spi.c revision 1.25 1 1.25 skrll /* $NetBSD: spi.c,v 1.25 2022/05/08 06:38:58 skrll Exp $ */
2 1.1 gdamore
3 1.1 gdamore /*-
4 1.1 gdamore * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 1.1 gdamore * Copyright (c) 2006 Garrett D'Amore.
6 1.1 gdamore * All rights reserved.
7 1.1 gdamore *
8 1.1 gdamore * Portions of this code were written by Garrett D'Amore for the
9 1.1 gdamore * Champaign-Urbana Community Wireless Network Project.
10 1.1 gdamore *
11 1.1 gdamore * Redistribution and use in source and binary forms, with or
12 1.1 gdamore * without modification, are permitted provided that the following
13 1.1 gdamore * conditions are met:
14 1.1 gdamore * 1. Redistributions of source code must retain the above copyright
15 1.1 gdamore * notice, this list of conditions and the following disclaimer.
16 1.1 gdamore * 2. Redistributions in binary form must reproduce the above
17 1.1 gdamore * copyright notice, this list of conditions and the following
18 1.1 gdamore * disclaimer in the documentation and/or other materials provided
19 1.1 gdamore * with the distribution.
20 1.1 gdamore * 3. All advertising materials mentioning features or use of this
21 1.1 gdamore * software must display the following acknowledgements:
22 1.1 gdamore * This product includes software developed by the Urbana-Champaign
23 1.1 gdamore * Independent Media Center.
24 1.1 gdamore * This product includes software developed by Garrett D'Amore.
25 1.1 gdamore * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 1.1 gdamore * D'Amore's name may not be used to endorse or promote products
27 1.1 gdamore * derived from this software without specific prior written permission.
28 1.1 gdamore *
29 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 1.1 gdamore * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 1.1 gdamore * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 1.1 gdamore * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 gdamore * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 1.1 gdamore * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 1.1 gdamore * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 1.1 gdamore * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 1.1 gdamore * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 1.1 gdamore * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 1.1 gdamore * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 1.1 gdamore * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 1.1 gdamore * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 1.1 gdamore */
43 1.1 gdamore
44 1.1 gdamore #include <sys/cdefs.h>
45 1.25 skrll __KERNEL_RCSID(0, "$NetBSD: spi.c,v 1.25 2022/05/08 06:38:58 skrll Exp $");
46 1.1 gdamore
47 1.1 gdamore #include "locators.h"
48 1.1 gdamore
49 1.1 gdamore #include <sys/param.h>
50 1.1 gdamore #include <sys/systm.h>
51 1.1 gdamore #include <sys/device.h>
52 1.10 mlelstv #include <sys/conf.h>
53 1.1 gdamore #include <sys/malloc.h>
54 1.5 rmind #include <sys/mutex.h>
55 1.5 rmind #include <sys/condvar.h>
56 1.1 gdamore #include <sys/errno.h>
57 1.1 gdamore
58 1.1 gdamore #include <dev/spi/spivar.h>
59 1.10 mlelstv #include <dev/spi/spi_io.h>
60 1.10 mlelstv
61 1.10 mlelstv #include "ioconf.h"
62 1.10 mlelstv #include "locators.h"
63 1.1 gdamore
64 1.1 gdamore struct spi_softc {
65 1.22 thorpej device_t sc_dev;
66 1.1 gdamore struct spi_controller sc_controller;
67 1.1 gdamore int sc_mode;
68 1.1 gdamore int sc_speed;
69 1.10 mlelstv int sc_slave;
70 1.1 gdamore int sc_nslaves;
71 1.1 gdamore struct spi_handle *sc_slaves;
72 1.10 mlelstv kmutex_t sc_lock;
73 1.10 mlelstv kcondvar_t sc_cv;
74 1.18 mlelstv kmutex_t sc_dev_lock;
75 1.10 mlelstv int sc_flags;
76 1.10 mlelstv #define SPIC_BUSY 1
77 1.10 mlelstv };
78 1.10 mlelstv
79 1.10 mlelstv static dev_type_open(spi_open);
80 1.10 mlelstv static dev_type_close(spi_close);
81 1.10 mlelstv static dev_type_ioctl(spi_ioctl);
82 1.10 mlelstv
83 1.10 mlelstv const struct cdevsw spi_cdevsw = {
84 1.10 mlelstv .d_open = spi_open,
85 1.10 mlelstv .d_close = spi_close,
86 1.10 mlelstv .d_read = noread,
87 1.10 mlelstv .d_write = nowrite,
88 1.10 mlelstv .d_ioctl = spi_ioctl,
89 1.10 mlelstv .d_stop = nostop,
90 1.10 mlelstv .d_tty = notty,
91 1.10 mlelstv .d_poll = nopoll,
92 1.10 mlelstv .d_mmap = nommap,
93 1.10 mlelstv .d_kqfilter = nokqfilter,
94 1.10 mlelstv .d_discard = nodiscard,
95 1.18 mlelstv .d_flag = D_OTHER | D_MPSAFE
96 1.1 gdamore };
97 1.1 gdamore
98 1.1 gdamore /*
99 1.1 gdamore * SPI slave device. We have one of these per slave.
