Home | History | Annotate | Line # | Download | only in sdmmc
sdhc.c revision 1.97
      1 /*	$NetBSD: sdhc.c,v 1.97 2017/01/07 15:05:08 kiyohara Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.97 2017/01/07 15:05:08 kiyohara Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kcondvar_t intr_cv;
     81 
     82 	callout_t tuning_timer;
     83 	int tuning_timing;
     84 	u_int tuning_timer_count;
     85 	u_int tuning_timer_pending;
     86 
     87 	int specver;			/* spec. version */
     88 
     89 	uint32_t flags;			/* flags for this host */
     90 #define SHF_USE_DMA		0x0001
     91 #define SHF_USE_4BIT_MODE	0x0002
     92 #define SHF_USE_8BIT_MODE	0x0004
     93 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     94 #define SHF_USE_ADMA2_32	0x0010
     95 #define SHF_USE_ADMA2_64	0x0020
     96 #define SHF_USE_ADMA2_MASK	0x0030
     97 
     98 	bus_dmamap_t		adma_map;
     99 	bus_dma_segment_t	adma_segs[1];
    100 	void			*adma2;
    101 };
    102 
    103 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    104 
    105 static uint8_t
    106 hread1(struct sdhc_host *hp, bus_size_t reg)
    107 {
    108 
    109 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    110 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    111 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    112 }
    113 
    114 static uint16_t
    115 hread2(struct sdhc_host *hp, bus_size_t reg)
    116 {
    117 
    118 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    119 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    120 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    121 }
    122 
    123 #define HREAD1(hp, reg)		hread1(hp, reg)
    124 #define HREAD2(hp, reg)		hread2(hp, reg)
    125 #define HREAD4(hp, reg)		\
    126 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    127 
    128 
    129 static void
    130 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    131 {
    132 
    133 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    134 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    135 	} else {
    136 		const size_t shift = 8 * (o & 3);
    137 		o &= -4;
    138 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    139 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    140 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    141 	}
    142 }
    143 
    144 static void
    145 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    146 {
    147 
    148 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    149 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    150 	} else {
    151 		const size_t shift = 8 * (o & 2);
    152 		o &= -4;
    153 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    154 		tmp = (val << shift) | (tmp & ~(0xffff << shift));
    155 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    156 	}
    157 }
    158 
    159 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    160 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    161 #define HWRITE4(hp, reg, val)						\
    162 	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
    163 
    164 #define HCLR1(hp, reg, bits)						\
    165 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    166 #define HCLR2(hp, reg, bits)						\
    167 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    168 #define HCLR4(hp, reg, bits)						\
    169 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    170 #define HSET1(hp, reg, bits)						\
    171 	do if (bits) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    172 #define HSET2(hp, reg, bits)						\
    173 	do if (bits) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    174 #define HSET4(hp, reg, bits)						\
    175 	do if (bits) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    176 
    177 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    178 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    179 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    180 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    181 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    182 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    183 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    184 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    185 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    186 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    187 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    188 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    189 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    190 		    struct sdmmc_command *);
    191 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    192 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    193 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    194 static void	sdhc_tuning_timer(void *);
    195 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    196 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    197 static int	sdhc_soft_reset(struct sdhc_host *, int);
    198 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    199 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    200 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    201 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    202 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    203 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    204 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    205 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    206 
    207 static struct sdmmc_chip_functions sdhc_functions = {
    208 	/* host controller reset */
    209 	.host_reset = sdhc_host_reset,
    210 
    211 	/* host controller capabilities */
    212 	.host_ocr = sdhc_host_ocr,
    213 	.host_maxblklen = sdhc_host_maxblklen,
    214 
    215 	/* card detection */
    216 	.card_detect = sdhc_card_detect,
    217 
    218 	/* write protect */
    219 	.write_protect = sdhc_write_protect,
    220 
    221 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    222 	.bus_power = sdhc_bus_power,
    223 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    224 	.bus_width = sdhc_bus_width,
    225 	.bus_rod = sdhc_bus_rod,
    226 
    227 	/* command execution */
    228 	.exec_command = sdhc_exec_command,
    229 
    230 	/* card interrupt */
    231 	.card_enable_intr = sdhc_card_enable_intr,
    232 	.card_intr_ack = sdhc_card_intr_ack,
    233 
    234 	/* UHS functions */
    235 	.signal_voltage = sdhc_signal_voltage,
    236 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    237 	.execute_tuning = sdhc_execute_tuning,
    238 };
    239 
    240 static int
    241 sdhc_cfprint(void *aux, const char *pnp)
    242 {
    243 	const struct sdmmcbus_attach_args * const saa = aux;
    244 	const struct sdhc_host * const hp = saa->saa_sch;
    245 
    246 	if (pnp) {
    247 		aprint_normal("sdmmc at %s", pnp);
    248 	}
    249 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    250 		if (hp->sc->sc_host[host] == hp) {
    251 			aprint_normal(" slot %zu", host);
    252 		}
    253 	}
    254 
    255 	return UNCONF;
    256 }
    257 
    258 /*
    259  * Called by attachment driver.  For each SD card slot there is one SD
    260  * host controller standard register set. (1.3)
    261  */
    262 int
    263 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    264     bus_space_handle_t ioh, bus_size_t iosize)
    265 {
    266 	struct sdmmcbus_attach_args saa;
    267 	struct sdhc_host *hp;
    268 	uint32_t caps, caps2;
    269 	uint16_t sdhcver;
    270 	int error;
    271 
    272 	/* Allocate one more host structure. */
    273 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    274 	if (hp == NULL) {
    275 		aprint_error_dev(sc->sc_dev,
    276 		    "couldn't alloc memory (sdhc host)\n");
    277 		goto err1;
    278 	}
    279 	sc->sc_host[sc->sc_nhosts++] = hp;
    280 
    281 	/* Fill in the new host structure. */
    282 	hp->sc = sc;
    283 	hp->iot = iot;
    284 	hp->ioh = ioh;
    285 	hp->ios = iosize;
    286 	hp->dmat = sc->sc_dmat;
    287 
    288 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    289 	cv_init(&hp->intr_cv, "sdhcintr");
    290 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    291 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    292 
    293 	if (iosize <= SDHC_HOST_CTL_VERSION) {
    294 		aprint_normal_dev(sc->sc_dev, "SDHC NO-VERS");
    295 		hp->specver = -1;
    296 	} else {
    297 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    298 			sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    299 		} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    300 			sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    301 		} else
    302 			sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    303 		aprint_normal_dev(sc->sc_dev, "SDHC ");
    304 		hp->specver = SDHC_SPEC_VERSION(sdhcver);
    305 		switch (SDHC_SPEC_VERSION(sdhcver)) {
    306 		case SDHC_SPEC_VERS_100:
    307 			aprint_normal("1.0");
    308 			break;
    309 
    310 		case SDHC_SPEC_VERS_200:
    311 			aprint_normal("2.0");
    312 			break;
    313 
    314 		case SDHC_SPEC_VERS_300:
    315 			aprint_normal("3.0");
    316 			break;
    317 
    318 		case SDHC_SPEC_VERS_400:
    319 			aprint_normal("4.0");
    320 			break;
    321 
    322 		default:
    323 			aprint_normal("unknown version(0x%x)",
    324 			    SDHC_SPEC_VERSION(sdhcver));
    325 			break;
    326 		}
    327 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    328 	}
    329 
    330 	/*
    331 	 * Reset the host controller and enable interrupts.
