spi.c revision 1.37 1 /* $NetBSD: spi.c,v 1.37 2025/09/21 13:02:08 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 * Copyright (c) 2006 Garrett D'Amore.
6 * All rights reserved.
7 *
8 * Portions of this code were written by Garrett D'Amore for the
9 * Champaign-Urbana Community Wireless Network Project.
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgements:
22 * This product includes software developed by the Urbana-Champaign
23 * Independent Media Center.
24 * This product includes software developed by Garrett D'Amore.
25 * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 * D'Amore's name may not be used to endorse or promote products
27 * derived from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 */
43
44 #include "opt_fdt.h" /* XXX */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: spi.c,v 1.37 2025/09/21 13:02:08 thorpej Exp $");
48
49 #include "locators.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/device.h>
54 #include <sys/conf.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/condvar.h>
58 #include <sys/errno.h>
59
60 #include <dev/spi/spivar.h>
61 #include <dev/spi/spi_io.h>
62 #include <dev/spi/spi_calls.h>
63
64 #ifdef FDT
65 #include <dev/fdt/fdt_spi.h> /* XXX */
66 #include <dev/ofw/openfirm.h> /* XXX */
67 #endif
68
69 #include "ioconf.h"
70 #include "locators.h"
71
72 struct spi_softc {
73 device_t sc_dev;
74 const struct spi_controller *sc_controller;
75 int sc_mode;
76 int sc_speed;
77 int sc_slave;
78 int sc_nslaves;
79 spi_handle_t sc_slaves;
80 kmutex_t sc_slave_state_lock;
81 kmutex_t sc_lock;
82 kcondvar_t sc_cv;
83 kmutex_t sc_dev_lock;
84 int sc_flags;
85 #define SPIC_BUSY 1
86 };
87
88 static dev_type_open(spi_open);
89 static dev_type_close(spi_close);
90 static dev_type_ioctl(spi_ioctl);
91
92 const struct cdevsw spi_cdevsw = {
93 .d_open = spi_open,
94 .d_close = spi_close,
95 .d_read = noread,
96 .d_write = nowrite,
97 .d_ioctl = spi_ioctl,
98 .d_stop = nostop,
99 .d_tty = notty,
100 .d_poll = nopoll,
101 .d_mmap = nommap,
102 .d_kqfilter = nokqfilter,
103 .d_discard = nodiscard,
104 .d_flag = D_OTHER | D_MPSAFE
105 };
106
107 /*
108 * SPI slave device. We have one of these per slave.
109 */
110 struct spi_handle {
111 struct spi_softc *sh_sc; /* static */
112 const struct spi_controller *sh_controller; /* static */
113 int sh_slave; /* static */
114 int sh_mode; /* locked by owning child */
115 int sh_speed; /* locked by owning child */
116 int sh_flags; /* vv slave_state_lock vv */
117 #define SPIH_ATTACHED __BIT(0)
118 #define SPIH_DIRECT __BIT(1)
119 device_t sh_dev; /* ^^ slave_state_lock ^^ */
120 };
121
122 #define SPI_MAXDATA 4096
123
124 /*
125 * API for bus drivers.
