spiflash.c revision 1.9 1 1.9 cegger /* $NetBSD: spiflash.c,v 1.9 2008/06/11 19:31:10 cegger Exp $ */
2 1.1 gdamore
3 1.1 gdamore /*-
4 1.1 gdamore * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 1.1 gdamore * Copyright (c) 2006 Garrett D'Amore.
6 1.1 gdamore * All rights reserved.
7 1.1 gdamore *
8 1.1 gdamore * Portions of this code were written by Garrett D'Amore for the
9 1.1 gdamore * Champaign-Urbana Community Wireless Network Project.
10 1.1 gdamore *
11 1.1 gdamore * Redistribution and use in source and binary forms, with or
12 1.1 gdamore * without modification, are permitted provided that the following
13 1.1 gdamore * conditions are met:
14 1.1 gdamore * 1. Redistributions of source code must retain the above copyright
15 1.1 gdamore * notice, this list of conditions and the following disclaimer.
16 1.1 gdamore * 2. Redistributions in binary form must reproduce the above
17 1.1 gdamore * copyright notice, this list of conditions and the following
18 1.1 gdamore * disclaimer in the documentation and/or other materials provided
19 1.1 gdamore * with the distribution.
20 1.1 gdamore * 3. All advertising materials mentioning features or use of this
21 1.1 gdamore * software must display the following acknowledgements:
22 1.1 gdamore * This product includes software developed by the Urbana-Champaign
23 1.1 gdamore * Independent Media Center.
24 1.1 gdamore * This product includes software developed by Garrett D'Amore.
25 1.1 gdamore * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 1.1 gdamore * D'Amore's name may not be used to endorse or promote products
27 1.1 gdamore * derived from this software without specific prior written permission.
28 1.1 gdamore *
29 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 1.1 gdamore * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 1.1 gdamore * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 1.1 gdamore * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 gdamore * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 1.1 gdamore * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 1.1 gdamore * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 1.1 gdamore * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 1.1 gdamore * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 1.1 gdamore * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 1.1 gdamore * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 1.1 gdamore * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 1.1 gdamore * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 1.1 gdamore */
43 1.1 gdamore
44 1.1 gdamore #include <sys/cdefs.h>
45 1.9 cegger __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.9 2008/06/11 19:31:10 cegger Exp $");
46 1.1 gdamore
47 1.1 gdamore #include <sys/param.h>
48 1.1 gdamore #include <sys/conf.h>
49 1.1 gdamore #include <sys/proc.h>
50 1.1 gdamore #include <sys/systm.h>
51 1.1 gdamore #include <sys/device.h>
52 1.1 gdamore #include <sys/kernel.h>
53 1.1 gdamore #include <sys/file.h>
54 1.1 gdamore #include <sys/ioctl.h>
55 1.1 gdamore #include <sys/disk.h>
56 1.1 gdamore #include <sys/disklabel.h>
57 1.1 gdamore #include <sys/buf.h>
58 1.1 gdamore #include <sys/bufq.h>
59 1.1 gdamore #include <sys/uio.h>
60 1.1 gdamore #include <sys/kthread.h>
61 1.1 gdamore #include <sys/malloc.h>
62 1.1 gdamore #include <sys/errno.h>
63 1.1 gdamore
64 1.1 gdamore #include <dev/spi/spivar.h>
65 1.1 gdamore #include <dev/spi/spiflash.h>
66 1.1 gdamore
67 1.1 gdamore /*
68 1.1 gdamore * This is an MI block driver for SPI flash devices. It could probably be
69 1.1 gdamore * converted to some more generic framework, if someone wanted to create one
70 1.1 gdamore * for NOR flashes. Note that some flashes have the ability to handle
71 1.1 gdamore * interrupts.
