Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.93
      1 /*	$NetBSD: sdhc.c,v 1.93 2015/12/31 11:53:19 ryo Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.93 2015/12/31 11:53:19 ryo Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 };
    102 
    103 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104 
    105 static uint8_t
    106 hread1(struct sdhc_host *hp, bus_size_t reg)
    107 {
    108 
    109 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112 }
    113 
    114 static uint16_t
    115 hread2(struct sdhc_host *hp, bus_size_t reg)
    116 {
    117 
    118 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121 }
    122 
    123 #define HREAD1(hp, reg)		hread1(hp, reg)
    124 #define HREAD2(hp, reg)		hread2(hp, reg)
    125 #define HREAD4(hp, reg)		\
    126 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127 
    128 
    129 static void
    130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131 {
    132 
    133 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135 	} else {
    136 		const size_t shift = 8 * (o & 3);
    137 		o &= -4;
    138 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    140 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141 	}
    142 }
    143 
    144 static void
    145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146 {
    147 
    148 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150 	} else {
    151 		const size_t shift = 8 * (o & 2);
    152 		o &= -4;
    153 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    155 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156 	}
    157 }
    158 
    159 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161 #define HWRITE4(hp, reg, val)						\
    162 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163 
    164 #define HCLR1(hp, reg, bits)						\
    165 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166 #define HCLR2(hp, reg, bits)						\
    167 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168 #define HCLR4(hp, reg, bits)						\
    169 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170 #define HSET1(hp, reg, bits)						\
    171 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172 #define HSET2(hp, reg, bits)						\
    173 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174 #define HSET4(hp, reg, bits)						\
    175 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176 
    177 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190 		    struct sdmmc_command *);
    191 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194 static void	sdhc_tuning_timer(void *);
    195 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    196 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    197 static int	sdhc_soft_reset(struct sdhc_host *, int);
    198 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    199 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    200 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    201 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    202 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    203 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206 
    207 static struct sdmmc_chip_functions sdhc_functions = {
    208 	/* host controller reset */
    209 	.host_reset = sdhc_host_reset,
    210 
    211 	/* host controller capabilities */
    212 	.host_ocr = sdhc_host_ocr,
    213 	.host_maxblklen = sdhc_host_maxblklen,
    214 
    215 	/* card detection */
    216 	.card_detect = sdhc_card_detect,
    217 
    218 	/* write protect */
    219 	.write_protect = sdhc_write_protect,
    220 
    221 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    222 	.bus_power = sdhc_bus_power,
    223 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    224 	.bus_width = sdhc_bus_width,
    225 	.bus_rod = sdhc_bus_rod,
    226 
    227 	/* command execution */
    228 	.exec_command = sdhc_exec_command,
    229 
    230 	/* card interrupt */
    231 	.card_enable_intr = sdhc_card_enable_intr,
    232 	.card_intr_ack = sdhc_card_intr_ack,
    233 
    234 	/* UHS functions */
    235 	.signal_voltage = sdhc_signal_voltage,
    236 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    237 	.execute_tuning = sdhc_execute_tuning,
    238 };
    239 
    240 static int
    241 sdhc_cfprint(void *aux, const char *pnp)
    242 {
    243 	const struct sdmmcbus_attach_args * const saa = aux;
    244 	const struct sdhc_host * const hp = saa->saa_sch;
    245 
    246 	if (pnp) {
    247 		aprint_normal("sdmmc at %s", pnp);
    248 	}
    249 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    250 		if (hp->sc->sc_host[host] == hp) {
    251 			aprint_normal(" slot %zu", host);
    252 		}
    253 	}
    254 
    255 	return UNCONF;
    256 }
    257 
    258 /*
    259  * Called by attachment driver.  For each SD card slot there is one SD
    260  * host controller standard register set. (1.3)
    261  */
    262 int
    263 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    264     bus_space_handle_t ioh, bus_size_t iosize)
    265 {
    266 	struct sdmmcbus_attach_args saa;
    267 	struct sdhc_host *hp;
    268 	uint32_t caps, caps2;
    269 	uint16_t sdhcver;
    270 	int error;
    271 
    272 	/* Allocate one more host structure. */
    273 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    274 	if (hp == NULL) {
    275 		aprint_error_dev(sc->sc_dev,
    276 		    "couldn't alloc memory (sdhc host)\n");
    277 		goto err1;
    278 	}
    279 	sc->sc_host[sc->sc_nhosts++] = hp;
    280 
    281 	/* Fill in the new host structure. */
    282 	hp->sc = sc;
    283 	hp->iot = iot;
    284 	hp->ioh = ioh;
    285 	hp->ios = iosize;
    286 	hp->dmat = sc->sc_dmat;
    287 
    288 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    289 	cv_init(&hp->intr_cv, "sdhcintr");
    290 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    291 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    292 
    293 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    294 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    295 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    296 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    297 	} else {
    298 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    299 	}
    300 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    301 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    302 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    303 	case SDHC_SPEC_VERS_100:
    304 		aprint_normal("1.0");
    305 		break;
    306 
    307 	case SDHC_SPEC_VERS_200:
    308 		aprint_normal("2.0");
    309 		break;
    310 
    311 	case SDHC_SPEC_VERS_300:
    312 		aprint_normal("3.0");
    313 		break;
    314 
    315 	case SDHC_SPEC_VERS_400:
    316 		aprint_normal("4.0");
    317 		break;
    318 
    319 	default:
    320 		aprint_normal("unknown version(0x%x)",
    321 		    SDHC_SPEC_VERSION(sdhcver));
    322 		break;
    323 	}
    324 	aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    325 
    326 	/*
    327 	 * Reset the host controller and enable interrupts.
    328 	 */
    329 	(void)sdhc_host_reset(hp);
    330 
    331 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    332 		/* init uSDHC registers */
    333 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    334 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    335 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    336 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    337 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    338 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    339 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    340 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    341 		HSET4(hp, SDHC_VEND_SPEC,
    342 		    SDHC_VEND_SPEC_MBO |
    343 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    344 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    345 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    346 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    347 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    348 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    349 	}
    350 
    351 	/* Determine host capabilities. */
    352 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    353 		caps = sc->sc_caps;
    354 		caps2 = sc->sc_caps2;
    355 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    356 		/* uSDHC capability register is little bit different */
    357 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    358 		caps |= SDHC_8BIT_SUPP;
    359 		if (caps & SDHC_ADMA1_SUPP)
    360 			caps |= SDHC_ADMA2_SUPP;
    361 		sc->sc_caps = caps;
    362 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    363 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    364 	} else {
    365 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    366 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    367 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    368 		} else {
    369 			caps2 = sc->sc_caps2 = 0;
    370 		}
    371 	}
    372 
    373 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    374 	    SDHC_RETUNING_MODES_MASK;
    375 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    376 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    377 		    SDHC_TIMER_COUNT_MASK;
    378 		if (hp->tuning_timer_count == 0xf)
    379 			hp->tuning_timer_count = 0;
    380 		if (hp->tuning_timer_count)
    381 			hp->tuning_timer_count =
    382 			    1 << (hp->tuning_timer_count - 1);
    383 	}
    384 
    385 	/*
    386 	 * Use DMA if the host system and the controller support it.
    387 	 * Suports integrated or external DMA egine, with or without
    388 	 * SDHC_DMA_ENABLE in the command.
    389 	 */
    390 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    391 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    392 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    393 		SET(hp->flags, SHF_USE_DMA);
    394 
    395 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    396 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    397 			SET(hp->flags, SHF_MODE_DMAEN);
    398 			/*
    399 			 * 64-bit mode was present in the 2.00 spec, removed
    400 			 * from 3.00, and re-added in 4.00 with a different
    401 			 * descriptor layout. We only support 2.00 and 3.00
    402 			 * descriptors for now.
