)						\
    160 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    161 #define HSET4(hp, reg, bits)						\
    162 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    163 
    164 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    165 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    166 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    167 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    168 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    169 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    170 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    171 static int	sdhc_bus_clock(sdmmc_chipset_handle_t, int);
    172 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    173 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    174 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    175 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    176 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    177 		    struct sdmmc_command *);
    178 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    179 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    180 static int	sdhc_soft_reset(struct sdhc_host *, int);
    181 static int	sdhc_wait_intr(struct sdhc_host *, int, int);
    182 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    183 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    184 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    185 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    186 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    187 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    188 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    189 
    190 
    191 static struct sdmmc_chip_functions sdhc_functions = {
    192 	/* host controller reset */
    193 	sdhc_host_reset,
    194 
    195 	/* host controller capabilities */
    196 	sdhc_host_ocr,
    197 	sdhc_host_maxblklen,
    198 
    199 	/* card detection */
    200 	sdhc_card_detect,
    201 
    202 	/* write protect */
    203 	sdhc_write_protect,
    204 
    205 	/* bus power, clock frequency and width */
    206 	sdhc_bus_power,
    207 	sdhc_bus_clock,
    208 	sdhc_bus_width,
    209 	sdhc_bus_rod,
    210 
    211 	/* command execution */
    212 	sdhc_exec_command,
    213 
    214 	/* card interrupt */
    215 	sdhc_card_enable_intr,
    216 	sdhc_card_intr_ack
    217 };
    218 
    219 /*
    220  * Called by attachment driver.  For each SD card slot there is one SD
    221  * host controller standard register set. (1.3)
    222  */
    223 int
    224 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    225     bus_space_handle_t ioh, bus_size_t iosize)
    226 {
    227 	struct sdmmcbus_attach_args saa;
    228 	struct sdhc_host *hp;
    229 	uint32_t caps;
    230 	uint16_t sdhcver;
    231 
    232 	sdhcver = bus_space_read_2(iot, ioh, SDHC_HOST_CTL_VERSION);
    233 	aprint_normal_dev(sc->sc_dev, "SD Host Specification ");
    234 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    235 	case SDHC_SPEC_VERS_100:
    236 		aprint_normal("1.0");
    237 		break;
    238 
    239 	case SDHC_SPEC_VERS_200:
    240 		aprint_normal("2.0");
    241 		break;
    242 
    243 	case SDHC_SPEC_VERS_300:
    244 		aprint_normal("3.0");
    245 		break;
    246 
    247 	default:
    248 		aprint_normal("unknown version(0x%x)",
    249 		    SDHC_SPEC_VERSION(sdhcver));
    250 		break;
    251 	}
    252 	aprint_normal(", rev.%u\n", SDHC_VENDOR_VERSION(sdhcver));
    253 
    254 	/* Allocate one more host structure. */
    255 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    256 	if (hp == NULL) {
    257 		aprint_error_dev(sc->sc_dev,
    258 		    "couldn't alloc memory (sdhc host)\n");
    259 		goto err1;
    260 	}
    261 	sc->sc_host[sc->sc_nhosts++] = hp;
    262 
    263 	/* Fill in the new host structure. */
    264 	hp->sc = sc;
    265 	hp->iot = iot;
    266 	hp->ioh = ioh;
    267 	hp->dmat = sc->sc_dmat;
    268 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    269 
    270 	mutex_init(&hp->host_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    271 	mutex_init(&hp->intr_mtx, MUTEX_DEFAULT, IPL_SDMMC);
    272 	cv_init(&hp->intr_cv, "sdhcintr");
    273 
    274 	/*
    275 	 * Reset the host controller and enable interrupts.
    276 	 */
    277 	(void)sdhc_host_reset(hp);
    278 
    279 	/* Determine host capabilities. */
    280 	mutex_enter(&hp->host_mtx);
    281 	caps = HREAD4(hp, SDHC_CAPABILITIES);
    282 	mutex_exit(&hp->host_mtx);
    283 
    284 #if notyet
    285 	/* Use DMA if the host system and the controller support it. */
    286 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA)
    287 	 || ((ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA)
    288 	   && ISSET(caps, SDHC_DMA_SUPPORT)))) {
    289 		SET(hp->flags, SHF_USE_DMA);
    290 		aprint_normal_dev(sc->sc_dev, "using DMA transfer\n");
    291 	}
    292 #endif
    293 
    294 	/*
    295 	 * Determine the base clock frequency. (2.2.24)
    296 	 */
    297 	hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    298 	if (hp->clkbase == 0) {
    299 		if (sc->sc_clkbase == 0) {
    300 			/* The attachment driver must tell us. */
    301 			aprint_error_dev(sc->sc_dev,
    302 			    "unknown base clock frequency\n");
    303 			goto err;
    304 		}
    305 		hp->clkbase = sc->sc_clkbase;
    306 	}
    307 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    308 		/* SDHC 1.0 supports only 10-63 MHz. */
    309 		aprint_error_dev(sc->sc_dev,
    310 		    "base clock frequency out of range: %u MHz\n",
    311 		    hp->clkbase / 1000);
    312 		goto err;
    313 	}
    314 	DPRINTF(1,("%s: base clock frequency %u MHz\n",
    315 	    device_xname(sc->sc_dev), hp->clkbase / 1000));
    316 
    317 	/*
    318 	 * XXX Set the data timeout counter value according to
    319 	 * capabilities. (2.2.15)
    320 	 */
    321 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    322 #if 0
    323 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    324 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    325 #endif
    326 
    327 	/*
    328 	 * Determine SD bus voltage levels supported by the controller.