72 1.1 gdamore */
73 1.1 gdamore
74 1.1 gdamore struct spiflash_softc {
75 1.1 gdamore struct disk sc_dk;
76 1.1 gdamore
77 1.1 gdamore struct spiflash_hw_if sc_hw;
78 1.1 gdamore void *sc_cookie;
79 1.1 gdamore
80 1.1 gdamore const char *sc_name;
81 1.1 gdamore struct spi_handle *sc_handle;
82 1.1 gdamore int sc_device_size;
83 1.1 gdamore int sc_write_size;
84 1.1 gdamore int sc_erase_size;
85 1.1 gdamore int sc_read_size;
86 1.1 gdamore int sc_device_blks;
87 1.1 gdamore
88 1.2 gdamore struct bufq_state *sc_waitq;
89 1.2 gdamore struct bufq_state *sc_workq;
90 1.2 gdamore struct bufq_state *sc_doneq;
91 1.5 dyoung lwp_t *sc_thread;
92 1.1 gdamore };
93 1.1 gdamore
94 1.1 gdamore #define sc_getname sc_hw.sf_getname
95 1.1 gdamore #define sc_gethandle sc_hw.sf_gethandle
96 1.1 gdamore #define sc_getsize sc_hw.sf_getsize
97 1.1 gdamore #define sc_getflags sc_hw.sf_getflags
98 1.1 gdamore #define sc_erase sc_hw.sf_erase
99 1.1 gdamore #define sc_write sc_hw.sf_write
100 1.1 gdamore #define sc_read sc_hw.sf_read
101 1.1 gdamore #define sc_getstatus sc_hw.sf_getstatus
102 1.1 gdamore #define sc_setstatus sc_hw.sf_setstatus
103 1.1 gdamore
104 1.1 gdamore struct spiflash_attach_args {
105 1.1 gdamore const struct spiflash_hw_if *hw;
106 1.1 gdamore void *cookie;
107 1.1 gdamore };
108 1.1 gdamore
109 1.1 gdamore #define STATIC
110 1.8 xtraeme STATIC int spiflash_match(device_t , cfdata_t , void *);
111 1.8 xtraeme STATIC void spiflash_attach(device_t , device_t , void *);
112 1.1 gdamore STATIC int spiflash_print(void *, const char *);
113 1.1 gdamore STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
114 1.1 gdamore STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
115 1.1 gdamore const uint8_t *);
116 1.1 gdamore STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
117 1.2 gdamore STATIC void spiflash_process_done(spiflash_handle_t, int);
118 1.2 gdamore STATIC void spiflash_process_read(spiflash_handle_t);
119 1.2 gdamore STATIC void spiflash_process_write(spiflash_handle_t);
120 1.1 gdamore STATIC void spiflash_thread(void *);
121 1.2 gdamore STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
122 1.2 gdamore STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 1.2 gdamore STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
124 1.1 gdamore
125 1.8 xtraeme CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
126 1.1 gdamore spiflash_match, spiflash_attach, NULL, NULL);
127 1.1 gdamore
128 1.2 gdamore #ifdef SPIFLASH_DEBUG
129 1.2 gdamore #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/)
130 1.2 gdamore #else
131 1.2 gdamore #define DPRINTF(x) do { } while (0/*CONSTCOND*/)
132 1.2 gdamore #endif
133 1.2 gdamore
134 1.1 gdamore extern struct cfdriver spiflash_cd;
135 1.1 gdamore
136 1.1 gdamore dev_type_open(spiflash_open);
137 1.1 gdamore dev_type_close(spiflash_close);
138 1.1 gdamore dev_type_read(spiflash_read);
139 1.1 gdamore dev_type_write(spiflash_write);
140 1.1 gdamore dev_type_ioctl(spiflash_ioctl);
141 1.1 gdamore dev_type_strategy(spiflash_strategy);
142 1.1 gdamore
143 1.1 gdamore const struct bdevsw spiflash_bdevsw = {
144 1.1 gdamore .d_open = spiflash_open,
145 1.1 gdamore .d_close = spiflash_close,
146 1.1 gdamore .d_strategy = spiflash_strategy,
147 1.1 gdamore .d_ioctl = spiflash_ioctl,
148 1.1 gdamore .d_dump = nodump,
149 1.1 gdamore .d_psize = nosize,
150 1.4 ad .d_flag = D_DISK,
151 1.1 gdamore };
152 1.1 gdamore
153 1.1 gdamore const struct cdevsw spiflash_cdevsw = {
154 1.1 gdamore .d_open = spiflash_open,
155 1.1 gdamore .d_close = spiflash_close,
156 1.1 gdamore .d_read = spiflash_read,
157 1.1 gdamore .d_write = spiflash_write,
158 1.1 gdamore .d_ioctl = spiflash_ioctl,
159 1.1 gdamore .d_stop = nostop,
160 1.1 gdamore .d_tty = notty,
161 1.1 gdamore .d_poll = nopoll,
162 1.1 gdamore .d_mmap = nommap,
163 1.1 gdamore .d_kqfilter = nokqfilter,
164 1.4 ad .d_flag = D_DISK,
165 1.1 gdamore };
166 1.1 gdamore
167 1.1 gdamore static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
168 1.1 gdamore
169 1.1 gdamore spiflash_handle_t