    332 	 */
    333 	(void)sdhc_host_reset(hp);
    334 
    335 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    336 		/* init uSDHC registers */
    337 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    338 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    339 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    340 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    341 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    342 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    343 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    344 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    345 		HSET4(hp, SDHC_VEND_SPEC,
    346 		    SDHC_VEND_SPEC_MBO |
    347 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    348 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    349 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    350 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    351 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    352 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    353 	}
    354 
    355 	/* Determine host capabilities. */
    356 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    357 		caps = sc->sc_caps;
    358 		caps2 = sc->sc_caps2;
    359 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    360 		/* uSDHC capability register is little bit different */
    361 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    362 		caps |= SDHC_8BIT_SUPP;
    363 		if (caps & SDHC_ADMA1_SUPP)
    364 			caps |= SDHC_ADMA2_SUPP;
    365 		sc->sc_caps = caps;
    366 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    367 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    368 	} else {
    369 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    370 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    371 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    372 		} else {
    373 			caps2 = sc->sc_caps2 = 0;
    374 		}
    375 	}
    376 
    377 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    378 	    SDHC_RETUNING_MODES_MASK;
    379 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    380 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    381 		    SDHC_TIMER_COUNT_MASK;
    382 		if (hp->tuning_timer_count == 0xf)
    383 			hp->tuning_timer_count = 0;
    384 		if (hp->tuning_timer_count)
    385 			hp->tuning_timer_count =
    386 			    1 << (hp->tuning_timer_count - 1);
    387 	}
    388 
    389 	/*
    390 	 * Use DMA if the host system and the controller support it.
    391 	 * Suports integrated or external DMA egine, with or without
    392 	 * SDHC_DMA_ENABLE in the command.
    393 	 */
    394 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    395 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    396 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    397 		SET(hp->flags, SHF_USE_DMA);
    398 
    399 		if (ISSET(sc->sc_flags, SDHC_FLAG_USE_ADMA2) &&
    400 		    ISSET(caps, SDHC_ADMA2_SUPP)) {
    401 			SET(hp->flags, SHF_MODE_DMAEN);
    402 			/*
    403 			 * 64-bit mode was present in the 2.00 spec, removed
    404 			 * from 3.00, and re-added in 4.00 with a different
    405 			 * descriptor layout. We only support 2.00 and 3.00
    406 			 * descriptors for now.
    407 			 */
    408 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    409 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    410 				SET(hp->flags, SHF_USE_ADMA2_64);
    411 				aprint_normal(", 64-bit ADMA2");
    412 			} else {
    413 				SET(hp->flags, SHF_USE_ADMA2_32);
    414 				aprint_normal(", 32-bit ADMA2");
    415 			}
    416 		} else {
    417 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    418 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    419 				SET(hp->flags, SHF_MODE_DMAEN);
    420 			if (sc->sc_vendor_transfer_data_dma) {
    421 				aprint_normal(", platform DMA");
    422 			} else {
    423 				aprint_normal(", SDMA");
    424 			}
    425 		}
    426 	} else {
    427 		aprint_normal(", PIO");
    428 	}
    429 
    430 	/*
    431 	 * Determine the base clock frequency. (2.2.24)
    432 	 */
    433 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    434 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    435 	} else {
    436 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    437 	}
    438 	if (hp->clkbase == 0 ||
    439 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    440 		if (sc->sc_clkbase == 0) {
    441 			/* The attachment driver must tell us. */
    442 			aprint_error_dev(sc->sc_dev,
    443 			    "unknown base clock frequency\n");
    444 			goto err;
    445 		}
    446 		hp->clkbase = sc->sc_clkbase;
    447 	}
    448 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    449 		/* SDHC 1.0 supports only 10-63 MHz. */
    450 		aprint_error_dev(sc->sc_dev,
    451 		    "base clock frequency out of range: %u MHz\n",
    452 		    hp->clkbase / 1000);
    453 		goto err;
    454 	}
    455 	aprint_normal(", %u kHz", hp->clkbase);
    456 
    457 	/*
    458 	 * XXX Set the data timeout counter value according to
    459 	 * capabilities. (2.2.15)
    460 	 */
    461 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    462 #if 1
    463 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    464 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    465 #endif
    466 
    467 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    468 		aprint_normal(", embedded slot");
    469 
    470 	/*
    471 	 * Determine SD bus voltage levels supported by the controller.
    472 	 */
    473 	aprint_normal(",");
    474 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    475 		SET(hp->ocr, MMC_OCR_HCS);
    476 		aprint_normal(" HS");
    477 	}
    478 	if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    479 		SET(hp->ocr, MMC_OCR_S18A);
    480 		aprint_normal(" SDR50");
    481 	}
    482 	if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    483 		SET(hp->ocr, MMC_OCR_S18A);
    484 		aprint_normal(" DDR50");
    485 	}
    486 	if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    487 		SET(hp->ocr, MMC_OCR_S18A);
    488 		aprint_normal(" SDR104 HS200");
    489 	}
    490 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    491 		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    492 		aprint_normal(" 1.8V");
    493 	}
    494 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    495 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    496 		aprint_normal(" 3.0V");
    497 	}
    498 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    499 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    500 		aprint_normal(" 3.3V");
    501 	}
    502 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    503 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    504 		if (hp->tuning_timer_count)
    505 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    506 	}
    507 
    508 	/*
    509 	 * Determine the maximum block length supported by the host
    510 	 * controller. (2.2.24)
    511 	 */
    512 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    513 	case SDHC_MAX_BLK_LEN_512:
    514 		hp->maxblklen = 512;
    515 		break;
    516 
    517 	case SDHC_MAX_BLK_LEN_1024:
    518 		hp->maxblklen = 1024;
    519 		break;
    520 
    521 	case SDHC_MAX_BLK_LEN_2048:
    522 		hp->maxblklen = 2048;
    523 		break;
    524 
    525 	case SDHC_MAX_BLK_LEN_4096:
    526 		hp->maxblklen = 4096;
    527 		break;
    528 
    529 	default:
    530 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    531 		goto err;
    532 	}
    533 	aprint_normal(", %u byte blocks", hp->maxblklen);
    534 	aprint_normal("\n");
    535 
    536 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    537 		int rseg;
    538 
    539 		/* Allocate ADMA2 descriptor memory */
    540 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    541 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    542 		if (error) {
    543 			aprint_error_dev(sc->sc_dev,
    544 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    545 			goto adma_done;
    546 		}
    547 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    548 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    549 		if (error) {
    550 			aprint_error_dev(sc->sc_dev,
    551 			    "ADMA2 dmamem_map failed (%d)\n", error);
    552 			goto adma_done;
    553 		}
    554 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    555 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    556 		if (error) {
    557 			aprint_error_dev(sc->sc_dev,
    558 			    "ADMA2 dmamap_create failed (%d)\n", error);
    559 			goto adma_done;
    560 		}
    561 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    562 		    hp->adma2, PAGE_SIZE, NULL,
    563 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    564 		if (error) {
    565 			aprint_error_dev(sc->sc_dev,
    566 			    "ADMA2 dmamap_load failed (%d)\n", error);
    567 			goto adma_done;
    568 		}
    569 
    570 		memset(hp->adma2, 0, PAGE_SIZE);
    571 
    572 adma_done:
    573 		if (error)
    574 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    575 	}
    576 
    577 	/*
    578 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    579 	 * not invoke any chipset functions before it is attached.)