    329 	 */
    330 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    331 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    332 	}
    333 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    334 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    335 	}
    336 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    337 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    338 	}
    339 
    340 	/*
    341 	 * Determine the maximum block length supported by the host
    342 	 * controller. (2.2.24)
    343 	 */
    344 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    345 	case SDHC_MAX_BLK_LEN_512:
    346 		hp->maxblklen = 512;
    347 		break;
    348 
    349 	case SDHC_MAX_BLK_LEN_1024:
    350 		hp->maxblklen = 1024;
    351 		break;
    352 
    353 	case SDHC_MAX_BLK_LEN_2048:
    354 		hp->maxblklen = 2048;
    355 		break;
    356 
    357 	case SDHC_MAX_BLK_LEN_4096:
    358 		hp->maxblklen = 4096;
    359 		break;
    360 
    361 	default:
    362 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    363 		goto err;
    364 	}
    365 	DPRINTF(1, ("%s: max block length %u byte%s\n",
    366 	    device_xname(sc->sc_dev), hp->maxblklen,
    367 	    hp->maxblklen > 1 ? "s" : ""));
    368 
    369 	/*
    370 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    371 	 * not invoke any chipset functions before it is attached.)
    372 	 */
    373 	memset(&saa, 0, sizeof(saa));
    374 	saa.saa_busname = "sdmmc";
    375 	saa.saa_sct = &sdhc_functions;
    376 	saa.saa_sch = hp;
    377 	saa.saa_dmat = hp->dmat;
    378 	saa.saa_clkmin = hp->clkbase / 256;
    379 	saa.saa_clkmax = hp->clkbase;
    380 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    381 		saa.saa_clkmin /= 2046;
    382 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    383 		saa.saa_clkmin /= 16;
    384 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    385 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    386 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    387 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    388 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    389 #if notyet
    390 	if (ISSET(hp->flags, SHF_USE_DMA))
    391 		saa.saa_caps |= SMC_CAPS_DMA;
    392 #endif
    393 	hp->sdmmc = config_found(sc->sc_dev, &saa, NULL);
    394 
    395 	return 0;
    396 
    397 err:
    398 	cv_destroy(&hp->intr_cv);
    399 	mutex_destroy(&hp->intr_mtx);
    400 	mutex_destroy(&hp->host_mtx);
    401 	free(hp, M_DEVBUF);
    402 	sc->sc_host[--sc->sc_nhosts] = NULL;
    403 err1:
    404 	return 1;
    405 }
    406 
    407 int
    408 sdhc_detach(device_t dev, int flags)
    409 {
    410 	struct sdhc_host *hp = (struct sdhc_host *)dev;
    411 	struct sdhc_softc *sc = hp->sc;
    412 	int rv = 0;
    413 
    414 	if (hp->sdmmc)
    415 		rv = config_detach(hp->sdmmc, flags);
    416 
    417 	cv_destroy(&hp->intr_cv);
    418 	mutex_destroy(&hp->intr_mtx);
    419 	mutex_destroy(&hp->host_mtx);
    420 	free(hp, M_DEVBUF);
    421 	sc->sc_host[--sc->sc_nhosts] = NULL;
    422 
    423 	return rv;
    424 }
    425 
    426 bool
    427 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    428 {
    429 	struct sdhc_softc *sc = device_private(dev);
    430 	struct sdhc_host *hp;
    431 	size_t i;
    432 
    433 	/* XXX poll for command completion or suspend command
    434 	 * in progress */
    435 
    436 	/* Save the host controller state. */
    437 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    438 		hp = sc->sc_host[n];
    439 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    440 			for (i = 0; i < sizeof hp->regs; i += 4) {
    441 				uint32_t v = HREAD4(hp, i);
    442 				hp->regs[i + 0] = (v >> 0);
    443 				hp->regs[i + 1] = (v >> 8);
    444 				hp->regs[i + 2] = (v >> 16);
    445 				hp->regs[i + 3] = (v >> 24);
    446 			}
    447 		} else {
    448 			for (i = 0; i < sizeof hp->regs; i++) {
    449 				hp->regs[i] = HREAD1(hp, i);
    450 			}
    451 		}
    452 	}
    453 	return true;
    454 }
    455 
    456 bool
    457 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    458 {
    459 	struct sdhc_softc *sc = device_private(dev);
    460 	struct sdhc_host *hp;
    461 	size_t i;
    462 
    463 	/* Restore the host controller state. */
    464 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    465 		hp = sc->sc_host[n];
    466 		(void)sdhc_host_reset(hp);
    467 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    468 			for (i = 0; i < sizeof hp->regs; i += 4) {
    469 				HWRITE4(hp, i,
    470 				    (hp->regs[i + 0] << 0)
    471 				    | (hp->regs[i + 1] << 8)
    472 				    | (hp->regs[i + 2] << 16)
    473 				    | (hp->regs[i + 3] << 24));
    474 			}
    475 		} else {
    476 			for (i = 0; i < sizeof hp->regs; i++) {
    477 				HWRITE1(hp, i, hp->regs[i]);
    478 			}
    479 		}
    480 	}
    481 	return true;
    482 }
    483 
    484 bool
    485 sdhc_shutdown(device_t dev, int flags)
    486 {
    487 	struct sdhc_softc *sc = device_private(dev);
    488 	struct sdhc_host *hp;
    489 
    490 	/* XXX chip locks up if we don't disable it before reboot. */
    491 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    492 		hp = sc->sc_host[i];
    493 		(void)sdhc_host_reset(hp);
    494 	}
    495 	return true;
    496 }
    497 
    498 /*
    499  * Reset the host controller.  Called during initialization, when
    500  * cards are removed, upon resume, and during error recovery.