170 1.1 gdamore spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
171 1.8 xtraeme device_t dev)
172 1.1 gdamore {
173 1.1 gdamore struct spiflash_attach_args sfa;
174 1.1 gdamore sfa.hw = hw;
175 1.1 gdamore sfa.cookie = cookie;
176 1.1 gdamore
177 1.1 gdamore return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
178 1.1 gdamore }
179 1.1 gdamore
180 1.1 gdamore int
181 1.1 gdamore spiflash_print(void *aux, const char *pnp)
182 1.1 gdamore {
183 1.1 gdamore if (pnp != NULL)
184 1.1 gdamore printf("spiflash at %s\n", pnp);
185 1.1 gdamore
186 1.1 gdamore return UNCONF;
187 1.1 gdamore }
188 1.1 gdamore
189 1.1 gdamore int
190 1.8 xtraeme spiflash_match(device_t parent, cfdata_t cf, void *aux)
191 1.1 gdamore {
192 1.1 gdamore
193 1.1 gdamore return 1;
194 1.1 gdamore }
195 1.1 gdamore
196 1.1 gdamore void
197 1.8 xtraeme spiflash_attach(device_t parent, device_t self, void *aux)
198 1.1 gdamore {
199 1.1 gdamore struct spiflash_softc *sc = device_private(self);
200 1.1 gdamore struct spiflash_attach_args *sfa = aux;
201 1.1 gdamore void *cookie = sfa->cookie;
202 1.1 gdamore
203 1.1 gdamore sc->sc_hw = *sfa->hw;
204 1.1 gdamore sc->sc_cookie = cookie;
205 1.1 gdamore sc->sc_name = sc->sc_getname(cookie);
206 1.1 gdamore sc->sc_handle = sc->sc_gethandle(cookie);
207 1.1 gdamore sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
208 1.1 gdamore sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
209 1.1 gdamore sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
210 1.1 gdamore sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
211 1.1 gdamore sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
212 1.1 gdamore
213 1.1 gdamore if (sc->sc_read == NULL)
214 1.1 gdamore sc->sc_read = spiflash_common_read;
215 1.1 gdamore if (sc->sc_write == NULL)
216 1.1 gdamore sc->sc_write = spiflash_common_write;
217 1.1 gdamore if (sc->sc_erase == NULL)
218 1.1 gdamore sc->sc_erase = spiflash_common_erase;
219 1.1 gdamore
220 1.1 gdamore aprint_naive(": SPI flash\n");
221 1.1 gdamore aprint_normal(": %s SPI flash\n", sc->sc_name);
222 1.1 gdamore /* XXX: note that this has to change for boot-sectored flash */
223 1.8 xtraeme aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
224 1.7 cegger sc->sc_device_size / 1024,
225 1.1 gdamore sc->sc_device_size / sc->sc_erase_size,
226 1.1 gdamore sc->sc_erase_size / 1024);
227 1.1 gdamore
228 1.1 gdamore /* first-come first-served strategy works best for us */
229 1.2 gdamore bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
230 1.2 gdamore bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 1.2 gdamore bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
232 1.1 gdamore
233 1.1 gdamore sc->sc_dk.dk_driver = &spiflash_dkdriver;
234 1.8 xtraeme sc->sc_dk.dk_name = device_xname(self);
235 1.1 gdamore
236 1.1 gdamore disk_attach(&sc->sc_dk);
237 1.4 ad
238 1.4 ad /* arrange to allocate the kthread */
239 1.5 dyoung kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
240 1.4 ad &sc->sc_thread, "spiflash");
241 1.1 gdamore }
242 1.1 gdamore
243 1.1 gdamore int
244 1.1 gdamore spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
245 1.1 gdamore {
246 1.1 gdamore spiflash_handle_t sc;
247 1.1 gdamore
248 1.9 cegger sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
249 1.9 cegger if (sc == NULL)
250 1.1 gdamore return ENXIO;
251 1.1 gdamore
252 1.1 gdamore /*
253 1.1 gdamore * XXX: We need to handle partitions here. The problem is
254 1.1 gdamore * that it isn't entirely clear to me how to deal with this.
255 1.1 gdamore * There are devices that could be used "in the raw" with a
256 1.1 gdamore * NetBSD label, but then you get into devices that have other
257 1.1 gdamore * kinds of data on them -- some have VxWorks data, some have
258 1.1 gdamore * RedBoot data, and some have other contraints -- for example
259 1.1 gdamore * some devices might have a portion that is read-only,
260 1.1 gdamore * whereas others might have a portion that is read-write.
261 1.1 gdamore *
262 1.1 gdamore * For now we just permit access to the entire device.