    403 			 */
    404 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    405 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    406 				SET(hp->flags, SHF_USE_ADMA2_64);
    407 				aprint_normal(", 64-bit ADMA2");
    408 			} else {
    409 				SET(hp->flags, SHF_USE_ADMA2_32);
    410 				aprint_normal(", 32-bit ADMA2");
    411 			}
    412 		} else {
    413 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    414 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    415 				SET(hp->flags, SHF_MODE_DMAEN);
    416 			if (sc->sc_vendor_transfer_data_dma) {
    417 				aprint_normal(", platform DMA");
    418 			} else {
    419 				aprint_normal(", SDMA");
    420 			}
    421 		}
    422 	} else {
    423 		aprint_normal(", PIO");
    424 	}
    425 
    426 	/*
    427 	 * Determine the base clock frequency. (2.2.24)
    428 	 */
    429 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    430 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    431 	} else {
    432 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    433 	}
    434 	if (hp->clkbase == 0 ||
    435 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    436 		if (sc->sc_clkbase == 0) {
    437 			/* The attachment driver must tell us. */
    438 			aprint_error_dev(sc->sc_dev,
    439 			    "unknown base clock frequency\n");
    440 			goto err;
    441 		}
    442 		hp->clkbase = sc->sc_clkbase;
    443 	}
    444 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    445 		/* SDHC 1.0 supports only 10-63 MHz. */
    446 		aprint_error_dev(sc->sc_dev,
    447 		    "base clock frequency out of range: %u MHz\n",
    448 		    hp->clkbase / 1000);
    449 		goto err;
    450 	}
    451 	aprint_normal(", %u kHz", hp->clkbase);
    452 
    453 	/*
    454 	 * XXX Set the data timeout counter value according to
    455 	 * capabilities. (2.2.15)
    456 	 */
    457 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    458 #if 1
    459 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    460 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    461 #endif
    462 
    463 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    464 		aprint_normal(", embedded slot");
    465 
    466 	/*
    467 	 * Determine SD bus voltage levels supported by the controller.
    468 	 */
    469 	aprint_normal(",");
    470 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    471 		SET(hp->ocr, MMC_OCR_HCS);
    472 		aprint_normal(" HS");
    473 	}
    474 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    475 		SET(hp->ocr, MMC_OCR_S18A);
    476 		aprint_normal(" SDR50");
    477 	}
    478 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    479 		SET(hp->ocr, MMC_OCR_S18A);
    480 		aprint_normal(" DDR50");
    481 	}
    482 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    483 		SET(hp->ocr, MMC_OCR_S18A);
    484 		aprint_normal(" SDR104 HS200");
    485 	}
    486 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    487 		SET(hp->ocr, MMC_OCR_1_7V_1_8V | MMC_OCR_1_8V_1_9V);
    488 		aprint_normal(" 1.8V");
    489 	}
    490 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    491 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    492 		aprint_normal(" 3.0V");
    493 	}
    494 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    495 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    496 		aprint_normal(" 3.3V");
    497 	}
    498 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    499 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    500 		if (hp->tuning_timer_count)
    501 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    502 	}
    503 
    504 	/*
    505 	 * Determine the maximum block length supported by the host
    506 	 * controller. (2.2.24)
    507 	 */
    508 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    509 	case SDHC_MAX_BLK_LEN_512:
    510 		hp->maxblklen = 512;
    511 		break;
    512 
    513 	case SDHC_MAX_BLK_LEN_1024:
    514 		hp->maxblklen = 1024;
    515 		break;
    516 
    517 	case SDHC_MAX_BLK_LEN_2048:
    518 		hp->maxblklen = 2048;
    519 		break;
    520 
    521 	case SDHC_MAX_BLK_LEN_4096:
    522 		hp->maxblklen = 4096;
    523 		break;
    524 
    525 	default:
    526 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    527 		goto err;
    528 	}
    529 	aprint_normal(", %u byte blocks", hp->maxblklen);
    530 	aprint_normal("\n");
    531 
    532 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    533 		int rseg;
    534 
    535 		/* Allocate ADMA2 descriptor memory */
    536 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    537 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    538 		if (error) {
    539 			aprint_error_dev(sc->sc_dev,
    540 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    541 			goto adma_done;
    542 		}
    543 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    544 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    545 		if (error) {
    546 			aprint_error_dev(sc->sc_dev,
    547 			    "ADMA2 dmamem_map failed (%d)\n", error);
    548 			goto adma_done;
    549 		}
    550 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    551 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    552 		if (error) {
    553 			aprint_error_dev(sc->sc_dev,
    554 			    "ADMA2 dmamap_create failed (%d)\n", error);
    555 			goto adma_done;
    556 		}
    557 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    558 		    hp->adma2, PAGE_SIZE, NULL,
    559 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    560 		if (error) {
    561 			aprint_error_dev(sc->sc_dev,
    562 			    "ADMA2 dmamap_load failed (%d)\n", error);
    563 			goto adma_done;
    564 		}
    565 
    566 		memset(hp->adma2, 0, PAGE_SIZE);
    567 
    568 adma_done:
    569 		if (error)
    570 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    571 	}
    572 
    573 	/*
    574 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    575 	 * not invoke any chipset functions before it is attached.)
    576 	 */
    577 	memset(&saa, 0, sizeof(saa));
    578 	saa.saa_busname = "sdmmc";
    579 	saa.saa_sct = &sdhc_functions;
    580 	saa.saa_sch = hp;
    581 	saa.saa_dmat = hp->dmat;
    582 	saa.saa_clkmax = hp->clkbase;
    583 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    584 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    585 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    586 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    587 	else if (hp->sc->sc_clkmsk != 0)
    588 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    589 		    (ffs(hp->sc->sc_clkmsk) - 1));
    590 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    591 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    592 	else
    593 		saa.saa_clkmin = hp->clkbase / 256;
    594 	saa.saa_caps = SMC_CAPS_4BIT_MODE|SMC_CAPS_AUTO_STOP;
    595 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    596 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    597 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    598 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    599 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    600 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    601 				SMC_CAPS_UHS_SDR50 |
    602 				SMC_CAPS_MMC_HS200;
    603 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    604 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    605 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    606 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    607 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    608 		saa.saa_caps |= SMC_CAPS_DMA;
    609 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    610 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    611 	}
    612 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    613 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    614 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    615 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    616 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    617 
    618 	return 0;
    619 
    620 err:
    621 	callout_destroy(&hp->tuning_timer);
    622 	cv_destroy(&hp->intr_cv);
    623 	mutex_destroy(&hp->intr_lock);
    624 	free(hp, M_DEVBUF);
    625 	sc->sc_host[--sc->sc_nhosts] = NULL;
    626 err1:
    627 	return 1;
    628 }
    629 
    630 int
    631 sdhc_detach(struct sdhc_softc *sc, int flags)
    632 {
    633 	struct sdhc_host *hp;
    634 	int rv = 0;
    635 
    636 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    637 		hp = sc->sc_host[n];
    638 		if (hp == NULL)
    639 			continue;
    640 		if (hp->sdmmc != NULL) {
    641 			rv = config_detach(hp->sdmmc, flags);
    642 			if (rv)
    643 				break;
    644 			hp->sdmmc = NULL;
    645 		}
    646 		/* disable interrupts */
    647 		if ((flags & DETACH_FORCE) == 0) {
    648 			mutex_enter(&hp->intr_lock);
    649 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    650 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    651 			} else {
    652 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    653 			}
    654 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    655 			mutex_exit(&hp->intr_lock);
    656 		}
    657 		callout_halt(&hp->tuning_timer, NULL);
    658 		callout_destroy(&hp->tuning_timer);
    659 		cv_destroy(&hp->intr_cv);
    660 		mutex_destroy(&hp->intr_lock);
    661 		if (hp->ios > 0) {
    662 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    663 			hp->ios = 0;
    664 		}