    501  */
    502 static int
    503 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    504 {
    505 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    506 	uint32_t sdhcimask;
    507 	int error;
    508 
    509 	/* Don't lock. */
    510 
    511 	/* Disable all interrupts. */
    512 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    513 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    514 	} else {
    515 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    516 	}
    517 
    518 	/*
    519 	 * Reset the entire host controller and wait up to 100ms for
    520 	 * the controller to clear the reset bit.
    521 	 */
    522 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    523 	if (error)
    524 		goto out;
    525 
    526 	/* Set data timeout counter value to max for now. */
    527 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    528 #if 0
    529 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    530 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    531 #endif
    532 
    533 	/* Enable interrupts. */
    534 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    535 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    536 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    537 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    538 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    539 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    540 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    541 		sdhcimask ^=
    542 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    543 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    544 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    545 	} else {
    546 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    547 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    548 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    549 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    550 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    551 	}
    552 
    553 out:
    554 	return error;
    555 }
    556 
    557 static int
    558 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    559 {
    560 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    561 	int error;
    562 
    563 	mutex_enter(&hp->host_mtx);
    564 	error = sdhc_host_reset1(sch);
    565 	mutex_exit(&hp->host_mtx);
    566 
    567 	return error;
    568 }
    569 
    570 static uint32_t
    571 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    572 {
    573 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    574 
    575 	return hp->ocr;
    576 }
    577 
    578 static int
    579 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    580 {
    581 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    582 
    583 	return hp->maxblklen;
    584 }
    585 
    586 /*
    587  * Return non-zero if the card is currently inserted.
    588  */
    589 static int
    590 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    591 {
    592 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    593 	int r;
    594 
    595 	mutex_enter(&hp->host_mtx);
    596 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    597 	mutex_exit(&hp->host_mtx);
    598 
    599 	return r ? 1 : 0;
    600 }
    601 
    602 /*
    603  * Return non-zero if the card is currently write-protected.
    604  */
    605 static int
    606 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    607 {
    608 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    609 	int r;
    610 
    611 	mutex_enter(&hp->host_mtx);
    612 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    613 	mutex_exit(&hp->host_mtx);
    614 
    615 	return r ? 0 : 1;
    616 }
    617 
    618 /*
    619  * Set or change SD bus voltage and enable or disable SD bus power.
    620  * Return zero on success.
    621  */
    622 static int
    623 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    624 {
    625 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    626 	uint8_t vdd;
    627 	int error = 0;
    628 
    629 	mutex_enter(&hp->host_mtx);
    630 
    631 	/*
    632 	 * Disable bus power before voltage change.
    633 	 */
    634 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    635 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    636 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    637 
    638 	/* If power is disabled, reset the host and return now. */
    639 	if (ocr == 0) {
    640 		(void)sdhc_host_reset1(hp);
    641 		goto out;
    642 	}
    643 
    644 	/*
    645 	 * Select the lowest voltage according to capabilities.
    646 	 */
    647 	ocr &= hp->ocr;
    648 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    649 		vdd = SDHC_VOLTAGE_1_8V;
    650 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    651 		vdd = SDHC_VOLTAGE_3_0V;
    652 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    653 		vdd = SDHC_VOLTAGE_3_3V;
    654 	} else {
    655 		/* Unsupported voltage level requested. */
    656 		error = EINVAL;
    657 		goto out;
    658 	}
    659 
    660 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    661 		/*
    662 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    663 		 * voltage ramp until power rises.
    664 		 */
    665 		HWRITE1(hp, SDHC_POWER_CTL,
    666 		    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    667 		sdmmc_delay(10000);
    668 
    669 		/*
    670 		 * The host system may not power the bus due to battery low,
    671 		 * etc.  In that case, the host controller should clear the
    672 		 * bus power bit.
    673 		 */
    674 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    675 			error = ENXIO;
    676 			goto out;
    677 		}
    678 	}
    679 
    680 out:
    681 	mutex_exit(&hp->host_mtx);
    682 
    683 	return error;
    684 }
    685 
    686 /*
    687  * Return the smallest possible base clock frequency divisor value
    688  * for the CLOCK_CTL register to produce `freq' (KHz).
    689  */
    690 static bool
    691 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    692 {
    693 	u_int div;
    694 
    695 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    696 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    697 			if ((hp->clkbase / div) <= freq) {
    698 				*divp = SDHC_SDCLK_CGM
    699 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    700 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    701 				return true;
    702 			}
    703 		}
    704 		/* No divisor found. */
    705 		return false;
    706 	}
    707 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    708 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    709 		u_int roundup = dvs & 1;
    710 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    711 			if (dvs + roundup <= 16) {
    712 				dvs += roundup - 1;
    713 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    714 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    715 				DPRINTF(2,
    716 				    ("%s: divisor for freq %u is %u * %u\n",
    717 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    718 				return true;
    719 			}
    720 			/*
    721 			 * If we drop bits, we need to round up the divisor.