263 1.1 gdamore */
264 1.1 gdamore return 0;
265 1.1 gdamore }
266 1.1 gdamore
267 1.1 gdamore int
268 1.1 gdamore spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
269 1.1 gdamore {
270 1.1 gdamore spiflash_handle_t sc;
271 1.1 gdamore
272 1.9 cegger sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
273 1.9 cegger if (sc == NULL)
274 1.1 gdamore return ENXIO;
275 1.1 gdamore
276 1.1 gdamore return 0;
277 1.1 gdamore }
278 1.1 gdamore
279 1.1 gdamore int
280 1.1 gdamore spiflash_read(dev_t dev, struct uio *uio, int ioflag)
281 1.1 gdamore {
282 1.1 gdamore
283 1.1 gdamore return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
284 1.1 gdamore }
285 1.1 gdamore
286 1.1 gdamore int
287 1.1 gdamore spiflash_write(dev_t dev, struct uio *uio, int ioflag)
288 1.1 gdamore {
289 1.1 gdamore
290 1.1 gdamore return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
291 1.1 gdamore }
292 1.1 gdamore
293 1.1 gdamore int
294 1.3 christos spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
295 1.1 gdamore {
296 1.1 gdamore spiflash_handle_t sc;
297 1.1 gdamore
298 1.9 cegger sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
299 1.9 cegger if (sc == NULL)
300 1.1 gdamore return ENXIO;
301 1.1 gdamore
302 1.1 gdamore return EINVAL;
303 1.1 gdamore }
304 1.1 gdamore
305 1.1 gdamore void
306 1.1 gdamore spiflash_strategy(struct buf *bp)
307 1.1 gdamore {
308 1.1 gdamore spiflash_handle_t sc;
309 1.1 gdamore int s;
310 1.1 gdamore
311 1.9 cegger sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev));
312 1.1 gdamore if (sc == NULL) {
313 1.1 gdamore bp->b_error = ENXIO;
314 1.1 gdamore biodone(bp);
315 1.1 gdamore return;
316 1.1 gdamore }
317 1.1 gdamore
318 1.2 gdamore if (((bp->b_bcount % sc->sc_write_size) != 0) ||
319 1.1 gdamore (bp->b_blkno < 0)) {
320 1.1 gdamore bp->b_error = EINVAL;
321 1.1 gdamore biodone(bp);
322 1.1 gdamore return;
323 1.1 gdamore }
324 1.1 gdamore
325 1.1 gdamore /* no work? */
326 1.1 gdamore if (bp->b_bcount == 0) {
327 1.1 gdamore biodone(bp);
328 1.1 gdamore return;
329 1.1 gdamore }
330 1.1 gdamore
331 1.2 gdamore if (bounds_check_with_mediasize(bp, DEV_BSIZE,
332 1.2 gdamore sc->sc_device_blks) <= 0) {
333 1.2 gdamore biodone(bp);
334 1.2 gdamore return;
335 1.1 gdamore }
336 1.1 gdamore
337 1.1 gdamore bp->b_resid = bp->b_bcount;
338 1.1 gdamore
339 1.1 gdamore /* all ready, hand off to thread for async processing */
340 1.1 gdamore s = splbio();
341 1.2 gdamore BUFQ_PUT(sc->sc_waitq, bp);
342 1.1 gdamore wakeup(&sc->sc_thread);
343 1.1 gdamore splx(s);
344 1.1 gdamore }
345 1.1 gdamore
346 1.1 gdamore void
347 1.2 gdamore spiflash_process_done(spiflash_handle_t sc, int err)
348 1.1 gdamore {
349 1.2 gdamore struct buf *bp;
350 1.2 gdamore int cnt = 0;
351 1.2 gdamore int flag = 0;
352 1.2 gdamore
353 1.2 gdamore while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
354 1.2 gdamore flag = bp->b_flags & B_READ;
355 1.6 ad if ((bp->b_error = err) == 0)
356 1.2 gdamore bp->b_resid = 0;
357 1.2 gdamore cnt += bp->b_bcount - bp->b_resid;
358 1.2 gdamore biodone(bp);
359 1.2 gdamore }
360 1.2 gdamore disk_unbusy(&sc->sc_dk, cnt, flag);
361 1.2 gdamore }
362 1.1 gdamore
363 1.2 gdamore void
364 1.2 gdamore spiflash_process_read(spiflash_handle_t sc)
365 1.2 gdamore {
366 1.2 gdamore struct buf *bp;
367 1.2 gdamore int err = 0;
368 1.2 gdamore
369 1.2 gdamore disk_busy(&sc->sc_dk);
370 1.2 gdamore while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
371 1.2 gdamore size_t addr = bp->b_blkno * DEV_BSIZE;
372 1.2 gdamore uint8_t *data = bp->b_data;
373 1.2 gdamore int cnt = bp->b_resid;