126 */
127
128 int
129 spibus_print(void *aux, const char *pnp)
130 {
131
132 if (pnp != NULL)
133 aprint_normal("spi at %s", pnp);
134
135 return (UNCONF);
136 }
137
138
139 static int
140 spi_match(device_t parent, cfdata_t cf, void *aux)
141 {
142
143 return 1;
144 }
145
146 static int
147 spi_print_direct(void *aux, const char *pnp)
148 {
149 struct spi_attach_args *sa = aux;
150
151 if (pnp != NULL) {
152 aprint_normal("%s%s%s%s at %s slave %d",
153 sa->sa_name ? sa->sa_name : "(unknown)",
154 sa->sa_clist ? " (" : "",
155 sa->sa_clist ? sa->sa_clist : "",
156 sa->sa_clist ? ")" : "",
157 pnp, sa->sa_handle->sh_slave);
158 } else {
159 aprint_normal(" slave %d", sa->sa_handle->sh_slave);
160 }
161
162 return UNCONF;
163 }
164
165 static int
166 spi_print(void *aux, const char *pnp)
167 {
168 struct spi_attach_args *sa = aux;
169
170 aprint_normal(" slave %d", sa->sa_handle->sh_slave);
171
172 return UNCONF;
173 }
174
175 static void
176 spi_attach_child(struct spi_softc *sc, struct spi_attach_args *sa,
177 int chip_select, cfdata_t cf)
178 {
179 spi_handle_t sh;
180 device_t newdev = NULL;
181 bool is_direct = cf == NULL;
182 const int skip_flags = is_direct ? SPIH_ATTACHED
183 : (SPIH_ATTACHED | SPIH_DIRECT);
184 const int claim_flags = skip_flags ^ SPIH_DIRECT;
185 int locs[SPICF_NLOCS] = { 0 };
186
187 if (chip_select < 0 ||
188 chip_select >= sc->sc_controller->sct_nslaves) {
189 return;
190 }
191
192 sh = &sc->sc_slaves[chip_select];
193
194 mutex_enter(&sc->sc_slave_state_lock);
195 if (ISSET(sh->sh_flags, skip_flags)) {
196 mutex_exit(&sc->sc_slave_state_lock);
197 return;
198 }
199
200 /* Keep others off of this chip select. */
201 SET(sh->sh_flags, claim_flags);
202 mutex_exit(&sc->sc_slave_state_lock);
203
204 locs[SPICF_SLAVE] = chip_select;
205 sa->sa_handle = sh;
206
207 if (is_direct) {
208 newdev = config_found(sc->sc_dev, sa, spi_print_direct,
209 CFARGS(.submatch = config_stdsubmatch,
210 .locators = locs,
211 .devhandle = sa->sa_devhandle));
212 } else {
213 if (config_probe(sc->sc_dev, cf, sa)) {
214 newdev = config_attach(sc->sc_dev, cf, sa, spi_print,
215 CFARGS(.locators = locs));
216 }
217 }
218
219 mutex_enter(&sc->sc_slave_state_lock);
220 if (newdev == NULL) {
221 /*
222 * Clear our claim on this chip select (yes, just
223 * the ATTACHED flag; we want to keep indirects off
224 * of chip selects for which there is a device tree
225 * node).
226 */
227 CLR(sh->sh_flags, SPIH_ATTACHED);
228 } else {
229 /* Record the child for posterity. */
230 sh->sh_dev = newdev;
231 }
232 mutex_exit(&sc->sc_slave_state_lock);
233 }
234
235 static int
236 spi_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
237 {
238 struct spi_softc *sc = device_private(parent);
239
240 if (cf->cf_loc[SPICF_SLAVE] == SPICF_SLAVE_DEFAULT) {
241 /* No wildcards for indirect on SPI. */
242 return 0;
243 }
244
245 struct spi_attach_args sa = { 0 };
246 spi_attach_child(sc, &sa, cf->cf_loc[SPICF_SLAVE], cf);
247
248 return 0;
249 }
250
251 static bool
252 spi_enumerate_devices_callback(device_t self,
253 struct spi_enumerate_devices_args *args)
254 {
255 struct spi_softc *sc = device_private(self);
256
257 spi_attach_child(sc, args->sa, args->chip_select, NULL);
258
259 return true; /* keep enumerating */
260 }
261
262 int
263 spi_compatible_match(const struct spi_attach_args *sa,
264 const struct device_compatible_entry *compats)
265 {
266 return device_compatible_match_strlist(sa->sa_clist,
267 sa->sa_clist_size, compats);
268 }
269
270 const struct device_compatible_entry *
271 spi_compatible_lookup(const struct spi_attach_args *sa,
272 const struct device_compatible_entry *compats)
273 {
274 return device_compatible_lookup_strlist(sa->sa_clist,
275 sa->sa_clist_size, compats);
276 }
277
278 bool
279 spi_use_direct_match(const struct spi_attach_args *sa,
280 const struct device_compatible_entry *compats,
281 int *match_resultp)
282 {
283 KASSERT(match_resultp != NULL);
284
285 if (sa->sa_clist != NULL && sa->sa_clist_size != 0) {
286 *match_resultp = spi_compatible_match(sa, compats);
287 return true;
288 }
289
290 return false;
291 }
292
293 /*
294 * API for device drivers.