    722 			 */
    723 			roundup |= dvs & 1;
    724 		}
    725 		panic("%s: can't find divisor for freq %u", HDEVNAME(hp), freq);
    726 	} else {
    727 		for (div = 1; div <= 256; div *= 2) {
    728 			if ((hp->clkbase / div) <= freq) {
    729 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
    730 				return true;
    731 			}
    732 		}
    733 	}
    734 	/* No divisor found. */
    735 	return false;
    736 }
    737 
    738 /*
    739  * Set or change SDCLK frequency or disable the SD clock.
    740  * Return zero on success.
    741  */
    742 static int
    743 sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
    744 {
    745 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    746 	u_int div;
    747 	u_int timo;
    748 	int error = 0;
    749 #ifdef DIAGNOSTIC
    750 	bool present;
    751 
    752 	mutex_enter(&hp->host_mtx);
    753 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
    754 	mutex_exit(&hp->host_mtx);
    755 
    756 	/* Must not stop the clock if commands are in progress. */
    757 	if (present && sdhc_card_detect(hp)) {
    758 		printf("%s: sdhc_sdclk_frequency_select: command in progress\n",
    759 		    device_xname(hp->sc->sc_dev));
    760 	}
    761 #endif
    762 
    763 	mutex_enter(&hp->host_mtx);
    764 
    765 	/*
    766 	 * Stop SD clock before changing the frequency.
    767 	 */
    768 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    769 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
    770 		if (freq == SDMMC_SDCLK_OFF) {
    771 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
    772 			goto out;
    773 		}
    774 	} else {
    775 		HWRITE2(hp, SDHC_CLOCK_CTL, 0);
    776 		if (freq == SDMMC_SDCLK_OFF)
    777 			goto out;
    778 	}
    779 
    780 	/*
    781 	 * Set the minimum base clock frequency divisor.
    782 	 */
    783 	if (!sdhc_clock_divisor(hp, freq, &div)) {
    784 		/* Invalid base clock frequency or `freq' value. */
    785 		error = EINVAL;
    786 		goto out;
    787 	}
    788 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    789 		HWRITE4(hp, SDHC_CLOCK_CTL,
    790 		    div | (SDHC_TIMEOUT_MAX << 16));
    791 	} else {
    792 		HWRITE2(hp, SDHC_CLOCK_CTL, div);
    793 	}
    794 
    795 	/*
    796 	 * Start internal clock.  Wait 10ms for stabilization.
    797 	 */
    798 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    799 		sdmmc_delay(10000);
    800 		HSET4(hp, SDHC_CLOCK_CTL,
    801 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
    802 	} else {
    803 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
    804 		for (timo = 1000; timo > 0; timo--) {
    805 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
    806 			    SDHC_INTCLK_STABLE))
    807 				break;
    808 			sdmmc_delay(10);
    809 		}
    810 		if (timo == 0) {
    811 			error = ETIMEDOUT;
    812 			goto out;
    813 		}
    814 	}
    815 
    816 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    817 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
    818 		/*
    819 		 * Sending 80 clocks at 400kHz takes 200us.
    820 		 * So delay for that time + slop and then
    821 		 * check a few times for completion.
    822 		 */
    823 		sdmmc_delay(210);
    824 		for (timo = 10; timo > 0; timo--) {
    825 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
    826 			    SDHC_INIT_ACTIVE))
    827 				break;
    828 			sdmmc_delay(10);
    829 		}
    830 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
    831 
    832 		/*
    833 		 * Enable SD clock.
    834 		 */
    835 		HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    836 	} else {
    837 		/*
    838 		 * Enable SD clock.