374 1.2 gdamore
375 1.2 gdamore BUFQ_PUT(sc->sc_doneq, bp);
376 1.2 gdamore
377 1.2 gdamore DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
378 1.1 gdamore
379 1.2 gdamore if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
380 1.2 gdamore /* error occurred, fail all pending workq bufs */
381 1.2 gdamore bufq_move(sc->sc_doneq, sc->sc_workq);
382 1.2 gdamore break;
383 1.1 gdamore }
384 1.2 gdamore
385 1.1 gdamore bp->b_resid -= cnt;
386 1.1 gdamore data += cnt;
387 1.1 gdamore addr += cnt;
388 1.1 gdamore }
389 1.2 gdamore spiflash_process_done(sc, err);
390 1.2 gdamore }
391 1.2 gdamore
392 1.2 gdamore void
393 1.2 gdamore spiflash_process_write(spiflash_handle_t sc)
394 1.2 gdamore {
395 1.2 gdamore int len;
396 1.2 gdamore size_t base;
397 1.2 gdamore daddr_t blkno;
398 1.2 gdamore uint8_t *save;
399 1.2 gdamore int err = 0, neederase = 0;
400 1.2 gdamore struct buf *bp;
401 1.2 gdamore
402 1.2 gdamore /*
403 1.2 gdamore * due to other considerations, we are guaranteed that
404 1.2 gdamore * we will only have multiple buffers if they are all in
405 1.2 gdamore * the same erase sector. Therefore we never need to look
406 1.2 gdamore * beyond the first block to determine how much data we need
407 1.2 gdamore * to save.
408 1.2 gdamore */
409 1.2 gdamore
410 1.2 gdamore bp = BUFQ_PEEK(sc->sc_workq);
411 1.2 gdamore len = spiflash_nsectors(sc, bp) * sc->sc_erase_size;
412 1.2 gdamore blkno = bp->b_blkno;
413 1.2 gdamore base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
414 1.2 gdamore
415 1.2 gdamore /* get ourself a scratch buffer */
416 1.2 gdamore save = malloc(len, M_DEVBUF, M_WAITOK);
417 1.2 gdamore
418 1.2 gdamore disk_busy(&sc->sc_dk);
419 1.2 gdamore /* read in as much of the data as we need */
420 1.2 gdamore DPRINTF(("reading in %d bytes\n", len));
421 1.2 gdamore if ((err = sc->sc_read(sc, base, len, save)) != 0) {
422 1.2 gdamore bufq_move(sc->sc_doneq, sc->sc_workq);
423 1.2 gdamore spiflash_process_done(sc, err);
424 1.2 gdamore return;
425 1.2 gdamore }
426 1.2 gdamore
427 1.2 gdamore /*
428 1.2 gdamore * now coalesce the writes into the save area, but also
429 1.2 gdamore * check to see if we need to do an erase
430 1.2 gdamore */
431 1.2 gdamore while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
432 1.2 gdamore uint8_t *data, *dst;
433 1.2 gdamore int resid = bp->b_resid;
434 1.2 gdamore
435 1.2 gdamore DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
436 1.2 gdamore (unsigned)bp->b_blkno, bp->b_bcount, resid));
437 1.2 gdamore
438 1.2 gdamore data = bp->b_data;
439 1.2 gdamore dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
440 1.2 gdamore
441 1.2 gdamore /*
442 1.2 gdamore * NOR flash bits. We can clear a bit, but we cannot
443 1.2 gdamore * set a bit, without erasing. This should help reduce
444 1.2 gdamore * unnecessary erases.
445 1.2 gdamore */
446 1.2 gdamore while (resid) {
447 1.2 gdamore if ((*data) & ~(*dst))
448 1.2 gdamore neederase = 1;
449 1.2 gdamore *dst++ = *data++;
450 1.2 gdamore resid--;
451 1.2 gdamore }
452 1.2 gdamore
453 1.2 gdamore BUFQ_PUT(sc->sc_doneq, bp);
454 1.2 gdamore }
455 1.2 gdamore
456 1.2 gdamore /*
457 1.2 gdamore * do the erase, if we need to.
458 1.2 gdamore */
459 1.2 gdamore if (neederase) {
460 1.2 gdamore DPRINTF(("erasing from %x - %x\n", base, base + len));
461 1.2 gdamore if ((err = sc->sc_erase(sc, base, len)) != 0) {
462 1.2 gdamore spiflash_process_done(sc, err);
463 1.2 gdamore return;
464 1.2 gdamore }
465 1.2 gdamore }
466 1.2 gdamore
467 1.2 gdamore /*
468 1.2 gdamore * now write our save area, and finish up.