    665 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    666 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    667 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    668 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    669 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    670 		}
    671 		free(hp, M_DEVBUF);
    672 		sc->sc_host[n] = NULL;
    673 	}
    674 
    675 	return rv;
    676 }
    677 
    678 bool
    679 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    680 {
    681 	struct sdhc_softc *sc = device_private(dev);
    682 	struct sdhc_host *hp;
    683 	size_t i;
    684 
    685 	/* XXX poll for command completion or suspend command
    686 	 * in progress */
    687 
    688 	/* Save the host controller state. */
    689 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    690 		hp = sc->sc_host[n];
    691 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    692 			for (i = 0; i < sizeof hp->regs; i += 4) {
    693 				uint32_t v = HREAD4(hp, i);
    694 				hp->regs[i + 0] = (v >> 0);
    695 				hp->regs[i + 1] = (v >> 8);
    696 				if (i + 3 < sizeof hp->regs) {
    697 					hp->regs[i + 2] = (v >> 16);
    698 					hp->regs[i + 3] = (v >> 24);
    699 				}
    700 			}
    701 		} else {
    702 			for (i = 0; i < sizeof hp->regs; i++) {
    703 				hp->regs[i] = HREAD1(hp, i);
    704 			}
    705 		}
    706 	}
    707 	return true;
    708 }
    709 
    710 bool
    711 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    712 {
    713 	struct sdhc_softc *sc = device_private(dev);
    714 	struct sdhc_host *hp;
    715 	size_t i;
    716 
    717 	/* Restore the host controller state. */
    718 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    719 		hp = sc->sc_host[n];
    720 		(void)sdhc_host_reset(hp);
    721 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    722 			for (i = 0; i < sizeof hp->regs; i += 4) {
    723 				if (i + 3 < sizeof hp->regs) {
    724 					HWRITE4(hp, i,
    725 					    (hp->regs[i + 0] << 0)
    726 					    | (hp->regs[i + 1] << 8)
    727 					    | (hp->regs[i + 2] << 16)
    728 					    | (hp->regs[i + 3] << 24));
    729 				} else {
    730 					HWRITE4(hp, i,
    731 					    (hp->regs[i + 0] << 0)
    732 					    | (hp->regs[i + 1] << 8));
    733 				}
    734 			}
    735 		} else {
    736 			for (i = 0; i < sizeof hp->regs; i++) {
    737 				HWRITE1(hp, i, hp->regs[i]);
    738 			}
    739 		}
    740 	}
    741 	return true;
    742 }
    743 
    744 bool
    745 sdhc_shutdown(device_t dev, int flags)
    746 {
    747 	struct sdhc_softc *sc = device_private(dev);
    748 	struct sdhc_host *hp;
    749 
    750 	/* XXX chip locks up if we don't disable it before reboot. */
    751 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    752 		hp = sc->sc_host[i];
    753 		(void)sdhc_host_reset(hp);
    754 	}
    755 	return true;
    756 }
    757 
    758 /*
    759  * Reset the host controller.  Called during initialization, when
    760  * cards are removed, upon resume, and during error recovery.
    761  */
    762 static int
    763 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    764 {
    765 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    766 	uint32_t sdhcimask;
    767 	int error;
    768 
    769 	KASSERT(mutex_owned(&hp->intr_lock));
    770 
    771 	/* Disable all interrupts. */
    772 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    773 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    774 	} else {
    775 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    776 	}
    777 
    778 	/*
    779 	 * Reset the entire host controller and wait up to 100ms for
    780 	 * the controller to clear the reset bit.
    781 	 */
    782 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    783 	if (error)
    784 		goto out;
    785 
    786 	/* Set data timeout counter value to max for now. */
    787 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    788 #if 1
    789 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    790 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    791 #endif
    792 
    793 	/* Enable interrupts. */
    794 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    795 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    796 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    797 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    798 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    799 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    800 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    801 		sdhcimask ^=
    802 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    803 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    804 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    805 	} else {
    806 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    807 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    808 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    809 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    810 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    811 	}
    812 
    813 out:
    814 	return error;
    815 }
    816 
    817 static int
    818 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    819 {
    820 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    821 	int error;
    822 
    823 	mutex_enter(&hp->intr_lock);
    824 	error = sdhc_host_reset1(sch);
    825 	mutex_exit(&hp->intr_lock);
    826 
    827 	return error;
    828 }
    829 
    830 static uint32_t
    831 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    832 {
    833 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    834 
    835 	return hp->ocr;
    836 }
    837 
    838 static int
    839 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    840 {
    841 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    842 
    843 	return hp->maxblklen;
    844 }
    845 
    846 /*
    847  * Return non-zero if the card is currently inserted.
    848  */
    849 static int
    850 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    851 {
    852 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    853 	int r;
    854 
    855 	if (hp->sc->sc_vendor_card_detect)
    856 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    857 
    858 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    859 
    860 	return r ? 1 : 0;
    861 }
    862 
    863 /*
    864  * Return non-zero if the card is currently write-protected.
    865  */
    866 static int
    867 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    868 {
    869 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    870 	int r;
    871 
    872 	if (hp->sc->sc_vendor_write_protect)
    873 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    874 
    875 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    876 
    877 	return r ? 0 : 1;
    878 }
    879 
    880 /*
    881  * Set or change SD bus voltage and enable or disable SD bus power.
    882  * Return zero on success.
    883  */
    884 static int
    885 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    886 {
    887 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    888 	uint8_t vdd;
    889 	int error = 0;
    890 	const uint32_t pcmask =
    891 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    892 
    893 	mutex_enter(&hp->intr_lock);
    894 
    895 	/*
    896 	 * Disable bus power before voltage change.
    897 	 */
    898 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    899 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    900 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    901 
    902 	/* If power is disabled, reset the host and return now. */
    903 	if (ocr == 0) {
    904 		(void)sdhc_host_reset1(hp);
    905 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    906 		goto out;
    907 	}
    908 
    909 	/*
    910 	 * Select the lowest voltage according to capabilities.
    911 	 */
    912 	ocr &= hp->ocr;
    913 	if (ISSET(ocr, MMC_OCR_1_7V_1_8V|MMC_OCR_1_8V_1_9V)) {
    914 		vdd = SDHC_VOLTAGE_1_8V;
    915 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    916 		vdd = SDHC_VOLTAGE_3_0V;
    917 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    918 		vdd = SDHC_VOLTAGE_3_3V;
    919 	} else {
    920 		/* Unsupported voltage level requested. */
    921 		error = EINVAL;
    922 		goto out;
    923 	}
    924 
    925 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    926 		/*
    927 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    928 		 * voltage ramp until power rises.
    929 		 */
    930 
    931 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    932 			HWRITE1(hp, SDHC_POWER_CTL,
    933 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    934 		} else {
    935 			HWRITE1(hp, SDHC_POWER_CTL,
    936 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    937 			sdmmc_delay(1);
    938 			HWRITE1(hp, SDHC_POWER_CTL,
    939 			    (vdd << SDHC_VOLTAGE_SHIFT));
    940 			sdmmc_delay(1);
    941 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    942 			sdmmc_delay(10000);
    943 		}
    944 
    945 		/*
    946 		 * The host system may not power the bus due to battery low,
    947 		 * etc.  In that case, the host controller should clear the
    948 		 * bus power bit.
    949 		 */
    950 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    951 			error = ENXIO;
    952 			goto out;
    953 		}
    954 	}
    955 
    956 out:
    957 	mutex_exit(&hp->intr_lock);
    958 
    959 	return error;
    960 }
    961 
    962 /*
    963  * Return the smallest possible base clock frequency divisor value
    964  * for the CLOCK_CTL register to produce `freq' (KHz).