295 *
296 * We provide wrapper routines to decouple the ABI for the SPI
297 * device drivers from the ABI for the SPI bus drivers.
298 */
299 static void
300 spi_attach(device_t parent, device_t self, void *aux)
301 {
302 struct spi_softc *sc = device_private(self);
303 struct spibus_attach_args *sba = aux;
304 int i;
305
306 aprint_naive(": SPI bus\n");
307 aprint_normal(": SPI bus\n");
308
309 mutex_init(&sc->sc_dev_lock, MUTEX_DEFAULT, IPL_NONE);
310 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
311 mutex_init(&sc->sc_slave_state_lock, MUTEX_DEFAULT, IPL_NONE);
312 cv_init(&sc->sc_cv, "spictl");
313
314 sc->sc_dev = self;
315 sc->sc_controller = sba->sba_controller;
316 sc->sc_nslaves = sba->sba_controller->sct_nslaves;
317 /* allocate slave structures */
318 sc->sc_slaves = malloc(sizeof(*sc->sc_slaves) * sc->sc_nslaves,
319 M_DEVBUF, M_WAITOK | M_ZERO);
320
321 sc->sc_speed = 0;
322 sc->sc_mode = -1;
323 sc->sc_slave = -1;
324
325 /*
326 * Initialize slave handles
327 */
328 for (i = 0; i < sc->sc_nslaves; i++) {
329 sc->sc_slaves[i].sh_slave = i;
330 sc->sc_slaves[i].sh_sc = sc;
331 sc->sc_slaves[i].sh_controller = sc->sc_controller;
332 }
333
334 /* XXX Need a better way for this. */
335 switch (devhandle_type(device_handle(sc->sc_dev))) {
336 #ifdef FDT
337 case DEVHANDLE_TYPE_OF:
338 fdtbus_register_spi_controller(self, sc->sc_controller);
339 break;
340 #endif /* FDT */
341 default:
342 break;
343 }
344
345 /*
346 * Attempt to enumerate the devices on the bus using the
347 * platform device tree.
348 */
349 struct spi_attach_args sa = { 0 };
350 struct spi_enumerate_devices_args enumargs = {
351 .sa = &sa,
352 .callback = spi_enumerate_devices_callback,
353 };
354 device_call(self, SPI_ENUMERATE_DEVICES(&enumargs));
355
356 /* Then do any other devices the user may have manually wired */
357 config_search(self, NULL,
358 CFARGS(.search = spi_search));
359 }
360
361 static int
362 spi_open(dev_t dev, int flag, int fmt, lwp_t *l)
363 {
364 struct spi_softc *sc = device_lookup_private(&spi_cd, minor(dev));
365
366 if (sc == NULL)
367 return ENXIO;
368
369 return 0;
370 }
371
372 static int
373 spi_close(dev_t dev, int flag, int fmt, lwp_t *l)
374 {
375
376 return 0;
377 }
378
379 static int
380 spi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
381 {
382 struct spi_softc *sc = device_lookup_private(&spi_cd, minor(dev));
383 spi_handle_t sh;
384 spi_ioctl_configure_t *sic;
385 spi_ioctl_transfer_t *sit;
386 uint8_t *sbuf, *rbuf;
387 int error;
388
389 if (sc == NULL)
390 return ENXIO;
391
392 mutex_enter(&sc->sc_dev_lock);
393
394 switch (cmd) {
395 case SPI_IOCTL_CONFIGURE:
396 sic = (spi_ioctl_configure_t *)data;
397 if (sic->sic_addr < 0 || sic->sic_addr >= sc->sc_nslaves) {
398 error = EINVAL;
399 break;
400 }
401 sh = &sc->sc_slaves[sic->sic_addr];