100 1.1 gdamore */
101 1.1 gdamore struct spi_handle {
102 1.1 gdamore struct spi_softc *sh_sc;
103 1.1 gdamore struct spi_controller *sh_controller;
104 1.1 gdamore int sh_slave;
105 1.10 mlelstv int sh_mode;
106 1.10 mlelstv int sh_speed;
107 1.12 tnn int sh_flags;
108 1.12 tnn #define SPIH_ATTACHED 1
109 1.1 gdamore };
110 1.1 gdamore
111 1.10 mlelstv #define SPI_MAXDATA 4096
112 1.10 mlelstv
113 1.1 gdamore /*
114 1.1 gdamore * API for bus drivers.
115 1.1 gdamore */
116 1.1 gdamore
117 1.1 gdamore int
118 1.1 gdamore spibus_print(void *aux, const char *pnp)
119 1.1 gdamore {
120 1.1 gdamore
121 1.1 gdamore if (pnp != NULL)
122 1.1 gdamore aprint_normal("spi at %s", pnp);
123 1.1 gdamore
124 1.1 gdamore return (UNCONF);
125 1.1 gdamore }
126 1.1 gdamore
127 1.1 gdamore
128 1.1 gdamore static int
129 1.3 xtraeme spi_match(device_t parent, cfdata_t cf, void *aux)
130 1.1 gdamore {
131 1.5 rmind
132 1.1 gdamore return 1;
133 1.1 gdamore }
134 1.1 gdamore
135 1.1 gdamore static int
136 1.1 gdamore spi_print(void *aux, const char *pnp)
137 1.1 gdamore {
138 1.1 gdamore struct spi_attach_args *sa = aux;
139 1.1 gdamore
140 1.1 gdamore if (sa->sa_handle->sh_slave != -1)
141 1.1 gdamore aprint_normal(" slave %d", sa->sa_handle->sh_slave);
142 1.1 gdamore
143 1.1 gdamore return (UNCONF);
144 1.1 gdamore }
145 1.1 gdamore
146 1.1 gdamore static int
147 1.3 xtraeme spi_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
148 1.1 gdamore {
149 1.3 xtraeme struct spi_softc *sc = device_private(parent);
150 1.1 gdamore struct spi_attach_args sa;
151 1.1 gdamore int addr;
152 1.1 gdamore
153 1.1 gdamore addr = cf->cf_loc[SPICF_SLAVE];
154 1.1 gdamore if ((addr < 0) || (addr >= sc->sc_controller.sct_nslaves)) {
155 1.1 gdamore return -1;
156 1.1 gdamore }
157 1.1 gdamore
158 1.12 tnn memset(&sa, 0, sizeof sa);
159 1.1 gdamore sa.sa_handle = &sc->sc_slaves[addr];
160 1.12 tnn if (ISSET(sa.sa_handle->sh_flags, SPIH_ATTACHED))
161 1.12 tnn return -1;
162 1.1 gdamore
163 1.17 thorpej if (config_probe(parent, cf, &sa)) {
164 1.12 tnn SET(sa.sa_handle->sh_flags, SPIH_ATTACHED);
165 1.19 thorpej config_attach(parent, cf, &sa, spi_print, CFARGS_NONE);
166 1.12 tnn }
167 1.1 gdamore
168 1.1 gdamore return 0;
169 1.1 gdamore }
170 1.1 gdamore
171 1.1 gdamore /*
172 1.12 tnn * XXX this is the same as i2c_fill_compat. It could be refactored into a
173 1.12 tnn * common fill_compat function with pointers to compat & ncompat instead
174 1.12 tnn * of attach_args as the first parameter.