    965  */
    966 static bool
    967 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    968 {
    969 	u_int div;
    970 
    971 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    972 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    973 			if ((hp->clkbase / div) <= freq) {
    974 				*divp = SDHC_SDCLK_CGM
    975 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    976 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    977 				//freq = hp->clkbase / div;
    978 				return true;
    979 			}
    980 		}
    981 		/* No divisor found. */
    982 		return false;
    983 	}
    984 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    985 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    986 		u_int roundup = dvs & 1;
    987 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    988 			if (dvs + roundup <= 16) {
    989 				dvs += roundup - 1;
    990 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    991 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    992 				DPRINTF(2,
    993 				    ("%s: divisor for freq %u is %u * %u\n",
    994 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
    995 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
    996 				return true;
    997 			}
    998 			/*
    999 			 * If we drop bits, we need to round up the divisor.
   1000 			 */
   1001 			roundup |= dvs & 1;
   1002 		}
   1003 		/* No divisor found. */
   1004 		return false;
   1005 	}
   1006 	if (hp->sc->sc_clkmsk != 0) {
   1007 		div = howmany(hp->clkbase, freq);
   1008 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1009 			return false;
   1010 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1011 		//freq = hp->clkbase / div;
   1012 		return true;
   1013 	}
   1014 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1015 		div = howmany(hp->clkbase, freq);
   1016 		div = div > 1 ? howmany(div, 2) : 0;
   1017 		if (div > 0x3ff)
   1018 			return false;
   1019 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1020 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1021 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1022 			 << SDHC_SDCLK_DIV_SHIFT);
   1023 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1024 		return true;
   1025 	} else {
   1026 		for (div = 1; div <= 256; div *= 2) {
   1027 			if ((hp->clkbase / div) <= freq) {
   1028 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1029 				//freq = hp->clkbase / div;
   1030 				return true;
   1031 			}
   1032 		}
   1033 		/* No divisor found. */
   1034 		return false;
   1035 	}
   1036 	/* No divisor found. */
   1037 	return false;
   1038 }
   1039 
   1040 /*
   1041  * Set or change SDCLK frequency or disable the SD clock.
   1042  * Return zero on success.
   1043  */
   1044 static int
   1045 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1046 {
   1047 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1048 	u_int div;
   1049 	u_int timo;
   1050 	int16_t reg;
   1051 	int error = 0;
   1052 	bool present __diagused;
   1053 
   1054 	mutex_enter(&hp->intr_lock);
   1055 
   1056 #ifdef DIAGNOSTIC
   1057 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1058 
   1059 	/* Must not stop the clock if commands are in progress. */
   1060 	if (present && sdhc_card_detect(hp)) {
   1061 		aprint_normal_dev(hp->sc->sc_dev,
   1062 		    "%s: command in progress\n", __func__);
   1063 	}
   1064 #endif
   1065 
   1066 	if (hp->sc->sc_vendor_bus_clock) {
   1067 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1068 		if (error != 0)
   1069 			goto out;
   1070 	}
   1071 
   1072 	/*
   1073 	 * Stop SD clock before changing the frequency.
   1074 	 */
   1075 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1076 		HCLR4(hp, SDHC_VEND_SPEC,
   1077 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1078 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1079 		if (freq == SDMMC_SDCLK_OFF) {
   1080 			goto out;
   1081 		}
   1082 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1083 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1084 		if (freq == SDMMC_SDCLK_OFF) {
   1085 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1086 			goto out;
   1087 		}
   1088 	} else {
   1089 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1090 		if (freq == SDMMC_SDCLK_OFF)
   1091 			goto out;
   1092 	}
   1093 
   1094 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1095 		if (ddr)
   1096 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1097 		else
   1098 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1099 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1100 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1101 		if (freq > 100000) {
   1102 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1103 		} else if (freq > 50000) {
   1104 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
   1105 		} else if (freq > 25000) {
   1106 			if (ddr) {
   1107 				HSET2(hp, SDHC_HOST_CTL2,
   1108 				    SDHC_UHS_MODE_SELECT_DDR50);
   1109 			} else {
   1110 				HSET2(hp, SDHC_HOST_CTL2,
   1111 				    SDHC_UHS_MODE_SELECT_SDR25);
   1112 			}
   1113 		} else if (freq > 400) {
   1114 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1115 		}
   1116 	}
   1117 
   1118 	/*
   1119 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1120 	 * at 100MHz bus clock.
   1121 	 */
   1122 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1123 		if (freq == 100000)
   1124 			--freq;
   1125 	}
   1126 
   1127 	/*
   1128 	 * Set the minimum base clock frequency divisor.
   1129 	 */
   1130 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1131 		/* Invalid base clock frequency or `freq' value. */
   1132 		aprint_error_dev(hp->sc->sc_dev,
   1133 			"Invalid bus clock %d kHz\n", freq);
   1134 		error = EINVAL;
   1135 		goto out;
   1136 	}
   1137 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1138 		if (ddr) {
   1139 			/* in ddr mode, divisor >>= 1 */
   1140 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1141 			    SDHC_SDCLK_DIV_SHIFT)) |
   1142 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1143 			    SDHC_SDCLK_DVS_SHIFT));
   1144 		}
   1145 		for (timo = 1000; timo > 0; timo--) {
   1146 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1147 				break;
   1148 			sdmmc_delay(10);
   1149 		}
   1150 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1151 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1152 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1153 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1154 		    div | (SDHC_TIMEOUT_MAX << 16));
   1155 	} else {
   1156 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1157 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1158 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1159 	}
   1160 
   1161 	/*
   1162 	 * Start internal clock.  Wait 10ms for stabilization.
   1163 	 */
   1164 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1165 		HSET4(hp, SDHC_VEND_SPEC,
   1166 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1167 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1168 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1169 		sdmmc_delay(10000);
   1170 		HSET4(hp, SDHC_CLOCK_CTL,
   1171 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1172 	} else {
   1173 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1174 		for (timo = 1000; timo > 0; timo--) {
   1175 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1176 			    SDHC_INTCLK_STABLE))
   1177 				break;
   1178 			sdmmc_delay(10);
   1179 		}
   1180 		if (timo == 0) {
   1181 			error = ETIMEDOUT;
   1182 			DPRINTF(1,("%s: timeout\n", __func__));
   1183 			goto out;
   1184 		}
   1185 	}
   1186 
   1187 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1188 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1189 		/*
   1190 		 * Sending 80 clocks at 400kHz takes 200us.
   1191 		 * So delay for that time + slop and then
   1192 		 * check a few times for completion.
   1193 		 */
   1194 		sdmmc_delay(210);
   1195 		for (timo = 10; timo > 0; timo--) {
   1196 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1197 			    SDHC_INIT_ACTIVE))
   1198 				break;
   1199 			sdmmc_delay(10);
   1200 		}
   1201 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1202 
   1203 		/*
   1204 		 * Enable SD clock.
   1205 		 */
   1206 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1207 			HSET4(hp, SDHC_VEND_SPEC,
   1208 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1209 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1210 		} else {
   1211 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1212 		}
   1213 	} else {
   1214 		/*
   1215 		 * Enable SD clock.