    580 	 */
    581 	memset(&saa, 0, sizeof(saa));
    582 	saa.saa_busname = "sdmmc";
    583 	saa.saa_sct = &sdhc_functions;
    584 	saa.saa_sch = hp;
    585 	saa.saa_dmat = hp->dmat;
    586 	saa.saa_clkmax = hp->clkbase;
    587 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    588 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    589 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    590 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    591 	else if (hp->sc->sc_clkmsk != 0)
    592 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    593 		    (ffs(hp->sc->sc_clkmsk) - 1));
    594 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    595 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    596 	else
    597 		saa.saa_clkmin = hp->clkbase / 256;
    598 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    599 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    600 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    601 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    602 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    603 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    604 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
    605 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    606 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    607 				SMC_CAPS_UHS_SDR50 |
    608 				SMC_CAPS_MMC_HS200;
    609 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    610 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    611 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    612 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    613 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    614 		saa.saa_caps |= SMC_CAPS_DMA;
    615 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    616 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    617 	}
    618 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    619 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    620 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    621 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    622 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint);
    623 
    624 	return 0;
    625 
    626 err:
    627 	callout_destroy(&hp->tuning_timer);
    628 	cv_destroy(&hp->intr_cv);
    629 	mutex_destroy(&hp->intr_lock);
    630 	free(hp, M_DEVBUF);
    631 	sc->sc_host[--sc->sc_nhosts] = NULL;
    632 err1:
    633 	return 1;
    634 }
    635 
    636 int
    637 sdhc_detach(struct sdhc_softc *sc, int flags)
    638 {
    639 	struct sdhc_host *hp;
    640 	int rv = 0;
    641 
    642 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    643 		hp = sc->sc_host[n];
    644 		if (hp == NULL)
    645 			continue;
    646 		if (hp->sdmmc != NULL) {
    647 			rv = config_detach(hp->sdmmc, flags);
    648 			if (rv)
    649 				break;
    650 			hp->sdmmc = NULL;
    651 		}
    652 		/* disable interrupts */
    653 		if ((flags & DETACH_FORCE) == 0) {
    654 			mutex_enter(&hp->intr_lock);
    655 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    656 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    657 			} else {
    658 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    659 			}
    660 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    661 			mutex_exit(&hp->intr_lock);
    662 		}
    663 		callout_halt(&hp->tuning_timer, NULL);
    664 		callout_destroy(&hp->tuning_timer);
    665 		cv_destroy(&hp->intr_cv);
    666 		mutex_destroy(&hp->intr_lock);
    667 		if (hp->ios > 0) {
    668 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    669 			hp->ios = 0;
    670 		}
    671 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    672 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    673 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    674 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    675 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    676 		}
    677 		free(hp, M_DEVBUF);
    678 		sc->sc_host[n] = NULL;
    679 	}
    680 
    681 	return rv;
    682 }
    683 
    684 bool
    685 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    686 {
    687 	struct sdhc_softc *sc = device_private(dev);
    688 	struct sdhc_host *hp;
    689 	size_t i;
    690 
    691 	/* XXX poll for command completion or suspend command
    692 	 * in progress */
    693 
    694 	/* Save the host controller state. */
    695 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    696 		hp = sc->sc_host[n];
    697 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    698 			for (i = 0; i < sizeof hp->regs; i += 4) {
    699 				uint32_t v = HREAD4(hp, i);
    700 				hp->regs[i + 0] = (v >> 0);
    701 				hp->regs[i + 1] = (v >> 8);
    702 				if (i + 3 < sizeof hp->regs) {
    703 					hp->regs[i + 2] = (v >> 16);
    704 					hp->regs[i + 3] = (v >> 24);
    705 				}
    706 			}
    707 		} else {
    708 			for (i = 0; i < sizeof hp->regs; i++) {
    709 				hp->regs[i] = HREAD1(hp, i);
    710 			}
    711 		}
    712 	}
    713 	return true;
    714 }
    715 
    716 bool
    717 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    718 {
    719 	struct sdhc_softc *sc = device_private(dev);
    720 	struct sdhc_host *hp;
    721 	size_t i;
    722 
    723 	/* Restore the host controller state. */
    724 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    725 		hp = sc->sc_host[n];
    726 		(void)sdhc_host_reset(hp);
    727 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    728 			for (i = 0; i < sizeof hp->regs; i += 4) {
    729 				if (i + 3 < sizeof hp->regs) {
    730 					HWRITE4(hp, i,
    731 					    (hp->regs[i + 0] << 0)
    732 					    | (hp->regs[i + 1] << 8)
    733 					    | (hp->regs[i + 2] << 16)
    734 					    | (hp->regs[i + 3] << 24));
    735 				} else {
    736 					HWRITE4(hp, i,
    737 					    (hp->regs[i + 0] << 0)
    738 					    | (hp->regs[i + 1] << 8));
    739 				}
    740 			}
    741 		} else {
    742 			for (i = 0; i < sizeof hp->regs; i++) {
    743 				HWRITE1(hp, i, hp->regs[i]);
    744 			}
    745 		}
    746 	}
    747 	return true;
    748 }
    749 
    750 bool
    751 sdhc_shutdown(device_t dev, int flags)
    752 {
    753 	struct sdhc_softc *sc = device_private(dev);
    754 	struct sdhc_host *hp;
    755 
    756 	/* XXX chip locks up if we don't disable it before reboot. */
    757 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    758 		hp = sc->sc_host[i];
    759 		(void)sdhc_host_reset(hp);
    760 	}
    761 	return true;
    762 }
    763 
    764 /*
    765  * Reset the host controller.  Called during initialization, when
    766  * cards are removed, upon resume, and during error recovery.
    767  */
    768 static int
    769 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    770 {
    771 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    772 	uint32_t sdhcimask;
    773 	int error;
    774 
    775 	KASSERT(mutex_owned(&hp->intr_lock));
    776 
    777 	/* Disable all interrupts. */
    778 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    779 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    780 	} else {
    781 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    782 	}
    783 
    784 	/*
    785 	 * Reset the entire host controller and wait up to 100ms for
    786 	 * the controller to clear the reset bit.
    787 	 */
    788 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    789 	if (error)
    790 		goto out;
    791 
    792 	/* Set data timeout counter value to max for now. */
    793 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    794 #if 1
    795 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    796 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    797 #endif
    798 
    799 	/* Enable interrupts. */
    800 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    801 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    802 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    803 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    804 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    805 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    806 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    807 		sdhcimask ^=
    808 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    809 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    810 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    811 	} else {
    812 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    813 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    814 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    815 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    816 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    817 	}
    818 
    819 out:
    820 	return error;
    821 }
    822 
    823 static int
    824 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    825 {
    826 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    827 	int error;
    828 
    829 	mutex_enter(&hp->intr_lock);
    830 	error = sdhc_host_reset1(sch);
    831 	mutex_exit(&hp->intr_lock);
    832 
    833 	return error;
    834 }
    835 
    836 static uint32_t
    837 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    838 {
    839 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    840 
    841 	return hp->ocr;
    842 }
    843 
    844 static int
    845 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    846 {
    847 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    848 
    849 	return hp->maxblklen;
    850 }
    851 
    852 /*
    853  * Return non-zero if the card is currently inserted.
    854  */
    855 static int
    856 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    857 {
    858 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    859 	int r;
    860 
    861 	if (hp->sc->sc_vendor_card_detect)
    862 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    863 
    864 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    865 
    866 	return r ? 1 : 0;
    867 }
    868 
    869 /*
    870  * Return non-zero if the card is currently write-protected.
    871  */
    872 static int
    873 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    874 {
    875 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    876 	int r;
    877 
    878 	if (hp->sc->sc_vendor_write_protect)
    879 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    880 
    881 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    882 
    883 	return r ? 0 : 1;
    884 }
    885 
    886 /*
    887  * Set or change SD bus voltage and enable or disable SD bus power.
    888  * Return zero on success.
    889  */
    890 static int
    891 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    892 {
    893 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    894 	uint8_t vdd;
    895 	int error = 0;
    896 	const uint32_t pcmask =
    897 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    898 
    899 	mutex_enter(&hp->intr_lock);
    900 
    901 	/*
    902 	 * Disable bus power before voltage change.
    903 	 */
    904 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
    905 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0))
    906 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    907 
    908 	/* If power is disabled, reset the host and return now. */
    909 	if (ocr == 0) {
    910 		(void)sdhc_host_reset1(hp);
    911 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    912 		goto out;
    913 	}
    914 
    915 	/*
    916 	 * Select the lowest voltage according to capabilities.
    917 	 */
    918 	ocr &= hp->ocr;
    919 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    920 		vdd = SDHC_VOLTAGE_1_8V;
    921 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    922 		vdd = SDHC_VOLTAGE_3_0V;
    923 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    924 		vdd = SDHC_VOLTAGE_3_3V;
    925 	} else {
    926 		/* Unsupported voltage level requested. */
    927 		error = EINVAL;
    928 		goto out;
    929 	}
    930 
    931 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    932 		/*
    933 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    934 		 * voltage ramp until power rises.