175 1.12 tnn */
176 1.12 tnn static void
177 1.12 tnn spi_fill_compat(struct spi_attach_args *sa, const char *compat, size_t len,
178 1.12 tnn char **buffer)
179 1.12 tnn {
180 1.12 tnn int count, i;
181 1.12 tnn const char *c, *start, **ptr;
182 1.12 tnn
183 1.12 tnn *buffer = NULL;
184 1.12 tnn for (i = count = 0, c = compat; i < len; i++, c++)
185 1.12 tnn if (*c == 0)
186 1.12 tnn count++;
187 1.12 tnn count += 2;
188 1.12 tnn ptr = malloc(sizeof(char*)*count, M_TEMP, M_WAITOK);
189 1.12 tnn if (!ptr)
190 1.12 tnn return;
191 1.12 tnn
192 1.12 tnn for (i = count = 0, start = c = compat; i < len; i++, c++) {
193 1.12 tnn if (*c == 0) {
194 1.12 tnn ptr[count++] = start;
195 1.12 tnn start = c + 1;
196 1.12 tnn }
197 1.12 tnn }
198 1.12 tnn if (start < compat + len) {
199 1.12 tnn /* last string not 0 terminated */
200 1.12 tnn size_t l = c - start;
201 1.12 tnn *buffer = malloc(l + 1, M_TEMP, M_WAITOK);
202 1.12 tnn memcpy(*buffer, start, l);
203 1.12 tnn (*buffer)[l] = 0;
204 1.12 tnn ptr[count++] = *buffer;
205 1.12 tnn }
206 1.12 tnn ptr[count] = NULL;
207 1.12 tnn
208 1.12 tnn sa->sa_compat = ptr;
209 1.12 tnn sa->sa_ncompat = count;
210 1.12 tnn }
211 1.12 tnn
212 1.12 tnn static void
213 1.12 tnn spi_direct_attach_child_devices(device_t parent, struct spi_softc *sc,
214 1.12 tnn prop_array_t child_devices)
215 1.12 tnn {
216 1.12 tnn unsigned int count;
217 1.12 tnn prop_dictionary_t child;
218 1.12 tnn prop_data_t cdata;
219 1.12 tnn uint32_t slave;
220 1.12 tnn uint64_t cookie;
221 1.12 tnn struct spi_attach_args sa;
222 1.12 tnn int loc[SPICF_NLOCS];
223 1.12 tnn char *buf;
224 1.12 tnn int i;
225 1.12 tnn
226 1.12 tnn memset(loc, 0, sizeof loc);
227 1.12 tnn count = prop_array_count(child_devices);
228 1.12 tnn for (i = 0; i < count; i++) {
229 1.12 tnn child = prop_array_get(child_devices, i);
230 1.12 tnn if (!child)
231 1.12 tnn continue;
232 1.12 tnn if (!prop_dictionary_get_uint32(child, "slave", &slave))
233 1.12 tnn continue;
234 1.12 tnn if(slave >= sc->sc_controller.sct_nslaves)
235 1.12 tnn continue;
236 1.12 tnn if (!prop_dictionary_get_uint64(child, "cookie", &cookie))
237 1.12 tnn continue;
238 1.12 tnn if (!(cdata = prop_dictionary_get(child, "compatible")))
239 1.12 tnn continue;
240 1.12 tnn loc[SPICF_SLAVE] = slave;
241 1.12 tnn
242 1.12 tnn memset(&sa, 0, sizeof sa);
243 1.12 tnn sa.sa_handle = &sc->sc_slaves[i];
244 1.13 hkenken sa.sa_prop = child;
245 1.13 hkenken sa.sa_cookie = cookie;
246 1.12 tnn if (ISSET(sa.sa_handle->sh_flags, SPIH_ATTACHED))
247 1.12 tnn continue;
248 1.12 tnn SET(sa.sa_handle->sh_flags, SPIH_ATTACHED);
249 1.12 tnn
250 1.12 tnn buf = NULL;
251 1.12 tnn spi_fill_compat(&sa,
252 1.14 thorpej prop_data_value(cdata),
253 1.12 tnn prop_data_size(cdata), &buf);
254 1.17 thorpej config_found(parent, &sa, spi_print,
255 1.19 thorpej CFARGS(.locators = loc));
256 1.12 tnn
257 1.12 tnn if (sa.sa_compat)
258 1.12 tnn free(sa.sa_compat, M_TEMP);
259 1.12 tnn if (buf)
260 1.12 tnn free(buf, M_TEMP);
261 1.12 tnn }
262 1.12 tnn }
263 1.12 tnn
264 1.12 tnn int
265 1.12 tnn spi_compatible_match(const struct spi_attach_args *sa, const cfdata_t cf,
266 1.12 tnn const struct device_compatible_entry *compats)
267 1.12 tnn {
268 1.12 tnn if (sa->sa_ncompat > 0)
269 1.12 tnn return device_compatible_match(sa->sa_compat, sa->sa_ncompat,
270 1.16 thorpej compats);
271 1.12 tnn
272 1.12 tnn return 1;
273 1.12 tnn }
274 1.12 tnn
275 1.23 thorpej const struct device_compatible_entry *
276 1.23 thorpej spi_compatible_lookup(const struct spi_attach_args *sa,
277 1.23 thorpej const struct device_compatible_entry *compats)
278 1.23 thorpej {
279 1.23 thorpej return device_compatible_lookup(sa->sa_compat, sa->sa_ncompat,
280 1.23 thorpej compats);
281 1.23 thorpej }
282 1.23 thorpej
283 1.12 tnn /*
284 1.1 gdamore * API for device drivers.