   1216 		 */
   1217 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1218 
   1219 		if (freq > 25000 &&
   1220 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1221 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1222 		else
   1223 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1224 	}
   1225 
   1226 out:
   1227 	mutex_exit(&hp->intr_lock);
   1228 
   1229 	return error;
   1230 }
   1231 
   1232 static int
   1233 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1234 {
   1235 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1236 	int reg;
   1237 
   1238 	switch (width) {
   1239 	case 1:
   1240 	case 4:
   1241 		break;
   1242 
   1243 	case 8:
   1244 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1245 			break;
   1246 		/* FALLTHROUGH */
   1247 	default:
   1248 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1249 		    HDEVNAME(hp), width));
   1250 		return 1;
   1251 	}
   1252 
   1253 	if (hp->sc->sc_vendor_bus_width) {
   1254 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1255 		if (error != 0)
   1256 			return error;
   1257 	}
   1258 
   1259 	mutex_enter(&hp->intr_lock);
   1260 
   1261 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1262 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1263 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1264 		if (width == 4)
   1265 			reg |= SDHC_4BIT_MODE;
   1266 		else if (width == 8)
   1267 			reg |= SDHC_ESDHC_8BIT_MODE;
   1268 	} else {
   1269 		reg &= ~SDHC_4BIT_MODE;
   1270 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1271 			reg &= ~SDHC_8BIT_MODE;
   1272 		}
   1273 		if (width == 4) {
   1274 			reg |= SDHC_4BIT_MODE;
   1275 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1276 			reg |= SDHC_8BIT_MODE;
   1277 		}
   1278 	}
   1279 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1280 
   1281 	mutex_exit(&hp->intr_lock);
   1282 
   1283 	return 0;
   1284 }
   1285 
   1286 static int
   1287 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1288 {
   1289 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1290 
   1291 	if (hp->sc->sc_vendor_rod)
   1292 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1293 
   1294 	return 0;
   1295 }
   1296 
   1297 static void
   1298 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1299 {
   1300 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1301 
   1302 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1303 		mutex_enter(&hp->intr_lock);
   1304 		if (enable) {
   1305 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1306 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1307 		} else {
   1308 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1309 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1310 		}
   1311 		mutex_exit(&hp->intr_lock);
   1312 	}
   1313 }
   1314 
   1315 static void
   1316 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1317 {
   1318 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1319 
   1320 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1321 		mutex_enter(&hp->intr_lock);
   1322 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1323 		mutex_exit(&hp->intr_lock);
   1324 	}
   1325 }
   1326 
   1327 static int
   1328 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1329 {
   1330 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1331 
   1332 	mutex_enter(&hp->intr_lock);
   1333 	switch (signal_voltage) {
   1334 	case SDMMC_SIGNAL_VOLTAGE_180:
   1335 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1336 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1337 		break;
   1338 	case SDMMC_SIGNAL_VOLTAGE_330:
   1339 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1340 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1341 		break;
   1342 	default:
   1343 		return EINVAL;
   1344 	}
   1345 	mutex_exit(&hp->intr_lock);
   1346 
   1347 	return 0;
   1348 }
   1349 
   1350 /*
   1351  * Sampling clock tuning procedure (UHS)
   1352  */
   1353 static int
   1354 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1355 {
   1356 	struct sdmmc_command cmd;
   1357 	uint8_t hostctl;
   1358 	int opcode, error, retry = 40;
   1359 
   1360 	KASSERT(mutex_owned(&hp->intr_lock));
   1361 
   1362 	hp->tuning_timing = timing;
   1363 
   1364 	switch (timing) {
   1365 	case SDMMC_TIMING_MMC_HS200:
   1366 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1367 		break;
   1368 	case SDMMC_TIMING_UHS_SDR50:
   1369 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1370 			return 0;
   1371 		/* FALLTHROUGH */
   1372 	case SDMMC_TIMING_UHS_SDR104:
   1373 		opcode = MMC_SEND_TUNING_BLOCK;
   1374 		break;
   1375 	default:
   1376 		return EINVAL;
   1377 	}
   1378 
   1379 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1380 
   1381 	/* enable buffer read ready interrupt */
   1382 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1383 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1384 
   1385 	/* disable DMA */
   1386 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1387 
   1388 	/* reset tuning circuit */
   1389 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1390 
   1391 	/* start of tuning */
   1392 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1393 
   1394 	do {
   1395 		memset(&cmd, 0, sizeof(cmd));
   1396 		cmd.c_opcode = opcode;
   1397 		cmd.c_arg = 0;
   1398 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1399 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1400 			cmd.c_blklen = cmd.c_datalen = 128;
   1401 		} else {
   1402 			cmd.c_blklen = cmd.c_datalen = 64;
   1403 		}
   1404 
   1405 		error = sdhc_start_command(hp, &cmd);
   1406 		if (error)
   1407 			break;
   1408 
   1409 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1410 		    SDHC_TUNING_TIMEOUT, false)) {
   1411 			break;
   1412 		}
   1413 
   1414 		delay(1000);
   1415 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1416 
   1417 	/* disable buffer read ready interrupt */
   1418 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1419 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1420 
   1421 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1422 		HCLR2(hp, SDHC_HOST_CTL2,
   1423 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1424 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1425 		aprint_error_dev(hp->sc->sc_dev,
   1426 		    "tuning did not complete, using fixed sampling clock\n");
   1427 		return EIO;		/* tuning did not complete */
   1428 	}
   1429 
   1430 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1431 		HCLR2(hp, SDHC_HOST_CTL2,
   1432 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1433 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1434 		aprint_error_dev(hp->sc->sc_dev,
   1435 		    "tuning failed, using fixed sampling clock\n");
   1436 		return EIO;		/* tuning failed */
   1437 	}
   1438 
   1439 	if (hp->tuning_timer_count) {
   1440 		callout_schedule(&hp->tuning_timer,
   1441 		    hz * hp->tuning_timer_count);
   1442 	}
   1443 
   1444 	return 0;		/* tuning completed */
   1445 }
   1446 
   1447 static int
   1448 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1449 {
   1450 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1451 	int error;
   1452 
   1453 	mutex_enter(&hp->intr_lock);
   1454 	error = sdhc_execute_tuning1(hp, timing);
   1455 	mutex_exit(&hp->intr_lock);
   1456 	return error;
   1457 }
   1458 
   1459 static void
   1460 sdhc_tuning_timer(void *arg)
   1461 {
   1462 	struct sdhc_host *hp = arg;
   1463 
   1464 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1465 }
   1466 
   1467 static int
   1468 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1469 {
   1470 	uint32_t state;
   1471 	int timeout;
   1472 
   1473 	for (timeout = 10000; timeout > 0; timeout--) {
   1474 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1475 			return 0;
   1476 		sdmmc_delay(10);
   1477 	}
   1478 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1479 	    mask, value, state);
   1480 	return ETIMEDOUT;
   1481 }
   1482 
   1483 static void
   1484 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1485 {
   1486 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1487 	int error;
   1488 	bool probing;
   1489 
   1490 	mutex_enter(&hp->intr_lock);
   1491 
   1492 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1493 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1494 	}
   1495 
   1496 	if (cmd->c_data &&
   1497 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1498 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1499 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1500 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1501 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1502 		} else {
   1503 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1504 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1505 		}
   1506 	}
   1507 
   1508 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1509 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1510 		if (cmd->c_data != NULL) {
   1511 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1512 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1513 		} else {
   1514 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1515 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1516 		}
   1517 	}
   1518 
   1519 	/*
   1520 	 * Start the MMC command, or mark `cmd' as failed and return.
   1521 	 */
   1522 	error = sdhc_start_command(hp, cmd);
   1523 	if (error) {
   1524 		cmd->c_error = error;
   1525 		goto out;
   1526 	}
   1527 
   1528 	/*
   1529 	 * Wait until the command phase is done, or until the command
   1530 	 * is marked done for any other reason.
   1531 	 */
   1532 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1533 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) {
   1534 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1535 		cmd->c_error = ETIMEDOUT;
   1536 		goto out;
   1537 	}
   1538 
   1539 	/*
   1540 	 * The host controller removes bits [0:7] from the response
   1541 	 * data (CRC) and we pass the data up unchanged to the bus
   1542 	 * driver (without padding).