402 error = spi_configure(sc->sc_dev, sh, sic->sic_mode,
403 sic->sic_speed);
404 break;
405 case SPI_IOCTL_TRANSFER:
406 sit = (spi_ioctl_transfer_t *)data;
407 if (sit->sit_addr < 0 || sit->sit_addr >= sc->sc_nslaves) {
408 error = EINVAL;
409 break;
410 }
411 if ((sit->sit_send && sit->sit_sendlen == 0)
412 || (sit->sit_recv && sit->sit_recvlen == 0)) {
413 error = EINVAL;
414 break;
415 }
416 sh = &sc->sc_slaves[sit->sit_addr];
417 sbuf = rbuf = NULL;
418 error = 0;
419 if (sit->sit_send && sit->sit_sendlen <= SPI_MAXDATA) {
420 sbuf = malloc(sit->sit_sendlen, M_DEVBUF, M_WAITOK);
421 error = copyin(sit->sit_send, sbuf, sit->sit_sendlen);
422 }
423 if (sit->sit_recv && sit->sit_recvlen <= SPI_MAXDATA) {
424 rbuf = malloc(sit->sit_recvlen, M_DEVBUF, M_WAITOK);
425 }
426 if (error == 0) {
427 if (sbuf && rbuf)
428 error = spi_send_recv(sh,
429 sit->sit_sendlen, sbuf,
430 sit->sit_recvlen, rbuf);
431 else if (sbuf)
432 error = spi_send(sh,
433 sit->sit_sendlen, sbuf);
434 else if (rbuf)
435 error = spi_recv(sh,
436 sit->sit_recvlen, rbuf);
437 }
438 if (rbuf) {
439 if (error == 0)
440 error = copyout(rbuf, sit->sit_recv,
441 sit->sit_recvlen);
442 free(rbuf, M_DEVBUF);
443 }
444 if (sbuf) {
445 free(sbuf, M_DEVBUF);
446 }
447 break;
448 default:
449 error = ENODEV;
450 break;
451 }
452
453 mutex_exit(&sc->sc_dev_lock);
454
455 return error;
456 }
457
458 CFATTACH_DECL_NEW(spi, sizeof(struct spi_softc),
459 spi_match, spi_attach, NULL, NULL);
460
461 /*
462 * Configure. This should be the first thing that the SPI driver
463 * should do, to configure which mode (e.g. SPI_MODE_0, which is the
464 * same as Philips Microwire mode), and speed. If the bus driver
465 * cannot run fast enough, then it should just configure the fastest
466 * mode that it can support. If the bus driver cannot run slow
467 * enough, then the device is incompatible and an error should be
468 * returned.
469 */
470 int
471 spi_configure(device_t dev, spi_handle_t sh, int mode, int speed)
472 {
473 struct spi_get_transfer_mode_args args = { 0 };
474 int error;
475
476 /*
477 * Get transfer mode information from the platform device tree, if
478 * it exists.
479 */
480 error = device_call(dev, SPI_GET_TRANSFER_MODE(&args));
481 if (error) {
482 if (error != ENOTSUP) {
483 /*
484 * This error is fatal. Error message has already
485 * been displayed.
486 */
487 return error;
488 }
489 } else {
490 /*
491 * If the device tree specifies clock phase shift or
492 * polarity inversion, override whatever the caller
493 * specified.
494 */
495 if (args.mode != 0) {
496 aprint_debug_dev(dev,
497 "using SPI mode %u from device tree\n",
498 args.mode);
499 mode = args.mode;
500 }
501
502 /*
503 * If the device tree specifies the max clock frequency,
504 * override whatever the caller specified.