    839 		 */
    840 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
    841 
    842 		if (freq > 25000)
    843 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    844 		else
    845 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
    846 	}
    847 
    848 out:
    849 	mutex_exit(&hp->host_mtx);
    850 
    851 	return error;
    852 }
    853 
    854 static int
    855 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
    856 {
    857 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    858 	int reg;
    859 
    860 	switch (width) {
    861 	case 1:
    862 	case 4:
    863 		break;
    864 
    865 	case 8:
    866 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    867 			break;
    868 		/* FALLTHROUGH */
    869 	default:
    870 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
    871 		    HDEVNAME(hp), width));
    872 		return 1;
    873 	}
    874 
    875 	mutex_enter(&hp->host_mtx);
    876 	reg = HREAD1(hp, SDHC_HOST_CTL);
    877 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    878 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
    879 		if (width == 4)
    880 			reg |= SDHC_4BIT_MODE;
    881 		else if (width == 8)
    882 			reg |= SDHC_ESDHC_8BIT_MODE;
    883 	} else {
    884 		reg &= ~SDHC_4BIT_MODE;
    885 		if (width == 4)
    886 			reg |= SDHC_4BIT_MODE;
    887 	}
    888 	HWRITE1(hp, SDHC_HOST_CTL, reg);
    889 	mutex_exit(&hp->host_mtx);
    890 
    891 	return 0;
    892 }
    893 
    894 static int
    895 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
    896 {
    897 
    898 	/* Nothing ?? */
    899 	return 0;
    900 }
    901 
    902 static void
    903 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
    904 {
    905 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    906 
    907 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    908 		mutex_enter(&hp->host_mtx);
    909 		if (enable) {
    910 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    911 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    912 		} else {
    913 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
    914 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    915 		}
    916 		mutex_exit(&hp->host_mtx);
    917 	}
    918 }
    919 
    920 static void
    921 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
    922 {
    923 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    924 
    925 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    926 		mutex_enter(&hp->host_mtx);
    927 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
    928 		mutex_exit(&hp->host_mtx);
    929 	}
    930 }
    931 
    932 static int
    933 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
    934 {
    935 	uint32_t state;
    936 	int timeout;
    937 
    938 	for (timeout = 10; timeout > 0; timeout--) {
    939 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
    940 			return 0;
    941 		sdmmc_delay(10000);
    942 	}
    943 	DPRINTF(0,("%s: timeout waiting for %x (state=%x)\n", HDEVNAME(hp),
    944 	    value, state));
    945 	return ETIMEDOUT;
    946 }
    947 
    948 static void
    949 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
    950 {
    951 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    952 	int error;
    953 
    954 #if 0
    955 	if (cmd->c_data) {
    956 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
    957 		if (ISSET(hp->flags, SHF_USE_DMA)) {
    958 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    959 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
    960 		} else {
    961 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
    962 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
    963 		}
    964 	}
    965 #endif
    966 
    967 	/*
    968 	 * Start the MMC command, or mark `cmd' as failed and return.
    969 	 */
    970 	error = sdhc_start_command(hp, cmd);
    971 	if (error) {
    972 		cmd->c_error = error;
    973 		goto out;
    974 	}
    975 
    976 	/*
    977 	 * Wait until the command phase is done, or until the command
    978 	 * is marked done for any other reason.
    979 	 */
    980 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) {
    981 		cmd->c_error = ETIMEDOUT;
    982 		goto out;
    983 	}
    984 
    985 	/*
    986 	 * The host controller removes bits [0:7] from the response
    987 	 * data (CRC) and we pass the data up unchanged to the bus
    988 	 * driver (without padding).
    989 	 */
    990 	mutex_enter(&hp->host_mtx);
    991 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
    992 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
    993 			uint8_t *p = (uint8_t *)cmd->c_resp;
    994 			int i;
    995 
    996 			for (i = 0; i < 15; i++)
    997 				*p++ = HREAD1(hp, SDHC_RESPONSE + i);
    998 		} else {
    999 			cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
   1000 		}
   1001 	}
   1002 	mutex_exit(&hp->host_mtx);
   1003 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1004 
   1005 	/*
   1006 	 * If the command has data to transfer in any direction,
   1007 	 * execute the transfer now.
   1008 	 */
   1009 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1010 		sdhc_transfer_data(hp, cmd);
   1011 
   1012 out:
   1013 #if 0
   1014 	if (cmd->c_dmamap != NULL && cmd->c_error == 0
   1015 	    && ISSET(hp->flags, SHF_USE_DMA)
   1016 	    && ISSET(cmd->c_flags, SCF_CMD_READ) {
   1017 		if (((uintptr_t)cmd->c_data & PAGE_MASK) + cmd->c_datalen > PAGE_SIZE) {
   1018 			memcpy(cmd->c_data,
   1019 			    (void *)hp->sc->dma_map->dm_segs[0].ds_addr,
   1020 			    cmd->c_datalen);
   1021 		}
   1022 		bus_dmamap_unload(hp->sc->dt, hp->sc->dma_map);
   1023 	}
   1024 #endif
   1025 
   1026 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1027 		mutex_enter(&hp->host_mtx);
   1028 		/* Turn off the LED. */
   1029 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1030 		mutex_exit(&hp->host_mtx);
   1031 	}
   1032 	SET(cmd->c_flags, SCF_ITSDONE);
   1033 
   1034 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1035 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1036 	    cmd->c_flags, cmd->c_error));
   1037 }
   1038 
   1039 static int
   1040 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1041 {
   1042 	struct sdhc_softc * const sc = hp->sc;
   1043 	uint16_t blksize = 0;