285 1.1 gdamore *
286 1.1 gdamore * We provide wrapper routines to decouple the ABI for the SPI
287 1.1 gdamore * device drivers from the ABI for the SPI bus drivers.
288 1.1 gdamore */
289 1.1 gdamore static void
290 1.3 xtraeme spi_attach(device_t parent, device_t self, void *aux)
291 1.1 gdamore {
292 1.1 gdamore struct spi_softc *sc = device_private(self);
293 1.1 gdamore struct spibus_attach_args *sba = aux;
294 1.1 gdamore int i;
295 1.1 gdamore
296 1.1 gdamore aprint_naive(": SPI bus\n");
297 1.1 gdamore aprint_normal(": SPI bus\n");
298 1.1 gdamore
299 1.18 mlelstv mutex_init(&sc->sc_dev_lock, MUTEX_DEFAULT, IPL_NONE);
300 1.15 kardel mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
301 1.10 mlelstv cv_init(&sc->sc_cv, "spictl");
302 1.10 mlelstv
303 1.22 thorpej sc->sc_dev = self;
304 1.1 gdamore sc->sc_controller = *sba->sba_controller;
305 1.8 rkujawa sc->sc_nslaves = sba->sba_controller->sct_nslaves;
306 1.1 gdamore /* allocate slave structures */
307 1.1 gdamore sc->sc_slaves = malloc(sizeof (struct spi_handle) * sc->sc_nslaves,
308 1.1 gdamore M_DEVBUF, M_WAITOK | M_ZERO);
309 1.1 gdamore
310 1.1 gdamore sc->sc_speed = 0;
311 1.2 gdamore sc->sc_mode = -1;
312 1.10 mlelstv sc->sc_slave = -1;
313 1.1 gdamore
314 1.1 gdamore /*
315 1.1 gdamore * Initialize slave handles
316 1.1 gdamore */
317 1.1 gdamore for (i = 0; i < sc->sc_nslaves; i++) {
318 1.1 gdamore sc->sc_slaves[i].sh_slave = i;
319 1.1 gdamore sc->sc_slaves[i].sh_sc = sc;
320 1.1 gdamore sc->sc_slaves[i].sh_controller = &sc->sc_controller;
321 1.1 gdamore }
322 1.1 gdamore
323 1.12 tnn /* First attach devices known to be present via fdt */
324 1.12 tnn if (sba->sba_child_devices) {
325 1.12 tnn spi_direct_attach_child_devices(self, sc, sba->sba_child_devices);
326 1.12 tnn }
327 1.12 tnn /* Then do any other devices the user may have manually wired */
328 1.17 thorpej config_search(self, NULL,
329 1.19 thorpej CFARGS(.search = spi_search));
330 1.1 gdamore }
331 1.1 gdamore
332 1.10 mlelstv static int
333 1.10 mlelstv spi_open(dev_t dev, int flag, int fmt, lwp_t *l)
334 1.10 mlelstv {
335 1.10 mlelstv struct spi_softc *sc = device_lookup_private(&spi_cd, minor(dev));
336 1.10 mlelstv
337 1.10 mlelstv if (sc == NULL)
338 1.10 mlelstv return ENXIO;
339 1.10 mlelstv
340 1.10 mlelstv return 0;
341 1.10 mlelstv }
342 1.10 mlelstv
343 1.10 mlelstv static int
344 1.10 mlelstv spi_close(dev_t dev, int flag, int fmt, lwp_t *l)
345 1.10 mlelstv {
346 1.10 mlelstv
347 1.10 mlelstv return 0;
348 1.10 mlelstv }
349 1.10 mlelstv
350 1.10 mlelstv static int
351 1.10 mlelstv spi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
352 1.10 mlelstv {
353 1.10 mlelstv struct spi_softc *sc = device_lookup_private(&spi_cd, minor(dev));
354 1.10 mlelstv struct spi_handle *sh;
355 1.10 mlelstv spi_ioctl_configure_t *sic;
356 1.10 mlelstv spi_ioctl_transfer_t *sit;
357 1.10 mlelstv uint8_t *sbuf, *rbuf;
358 1.10 mlelstv int error;
359 1.10 mlelstv
360 1.10 mlelstv if (sc == NULL)
361 1.10 mlelstv return ENXIO;
362 1.10 mlelstv
363 1.18 mlelstv mutex_enter(&sc->sc_dev_lock);
364 1.18 mlelstv