    935 		 */
    936 
    937 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    938 			HWRITE1(hp, SDHC_POWER_CTL,
    939 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    940 		} else {
    941 			HWRITE1(hp, SDHC_POWER_CTL,
    942 			    HREAD1(hp, SDHC_POWER_CTL) & pcmask);
    943 			sdmmc_delay(1);
    944 			HWRITE1(hp, SDHC_POWER_CTL,
    945 			    (vdd << SDHC_VOLTAGE_SHIFT));
    946 			sdmmc_delay(1);
    947 			HSET1(hp, SDHC_POWER_CTL, SDHC_BUS_POWER);
    948 			sdmmc_delay(10000);
    949 		}
    950 
    951 		/*
    952 		 * The host system may not power the bus due to battery low,
    953 		 * etc.  In that case, the host controller should clear the
    954 		 * bus power bit.
    955 		 */
    956 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    957 			error = ENXIO;
    958 			goto out;
    959 		}
    960 	}
    961 
    962 out:
    963 	mutex_exit(&hp->intr_lock);
    964 
    965 	return error;
    966 }
    967 
    968 /*
    969  * Return the smallest possible base clock frequency divisor value
    970  * for the CLOCK_CTL register to produce `freq' (KHz).
    971  */
    972 static bool
    973 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
    974 {
    975 	u_int div;
    976 
    977 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
    978 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
    979 			if ((hp->clkbase / div) <= freq) {
    980 				*divp = SDHC_SDCLK_CGM
    981 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
    982 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
    983 				//freq = hp->clkbase / div;
    984 				return true;
    985 			}
    986 		}
    987 		/* No divisor found. */
    988 		return false;
    989 	}
    990 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
    991 		u_int dvs = (hp->clkbase + freq - 1) / freq;
    992 		u_int roundup = dvs & 1;
    993 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
    994 			if (dvs + roundup <= 16) {
    995 				dvs += roundup - 1;
    996 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
    997 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
    998 				DPRINTF(2,
    999 				    ("%s: divisor for freq %u is %u * %u\n",
   1000 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1001 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1002 				return true;
   1003 			}
   1004 			/*
   1005 			 * If we drop bits, we need to round up the divisor.
   1006 			 */
   1007 			roundup |= dvs & 1;
   1008 		}
   1009 		/* No divisor found. */
   1010 		return false;
   1011 	}
   1012 	if (hp->sc->sc_clkmsk != 0) {
   1013 		div = howmany(hp->clkbase, freq);
   1014 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1015 			return false;
   1016 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1017 		//freq = hp->clkbase / div;
   1018 		return true;
   1019 	}
   1020 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1021 		div = howmany(hp->clkbase, freq);
   1022 		div = div > 1 ? howmany(div, 2) : 0;
   1023 		if (div > 0x3ff)
   1024 			return false;
   1025 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1026 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1027 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1028 			 << SDHC_SDCLK_DIV_SHIFT);
   1029 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1030 		return true;
   1031 	} else {
   1032 		for (div = 1; div <= 256; div *= 2) {
   1033 			if ((hp->clkbase / div) <= freq) {
   1034 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1035 				//freq = hp->clkbase / div;
   1036 				return true;
   1037 			}
   1038 		}
   1039 		/* No divisor found. */
   1040 		return false;
   1041 	}
   1042 	/* No divisor found. */
   1043 	return false;
   1044 }
   1045 
   1046 /*
   1047  * Set or change SDCLK frequency or disable the SD clock.
   1048  * Return zero on success.
   1049  */
   1050 static int
   1051 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1052 {
   1053 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1054 	u_int div;
   1055 	u_int timo;
   1056 	int16_t reg;
   1057 	int error = 0;
   1058 	bool present __diagused;
   1059 
   1060 	mutex_enter(&hp->intr_lock);
   1061 
   1062 #ifdef DIAGNOSTIC
   1063 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1064 
   1065 	/* Must not stop the clock if commands are in progress. */
   1066 	if (present && sdhc_card_detect(hp)) {
   1067 		aprint_normal_dev(hp->sc->sc_dev,
   1068 		    "%s: command in progress\n", __func__);
   1069 	}
   1070 #endif
   1071 
   1072 	if (hp->sc->sc_vendor_bus_clock) {
   1073 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1074 		if (error != 0)
   1075 			goto out;
   1076 	}
   1077 
   1078 	/*
   1079 	 * Stop SD clock before changing the frequency.
   1080 	 */
   1081 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1082 		HCLR4(hp, SDHC_VEND_SPEC,
   1083 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1084 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1085 		if (freq == SDMMC_SDCLK_OFF) {
   1086 			goto out;
   1087 		}
   1088 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1089 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1090 		if (freq == SDMMC_SDCLK_OFF) {
   1091 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1092 			goto out;
   1093 		}
   1094 	} else {
   1095 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1096 		if (freq == SDMMC_SDCLK_OFF)
   1097 			goto out;
   1098 	}
   1099 
   1100 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1101 		if (ddr)
   1102 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1103 		else
   1104 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1105 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1106 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1107 		if (freq > 100000) {
   1108 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1109 		} else if (freq > 50000) {
   1110 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR50);
   1111 		} else if (freq > 25000) {
   1112 			if (ddr) {
   1113 				HSET2(hp, SDHC_HOST_CTL2,
   1114 				    SDHC_UHS_MODE_SELECT_DDR50);
   1115 			} else {
   1116 				HSET2(hp, SDHC_HOST_CTL2,
   1117 				    SDHC_UHS_MODE_SELECT_SDR25);
   1118 			}
   1119 		} else if (freq > 400) {
   1120 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1121 		}
   1122 	}
   1123 
   1124 	/*
   1125 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1126 	 * at 100MHz bus clock.
   1127 	 */
   1128 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1129 		if (freq == 100000)
   1130 			--freq;
   1131 	}
   1132 
   1133 	/*
   1134 	 * Set the minimum base clock frequency divisor.
   1135 	 */
   1136 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1137 		/* Invalid base clock frequency or `freq' value. */
   1138 		aprint_error_dev(hp->sc->sc_dev,
   1139 			"Invalid bus clock %d kHz\n", freq);
   1140 		error = EINVAL;
   1141 		goto out;
   1142 	}
   1143 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1144 		if (ddr) {
   1145 			/* in ddr mode, divisor >>= 1 */
   1146 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1147 			    SDHC_SDCLK_DIV_SHIFT)) |
   1148 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1149 			    SDHC_SDCLK_DVS_SHIFT));
   1150 		}
   1151 		for (timo = 1000; timo > 0; timo--) {
   1152 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1153 				break;
   1154 			sdmmc_delay(10);
   1155 		}
   1156 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1157 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1158 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1159 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1160 		    div | (SDHC_TIMEOUT_MAX << 16));
   1161 	} else {
   1162 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1163 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1164 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1165 	}
   1166 
   1167 	/*
   1168 	 * Start internal clock.  Wait 10ms for stabilization.
   1169 	 */
   1170 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1171 		HSET4(hp, SDHC_VEND_SPEC,
   1172 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1173 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1174 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1175 		sdmmc_delay(10000);
   1176 		HSET4(hp, SDHC_CLOCK_CTL,
   1177 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1178 	} else {
   1179 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1180 		for (timo = 1000; timo > 0; timo--) {
   1181 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1182 			    SDHC_INTCLK_STABLE))
   1183 				break;
   1184 			sdmmc_delay(10);
   1185 		}
   1186 		if (timo == 0) {
   1187 			error = ETIMEDOUT;
   1188 			DPRINTF(1,("%s: timeout\n", __func__));
   1189 			goto out;
   1190 		}
   1191 	}
   1192 
   1193 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1194 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1195 		/*
   1196 		 * Sending 80 clocks at 400kHz takes 200us.
   1197 		 * So delay for that time + slop and then
   1198 		 * check a few times for completion.
   1199 		 */
   1200 		sdmmc_delay(210);
   1201 		for (timo = 10; timo > 0; timo--) {
   1202 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1203 			    SDHC_INIT_ACTIVE))
   1204 				break;
   1205 			sdmmc_delay(10);
   1206 		}
   1207 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1208 
   1209 		/*
   1210 		 * Enable SD clock.