   1543 	 */
   1544 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1545 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1546 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1547 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1548 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1549 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1550 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1551 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1552 				    (cmd->c_resp[1] << 24);
   1553 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1554 				    (cmd->c_resp[2] << 24);
   1555 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1556 				    (cmd->c_resp[3] << 24);
   1557 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1558 			}
   1559 		}
   1560 	}
   1561 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1562 
   1563 	/*
   1564 	 * If the command has data to transfer in any direction,
   1565 	 * execute the transfer now.
   1566 	 */
   1567 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1568 		sdhc_transfer_data(hp, cmd);
   1569 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1570 		if (!sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1571 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1572 			    HDEVNAME(hp)));
   1573 			cmd->c_error = ETIMEDOUT;
   1574 			goto out;
   1575 		}
   1576 	}
   1577 
   1578 out:
   1579 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1580 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1581 		/* Turn off the LED. */
   1582 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1583 	}
   1584 	SET(cmd->c_flags, SCF_ITSDONE);
   1585 
   1586 	mutex_exit(&hp->intr_lock);
   1587 
   1588 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1589 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1590 	    cmd->c_flags, cmd->c_error));
   1591 }
   1592 
   1593 static int
   1594 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1595 {
   1596 	struct sdhc_softc * const sc = hp->sc;
   1597 	uint16_t blksize = 0;
   1598 	uint16_t blkcount = 0;
   1599 	uint16_t mode;
   1600 	uint16_t command;
   1601 	uint32_t pmask;
   1602 	int error;
   1603 
   1604 	KASSERT(mutex_owned(&hp->intr_lock));
   1605 
   1606 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1607 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1608 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1609 
   1610 	/*
   1611 	 * The maximum block length for commands should be the minimum
   1612 	 * of the host buffer size and the card buffer size. (1.7.2)
   1613 	 */
   1614 
   1615 	/* Fragment the data into proper blocks. */
   1616 	if (cmd->c_datalen > 0) {
   1617 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1618 		blkcount = cmd->c_datalen / blksize;
   1619 		if (cmd->c_datalen % blksize > 0) {
   1620 			/* XXX: Split this command. (1.7.4) */
   1621 			aprint_error_dev(sc->sc_dev,
   1622 			    "data not a multiple of %u bytes\n", blksize);
   1623 			return EINVAL;
   1624 		}
   1625 	}
   1626 
   1627 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1628 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1629 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1630 		return EINVAL;
   1631 	}
   1632 
   1633 	/* Prepare transfer mode register value. (2.2.5) */
   1634 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1635 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1636 		mode |= SDHC_READ_MODE;
   1637 	if (blkcount > 1) {
   1638 		mode |= SDHC_MULTI_BLOCK_MODE;
   1639 		/* XXX only for memory commands? */
   1640 		mode |= SDHC_AUTO_CMD12_ENABLE;
   1641 	}
   1642 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1643 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1644 		mode |= SDHC_DMA_ENABLE;
   1645 	}
   1646 
   1647 	/*
   1648 	 * Prepare command register value. (2.2.6)
   1649 	 */
   1650 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1651 
   1652 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1653 		command |= SDHC_CRC_CHECK_ENABLE;
   1654 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1655 		command |= SDHC_INDEX_CHECK_ENABLE;
   1656 	if (cmd->c_datalen > 0)
   1657 		command |= SDHC_DATA_PRESENT_SELECT;
   1658 
   1659 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1660 		command |= SDHC_NO_RESPONSE;
   1661 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1662 		command |= SDHC_RESP_LEN_136;
   1663 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1664 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1665 	else
   1666 		command |= SDHC_RESP_LEN_48;
   1667 
   1668 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1669 	pmask = SDHC_CMD_INHIBIT_CMD;
   1670 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1671 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1672 	error = sdhc_wait_state(hp, pmask, 0);
   1673 	if (error) {
   1674 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1675 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1676 		return error;
   1677 	}
   1678 
   1679 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1680 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1681 
   1682 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1683 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1684 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1685 	}
   1686 
   1687 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1688 		/* Alert the user not to remove the card. */
   1689 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1690 	}
   1691 
   1692 	/* Set DMA start address. */
   1693 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1694 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1695 			bus_addr_t paddr =
   1696 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1697 			uint16_t len =
   1698 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1699 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1700 			uint16_t attr =
   1701 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1702 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1703 				attr |= SDHC_ADMA2_END;
   1704 			}
   1705 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1706 				struct sdhc_adma2_descriptor32 *desc =
   1707 				    hp->adma2;
   1708 				desc[seg].attribute = htole16(attr);
   1709 				desc[seg].length = htole16(len);
   1710 				desc[seg].address = htole32(paddr);
   1711 			} else {
   1712 				struct sdhc_adma2_descriptor64 *desc =
   1713 				    hp->adma2;
   1714 				desc[seg].attribute = htole16(attr);
   1715 				desc[seg].length = htole16(len);
   1716 				desc[seg].address = htole32(paddr & 0xffffffff);
   1717 				desc[seg].address_hi = htole32(
   1718 				    (uint64_t)paddr >> 32);
   1719 			}
   1720 		}
   1721 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1722 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1723 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1724 		} else {
   1725 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1726 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1727 		}
   1728 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1729 		    BUS_DMASYNC_PREWRITE);
   1730 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1731 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1732 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1733 		} else {
   1734 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1735 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1736 		}
   1737 
   1738 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1739 
   1740 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1741 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1742 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1743 			    (uint64_t)desc_addr >> 32);
   1744 		}
   1745 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1746 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1747 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1748 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1749 		}
   1750 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1751 	}
   1752 
   1753 	/*
   1754 	 * Start a CPU data transfer.  Writing to the high order byte
   1755 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1756 	 */
   1757 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1758 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1759 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1760 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1761 			/* mode bits is in MIX_CTRL register on uSDHC */
   1762 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1763 			    (HREAD4(hp, SDHC_MIX_CTRL) &
   1764 			    ~(SDHC_MULTI_BLOCK_MODE |
   1765 			    SDHC_READ_MODE |
   1766 			    SDHC_AUTO_CMD12_ENABLE |
   1767 			    SDHC_BLOCK_COUNT_ENABLE |
   1768 			    SDHC_DMA_ENABLE)));
   1769 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1770 		} else {
   1771 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1772 		}
   1773 	} else {
   1774 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1775 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1776 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1777 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1778 		HWRITE2(hp, SDHC_COMMAND, command);
   1779 	}
   1780 
   1781 	return 0;
   1782 }
   1783 
   1784 static void
   1785 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1786 {
   1787 	struct sdhc_softc *sc = hp->sc;
   1788 	int error;
   1789 
   1790 	KASSERT(mutex_owned(&hp->intr_lock));
   1791 
   1792 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1793 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1794 
   1795 #ifdef SDHC_DEBUG
   1796 	/* XXX I forgot why I wanted to know when this happens :-( */
   1797 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1798 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1799 		aprint_error_dev(hp->sc->sc_dev,