365 1.10 mlelstv switch (cmd) {
366 1.10 mlelstv case SPI_IOCTL_CONFIGURE:
367 1.10 mlelstv sic = (spi_ioctl_configure_t *)data;
368 1.10 mlelstv if (sic->sic_addr < 0 || sic->sic_addr >= sc->sc_nslaves) {
369 1.10 mlelstv error = EINVAL;
370 1.10 mlelstv break;
371 1.10 mlelstv }
372 1.10 mlelstv sh = &sc->sc_slaves[sic->sic_addr];
373 1.22 thorpej error = spi_configure(sc->sc_dev, sh, sic->sic_mode,
374 1.22 thorpej sic->sic_speed);
375 1.10 mlelstv break;
376 1.10 mlelstv case SPI_IOCTL_TRANSFER:
377 1.10 mlelstv sit = (spi_ioctl_transfer_t *)data;
378 1.10 mlelstv if (sit->sit_addr < 0 || sit->sit_addr >= sc->sc_nslaves) {
379 1.10 mlelstv error = EINVAL;
380 1.10 mlelstv break;
381 1.10 mlelstv }
382 1.11 mlelstv if ((sit->sit_send && sit->sit_sendlen == 0)
383 1.24 mlelstv || (sit->sit_recv && sit->sit_recvlen == 0)) {
384 1.11 mlelstv error = EINVAL;
385 1.11 mlelstv break;
386 1.11 mlelstv }
387 1.10 mlelstv sh = &sc->sc_slaves[sit->sit_addr];
388 1.10 mlelstv sbuf = rbuf = NULL;
389 1.10 mlelstv error = 0;
390 1.11 mlelstv if (sit->sit_send && sit->sit_sendlen <= SPI_MAXDATA) {
391 1.10 mlelstv sbuf = malloc(sit->sit_sendlen, M_DEVBUF, M_WAITOK);
392 1.10 mlelstv error = copyin(sit->sit_send, sbuf, sit->sit_sendlen);
393 1.10 mlelstv }
394 1.11 mlelstv if (sit->sit_recv && sit->sit_recvlen <= SPI_MAXDATA) {
395 1.10 mlelstv rbuf = malloc(sit->sit_recvlen, M_DEVBUF, M_WAITOK);
396 1.10 mlelstv }
397 1.10 mlelstv if (error == 0) {
398 1.10 mlelstv if (sbuf && rbuf)
399 1.10 mlelstv error = spi_send_recv(sh,
400 1.10 mlelstv sit->sit_sendlen, sbuf,
401 1.10 mlelstv sit->sit_recvlen, rbuf);
402 1.10 mlelstv else if (sbuf)
403 1.10 mlelstv error = spi_send(sh,
404 1.10 mlelstv sit->sit_sendlen, sbuf);
405 1.10 mlelstv else if (rbuf)
406 1.10 mlelstv error = spi_recv(sh,
407 1.10 mlelstv sit->sit_recvlen, rbuf);
408 1.10 mlelstv }
409 1.10 mlelstv if (rbuf) {
410 1.10 mlelstv if (error == 0)
411 1.10 mlelstv error = copyout(rbuf, sit->sit_recv,
412 1.10 mlelstv sit->sit_recvlen);
413 1.10 mlelstv free(rbuf, M_DEVBUF);
414 1.10 mlelstv }
415 1.10 mlelstv if (sbuf) {
416 1.10 mlelstv free(sbuf, M_DEVBUF);
417 1.10 mlelstv }
418 1.10 mlelstv break;
419 1.10 mlelstv default:
420 1.10 mlelstv error = ENODEV;
421 1.10 mlelstv break;
422 1.10 mlelstv }
423 1.10 mlelstv
424 1.18 mlelstv mutex_exit(&sc->sc_dev_lock);
425 1.18 mlelstv
426 1.10 mlelstv return error;
427 1.10 mlelstv }
428 1.10 mlelstv
429 1.3 xtraeme CFATTACH_DECL_NEW(spi, sizeof(struct spi_softc),
430 1.1 gdamore spi_match, spi_attach, NULL, NULL);
431 1.1 gdamore
432 1.1 gdamore /*
433 1.1 gdamore * Configure. This should be the first thing that the SPI driver
434 1.1 gdamore * should do, to configure which mode (e.g. SPI_MODE_0, which is the
435 1.1 gdamore * same as Philips Microwire mode), and speed. If the bus driver
436 1.1 gdamore * cannot run fast enough, then it should just configure the fastest
437 1.1 gdamore * mode that it can support. If the bus driver cannot run slow
438 1.1 gdamore * enough, then the device is incompatible and an error should be
439 1.1 gdamore * returned.