   1044 	uint16_t blkcount = 0;
   1045 	uint16_t mode;
   1046 	uint16_t command;
   1047 	int error;
   1048 
   1049 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1050 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1051 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1052 
   1053 	/*
   1054 	 * The maximum block length for commands should be the minimum
   1055 	 * of the host buffer size and the card buffer size. (1.7.2)
   1056 	 */
   1057 
   1058 	/* Fragment the data into proper blocks. */
   1059 	if (cmd->c_datalen > 0) {
   1060 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1061 		blkcount = cmd->c_datalen / blksize;
   1062 		if (cmd->c_datalen % blksize > 0) {
   1063 			/* XXX: Split this command. (1.7.4) */
   1064 			aprint_error_dev(sc->sc_dev,
   1065 			    "data not a multiple of %u bytes\n", blksize);
   1066 			return EINVAL;
   1067 		}
   1068 	}
   1069 
   1070 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1071 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1072 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1073 		return EINVAL;
   1074 	}
   1075 
   1076 	/* Prepare transfer mode register value. (2.2.5) */
   1077 	mode = 0;
   1078 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1079 		mode |= SDHC_READ_MODE;
   1080 	if (blkcount > 0) {
   1081 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1082 		if (blkcount > 1) {
   1083 			mode |= SDHC_MULTI_BLOCK_MODE;
   1084 			/* XXX only for memory commands? */
   1085 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1086 		}
   1087 	}
   1088 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0) {
   1089 		if (cmd->c_dmamap->dm_nsegs == 1) {
   1090 			mode |= SDHC_DMA_ENABLE;
   1091 		} else {
   1092 			cmd->c_dmamap = NULL;
   1093 		}
   1094 	}
   1095 
   1096 	/*
   1097 	 * Prepare command register value. (2.2.6)
   1098 	 */
   1099 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1100 
   1101 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1102 		command |= SDHC_CRC_CHECK_ENABLE;
   1103 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1104 		command |= SDHC_INDEX_CHECK_ENABLE;
   1105 	if (cmd->c_data != NULL)
   1106 		command |= SDHC_DATA_PRESENT_SELECT;
   1107 
   1108 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1109 		command |= SDHC_NO_RESPONSE;
   1110 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1111 		command |= SDHC_RESP_LEN_136;
   1112 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1113 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1114 	else
   1115 		command |= SDHC_RESP_LEN_48;
   1116 
   1117 	/* Wait until command and data inhibit bits are clear. (1.5) */
   1118 	error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0);
   1119 	if (error)
   1120 		return error;
   1121 
   1122 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1123 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1124 
   1125 	mutex_enter(&hp->host_mtx);
   1126 
   1127 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1128 		/* Alert the user not to remove the card. */
   1129 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1130 	}
   1131 
   1132 	/* Set DMA start address. */
   1133 	if (ISSET(mode, SDHC_DMA_ENABLE))
   1134 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1135 
   1136 	/*
   1137 	 * Start a CPU data transfer.  Writing to the high order byte
   1138 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1139 	 */
   1140 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1141 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1142 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1143 		HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1144 	} else {
   1145 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1146 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1147 		if (blkcount > 1)
   1148 			HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1149 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1150 		HWRITE2(hp, SDHC_COMMAND, command);
   1151 	}
   1152 
   1153 	mutex_exit(&hp->host_mtx);
   1154 
   1155 	return 0;
   1156 }
   1157 
   1158 static void
   1159 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1160 {
   1161 	int error;
   1162 
   1163 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1164 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1165 
   1166 #ifdef SDHC_DEBUG
   1167 	/* XXX I forgot why I wanted to know when this happens :-( */
   1168 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1169 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1170 		aprint_error_dev(hp->sc->sc_dev,
   1171 		    "CMD52/53 error response flags %#x\n",
   1172 		    MMC_R1(cmd->c_resp) & 0xff00);
   1173 	}
   1174 #endif
   1175 
   1176 	if (cmd->c_dmamap != NULL)
   1177 		error = sdhc_transfer_data_dma(hp, cmd);
   1178 	else
   1179 		error = sdhc_transfer_data_pio(hp, cmd);
   1180 	if (error)
   1181 		cmd->c_error = error;
   1182 	SET(cmd->c_flags, SCF_ITSDONE);
   1183 
   1184 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1185 	    HDEVNAME(hp), cmd->c_error));
   1186 }
   1187 
   1188 static int
   1189 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1190 {
   1191 	bus_dmamap_t dmap = cmd->c_dmamap;
   1192 	uint16_t blklen = cmd->c_blklen;
   1193 	uint16_t blkcnt = cmd->c_datalen / blklen;
   1194 	uint16_t remain;
   1195 	int error = 0;
   1196 
   1197 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1198 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1199 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1200 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1201 
   1202 	for (;;) {
   1203 		if (!sdhc_wait_intr(hp,
   1204 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1205 		    SDHC_DMA_TIMEOUT)) {
   1206 			error = ETIMEDOUT;
   1207 			break;
   1208 		}
   1209 
   1210 		/* single block mode */
   1211 		if (blkcnt == 1)
   1212 			break;
   1213 
   1214 		/* multi block mode */
   1215 		remain = HREAD2(hp, SDHC_BLOCK_COUNT);
   1216 		if (remain == 0)
   1217 			break;
   1218 
   1219 		HWRITE4(hp, SDHC_DMA_ADDR,
   1220 		    dmap->dm_segs[0].ds_addr + (blkcnt - remain) * blklen);
   1221 	}
   1222 
   1223 #if 0
   1224 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1225 	    SDHC_TRANSFER_TIMEOUT))
   1226 		error = ETIMEDOUT;
   1227 #endif
   1228 