469 1.2 gdamore */
470 1.2 gdamore DPRINTF(("flashing %d bytes to %x from %x\n", len,
471 1.2 gdamore base, (unsigned)save));
472 1.2 gdamore err = sc->sc_write(sc, base, len, save);
473 1.2 gdamore spiflash_process_done(sc, err);
474 1.2 gdamore }
475 1.2 gdamore
476 1.2 gdamore
477 1.2 gdamore int
478 1.2 gdamore spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
479 1.2 gdamore {
480 1.2 gdamore unsigned addr, sector;
481 1.2 gdamore
482 1.2 gdamore addr = bp->b_blkno * DEV_BSIZE;
483 1.2 gdamore sector = addr / sc->sc_erase_size;
484 1.2 gdamore
485 1.2 gdamore addr += bp->b_bcount;
486 1.2 gdamore addr--;
487 1.2 gdamore return (((addr / sc->sc_erase_size) - sector) + 1);
488 1.2 gdamore }
489 1.2 gdamore
490 1.2 gdamore int
491 1.2 gdamore spiflash_sector(spiflash_handle_t sc, struct buf *bp)
492 1.2 gdamore {
493 1.2 gdamore unsigned addr, sector;
494 1.2 gdamore
495 1.2 gdamore addr = bp->b_blkno * DEV_BSIZE;
496 1.2 gdamore sector = addr / sc->sc_erase_size;
497 1.2 gdamore
498 1.2 gdamore /* if it spans multiple blocks, error it */
499 1.2 gdamore addr += bp->b_bcount;
500 1.2 gdamore addr--;
501 1.2 gdamore if (sector != (addr / sc->sc_erase_size))
502 1.2 gdamore return -1;
503 1.2 gdamore
504 1.2 gdamore return sector;
505 1.1 gdamore }
506 1.1 gdamore
507 1.1 gdamore void
508 1.1 gdamore spiflash_thread(void *arg)
509 1.1 gdamore {
510 1.1 gdamore spiflash_handle_t sc = arg;
511 1.1 gdamore struct buf *bp;
512 1.1 gdamore int s;
513 1.2 gdamore int sector;
514 1.1 gdamore
515 1.1 gdamore s = splbio();
516 1.1 gdamore for (;;) {
517 1.2 gdamore if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
518 1.1 gdamore tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
519 1.1 gdamore continue;
520 1.1 gdamore }
521 1.1 gdamore
522 1.2 gdamore BUFQ_PUT(sc->sc_workq, bp);
523 1.2 gdamore
524 1.2 gdamore if (bp->b_flags & B_READ) {
525 1.2 gdamore /* just do the read */
526 1.2 gdamore spiflash_process_read(sc);
527 1.2 gdamore continue;
528 1.2 gdamore }
529 1.2 gdamore
530 1.2 gdamore /*
531 1.2 gdamore * Because writing a flash filesystem is particularly
532 1.2 gdamore * painful, involving erase, modify, write, we prefer
533 1.2 gdamore * to coalesce writes to the same sector together.
534 1.2 gdamore */
535 1.2 gdamore
536 1.2 gdamore sector = spiflash_sector(sc, bp);
537 1.2 gdamore
538 1.2 gdamore /*
539 1.2 gdamore * if the write spans multiple sectors, skip
540 1.2 gdamore * coalescing. (It would be nice if we could break
541 1.2 gdamore * these up. minphys is honored for read/write, but
542 1.2 gdamore * not necessarily for bread.)
543 1.2 gdamore */
544 1.2 gdamore if (sector < 0)
545 1.2 gdamore goto dowrite;
546 1.2 gdamore
547 1.2 gdamore while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
548 1.2 gdamore /* can't deal with read requests! */
549 1.2 gdamore if (bp->b_flags & B_READ)
550 1.2 gdamore break;
551 1.2 gdamore
552 1.2 gdamore /* is it for the same sector? */
553 1.2 gdamore if (spiflash_sector(sc, bp) != sector)
554 1.2 gdamore break;
555 1.2 gdamore
556 1.2 gdamore bp = BUFQ_GET(sc->sc_waitq);
557 1.2 gdamore BUFQ_PUT(sc->sc_workq, bp);
558 1.2 gdamore }
559 1.2 gdamore
560 1.2 gdamore dowrite:
561 1.2 gdamore spiflash_process_write(sc);
562 1.1 gdamore }
563 1.1 gdamore }
564 1.1 gdamore /*
565 1.1 gdamore * SPI flash common implementation.