440 1.1 gdamore */
441 1.1 gdamore int
442 1.20 thorpej spi_configure(device_t dev __unused, struct spi_handle *sh, int mode, int speed)
443 1.1 gdamore {
444 1.1 gdamore
445 1.10 mlelstv sh->sh_mode = mode;
446 1.10 mlelstv sh->sh_speed = speed;
447 1.20 thorpej
448 1.20 thorpej /* No need to report errors; no failures. */
449 1.20 thorpej
450 1.10 mlelstv return 0;
451 1.10 mlelstv }
452 1.10 mlelstv
453 1.10 mlelstv /*
454 1.10 mlelstv * Acquire controller
455 1.10 mlelstv */
456 1.10 mlelstv static void
457 1.10 mlelstv spi_acquire(struct spi_handle *sh)
458 1.10 mlelstv {
459 1.10 mlelstv struct spi_softc *sc = sh->sh_sc;
460 1.10 mlelstv
461 1.10 mlelstv mutex_enter(&sc->sc_lock);
462 1.10 mlelstv while ((sc->sc_flags & SPIC_BUSY) != 0)
463 1.10 mlelstv cv_wait(&sc->sc_cv, &sc->sc_lock);
464 1.10 mlelstv sc->sc_flags |= SPIC_BUSY;
465 1.10 mlelstv mutex_exit(&sc->sc_lock);
466 1.10 mlelstv }
467 1.10 mlelstv
468 1.10 mlelstv /*
469 1.10 mlelstv * Release controller
470 1.10 mlelstv */
471 1.10 mlelstv static void
472 1.10 mlelstv spi_release(struct spi_handle *sh)
473 1.10 mlelstv {
474 1.10 mlelstv struct spi_softc *sc = sh->sh_sc;
475 1.10 mlelstv
476 1.10 mlelstv mutex_enter(&sc->sc_lock);
477 1.10 mlelstv sc->sc_flags &= ~SPIC_BUSY;
478 1.10 mlelstv cv_broadcast(&sc->sc_cv);
479 1.10 mlelstv mutex_exit(&sc->sc_lock);
480 1.1 gdamore }
481 1.1 gdamore
482 1.1 gdamore void
483 1.1 gdamore spi_transfer_init(struct spi_transfer *st)
484 1.1 gdamore {
485 1.1 gdamore
486 1.15 kardel mutex_init(&st->st_lock, MUTEX_DEFAULT, IPL_VM);
487 1.10 mlelstv cv_init(&st->st_cv, "spixfr");
488 1.5 rmind
489 1.1 gdamore st->st_flags = 0;
490 1.1 gdamore st->st_errno = 0;
491 1.1 gdamore st->st_done = NULL;
492 1.1 gdamore st->st_chunks = NULL;
493 1.1 gdamore st->st_private = NULL;
494 1.1 gdamore st->st_slave = -1;
495 1.1 gdamore }
496 1.1 gdamore
497 1.1 gdamore void
498 1.1 gdamore spi_chunk_init(struct spi_chunk *chunk, int cnt, const uint8_t *wptr,
499 1.1 gdamore uint8_t *rptr)
500 1.1 gdamore {
501 1.1 gdamore
502 1.1 gdamore chunk->chunk_write = chunk->chunk_wptr = wptr;
503 1.6 mrg chunk->chunk_read = chunk->chunk_rptr = rptr;
504 1.1 gdamore chunk->chunk_rresid = chunk->chunk_wresid = chunk->chunk_count = cnt;
505 1.1 gdamore chunk->chunk_next = NULL;
506 1.1 gdamore }
507 1.1 gdamore
508 1.1 gdamore void
509 1.1 gdamore spi_transfer_add(struct spi_transfer *st, struct spi_chunk *chunk)
510 1.1 gdamore {
511 1.1 gdamore struct spi_chunk **cpp;
512 1.1 gdamore
513 1.1 gdamore /* this is an O(n) insert -- perhaps we should use a simpleq? */
514 1.1 gdamore for (cpp = &st->st_chunks; *cpp; cpp = &(*cpp)->chunk_next);
515 1.1 gdamore *cpp = chunk;
516 1.1 gdamore }
517 1.1 gdamore
518 1.1 gdamore int
519 1.1 gdamore spi_transfer(struct spi_handle *sh, struct spi_transfer *st)
520 1.1 gdamore {
521 1.10 mlelstv struct spi_softc *sc = sh->sh_sc;
522 1.1 gdamore struct spi_controller *tag = sh->sh_controller;
523 1.1 gdamore struct spi_chunk *chunk;
524 1.10 mlelstv int error;
525 1.1 gdamore
526 1.1 gdamore /*
527 1.1 gdamore * Initialize "resid" counters and pointers, so that callers
528 1.1 gdamore * and bus drivers don't have to.