   1211 		 */
   1212 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1213 			HSET4(hp, SDHC_VEND_SPEC,
   1214 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1215 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1216 		} else {
   1217 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1218 		}
   1219 	} else {
   1220 		/*
   1221 		 * Enable SD clock.
   1222 		 */
   1223 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1224 
   1225 		if (freq > 25000 &&
   1226 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1227 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1228 		else
   1229 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1230 	}
   1231 
   1232 out:
   1233 	mutex_exit(&hp->intr_lock);
   1234 
   1235 	return error;
   1236 }
   1237 
   1238 static int
   1239 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1240 {
   1241 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1242 	int reg;
   1243 
   1244 	switch (width) {
   1245 	case 1:
   1246 	case 4:
   1247 		break;
   1248 
   1249 	case 8:
   1250 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1251 			break;
   1252 		/* FALLTHROUGH */
   1253 	default:
   1254 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1255 		    HDEVNAME(hp), width));
   1256 		return 1;
   1257 	}
   1258 
   1259 	if (hp->sc->sc_vendor_bus_width) {
   1260 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1261 		if (error != 0)
   1262 			return error;
   1263 	}
   1264 
   1265 	mutex_enter(&hp->intr_lock);
   1266 
   1267 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1268 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1269 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1270 		if (width == 4)
   1271 			reg |= SDHC_4BIT_MODE;
   1272 		else if (width == 8)
   1273 			reg |= SDHC_ESDHC_8BIT_MODE;
   1274 	} else {
   1275 		reg &= ~SDHC_4BIT_MODE;
   1276 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1277 			reg &= ~SDHC_8BIT_MODE;
   1278 		}
   1279 		if (width == 4) {
   1280 			reg |= SDHC_4BIT_MODE;
   1281 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1282 			reg |= SDHC_8BIT_MODE;
   1283 		}
   1284 	}
   1285 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1286 
   1287 	mutex_exit(&hp->intr_lock);
   1288 
   1289 	return 0;
   1290 }
   1291 
   1292 static int
   1293 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1294 {
   1295 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1296 
   1297 	if (hp->sc->sc_vendor_rod)
   1298 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1299 
   1300 	return 0;
   1301 }
   1302 
   1303 static void
   1304 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1305 {
   1306 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1307 
   1308 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1309 		mutex_enter(&hp->intr_lock);
   1310 		if (enable) {
   1311 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1312 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1313 		} else {
   1314 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1315 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1316 		}
   1317 		mutex_exit(&hp->intr_lock);
   1318 	}
   1319 }
   1320 
   1321 static void
   1322 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1323 {
   1324 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1325 
   1326 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1327 		mutex_enter(&hp->intr_lock);
   1328 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1329 		mutex_exit(&hp->intr_lock);
   1330 	}
   1331 }
   1332 
   1333 static int
   1334 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1335 {
   1336 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1337 
   1338 	mutex_enter(&hp->intr_lock);
   1339 	switch (signal_voltage) {
   1340 	case SDMMC_SIGNAL_VOLTAGE_180:
   1341 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1342 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1343 		break;
   1344 	case SDMMC_SIGNAL_VOLTAGE_330:
   1345 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1346 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1347 		break;
   1348 	default:
   1349 		return EINVAL;
   1350 	}
   1351 	mutex_exit(&hp->intr_lock);
   1352 
   1353 	return 0;
   1354 }
   1355 
   1356 /*
   1357  * Sampling clock tuning procedure (UHS)
   1358  */
   1359 static int
   1360 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1361 {
   1362 	struct sdmmc_command cmd;
   1363 	uint8_t hostctl;
   1364 	int opcode, error, retry = 40;
   1365 
   1366 	KASSERT(mutex_owned(&hp->intr_lock));
   1367 
   1368 	hp->tuning_timing = timing;
   1369 
   1370 	switch (timing) {
   1371 	case SDMMC_TIMING_MMC_HS200:
   1372 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1373 		break;
   1374 	case SDMMC_TIMING_UHS_SDR50:
   1375 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1376 			return 0;
   1377 		/* FALLTHROUGH */
   1378 	case SDMMC_TIMING_UHS_SDR104:
   1379 		opcode = MMC_SEND_TUNING_BLOCK;
   1380 		break;
   1381 	default:
   1382 		return EINVAL;
   1383 	}
   1384 
   1385 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1386 
   1387 	/* enable buffer read ready interrupt */
   1388 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1389 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1390 
   1391 	/* disable DMA */
   1392 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1393 
   1394 	/* reset tuning circuit */
   1395 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1396 
   1397 	/* start of tuning */
   1398 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1399 
   1400 	do {
   1401 		memset(&cmd, 0, sizeof(cmd));
   1402 		cmd.c_opcode = opcode;
   1403 		cmd.c_arg = 0;
   1404 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1405 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1406 			cmd.c_blklen = cmd.c_datalen = 128;
   1407 		} else {
   1408 			cmd.c_blklen = cmd.c_datalen = 64;
   1409 		}
   1410 
   1411 		error = sdhc_start_command(hp, &cmd);
   1412 		if (error)
   1413 			break;
   1414 
   1415 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1416 		    SDHC_TUNING_TIMEOUT, false)) {
   1417 			break;
   1418 		}
   1419 
   1420 		delay(1000);
   1421 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1422 
   1423 	/* disable buffer read ready interrupt */
   1424 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1425 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1426 
   1427 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1428 		HCLR2(hp, SDHC_HOST_CTL2,
   1429 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1430 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1431 		aprint_error_dev(hp->sc->sc_dev,
   1432 		    "tuning did not complete, using fixed sampling clock\n");
   1433 		return EIO;		/* tuning did not complete */
   1434 	}
   1435 
   1436 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1437 		HCLR2(hp, SDHC_HOST_CTL2,
   1438 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1439 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1440 		aprint_error_dev(hp->sc->sc_dev,
   1441 		    "tuning failed, using fixed sampling clock\n");
   1442 		return EIO;		/* tuning failed */
   1443 	}
   1444 
   1445 	if (hp->tuning_timer_count) {
   1446 		callout_schedule(&hp->tuning_timer,
   1447 		    hz * hp->tuning_timer_count);
   1448 	}
   1449 
   1450 	return 0;		/* tuning completed */
   1451 }
   1452 
   1453 static int
   1454 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1455 {
   1456 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1457 	int error;
   1458 
   1459 	mutex_enter(&hp->intr_lock);
   1460 	error = sdhc_execute_tuning1(hp, timing);
   1461 	mutex_exit(&hp->intr_lock);
   1462 	return error;
   1463 }
   1464 
   1465 static void
   1466 sdhc_tuning_timer(void *arg)
   1467 {
   1468 	struct sdhc_host *hp = arg;
   1469 
   1470 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1471 }
   1472 
   1473 static int
   1474 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1475 {
   1476 	uint32_t state;
   1477 	int timeout;
   1478 
   1479 	for (timeout = 10000; timeout > 0; timeout--) {
   1480 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
   1481 			return 0;
   1482 		sdmmc_delay(10);
   1483 	}
   1484 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
   1485 	    mask, value, state);
   1486 	return ETIMEDOUT;
   1487 }
   1488 
   1489 static void
   1490 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1491 {
   1492 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1493 	int error;
   1494 	bool probing;
   1495 
   1496 	mutex_enter(&hp->intr_lock);
   1497 
   1498 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1499 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1500 	}
   1501 
   1502 	if (cmd->c_data &&
   1503 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1504 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1505 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1506 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1507 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1508 		} else {
   1509 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1510 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1511 		}
   1512 	}
   1513 
   1514 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1515 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1516 		if (cmd->c_data != NULL) {
   1517 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1518 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1519 		} else {
   1520 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1521 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1522 		}
   1523 	}
   1524 
   1525 	/*
   1526 	 * Start the MMC command, or mark `cmd' as failed and return.
   1527 	 */
   1528 	error = sdhc_start_command(hp, cmd);
   1529 	if (error) {
   1530 		cmd->c_error = error;
   1531 		goto out;
   1532 	}
   1533 
   1534 	/*
   1535 	 * Wait until the command phase is done, or until the command
   1536 	 * is marked done for any other reason.