505 */
506 if (args.max_frequency != 0) {
507 aprint_debug_dev(dev,
508 "using max-frequency %u Hz from device tree\n",
509 args.max_frequency);
510 speed = args.max_frequency;
511 }
512
513 /* XXX Handle the other transfer properties. */
514 }
515
516 sh->sh_mode = mode;
517 sh->sh_speed = speed;
518
519 return 0;
520 }
521
522 /*
523 * Acquire controller
524 */
525 static void
526 spi_acquire(spi_handle_t sh)
527 {
528 struct spi_softc *sc = sh->sh_sc;
529
530 mutex_enter(&sc->sc_lock);
531 while ((sc->sc_flags & SPIC_BUSY) != 0)
532 cv_wait(&sc->sc_cv, &sc->sc_lock);
533 sc->sc_flags |= SPIC_BUSY;
534 mutex_exit(&sc->sc_lock);
535 }
536
537 /*
538 * Release controller
539 */
540 static void
541 spi_release(spi_handle_t sh)
542 {
543 struct spi_softc *sc = sh->sh_sc;
544
545 mutex_enter(&sc->sc_lock);
546 sc->sc_flags &= ~SPIC_BUSY;
547 cv_broadcast(&sc->sc_cv);
548 mutex_exit(&sc->sc_lock);
549 }
550
551 void
552 spi_transfer_init(struct spi_transfer *st)
553 {
554
555 mutex_init(&st->st_lock, MUTEX_DEFAULT, IPL_VM);
556 cv_init(&st->st_cv, "spixfr");
557
558 st->st_flags = 0;
559 st->st_errno = 0;
560 st->st_done = NULL;
561 st->st_chunks = NULL;
562 st->st_private = NULL;
563 st->st_slave = -1;
564 }
565
566 void
567 spi_chunk_init(struct spi_chunk *chunk, int cnt, const uint8_t *wptr,
568 uint8_t *rptr)
569 {
570
571 chunk->chunk_write = chunk->chunk_wptr = wptr;
572 chunk->chunk_read = chunk->chunk_rptr = rptr;
573 chunk->chunk_rresid = chunk->chunk_wresid = chunk->chunk_count = cnt;
574 chunk->chunk_next = NULL;
575 }
576
577 void
578 spi_transfer_add(struct spi_transfer *st, struct spi_chunk *chunk)
579 {
580 struct spi_chunk **cpp;
581
582 /* this is an O(n) insert -- perhaps we should use a simpleq? */
583 for (cpp = &st->st_chunks; *cpp; cpp = &(*cpp)->chunk_next);
584 *cpp = chunk;
585 }
586
587 int
588 spi_transfer(spi_handle_t sh, struct spi_transfer *st)
589 {
590 struct spi_softc *sc = sh->sh_sc;
591 const struct spi_controller *tag = sh->sh_controller;
592 struct spi_chunk *chunk;
593 int error;
594
595 /*
596 * Initialize "resid" counters and pointers, so that callers
597 * and bus drivers don't have to.
598 */
599 for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
600 chunk->chunk_wresid = chunk->chunk_rresid = chunk->chunk_count;
601 chunk->chunk_wptr = chunk->chunk_write;
602 chunk->chunk_rptr = chunk->chunk_read;
603 }
604
605 /*
606 * Match slave and parameters to handle
607 */
608 st->st_slave = sh->sh_slave;
609
610 /*
611 * Reserve controller during transaction
612 */
613 spi_acquire(sh);
614
615 st->st_spiprivate = (void *)sh;
616
617 /*
618 * Reconfigure controller
619 *
620 * XXX backends don't configure per-slave parameters
621 * Whenever we switch slaves or change mode or speed, we
622 * need to tell the backend.