   1229 	return error;
   1230 }
   1231 
   1232 static int
   1233 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1234 {
   1235 	uint8_t *data = cmd->c_data;
   1236 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1237 	u_int len, datalen;
   1238 	u_int imask;
   1239 	u_int pmask;
   1240 	int error = 0;
   1241 
   1242 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1243 		imask = SDHC_BUFFER_READ_READY;
   1244 		pmask = SDHC_BUFFER_READ_ENABLE;
   1245 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1246 			pio_func = esdhc_read_data_pio;
   1247 		} else {
   1248 			pio_func = sdhc_read_data_pio;
   1249 		}
   1250 	} else {
   1251 		imask = SDHC_BUFFER_WRITE_READY;
   1252 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1253 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1254 			pio_func = esdhc_write_data_pio;
   1255 		} else {
   1256 			pio_func = sdhc_write_data_pio;
   1257 		}
   1258 	}
   1259 	datalen = cmd->c_datalen;
   1260 
   1261 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1262 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1263 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1264 
   1265 	while (datalen > 0) {
   1266 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), imask)) {
   1267 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1268 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1269 			} else {
   1270 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1271 			}
   1272 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT)) {
   1273 				error = ETIMEDOUT;
   1274 				break;
   1275 			}
   1276 
   1277 			error = sdhc_wait_state(hp, pmask, pmask);
   1278 			if (error)
   1279 				break;
   1280 		}
   1281 
   1282 		len = MIN(datalen, cmd->c_blklen);
   1283 		(*pio_func)(hp, data, len);
   1284 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1285 		    HDEVNAME(hp), len, data));
   1286 
   1287 		data += len;
   1288 		datalen -= len;
   1289 	}
   1290 
   1291 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1292 	    SDHC_TRANSFER_TIMEOUT))
   1293 		error = ETIMEDOUT;
   1294 
   1295 	return error;
   1296 }
   1297 
   1298 static void
   1299 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1300 {
   1301 
   1302 	if (((__uintptr_t)data & 3) == 0) {
   1303 		while (datalen > 3) {
   1304 			*(uint32_t *)data = HREAD4(hp, SDHC_DATA);
   1305 			data += 4;
   1306 			datalen -= 4;
   1307 		}
   1308 		if (datalen > 1) {
   1309 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1310 			data += 2;
   1311 			datalen -= 2;
   1312 		}
   1313 		if (datalen > 0) {
   1314 			*data = HREAD1(hp, SDHC_DATA);
   1315 			data += 1;
   1316 			datalen -= 1;
   1317 		}
   1318 	} else if (((__uintptr_t)data & 1) == 0) {
   1319 		while (datalen > 1) {
   1320 			*(uint16_t *)data = HREAD2(hp, SDHC_DATA);
   1321 			data += 2;
   1322 			datalen -= 2;
   1323 		}
   1324 		if (datalen > 0) {
   1325 			*data = HREAD1(hp, SDHC_DATA);
   1326 			data += 1;
   1327 			datalen -= 1;
   1328 		}
   1329 	} else {
   1330 		while (datalen > 0) {
   1331 			*data = HREAD1(hp, SDHC_DATA);
   1332 			data += 1;
   1333 			datalen -= 1;
   1334 		}
   1335 	}
   1336 }
   1337 
   1338 static void
   1339 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1340 {
   1341 
   1342 	if (((__uintptr_t)data & 3) == 0) {
   1343 		while (datalen > 3) {
   1344 			HWRITE4(hp, SDHC_DATA, *(uint32_t *)data);
   1345 			data += 4;
   1346 			datalen -= 4;
   1347 		}
   1348 		if (datalen > 1) {
   1349 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1350 			data += 2;
   1351 			datalen -= 2;
   1352 		}
   1353 		if (datalen > 0) {
   1354 			HWRITE1(hp, SDHC_DATA, *data);
   1355 			data += 1;
   1356 			datalen -= 1;
   1357 		}
   1358 	} else if (((__uintptr_t)data & 1) == 0) {
   1359 		while (datalen > 1) {
   1360 			HWRITE2(hp, SDHC_DATA, *(uint16_t *)data);
   1361 			data += 2;
   1362 			datalen -= 2;
   1363 		}
   1364 		if (datalen > 0) {
   1365 			HWRITE1(hp, SDHC_DATA, *data);
   1366 			data += 1;
   1367 			datalen -= 1;
   1368 		}
   1369 	} else {
   1370 		while (datalen > 0) {
   1371 			HWRITE1(hp, SDHC_DATA, *data);
   1372 			data += 1;
   1373 			datalen -= 1;
   1374 		}
   1375 	}
   1376 }
   1377 
   1378 static void
   1379 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1380 {
   1381 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1382 	uint32_t v;
   1383 
   1384 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1385 		v = HREAD4(hp, SDHC_DATA);
   1386 		v = le32toh(v);
   1387 		*(uint32_t *)data = v;
   1388 		data += 4;
   1389 		datalen -= 4;
   1390 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1391 	}
   1392 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1393 		v = HREAD4(hp, SDHC_DATA);
   1394 		v = le32toh(v);
   1395 		do {
   1396 			*data++ = v;
   1397 			v >>= 8;
   1398 		} while (--datalen > 0);
   1399 	}
   1400 }
   1401 
   1402 static void
   1403 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1404 {
   1405 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   1406 	uint32_t v;
   1407 
   1408 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1409 		v = *(uint32_t *)data;
   1410 		v = htole32(v);
   1411 		HWRITE4(hp, SDHC_DATA, v);
   1412 		data += 4;
   1413 		datalen -= 4;
   1414 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   1415 	}
   1416 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   1417 		v = *(uint32_t *)data;
   1418 		v = htole32(v);
   1419 		HWRITE4(hp, SDHC_DATA, v);
   1420 	}
   1421 }
   1422 
   1423 /* Prepare for another command. */
   1424 static int
   1425 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   1426 {
   1427 	int timo;
   1428 
   1429 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   1430 
   1431 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   1432 	for (timo = 10; timo > 0; timo--) {
   1433 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   1434 			break;
   1435 		sdmmc_delay(10000);
   1436 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1437 	}
   1438 	if (timo == 0) {
   1439 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   1440 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   1441 		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
   1442 		return ETIMEDOUT;
   1443 	}
   1444 