   1800 		    "CMD52/53 error response flags %#x\n",
   1801 		    MMC_R1(cmd->c_resp) & 0xff00);
   1802 	}
   1803 #endif
   1804 
   1805 	if (cmd->c_dmamap != NULL) {
   1806 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1807 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1808 			if (error == 0 && !sdhc_wait_intr(hp,
   1809 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1810 				DPRINTF(1,("%s: timeout\n", __func__));
   1811 				error = ETIMEDOUT;
   1812 			}
   1813 		} else {
   1814 			error = sdhc_transfer_data_dma(hp, cmd);
   1815 		}
   1816 	} else
   1817 		error = sdhc_transfer_data_pio(hp, cmd);
   1818 	if (error)
   1819 		cmd->c_error = error;
   1820 	SET(cmd->c_flags, SCF_ITSDONE);
   1821 
   1822 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1823 	    HDEVNAME(hp), cmd->c_error));
   1824 }
   1825 
   1826 static int
   1827 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1828 {
   1829 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1830 	bus_addr_t posaddr;
   1831 	bus_addr_t segaddr;
   1832 	bus_size_t seglen;
   1833 	u_int seg = 0;
   1834 	int error = 0;
   1835 	int status;
   1836 
   1837 	KASSERT(mutex_owned(&hp->intr_lock));
   1838 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1839 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1840 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1841 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1842 
   1843 	for (;;) {
   1844 		status = sdhc_wait_intr(hp,
   1845 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1846 		    SDHC_DMA_TIMEOUT, false);
   1847 
   1848 		if (status & SDHC_TRANSFER_COMPLETE) {
   1849 			break;
   1850 		}
   1851 		if (!status) {
   1852 			DPRINTF(1,("%s: timeout\n", __func__));
   1853 			error = ETIMEDOUT;
   1854 			break;
   1855 		}
   1856 
   1857 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1858 			continue;
   1859 		}
   1860 
   1861 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1862 			continue;
   1863 		}
   1864 
   1865 		/* DMA Interrupt (boundary crossing) */
   1866 
   1867 		segaddr = dm_segs[seg].ds_addr;
   1868 		seglen = dm_segs[seg].ds_len;
   1869 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1870 
   1871 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1872 			continue;
   1873 		}
   1874 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1875 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1876 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1877 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1878 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1879 	}
   1880 
   1881 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1882 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1883 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1884 	}
   1885 
   1886 	return error;
   1887 }
   1888 
   1889 static int
   1890 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1891 {
   1892 	uint8_t *data = cmd->c_data;
   1893 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1894 	u_int len, datalen;
   1895 	u_int imask;
   1896 	u_int pmask;
   1897 	int error = 0;
   1898 
   1899 	KASSERT(mutex_owned(&hp->intr_lock));
   1900 
   1901 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1902 		imask = SDHC_BUFFER_READ_READY;
   1903 		pmask = SDHC_BUFFER_READ_ENABLE;
   1904 		if (ISSET(hp->sc->sc_flags,
   1905 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1906 			pio_func = esdhc_read_data_pio;
   1907 		} else {
   1908 			pio_func = sdhc_read_data_pio;
   1909 		}
   1910 	} else {
   1911 		imask = SDHC_BUFFER_WRITE_READY;
   1912 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1913 		if (ISSET(hp->sc->sc_flags,
   1914 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1915 			pio_func = esdhc_write_data_pio;
   1916 		} else {
   1917 			pio_func = sdhc_write_data_pio;
   1918 		}
   1919 	}
   1920 	datalen = cmd->c_datalen;
   1921 
   1922 	KASSERT(mutex_owned(&hp->intr_lock));
   1923 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1924 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1925 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1926 
   1927 	while (datalen > 0) {
   1928 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   1929 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1930 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1931 			} else {
   1932 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1933 			}
   1934 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   1935 				DPRINTF(1,("%s: timeout\n", __func__));
   1936 				error = ETIMEDOUT;
   1937 				break;
   1938 			}
   1939 
   1940 			error = sdhc_wait_state(hp, pmask, pmask);
   1941 			if (error)
   1942 				break;
   1943 		}
   1944 
   1945 		len = MIN(datalen, cmd->c_blklen);
   1946 		(*pio_func)(hp, data, len);
   1947 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1948 		    HDEVNAME(hp), len, data));
   1949 
   1950 		data += len;
   1951 		datalen -= len;
   1952 	}
   1953 
   1954 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1955 	    SDHC_TRANSFER_TIMEOUT, false)) {
   1956 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   1957 		error = ETIMEDOUT;
   1958 	}
   1959 
   1960 	return error;
   1961 }
   1962 
   1963 static void
   1964 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1965 {
   1966 
   1967 	if (((__uintptr_t)data & 3) == 0) {
   1968 		while (datalen > 3) {
   1969 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1970 			data += 4;
   1971 			datalen -= 4;
   1972 		}
   1973 		if (datalen > 1) {
   1974 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1975 			data += 2;
   1976 			datalen -= 2;
   1977 		}
   1978 		if (datalen > 0) {
   1979 			*data = HREAD1(hp, SDHC_DATA);
   1980 			data += 1;
   1981 			datalen -= 1;
   1982 		}
   1983 	} else if (((__uintptr_t)data & 1) == 0) {
   1984 		while (datalen > 1) {
   1985 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1986 			data += 2;
   1987 			datalen -= 2;
   1988 		}
   1989 		if (datalen > 0) {
   1990 			*data = HREAD1(hp, SDHC_DATA);
   1991 			data += 1;
   1992 			datalen -= 1;
   1993 		}
   1994 	} else {
   1995 		while (datalen > 0) {
   1996 			*data = HREAD1(hp, SDHC_DATA);
   1997 			data += 1;
   1998 			datalen -= 1;
   1999 		}
   2000 	}
   2001 }
   2002 
   2003 static void
   2004 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2005 {
   2006 
   2007 	if (((__uintptr_t)data & 3) == 0) {
   2008 		while (datalen > 3) {
   2009 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2010 			data += 4;
   2011 			datalen -= 4;
   2012 		}
   2013 		if (datalen > 1) {
   2014 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2015 			data += 2;
   2016 			datalen -= 2;
   2017 		}
   2018 		if (datalen > 0) {
   2019 			HWRITE1(hp, SDHC_DATA, *data);
   2020 			data += 1;
   2021 			datalen -= 1;
   2022 		}
   2023 	} else if (((__uintptr_t)data & 1) == 0) {
   2024 		while (datalen > 1) {
   2025 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2026 			data += 2;
   2027 			datalen -= 2;
   2028 		}
   2029 		if (datalen > 0) {
   2030 			HWRITE1(hp, SDHC_DATA, *data);
   2031 			data += 1;
   2032 			datalen -= 1;
   2033 		}
   2034 	} else {
   2035 		while (datalen > 0) {
   2036 			HWRITE1(hp, SDHC_DATA, *data);
   2037 			data += 1;
   2038 			datalen -= 1;
   2039 		}
   2040 	}
   2041 }
   2042 
   2043 static void
   2044 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2045 {
   2046 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2047 	uint32_t v;
   2048 
   2049 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2050 	size_t count = 0;
   2051 
   2052 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2053 		if (count == 0) {
   2054 			/*
   2055 			 * If we've drained "watermark" words, we need to wait
   2056 			 * a little bit so the read FIFO can refill.
   2057 			 */
   2058 			sdmmc_delay(10);
   2059 			count = watermark;
   2060 		}
   2061 		v = HREAD4(hp, SDHC_DATA);
   2062 		v = le32toh(v);
   2063 		*(uint32_t *)data = v;
   2064 		data += 4;
   2065 		datalen -= 4;
   2066 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2067 		count--;
   2068 	}
   2069 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2070 		if (count == 0) {
   2071 			sdmmc_delay(10);
   2072 		}
   2073 		v = HREAD4(hp, SDHC_DATA);
   2074 		v = le32toh(v);
   2075 		do {
   2076 			*data++ = v;
   2077 			v >>= 8;
   2078 		} while (--datalen > 0);
   2079 	}
   2080 }
   2081 
   2082 static void
   2083 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2084 {
   2085 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2086 	uint32_t v;
   2087 
   2088 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2089 	size_t count = watermark;
   2090 
   2091 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2092 		if (count == 0) {
   2093 			sdmmc_delay(10);
   2094 			count = watermark;
   2095 		}
   2096 		v = *(uint32_t *)data;
   2097 		v = htole32(v);
   2098 		HWRITE4(hp, SDHC_DATA, v);
   2099 		data += 4;
   2100 		datalen -= 4;
   2101 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2102 		count--;
   2103 	}
   2104 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2105 		if (count == 0) {
   2106 			sdmmc_delay(10);
   2107 		}
   2108 		v = *(uint32_t *)data;
   2109 		v = htole32(v);
   2110 		HWRITE4(hp, SDHC_DATA, v);
   2111 	}
   2112 }
   2113 
   2114 /* Prepare for another command. */
   2115 static int
   2116 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2117 {
   2118 	int timo;
   2119 
   2120 	KASSERT(mutex_owned(&hp->intr_lock));
   2121 
   2122 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2123 
   2124 	/* Request the reset.  */
   2125 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2126 
   2127 	/*
   2128 	 * If necessary, wait for the controller to set the bits to
   2129 	 * acknowledge the reset.