   1537 	 */
   1538 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1539 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT, probing)) {
   1540 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1541 		sdmmc_delay(50);
   1542 		cmd->c_error = ETIMEDOUT;
   1543 		goto out;
   1544 	}
   1545 
   1546 	/*
   1547 	 * The host controller removes bits [0:7] from the response
   1548 	 * data (CRC) and we pass the data up unchanged to the bus
   1549 	 * driver (without padding).
   1550 	 */
   1551 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1552 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1553 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1554 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1555 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1556 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1557 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1558 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1559 				    (cmd->c_resp[1] << 24);
   1560 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1561 				    (cmd->c_resp[2] << 24);
   1562 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1563 				    (cmd->c_resp[3] << 24);
   1564 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1565 			}
   1566 		}
   1567 	}
   1568 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1569 
   1570 	/*
   1571 	 * If the command has data to transfer in any direction,
   1572 	 * execute the transfer now.
   1573 	 */
   1574 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1575 		sdhc_transfer_data(hp, cmd);
   1576 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1577 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1578 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1579 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1580 			    HDEVNAME(hp)));
   1581 			cmd->c_error = ETIMEDOUT;
   1582 			goto out;
   1583 		}
   1584 	}
   1585 
   1586 out:
   1587 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1588 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1589 		/* Turn off the LED. */
   1590 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1591 	}
   1592 	SET(cmd->c_flags, SCF_ITSDONE);
   1593 
   1594 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1595 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1596 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1597 
   1598 	mutex_exit(&hp->intr_lock);
   1599 
   1600 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1601 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1602 	    cmd->c_flags, cmd->c_error));
   1603 }
   1604 
   1605 static int
   1606 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1607 {
   1608 	struct sdhc_softc * const sc = hp->sc;
   1609 	uint16_t blksize = 0;
   1610 	uint16_t blkcount = 0;
   1611 	uint16_t mode;
   1612 	uint16_t command;
   1613 	uint32_t pmask;
   1614 	int error;
   1615 
   1616 	KASSERT(mutex_owned(&hp->intr_lock));
   1617 
   1618 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1619 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1620 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1621 
   1622 	/*
   1623 	 * The maximum block length for commands should be the minimum
   1624 	 * of the host buffer size and the card buffer size. (1.7.2)
   1625 	 */
   1626 
   1627 	/* Fragment the data into proper blocks. */
   1628 	if (cmd->c_datalen > 0) {
   1629 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1630 		blkcount = cmd->c_datalen / blksize;
   1631 		if (cmd->c_datalen % blksize > 0) {
   1632 			/* XXX: Split this command. (1.7.4) */
   1633 			aprint_error_dev(sc->sc_dev,
   1634 			    "data not a multiple of %u bytes\n", blksize);
   1635 			return EINVAL;
   1636 		}
   1637 	}
   1638 
   1639 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1640 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1641 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1642 		return EINVAL;
   1643 	}
   1644 
   1645 	/* Prepare transfer mode register value. (2.2.5) */
   1646 	mode = SDHC_BLOCK_COUNT_ENABLE;
   1647 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1648 		mode |= SDHC_READ_MODE;
   1649 	if (blkcount > 1) {
   1650 		mode |= SDHC_MULTI_BLOCK_MODE;
   1651 		/* XXX only for memory commands? */
   1652 		if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
   1653 			mode |= SDHC_AUTO_CMD12_ENABLE;
   1654 	}
   1655 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1656 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1657 		mode |= SDHC_DMA_ENABLE;
   1658 	}
   1659 
   1660 	/*
   1661 	 * Prepare command register value. (2.2.6)
   1662 	 */
   1663 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1664 
   1665 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1666 		command |= SDHC_CRC_CHECK_ENABLE;
   1667 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1668 		command |= SDHC_INDEX_CHECK_ENABLE;
   1669 	if (cmd->c_datalen > 0)
   1670 		command |= SDHC_DATA_PRESENT_SELECT;
   1671 
   1672 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1673 		command |= SDHC_NO_RESPONSE;
   1674 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1675 		command |= SDHC_RESP_LEN_136;
   1676 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1677 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1678 	else
   1679 		command |= SDHC_RESP_LEN_48;
   1680 
   1681 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1682 	pmask = SDHC_CMD_INHIBIT_CMD;
   1683 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1684 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1685 	error = sdhc_wait_state(hp, pmask, 0);
   1686 	if (error) {
   1687 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1688 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1689 		return error;
   1690 	}
   1691 
   1692 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1693 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1694 
   1695 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1696 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1697 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1698 	}
   1699 
   1700 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1701 		/* Alert the user not to remove the card. */
   1702 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1703 	}
   1704 
   1705 	/* Set DMA start address. */
   1706 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1707 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1708 			bus_addr_t paddr =
   1709 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1710 			uint16_t len =
   1711 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1712 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1713 			uint16_t attr =
   1714 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1715 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1716 				attr |= SDHC_ADMA2_END;
   1717 			}
   1718 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1719 				struct sdhc_adma2_descriptor32 *desc =
   1720 				    hp->adma2;
   1721 				desc[seg].attribute = htole16(attr);
   1722 				desc[seg].length = htole16(len);
   1723 				desc[seg].address = htole32(paddr);
   1724 			} else {
   1725 				struct sdhc_adma2_descriptor64 *desc =
   1726 				    hp->adma2;
   1727 				desc[seg].attribute = htole16(attr);
   1728 				desc[seg].length = htole16(len);
   1729 				desc[seg].address = htole32(paddr & 0xffffffff);
   1730 				desc[seg].address_hi = htole32(
   1731 				    (uint64_t)paddr >> 32);
   1732 			}
   1733 		}
   1734 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1735 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1736 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1737 		} else {
   1738 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1739 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1740 		}
   1741 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1742 		    BUS_DMASYNC_PREWRITE);
   1743 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1744 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1745 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1746 		} else {
   1747 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1748 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1749 		}
   1750 
   1751 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1752 
   1753 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1754 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1755 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1756 			    (uint64_t)desc_addr >> 32);
   1757 		}
   1758 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1759 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1760 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1761 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1762 		}
   1763 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1764 	}
   1765 
   1766 	/*
   1767 	 * Start a CPU data transfer.  Writing to the high order byte
   1768 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1769 	 */
   1770 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1771 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1772 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1773 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1774 			/* mode bits is in MIX_CTRL register on uSDHC */
   1775 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1776 			    (HREAD4(hp, SDHC_MIX_CTRL) &
   1777 			    ~(SDHC_MULTI_BLOCK_MODE |
   1778 			    SDHC_READ_MODE |
   1779 			    SDHC_AUTO_CMD12_ENABLE |
   1780 			    SDHC_BLOCK_COUNT_ENABLE |
   1781 			    SDHC_DMA_ENABLE)));
   1782 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1783 		} else {
   1784 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1785 		}
   1786 	} else {
   1787 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1788 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1789 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1790 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1791 		HWRITE2(hp, SDHC_COMMAND, command);
   1792 	}
   1793 
   1794 	return 0;
   1795 }
   1796 
   1797 static void
   1798 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1799 {
   1800 	struct sdhc_softc *sc = hp->sc;
   1801 	int error;
   1802 
   1803 	KASSERT(mutex_owned(&hp->intr_lock));
   1804 