529 1.1 gdamore */
530 1.1 gdamore for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
531 1.1 gdamore chunk->chunk_wresid = chunk->chunk_rresid = chunk->chunk_count;
532 1.1 gdamore chunk->chunk_wptr = chunk->chunk_write;
533 1.1 gdamore chunk->chunk_rptr = chunk->chunk_read;
534 1.1 gdamore }
535 1.1 gdamore
536 1.1 gdamore /*
537 1.10 mlelstv * Match slave and parameters to handle
538 1.1 gdamore */
539 1.1 gdamore st->st_slave = sh->sh_slave;
540 1.1 gdamore
541 1.10 mlelstv /*
542 1.10 mlelstv * Reserve controller during transaction
543 1.10 mlelstv */
544 1.10 mlelstv spi_acquire(sh);
545 1.10 mlelstv
546 1.10 mlelstv st->st_spiprivate = (void *)sh;
547 1.25 skrll
548 1.10 mlelstv /*
549 1.10 mlelstv * Reconfigure controller
550 1.10 mlelstv *
551 1.10 mlelstv * XXX backends don't configure per-slave parameters
552 1.10 mlelstv * Whenever we switch slaves or change mode or speed, we
553 1.10 mlelstv * need to tell the backend.
554 1.10 mlelstv */
555 1.10 mlelstv if (sc->sc_slave != sh->sh_slave
556 1.10 mlelstv || sc->sc_mode != sh->sh_mode
557 1.10 mlelstv || sc->sc_speed != sh->sh_speed) {
558 1.10 mlelstv error = (*tag->sct_configure)(tag->sct_cookie,
559 1.10 mlelstv sh->sh_slave, sh->sh_mode, sh->sh_speed);
560 1.10 mlelstv if (error)
561 1.10 mlelstv return error;
562 1.10 mlelstv }
563 1.10 mlelstv sc->sc_mode = sh->sh_mode;
564 1.10 mlelstv sc->sc_speed = sh->sh_speed;
565 1.10 mlelstv sc->sc_slave = sh->sh_slave;
566 1.10 mlelstv
567 1.10 mlelstv error = (*tag->sct_transfer)(tag->sct_cookie, st);
568 1.10 mlelstv
569 1.10 mlelstv return error;
570 1.1 gdamore }
571 1.1 gdamore
572 1.1 gdamore void
573 1.1 gdamore spi_wait(struct spi_transfer *st)
574 1.1 gdamore {
575 1.10 mlelstv struct spi_handle *sh = st->st_spiprivate;
576 1.1 gdamore
577 1.5 rmind mutex_enter(&st->st_lock);
578 1.4 jym while (!(st->st_flags & SPI_F_DONE)) {
579 1.5 rmind cv_wait(&st->st_cv, &st->st_lock);
580 1.1 gdamore }
581 1.5 rmind mutex_exit(&st->st_lock);
582 1.7 jakllsch cv_destroy(&st->st_cv);
583 1.7 jakllsch mutex_destroy(&st->st_lock);
584 1.10 mlelstv
585 1.10 mlelstv /*
586 1.10 mlelstv * End transaction
587 1.10 mlelstv */
588 1.10 mlelstv spi_release(sh);
589 1.1 gdamore }
590 1.1 gdamore
591 1.1 gdamore void
592 1.1 gdamore spi_done(struct spi_transfer *st, int err)
593 1.1 gdamore {
594 1.1 gdamore
595 1.5 rmind mutex_enter(&st->st_lock);
596 1.1 gdamore if ((st->st_errno = err) != 0) {
597 1.1 gdamore st->st_flags |= SPI_F_ERROR;
598 1.1 gdamore }
599 1.1 gdamore st->st_flags |= SPI_F_DONE;
600 1.1 gdamore if (st->st_done != NULL) {
601 1.1 gdamore (*st->st_done)(st);
602 1.1 gdamore } else {
603 1.5 rmind cv_broadcast(&st->st_cv);
604 1.1 gdamore }
605 1.5 rmind mutex_exit(&st->st_lock);
606 1.1 gdamore }
607 1.1 gdamore
608 1.1 gdamore /*
609 1.1 gdamore * Some convenience routines. These routines block until the work
610 1.1 gdamore * is done.