566 1.1 gdamore */
567 1.1 gdamore
568 1.1 gdamore /*
569 1.1 gdamore * Most devices take on the order of 1 second for each block that they
570 1.1 gdamore * delete.
571 1.1 gdamore */
572 1.1 gdamore int
573 1.1 gdamore spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
574 1.1 gdamore {
575 1.1 gdamore int rv;
576 1.1 gdamore
577 1.1 gdamore if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
578 1.1 gdamore return EINVAL;
579 1.1 gdamore
580 1.1 gdamore /* the second test is to test against wrap */
581 1.1 gdamore if ((start > sc->sc_device_size) ||
582 1.1 gdamore ((start + size) > sc->sc_device_size))
583 1.1 gdamore return EINVAL;
584 1.1 gdamore
585 1.1 gdamore /*
586 1.1 gdamore * XXX: check protection status? Requires master table mapping
587 1.1 gdamore * sectors to status bits, and so forth.
588 1.1 gdamore */
589 1.1 gdamore
590 1.1 gdamore while (size) {
591 1.1 gdamore if ((rv = spiflash_write_enable(sc)) != 0) {
592 1.1 gdamore spiflash_write_disable(sc);
593 1.1 gdamore return rv;
594 1.1 gdamore }
595 1.1 gdamore if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
596 1.1 gdamore NULL, NULL)) != 0) {
597 1.1 gdamore spiflash_write_disable(sc);
598 1.1 gdamore return rv;
599 1.1 gdamore }
600 1.1 gdamore
601 1.1 gdamore /*
602 1.1 gdamore * The devices I have all say typical for sector erase
603 1.1 gdamore * is ~1sec. We check ten times that often. (There
604 1.1 gdamore * is no way to interrupt on this.)
605 1.1 gdamore */
606 1.1 gdamore if ((rv = spiflash_wait(sc, hz / 10)) != 0)
607 1.1 gdamore return rv;
608 1.1 gdamore
609 1.1 gdamore start += sc->sc_erase_size;
610 1.1 gdamore size -= sc->sc_erase_size;
611 1.1 gdamore
612 1.1 gdamore /* NB: according to the docs I have, the write enable
613 1.1 gdamore * is automatically cleared upon completion of an erase
614 1.1 gdamore * command, so there is no need to explicitly disable it.
615 1.1 gdamore */
616 1.1 gdamore }
617 1.1 gdamore
618 1.1 gdamore return 0;
619 1.1 gdamore }
620 1.1 gdamore
621 1.1 gdamore int
622 1.1 gdamore spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
623 1.1 gdamore const uint8_t *data)
624 1.1 gdamore {
625 1.1 gdamore int rv;
626 1.1 gdamore
627 1.1 gdamore if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
628 1.1 gdamore return EINVAL;
629 1.1 gdamore
630 1.1 gdamore while (size) {
631 1.1 gdamore int cnt;
632 1.1 gdamore
633 1.1 gdamore if ((rv = spiflash_write_enable(sc)) != 0) {
634 1.1 gdamore spiflash_write_disable(sc);
635 1.1 gdamore return rv;
636 1.1 gdamore }
637 1.1 gdamore
638 1.1 gdamore cnt = min(size, sc->sc_write_size);
639 1.1 gdamore if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
640 1.1 gdamore cnt, data, NULL)) != 0) {
641 1.1 gdamore spiflash_write_disable(sc);
642 1.1 gdamore return rv;
643 1.1 gdamore }
644 1.1 gdamore
645 1.1 gdamore /*
646 1.1 gdamore * It seems that most devices can write bits fairly
647 1.1 gdamore * quickly. For example, one part I have access to
648 1.1 gdamore * takes ~5msec to process the entire 256 byte page.
649 1.1 gdamore * Probably this should be modified to cope with
650 1.1 gdamore * device-specific timing, and maybe also take into
651 1.1 gdamore * account systems with higher values of HZ (which
652 1.1 gdamore * could benefit from sleeping.)