623 */
624 if (sc->sc_slave != sh->sh_slave
625 || sc->sc_mode != sh->sh_mode
626 || sc->sc_speed != sh->sh_speed) {
627 error = (*tag->sct_configure)(tag->sct_cookie,
628 sh->sh_slave, sh->sh_mode, sh->sh_speed);
629 if (error)
630 return error;
631 }
632 sc->sc_mode = sh->sh_mode;
633 sc->sc_speed = sh->sh_speed;
634 sc->sc_slave = sh->sh_slave;
635
636 error = (*tag->sct_transfer)(tag->sct_cookie, st);
637
638 return error;
639 }
640
641 void
642 spi_wait(struct spi_transfer *st)
643 {
644 spi_handle_t sh = st->st_spiprivate;
645
646 mutex_enter(&st->st_lock);
647 while (!(st->st_flags & SPI_F_DONE)) {
648 cv_wait(&st->st_cv, &st->st_lock);
649 }
650 mutex_exit(&st->st_lock);
651 cv_destroy(&st->st_cv);
652 mutex_destroy(&st->st_lock);
653
654 /*
655 * End transaction
656 */
657 spi_release(sh);
658 }
659
660 void
661 spi_done(struct spi_transfer *st, int err)
662 {
663
664 mutex_enter(&st->st_lock);
665 if ((st->st_errno = err) != 0) {
666 st->st_flags |= SPI_F_ERROR;
667 }
668 st->st_flags |= SPI_F_DONE;
669 if (st->st_done != NULL) {
670 (*st->st_done)(st);
671 } else {
672 cv_broadcast(&st->st_cv);
673 }
674 mutex_exit(&st->st_lock);
675 }
676
677 /*
678 * Some convenience routines. These routines block until the work
679 * is done.
680 *
681 * spi_recv - receives data from the bus
682 *
683 * spi_send - sends data to the bus
684 *
685 * spi_send_recv - sends data to the bus, and then receives. Note that this is
686 * done synchronously, i.e. send a command and get the response. This is
687 * not full duplex. If you want full duplex, you can't use these convenience
688 * wrappers.
689 */
690 int
691 spi_recv(spi_handle_t sh, int cnt, uint8_t *data)
692 {
693 struct spi_transfer trans;
694 struct spi_chunk chunk;
695
696 spi_transfer_init(&trans);
697 spi_chunk_init(&chunk, cnt, NULL, data);
698 spi_transfer_add(&trans, &chunk);
699
700 /* enqueue it and wait for it to complete */
701 spi_transfer(sh, &trans);
702 spi_wait(&trans);
703
704 if (trans.st_flags & SPI_F_ERROR)
705 return trans.st_errno;
706
707 return 0;
708 }
709
710 int
711 spi_send(spi_handle_t sh, int cnt, const uint8_t *data)
712 {
713 struct spi_transfer trans;
714 struct spi_chunk chunk;
715
716 spi_transfer_init(&trans);
717 spi_chunk_init(&chunk, cnt, data, NULL);
718 spi_transfer_add(&trans, &chunk);
719
720 /* enqueue it and wait for it to complete */
721 spi_transfer(sh, &trans);
722 spi_wait(&trans);
723
724 if (trans.st_flags & SPI_F_ERROR)
725 return trans.st_errno;
726
727 return 0;
728 }
729
730 int
731 spi_send_recv(spi_handle_t sh, int scnt, const uint8_t *snd,
732 int rcnt, uint8_t *rcv)
733 {
734 struct spi_transfer trans;
735 struct spi_chunk chunk1, chunk2;
736
737 spi_transfer_init(&trans);
738 spi_chunk_init(&chunk1, scnt, snd, NULL);
739 spi_chunk_init(&chunk2, rcnt, NULL, rcv);
740 spi_transfer_add(&trans, &chunk1);
741 spi_transfer_add(&trans, &chunk2);
742
743 /* enqueue it and wait for it to complete */
744 spi_transfer(sh, &trans);
745 spi_wait(&trans);
746
747 if (trans.st_flags & SPI_F_ERROR)
748 return trans.st_errno;
749
750 return 0;
751 }
752