   2130 	 */
   2131 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2132 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2133 		for (timo = 10000; timo > 0; timo--) {
   2134 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2135 				break;
   2136 			/* Short delay because I worry we may miss it...  */
   2137 			sdmmc_delay(1);
   2138 		}
   2139 		if (timo == 0) {
   2140 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2141 			return ETIMEDOUT;
   2142 		}
   2143 	}
   2144 
   2145 	/*
   2146 	 * Wait for the controller to clear the bits to indicate that
   2147 	 * the reset has completed.
   2148 	 */
   2149 	for (timo = 10; timo > 0; timo--) {
   2150 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2151 			break;
   2152 		sdmmc_delay(10000);
   2153 	}
   2154 	if (timo == 0) {
   2155 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2156 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2157 		return ETIMEDOUT;
   2158 	}
   2159 
   2160 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2161 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2162 	}
   2163 
   2164 	return 0;
   2165 }
   2166 
   2167 static int
   2168 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2169 {
   2170 	int status, error, nointr;
   2171 
   2172 	KASSERT(mutex_owned(&hp->intr_lock));
   2173 
   2174 	mask |= SDHC_ERROR_INTERRUPT;
   2175 
   2176 	nointr = 0;
   2177 	status = hp->intr_status & mask;
   2178 	while (status == 0) {
   2179 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2180 		    == EWOULDBLOCK) {
   2181 			nointr = 1;
   2182 			break;
   2183 		}
   2184 		status = hp->intr_status & mask;
   2185 	}
   2186 	error = hp->intr_error_status;
   2187 
   2188 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2189 	    error));
   2190 
   2191 	hp->intr_status &= ~status;
   2192 	hp->intr_error_status &= ~error;
   2193 
   2194 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2195 		if (ISSET(error, SDHC_DMA_ERROR))
   2196 			device_printf(hp->sc->sc_dev,"dma error\n");
   2197 		if (ISSET(error, SDHC_ADMA_ERROR))
   2198 			device_printf(hp->sc->sc_dev,"adma error\n");
   2199 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2200 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2201 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2202 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2203 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2204 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2205 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2206 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2207 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2208 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2209 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2210 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2211 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2212 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2213 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2214 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2215 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2216 			if (!probing)
   2217 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2218 #ifdef SDHC_DEBUG
   2219 			else if (sdhcdebug > 0)
   2220 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2221 #endif
   2222 		}
   2223 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2224 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2225 				(error & ~SDHC_EINTR_STATUS_MASK));
   2226 		if (error == 0)
   2227 			device_printf(hp->sc->sc_dev,"no error\n");
   2228 
   2229 		/* Command timeout has higher priority than command complete. */
   2230 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2231 			CLR(status, SDHC_COMMAND_COMPLETE);
   2232 
   2233 		/* Transfer complete has higher priority than data timeout. */
   2234 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2235 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2236 	}
   2237 
   2238 	if (nointr ||
   2239 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2240 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2241 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2242 		hp->intr_error_status = 0;
   2243 		status = 0;
   2244 	}
   2245 
   2246 	return status;
   2247 }
   2248 
   2249 /*
   2250  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2251  */
   2252 int
   2253 sdhc_intr(void *arg)
   2254 {
   2255 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2256 	struct sdhc_host *hp;
   2257 	int done = 0;
   2258 	uint16_t status;
   2259 	uint16_t error;
   2260 
   2261 	/* We got an interrupt, but we don't know from which slot. */
   2262 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2263 		hp = sc->sc_host[host];
   2264 		if (hp == NULL)
   2265 			continue;
   2266 
   2267 		mutex_enter(&hp->intr_lock);
   2268 
   2269 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2270 			/* Find out which interrupts are pending. */
   2271 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2272 			status = xstatus;
   2273 			error = xstatus >> 16;
   2274 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2275 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2276 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2277 				/* read again due to uSDHC errata */
   2278 				status = xstatus = HREAD4(hp,
   2279 				    SDHC_NINTR_STATUS);
   2280 				error = xstatus >> 16;
   2281 			}
   2282 			if (ISSET(sc->sc_flags,
   2283 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2284 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2285 					SET(status, SDHC_ERROR_INTERRUPT);
   2286 			}
   2287 			if (error)
   2288 				xstatus |= SDHC_ERROR_INTERRUPT;
   2289 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2290 				goto next_port; /* no interrupt for us */
   2291 			/* Acknowledge the interrupts we are about to handle. */
   2292 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2293 		} else {
   2294 			/* Find out which interrupts are pending. */
   2295 			error = 0;
   2296 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2297 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2298 				goto next_port; /* no interrupt for us */
   2299 			/* Acknowledge the interrupts we are about to handle. */
   2300 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2301 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2302 				/* Acknowledge error interrupts. */
   2303 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2304 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2305 			}
   2306 		}
   2307 
   2308 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2309 		    status, error));
   2310 
   2311 		/* Claim this interrupt. */
   2312 		done = 1;
   2313 
   2314 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2315 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2316 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2317 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2318 			    adma_err);
   2319 		}
   2320 
   2321 		/*
   2322 		 * Wake up the sdmmc event thread to scan for cards.
   2323 		 */
   2324 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2325 			if (hp->sdmmc != NULL) {
   2326 				sdmmc_needs_discover(hp->sdmmc);
   2327 			}
   2328 			if (ISSET(sc->sc_flags,
   2329 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2330 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2331 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2332 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2333 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2334 			}
   2335 		}
   2336 
   2337 		/*
   2338 		 * Schedule re-tuning process (UHS).
   2339 		 */
   2340 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2341 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2342 		}
   2343 
   2344 		/*
   2345 		 * Wake up the blocking process to service command
   2346 		 * related interrupt(s).
   2347 		 */
   2348 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2349 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2350 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2351 			hp->intr_error_status |= error;
   2352 			hp->intr_status |= status;
   2353 			if (ISSET(sc->sc_flags,
   2354 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2355 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2356 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2357 			}
   2358 			cv_broadcast(&hp->intr_cv);
   2359 		}
   2360 
   2361 		/*
   2362 		 * Service SD card interrupts.
   2363 		 */
   2364 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2365 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2366 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2367 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2368 			sdmmc_card_intr(hp->sdmmc);
   2369 		}
   2370 next_port:
   2371 		mutex_exit(&hp->intr_lock);
   2372 	}
   2373 
   2374 	return done;
   2375 }
   2376 
   2377 kmutex_t *
   2378 sdhc_host_lock(struct sdhc_host *hp)
   2379 {
   2380 	return &hp->intr_lock;
   2381 }
   2382 
   2383 #ifdef SDHC_DEBUG
   2384 void
   2385 sdhc_dump_regs(struct sdhc_host *hp)
   2386 {
   2387 
   2388 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2389 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2390 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2391 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2392 		    HREAD1(hp, SDHC_POWER_CTL));
   2393 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2394 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2395 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2396 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2397 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2398 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2399 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2400 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2401 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2402 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2403 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2404 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2405 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2406 	    HREAD4(hp, SDHC_CAPABILITIES));
   2407 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2408 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2409 }
   2410 #endif
   2411