   1805 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1806 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1807 
   1808 #ifdef SDHC_DEBUG
   1809 	/* XXX I forgot why I wanted to know when this happens :-( */
   1810 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1811 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1812 		aprint_error_dev(hp->sc->sc_dev,
   1813 		    "CMD52/53 error response flags %#x\n",
   1814 		    MMC_R1(cmd->c_resp) & 0xff00);
   1815 	}
   1816 #endif
   1817 
   1818 	if (cmd->c_dmamap != NULL) {
   1819 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1820 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1821 			if (error == 0 && !sdhc_wait_intr(hp,
   1822 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1823 				DPRINTF(1,("%s: timeout\n", __func__));
   1824 				error = ETIMEDOUT;
   1825 			}
   1826 		} else {
   1827 			error = sdhc_transfer_data_dma(hp, cmd);
   1828 		}
   1829 	} else
   1830 		error = sdhc_transfer_data_pio(hp, cmd);
   1831 	if (error)
   1832 		cmd->c_error = error;
   1833 	SET(cmd->c_flags, SCF_ITSDONE);
   1834 
   1835 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1836 	    HDEVNAME(hp), cmd->c_error));
   1837 }
   1838 
   1839 static int
   1840 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1841 {
   1842 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1843 	bus_addr_t posaddr;
   1844 	bus_addr_t segaddr;
   1845 	bus_size_t seglen;
   1846 	u_int seg = 0;
   1847 	int error = 0;
   1848 	int status;
   1849 
   1850 	KASSERT(mutex_owned(&hp->intr_lock));
   1851 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1852 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1853 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1854 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1855 
   1856 	for (;;) {
   1857 		status = sdhc_wait_intr(hp,
   1858 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1859 		    SDHC_DMA_TIMEOUT, false);
   1860 
   1861 		if (status & SDHC_TRANSFER_COMPLETE) {
   1862 			break;
   1863 		}
   1864 		if (!status) {
   1865 			DPRINTF(1,("%s: timeout\n", __func__));
   1866 			error = ETIMEDOUT;
   1867 			break;
   1868 		}
   1869 
   1870 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1871 			continue;
   1872 		}
   1873 
   1874 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1875 			continue;
   1876 		}
   1877 
   1878 		/* DMA Interrupt (boundary crossing) */
   1879 
   1880 		segaddr = dm_segs[seg].ds_addr;
   1881 		seglen = dm_segs[seg].ds_len;
   1882 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1883 
   1884 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1885 			continue;
   1886 		}
   1887 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1888 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1889 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1890 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1891 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1892 	}
   1893 
   1894 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1895 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1896 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1897 	}
   1898 
   1899 	return error;
   1900 }
   1901 
   1902 static int
   1903 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1904 {
   1905 	uint8_t *data = cmd->c_data;
   1906 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   1907 	u_int len, datalen;
   1908 	u_int imask;
   1909 	u_int pmask;
   1910 	int error = 0;
   1911 
   1912 	KASSERT(mutex_owned(&hp->intr_lock));
   1913 
   1914 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   1915 		imask = SDHC_BUFFER_READ_READY;
   1916 		pmask = SDHC_BUFFER_READ_ENABLE;
   1917 		if (ISSET(hp->sc->sc_flags,
   1918 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1919 			pio_func = esdhc_read_data_pio;
   1920 		} else {
   1921 			pio_func = sdhc_read_data_pio;
   1922 		}
   1923 	} else {
   1924 		imask = SDHC_BUFFER_WRITE_READY;
   1925 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   1926 		if (ISSET(hp->sc->sc_flags,
   1927 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1928 			pio_func = esdhc_write_data_pio;
   1929 		} else {
   1930 			pio_func = sdhc_write_data_pio;
   1931 		}
   1932 	}
   1933 	datalen = cmd->c_datalen;
   1934 
   1935 	KASSERT(mutex_owned(&hp->intr_lock));
   1936 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   1937 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1938 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1939 
   1940 	while (datalen > 0) {
   1941 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   1942 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1943 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1944 			} else {
   1945 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   1946 			}
   1947 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   1948 				DPRINTF(1,("%s: timeout\n", __func__));
   1949 				error = ETIMEDOUT;
   1950 				break;
   1951 			}
   1952 
   1953 			error = sdhc_wait_state(hp, pmask, pmask);
   1954 			if (error)
   1955 				break;
   1956 		}
   1957 
   1958 		len = MIN(datalen, cmd->c_blklen);
   1959 		(*pio_func)(hp, data, len);
   1960 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   1961 		    HDEVNAME(hp), len, data));
   1962 
   1963 		data += len;
   1964 		datalen -= len;
   1965 	}
   1966 
   1967 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   1968 	    SDHC_TRANSFER_TIMEOUT, false)) {
   1969 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   1970 		error = ETIMEDOUT;
   1971 	}
   1972 
   1973 	return error;
   1974 }
   1975 
   1976 static void
   1977 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   1978 {
   1979 
   1980 	if (((__uintptr_t)data & 3) == 0) {
   1981 		while (datalen > 3) {
   1982 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   1983 			data += 4;
   1984 			datalen -= 4;
   1985 		}
   1986 		if (datalen > 1) {
   1987 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1988 			data += 2;
   1989 			datalen -= 2;
   1990 		}
   1991 		if (datalen > 0) {
   1992 			*data = HREAD1(hp, SDHC_DATA);
   1993 			data += 1;
   1994 			datalen -= 1;
   1995 		}
   1996 	} else if (((__uintptr_t)data & 1) == 0) {
   1997 		while (datalen > 1) {
   1998 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   1999 			data += 2;
   2000 			datalen -= 2;
   2001 		}
   2002 		if (datalen > 0) {
   2003 			*data = HREAD1(hp, SDHC_DATA);
   2004 			data += 1;
   2005 			datalen -= 1;
   2006 		}
   2007 	} else {
   2008 		while (datalen > 0) {
   2009 			*data = HREAD1(hp, SDHC_DATA);
   2010 			data += 1;
   2011 			datalen -= 1;
   2012 		}
   2013 	}
   2014 }
   2015 
   2016 static void
   2017 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2018 {
   2019 
   2020 	if (((__uintptr_t)data & 3) == 0) {
   2021 		while (datalen > 3) {
   2022 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2023 			data += 4;
   2024 			datalen -= 4;
   2025 		}
   2026 		if (datalen > 1) {
   2027 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2028 			data += 2;
   2029 			datalen -= 2;
   2030 		}
   2031 		if (datalen > 0) {
   2032 			HWRITE1(hp, SDHC_DATA, *data);
   2033 			data += 1;
   2034 			datalen -= 1;
   2035 		}
   2036 	} else if (((__uintptr_t)data & 1) == 0) {
   2037 		while (datalen > 1) {
   2038 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2039 			data += 2;
   2040 			datalen -= 2;
   2041 		}
   2042 		if (datalen > 0) {
   2043 			HWRITE1(hp, SDHC_DATA, *data);
   2044 			data += 1;
   2045 			datalen -= 1;
   2046 		}
   2047 	} else {
   2048 		while (datalen > 0) {
   2049 			HWRITE1(hp, SDHC_DATA, *data);
   2050 			data += 1;
   2051 			datalen -= 1;
   2052 		}
   2053 	}
   2054 }
   2055 
   2056 static void
   2057 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2058 {
   2059 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2060 	uint32_t v;
   2061 
   2062 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2063 	size_t count = 0;
   2064 
   2065 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2066 		if (count == 0) {
   2067 			/*
   2068 			 * If we've drained "watermark" words, we need to wait
   2069 			 * a little bit so the read FIFO can refill.
   2070 			 */
   2071 			sdmmc_delay(10);
   2072 			count = watermark;
   2073 		}
   2074 		v = HREAD4(hp, SDHC_DATA);
   2075 		v = le32toh(v);
   2076 		*(uint32_t *)data = v;
   2077 		data += 4;
   2078 		datalen -= 4;
   2079 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2080 		count--;
   2081 	}
   2082 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2083 		if (count == 0) {
   2084 			sdmmc_delay(10);
   2085 		}
   2086 		v = HREAD4(hp, SDHC_DATA);
   2087 		v = le32toh(v);
   2088 		do {
   2089 			*data++ = v;
   2090 			v >>= 8;
   2091 		} while (--datalen > 0);
   2092 	}
   2093 }
   2094 
   2095 static void
   2096 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2097 {
   2098 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2099 	uint32_t v;
   2100 
   2101 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2102 	size_t count = watermark;
   2103 
   2104 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2105 		if (count == 0) {
   2106 			sdmmc_delay(10);
   2107 			count = watermark;
   2108 		}
   2109 		v = *(uint32_t *)data;
   2110 		v = htole32(v);
   2111 		HWRITE4(hp, SDHC_DATA, v);
   2112 		data += 4;
   2113 		datalen -= 4;
   2114 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2115 		count--;
   2116 	}
   2117 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2118 		if (count == 0) {
   2119 			sdmmc_delay(10);
   2120 		}
   2121 		v = *(uint32_t *)data;
   2122 		v = htole32(v);
   2123 		HWRITE4(hp, SDHC_DATA, v);
   2124 	}
   2125 }
   2126 
   2127 /* Prepare for another command. */
   2128 static int
   2129 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2130 {
   2131 	int timo;
   2132 
   2133 	KASSERT(mutex_owned(&hp->intr_lock));
   2134 
   2135 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2136 
   2137 	/* Request the reset.  */
   2138 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2139 
   2140 	/*
   2141 	 * If necessary, wait for the controller to set the bits to
   2142 	 * acknowledge the reset.