611 1.1 gdamore *
612 1.1 gdamore * spi_recv - receives data from the bus
613 1.1 gdamore *
614 1.1 gdamore * spi_send - sends data to the bus
615 1.1 gdamore *
616 1.1 gdamore * spi_send_recv - sends data to the bus, and then receives. Note that this is
617 1.1 gdamore * done synchronously, i.e. send a command and get the response. This is
618 1.1 gdamore * not full duplex. If you wnat full duplex, you can't use these convenience
619 1.1 gdamore * wrappers.
620 1.1 gdamore */
621 1.1 gdamore int
622 1.1 gdamore spi_recv(struct spi_handle *sh, int cnt, uint8_t *data)
623 1.1 gdamore {
624 1.1 gdamore struct spi_transfer trans;
625 1.1 gdamore struct spi_chunk chunk;
626 1.1 gdamore
627 1.1 gdamore spi_transfer_init(&trans);
628 1.1 gdamore spi_chunk_init(&chunk, cnt, NULL, data);
629 1.1 gdamore spi_transfer_add(&trans, &chunk);
630 1.1 gdamore
631 1.1 gdamore /* enqueue it and wait for it to complete */
632 1.1 gdamore spi_transfer(sh, &trans);
633 1.1 gdamore spi_wait(&trans);
634 1.1 gdamore
635 1.1 gdamore if (trans.st_flags & SPI_F_ERROR)
636 1.1 gdamore return trans.st_errno;
637 1.1 gdamore
638 1.1 gdamore return 0;
639 1.1 gdamore }
640 1.1 gdamore
641 1.1 gdamore int
642 1.1 gdamore spi_send(struct spi_handle *sh, int cnt, const uint8_t *data)
643 1.1 gdamore {
644 1.1 gdamore struct spi_transfer trans;
645 1.1 gdamore struct spi_chunk chunk;
646 1.1 gdamore
647 1.1 gdamore spi_transfer_init(&trans);
648 1.1 gdamore spi_chunk_init(&chunk, cnt, data, NULL);
649 1.1 gdamore spi_transfer_add(&trans, &chunk);
650 1.1 gdamore
651 1.1 gdamore /* enqueue it and wait for it to complete */
652 1.1 gdamore spi_transfer(sh, &trans);
653 1.1 gdamore spi_wait(&trans);
654 1.1 gdamore
655 1.1 gdamore if (trans.st_flags & SPI_F_ERROR)
656 1.1 gdamore return trans.st_errno;
657 1.1 gdamore
658 1.1 gdamore return 0;
659 1.1 gdamore }
660 1.1 gdamore
661 1.1 gdamore int
662 1.1 gdamore spi_send_recv(struct spi_handle *sh, int scnt, const uint8_t *snd,
663 1.1 gdamore int rcnt, uint8_t *rcv)
664 1.1 gdamore {
665 1.1 gdamore struct spi_transfer trans;
666 1.1 gdamore struct spi_chunk chunk1, chunk2;
667 1.1 gdamore
668 1.1 gdamore spi_transfer_init(&trans);
669 1.1 gdamore spi_chunk_init(&chunk1, scnt, snd, NULL);
670 1.1 gdamore spi_chunk_init(&chunk2, rcnt, NULL, rcv);
671 1.1 gdamore spi_transfer_add(&trans, &chunk1);
672 1.1 gdamore spi_transfer_add(&trans, &chunk2);
673 1.1 gdamore
674 1.1 gdamore /* enqueue it and wait for it to complete */
675 1.1 gdamore spi_transfer(sh, &trans);
676 1.1 gdamore spi_wait(&trans);
677 1.1 gdamore
678 1.1 gdamore if (trans.st_flags & SPI_F_ERROR)
679 1.1 gdamore return trans.st_errno;
680 1.1 gdamore
681 1.1 gdamore return 0;
682 1.1 gdamore }
683