   1445 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1446 		HWRITE4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   1447 	}
   1448 
   1449 	return 0;
   1450 }
   1451 
   1452 static int
   1453 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo)
   1454 {
   1455 	int status;
   1456 
   1457 	mask |= SDHC_ERROR_INTERRUPT;
   1458 
   1459 	mutex_enter(&hp->intr_mtx);
   1460 	status = hp->intr_status & mask;
   1461 	while (status == 0) {
   1462 		if (cv_timedwait(&hp->intr_cv, &hp->intr_mtx, timo)
   1463 		    == EWOULDBLOCK) {
   1464 			status |= SDHC_ERROR_INTERRUPT;
   1465 			break;
   1466 		}
   1467 		status = hp->intr_status & mask;
   1468 	}
   1469 	hp->intr_status &= ~status;
   1470 
   1471 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   1472 	    hp->intr_error_status));
   1473 
   1474 	/* Command timeout has higher priority than command complete. */
   1475 	if (ISSET(status, SDHC_ERROR_INTERRUPT) || hp->intr_error_status) {
   1476 		hp->intr_error_status = 0;
   1477 		hp->intr_status &= ~SDHC_ERROR_INTERRUPT;
   1478 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1479 		    (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1480 		}
   1481 		status = 0;
   1482 	}
   1483 	mutex_exit(&hp->intr_mtx);
   1484 
   1485 	return status;
   1486 }
   1487 
   1488 /*
   1489  * Established by attachment driver at interrupt priority IPL_SDMMC.
   1490  */
   1491 int
   1492 sdhc_intr(void *arg)
   1493 {
   1494 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   1495 	struct sdhc_host *hp;
   1496 	int done = 0;
   1497 	uint16_t status;
   1498 	uint16_t error;
   1499 
   1500 	/* We got an interrupt, but we don't know from which slot. */
   1501 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   1502 		hp = sc->sc_host[host];
   1503 		if (hp == NULL)
   1504 			continue;
   1505 
   1506 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1507 			/* Find out which interrupts are pending. */
   1508 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   1509 			status = xstatus;
   1510 			error = xstatus >> 16;
   1511 			status |= (error ? SDHC_ERROR_INTERRUPT : 0);
   1512 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1513 				continue; /* no interrupt for us */
   1514 			/* Acknowledge the interrupts we are about to handle. */
   1515 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   1516 		} else {
   1517 			/* Find out which interrupts are pending. */
   1518 			error = 0;
   1519 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   1520 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   1521 				continue; /* no interrupt for us */
   1522 			/* Acknowledge the interrupts we are about to handle. */
   1523 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   1524 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   1525 				/* Acknowledge error interrupts. */
   1526 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   1527 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   1528 			}
   1529 		}
   1530 
   1531 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   1532 		    status, error));
   1533 
   1534 		/* Claim this interrupt. */
   1535 		done = 1;
   1536 
   1537 		/*
   1538 		 * Service error interrupts.
   1539 		 */
   1540 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
   1541 		    SDHC_DATA_TIMEOUT_ERROR)) {
   1542 			hp->intr_error_status |= error;
   1543 			hp->intr_status |= status;
   1544 			cv_broadcast(&hp->intr_cv);
   1545 		}
   1546 
   1547 		/*
   1548 		 * Wake up the sdmmc event thread to scan for cards.
   1549 		 */
   1550 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   1551 			sdmmc_needs_discover(hp->sdmmc);
   1552 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1553 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   1554 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1555 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1556 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   1557 			}
   1558 		}
   1559 
   1560 		/*
   1561 		 * Wake up the blocking process to service command
   1562 		 * related interrupt(s).
   1563 		 */
   1564 		if (ISSET(status, SDHC_COMMAND_COMPLETE|
   1565 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   1566 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   1567 			hp->intr_status |= status;
   1568 			if (ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1569 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   1570 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   1571 			}
   1572 			cv_broadcast(&hp->intr_cv);
   1573 		}
   1574 
   1575 		/*
   1576 		 * Service SD card interrupts.
   1577 		 */
   1578 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED)
   1579 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   1580 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   1581 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1582 			sdmmc_card_intr(hp->sdmmc);
   1583 		}
   1584 	}
   1585 
   1586 	return done;
   1587 }
   1588 
   1589 #ifdef SDHC_DEBUG
   1590 void
   1591 sdhc_dump_regs(struct sdhc_host *hp)
   1592 {
   1593 
   1594 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   1595 	    HREAD4(hp, SDHC_PRESENT_STATE));
   1596 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   1597 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   1598 		    HREAD1(hp, SDHC_POWER_CTL));
   1599 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   1600 	    HREAD2(hp, SDHC_NINTR_STATUS));
   1601 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   1602 	    HREAD2(hp, SDHC_EINTR_STATUS));
   1603 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   1604 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   1605 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   1606 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   1607 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   1608 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   1609 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   1610 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   1611 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   1612 	    HREAD4(hp, SDHC_CAPABILITIES));
   1613 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   1614 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   1615 }
   1616 #endif
   1617