   2143 	 */
   2144 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2145 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2146 		for (timo = 10000; timo > 0; timo--) {
   2147 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2148 				break;
   2149 			/* Short delay because I worry we may miss it...  */
   2150 			sdmmc_delay(1);
   2151 		}
   2152 		if (timo == 0) {
   2153 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2154 			return ETIMEDOUT;
   2155 		}
   2156 	}
   2157 
   2158 	/*
   2159 	 * Wait for the controller to clear the bits to indicate that
   2160 	 * the reset has completed.
   2161 	 */
   2162 	for (timo = 10; timo > 0; timo--) {
   2163 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2164 			break;
   2165 		sdmmc_delay(10000);
   2166 	}
   2167 	if (timo == 0) {
   2168 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2169 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2170 		return ETIMEDOUT;
   2171 	}
   2172 
   2173 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2174 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2175 	}
   2176 
   2177 	return 0;
   2178 }
   2179 
   2180 static int
   2181 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2182 {
   2183 	int status, error, nointr;
   2184 
   2185 	KASSERT(mutex_owned(&hp->intr_lock));
   2186 
   2187 	mask |= SDHC_ERROR_INTERRUPT;
   2188 
   2189 	nointr = 0;
   2190 	status = hp->intr_status & mask;
   2191 	while (status == 0) {
   2192 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2193 		    == EWOULDBLOCK) {
   2194 			nointr = 1;
   2195 			break;
   2196 		}
   2197 		status = hp->intr_status & mask;
   2198 	}
   2199 	error = hp->intr_error_status;
   2200 
   2201 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2202 	    error));
   2203 
   2204 	hp->intr_status &= ~status;
   2205 	hp->intr_error_status &= ~error;
   2206 
   2207 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2208 		if (ISSET(error, SDHC_DMA_ERROR))
   2209 			device_printf(hp->sc->sc_dev,"dma error\n");
   2210 		if (ISSET(error, SDHC_ADMA_ERROR))
   2211 			device_printf(hp->sc->sc_dev,"adma error\n");
   2212 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2213 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2214 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2215 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2216 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2217 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2218 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2219 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2220 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2221 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2222 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2223 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2224 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2225 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2226 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2227 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2228 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2229 			if (!probing)
   2230 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2231 #ifdef SDHC_DEBUG
   2232 			else if (sdhcdebug > 0)
   2233 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2234 #endif
   2235 		}
   2236 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2237 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2238 				(error & ~SDHC_EINTR_STATUS_MASK));
   2239 		if (error == 0)
   2240 			device_printf(hp->sc->sc_dev,"no error\n");
   2241 
   2242 		/* Command timeout has higher priority than command complete. */
   2243 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2244 			CLR(status, SDHC_COMMAND_COMPLETE);
   2245 
   2246 		/* Transfer complete has higher priority than data timeout. */
   2247 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2248 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2249 	}
   2250 
   2251 	if (nointr ||
   2252 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2253 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2254 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2255 		hp->intr_error_status = 0;
   2256 		status = 0;
   2257 	}
   2258 
   2259 	return status;
   2260 }
   2261 
   2262 /*
   2263  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2264  */
   2265 int
   2266 sdhc_intr(void *arg)
   2267 {
   2268 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2269 	struct sdhc_host *hp;
   2270 	int done = 0;
   2271 	uint16_t status;
   2272 	uint16_t error;
   2273 
   2274 	/* We got an interrupt, but we don't know from which slot. */
   2275 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2276 		hp = sc->sc_host[host];
   2277 		if (hp == NULL)
   2278 			continue;
   2279 
   2280 		mutex_enter(&hp->intr_lock);
   2281 
   2282 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2283 			/* Find out which interrupts are pending. */
   2284 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2285 			status = xstatus;
   2286 			error = xstatus >> 16;
   2287 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2288 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2289 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2290 				/* read again due to uSDHC errata */
   2291 				status = xstatus = HREAD4(hp,
   2292 				    SDHC_NINTR_STATUS);
   2293 				error = xstatus >> 16;
   2294 			}
   2295 			if (ISSET(sc->sc_flags,
   2296 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2297 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2298 					SET(status, SDHC_ERROR_INTERRUPT);
   2299 			}
   2300 			if (error)
   2301 				xstatus |= SDHC_ERROR_INTERRUPT;
   2302 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2303 				goto next_port; /* no interrupt for us */
   2304 			/* Acknowledge the interrupts we are about to handle. */
   2305 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2306 		} else {
   2307 			/* Find out which interrupts are pending. */
   2308 			error = 0;
   2309 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2310 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2311 				goto next_port; /* no interrupt for us */
   2312 			/* Acknowledge the interrupts we are about to handle. */
   2313 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2314 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2315 				/* Acknowledge error interrupts. */
   2316 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2317 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2318 			}
   2319 		}
   2320 
   2321 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2322 		    status, error));
   2323 
   2324 		/* Claim this interrupt. */
   2325 		done = 1;
   2326 
   2327 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2328 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2329 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2330 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2331 			    adma_err);
   2332 		}
   2333 
   2334 		/*
   2335 		 * Wake up the sdmmc event thread to scan for cards.
   2336 		 */
   2337 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2338 			if (hp->sdmmc != NULL) {
   2339 				sdmmc_needs_discover(hp->sdmmc);
   2340 			}
   2341 			if (ISSET(sc->sc_flags,
   2342 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2343 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2344 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2345 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2346 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2347 			}
   2348 		}
   2349 
   2350 		/*
   2351 		 * Schedule re-tuning process (UHS).
   2352 		 */
   2353 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2354 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2355 		}
   2356 
   2357 		/*
   2358 		 * Wake up the blocking process to service command
   2359 		 * related interrupt(s).
   2360 		 */
   2361 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2362 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2363 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2364 			hp->intr_error_status |= error;
   2365 			hp->intr_status |= status;
   2366 			if (ISSET(sc->sc_flags,
   2367 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2368 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2369 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2370 			}
   2371 			cv_broadcast(&hp->intr_cv);
   2372 		}
   2373 
   2374 		/*
   2375 		 * Service SD card interrupts.
   2376 		 */
   2377 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2378 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2379 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2380 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2381 			sdmmc_card_intr(hp->sdmmc);
   2382 		}
   2383 next_port:
   2384 		mutex_exit(&hp->intr_lock);
   2385 	}
   2386 
   2387 	return done;
   2388 }
   2389 
   2390 kmutex_t *
   2391 sdhc_host_lock(struct sdhc_host *hp)
   2392 {
   2393 	return &hp->intr_lock;
   2394 }
   2395 
   2396 #ifdef SDHC_DEBUG
   2397 void
   2398 sdhc_dump_regs(struct sdhc_host *hp)
   2399 {
   2400 
   2401 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2402 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2403 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2404 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2405 		    HREAD1(hp, SDHC_POWER_CTL));
   2406 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2407 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2408 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2409 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2410 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2411 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2412 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2413 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2414 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2415 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2416 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2417 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2418 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2419 	    HREAD4(hp, SDHC_CAPABILITIES));
   2420 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2421 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2422 }
   2423 #endif
   2424