653 1.1 gdamore */
654 1.1 gdamore if ((rv = spiflash_wait(sc, 0)) != 0)
655 1.1 gdamore return rv;
656 1.1 gdamore
657 1.2 gdamore data += cnt;
658 1.1 gdamore start += cnt;
659 1.1 gdamore size -= cnt;
660 1.1 gdamore }
661 1.1 gdamore
662 1.1 gdamore return 0;
663 1.1 gdamore }
664 1.1 gdamore
665 1.1 gdamore int
666 1.1 gdamore spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
667 1.1 gdamore uint8_t *data)
668 1.1 gdamore {
669 1.1 gdamore int rv;
670 1.1 gdamore
671 1.1 gdamore while (size) {
672 1.1 gdamore int cnt;
673 1.1 gdamore
674 1.1 gdamore if (sc->sc_read_size > 0)
675 1.1 gdamore cnt = min(size, sc->sc_read_size);
676 1.1 gdamore else
677 1.1 gdamore cnt = size;
678 1.1 gdamore
679 1.1 gdamore if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
680 1.1 gdamore cnt, NULL, data)) != 0) {
681 1.1 gdamore return rv;
682 1.1 gdamore }
683 1.1 gdamore
684 1.1 gdamore start += cnt;
685 1.1 gdamore size -= cnt;
686 1.1 gdamore }
687 1.1 gdamore
688 1.1 gdamore return 0;
689 1.1 gdamore }
690 1.1 gdamore
691 1.1 gdamore /* read status register */
692 1.1 gdamore int
693 1.1 gdamore spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
694 1.1 gdamore {
695 1.1 gdamore
696 1.1 gdamore return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
697 1.1 gdamore }
698 1.1 gdamore
699 1.1 gdamore int
700 1.1 gdamore spiflash_write_enable(spiflash_handle_t sc)
701 1.1 gdamore {
702 1.1 gdamore
703 1.1 gdamore return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
704 1.1 gdamore }
705 1.1 gdamore
706 1.1 gdamore int
707 1.1 gdamore spiflash_write_disable(spiflash_handle_t sc)
708 1.1 gdamore {
709 1.1 gdamore
710 1.1 gdamore return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
711 1.1 gdamore }
712 1.1 gdamore
713 1.1 gdamore int
714 1.1 gdamore spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
715 1.1 gdamore size_t addrlen, uint32_t addr,
716 1.1 gdamore size_t cnt, const uint8_t *wdata, uint8_t *rdata)
717 1.1 gdamore {
718 1.1 gdamore struct spi_transfer trans;
719 1.1 gdamore struct spi_chunk chunk1, chunk2;
720 1.1 gdamore char buf[4];
721 1.1 gdamore int i;
722 1.1 gdamore
723 1.1 gdamore buf[0] = cmd;
724 1.1 gdamore
725 1.1 gdamore if (addrlen > 3)
726 1.1 gdamore return EINVAL;
727 1.1 gdamore
728 1.1 gdamore for (i = addrlen; i > 0; i--) {
729 1.2 gdamore buf[i] = addr & 0xff;
730 1.2 gdamore addr >>= 8;
731 1.1 gdamore }
732 1.1 gdamore spi_transfer_init(&trans);
733 1.1 gdamore spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
734 1.1 gdamore spi_transfer_add(&trans, &chunk1);
735 1.1 gdamore if (cnt) {
736 1.1 gdamore spi_chunk_init(&chunk2, cnt, wdata, rdata);
737 1.1 gdamore spi_transfer_add(&trans, &chunk2);
738 1.1 gdamore }
739 1.1 gdamore
740 1.1 gdamore spi_transfer(sc->sc_handle, &trans);
741 1.1 gdamore spi_wait(&trans);
742 1.1 gdamore
743 1.1 gdamore if (trans.st_flags & SPI_F_ERROR)
744 1.1 gdamore return trans.st_errno;
745 1.1 gdamore return 0;
746 1.1 gdamore }
747 1.1 gdamore
748 1.1 gdamore int
749 1.1 gdamore spiflash_wait(spiflash_handle_t sc, int tmo)
750 1.1 gdamore {
751 1.1 gdamore int rv;
752 1.1 gdamore uint8_t sr;
753 1.1 gdamore
754 1.1 gdamore for (;;) {
755 1.1 gdamore if ((rv = spiflash_read_status(sc, &sr)) != 0)
756 1.1 gdamore return rv;
757 1.1 gdamore
758 1.1 gdamore if ((sr & SPIFLASH_SR_BUSY) == 0)
759 1.1 gdamore break;
760 1.1 gdamore /*
761 1.1 gdamore * The devices I have all say typical for sector
762 1.1 gdamore * erase is ~1sec. We check time times that often.
763 1.1 gdamore * (There is no way to interrupt on this.)
764 1.1 gdamore */
765 1.1 gdamore if (tmo)
766 1.1 gdamore tsleep(&sr, PWAIT, "spiflash_wait", tmo);
767 1.1 gdamore }
768 1.1 gdamore return 0;
769 1.1 gdamore }
770