spiflash.c revision 1.1 1 /* $NetBSD: spiflash.c,v 1.1 2006/10/07 07:21:13 gdamore Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 * Copyright (c) 2006 Garrett D'Amore.
6 * All rights reserved.
7 *
8 * Portions of this code were written by Garrett D'Amore for the
9 * Champaign-Urbana Community Wireless Network Project.
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgements:
22 * This product includes software developed by the Urbana-Champaign
23 * Independent Media Center.
24 * This product includes software developed by Garrett D'Amore.
25 * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 * D'Amore's name may not be used to endorse or promote products
27 * derived from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.1 2006/10/07 07:21:13 gdamore Exp $");
46
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66
67 /*
68 * This is an MI block driver for SPI flash devices. It could probably be
69 * converted to some more generic framework, if someone wanted to create one
70 * for NOR flashes. Note that some flashes have the ability to handle
71 * interrupts.
72 */
73
74 struct spiflash_softc {
75 struct device sc_dev;
76 struct disk sc_dk;
77
78 struct spiflash_hw_if sc_hw;
79 void *sc_cookie;
80
81 const char *sc_name;
82 struct spi_handle *sc_handle;
83 int sc_device_size;
84 int sc_write_size;
85 int sc_erase_size;
86 int sc_read_size;
87 int sc_device_blks;
88
89 struct bufq_state *sc_bufq;
90 struct proc *sc_thread;
91 };
92
93 #define sc_getname sc_hw.sf_getname
94 #define sc_gethandle sc_hw.sf_gethandle
95 #define sc_getsize sc_hw.sf_getsize
96 #define sc_getflags sc_hw.sf_getflags
97 #define sc_erase sc_hw.sf_erase
98 #define sc_write sc_hw.sf_write
99 #define sc_read sc_hw.sf_read
100 #define sc_getstatus sc_hw.sf_getstatus
101 #define sc_setstatus sc_hw.sf_setstatus
102
103 struct spiflash_attach_args {
104 const struct spiflash_hw_if *hw;
105 void *cookie;
106 };
107
108 #define STATIC
109 STATIC int spiflash_match(struct device *, struct cfdata *, void *);
110 STATIC void spiflash_attach(struct device *, struct device *, void *);
111 STATIC int spiflash_print(void *, const char *);
112 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
113 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
114 const uint8_t *);
115 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
116 STATIC void spiflash_process(spiflash_handle_t, struct buf *);
117 STATIC void spiflash_thread(void *);
118 STATIC void spiflash_thread_create(void *);
119
120 CFATTACH_DECL(spiflash, sizeof(struct spiflash_softc),
121 spiflash_match, spiflash_attach, NULL, NULL);
122
123 extern struct cfdriver spiflash_cd;
124
125 dev_type_open(spiflash_open);
126 dev_type_close(spiflash_close);
127 dev_type_read(spiflash_read);
128 dev_type_write(spiflash_write);
129 dev_type_ioctl(spiflash_ioctl);
130 dev_type_strategy(spiflash_strategy);
131
132 const struct bdevsw spiflash_bdevsw = {
133 .d_open = spiflash_open,
134 .d_close = spiflash_close,
135 .d_strategy = spiflash_strategy,
136 .d_ioctl = spiflash_ioctl,
137 .d_dump = nodump,
138 .d_psize = nosize,
139 .d_type = D_DISK,
140 };
141
142 const struct cdevsw spiflash_cdevsw = {
143 .d_open = spiflash_open,
144 .d_close = spiflash_close,
145 .d_read = spiflash_read,
146 .d_write = spiflash_write,
147 .d_ioctl = spiflash_ioctl,
148 .d_stop = nostop,
149 .d_tty = notty,
150 .d_poll = nopoll,
151 .d_mmap = nommap,
152 .d_kqfilter = nokqfilter,
153 .d_type = D_DISK,
154 };
155
156 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
157
158 spiflash_handle_t
159 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
160 struct device *dev)
161 {
162 struct spiflash_attach_args sfa;
163 sfa.hw = hw;
164 sfa.cookie = cookie;
165
166 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
167 }
168
169 int
170 spiflash_print(void *aux, const char *pnp)
171 {
172 if (pnp != NULL)
173 printf("spiflash at %s\n", pnp);
174
175 return UNCONF;
176 }
177
178 int
179 spiflash_match(struct device *parent, struct cfdata *cf, void *aux)
180 {
181
182 return 1;
183 }
184
185 void
186 spiflash_attach(struct device *parent, struct device *self, void *aux)
187 {
188 struct spiflash_softc *sc = device_private(self);
189 struct spiflash_attach_args *sfa = aux;
190 void *cookie = sfa->cookie;
191
192 sc->sc_hw = *sfa->hw;
193 sc->sc_cookie = cookie;
194 sc->sc_name = sc->sc_getname(cookie);
195 sc->sc_handle = sc->sc_gethandle(cookie);
196 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
197 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
198 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
199 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
200 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
201
202 if (sc->sc_read == NULL)
203 sc->sc_read = spiflash_common_read;
204 if (sc->sc_write == NULL)
205 sc->sc_write = spiflash_common_write;
206 if (sc->sc_erase == NULL)
207 sc->sc_erase = spiflash_common_erase;
208
209 aprint_naive(": SPI flash\n");
210 aprint_normal(": %s SPI flash\n", sc->sc_name);
211 /* XXX: note that this has to change for boot-sectored flash */
212 aprint_normal("%s: %d KB, %d sectors of %d KB each\n",
213 sc->sc_dev.dv_xname, sc->sc_device_size / 1024,
214 sc->sc_device_size / sc->sc_erase_size,
215 sc->sc_erase_size / 1024);
216
217 /* first-come first-served strategy works best for us */
218 bufq_alloc(&sc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
219
220 /* arrange to allocate the kthread */
221 kthread_create(spiflash_thread_create, sc);
222
223 sc->sc_dk.dk_driver = &spiflash_dkdriver;
224 sc->sc_dk.dk_name = sc->sc_dev.dv_xname;
225
226 disk_attach(&sc->sc_dk);
227 }
228
229 int
230 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
231 {
232 spiflash_handle_t sc;
233
234 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
235 return ENXIO;
236
237 /*
238 * XXX: We need to handle partitions here. The problem is
239 * that it isn't entirely clear to me how to deal with this.
240 * There are devices that could be used "in the raw" with a
241 * NetBSD label, but then you get into devices that have other
242 * kinds of data on them -- some have VxWorks data, some have
243 * RedBoot data, and some have other contraints -- for example
244 * some devices might have a portion that is read-only,
245 * whereas others might have a portion that is read-write.
246 *
247 * For now we just permit access to the entire device.
248 */
249 return 0;
250 }
251
252 int
253 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
254 {
255 spiflash_handle_t sc;
256
257 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
258 return ENXIO;
259
260 return 0;
261 }
262
263 int
264 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
265 {
266
267 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
268 }
269
270 int
271 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
272 {
273
274 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
275 }
276
277 int
278 spiflash_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct lwp *l)
279 {
280 spiflash_handle_t sc;
281
282 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
283 return ENXIO;
284
285 return EINVAL;
286 }
287
288 void
289 spiflash_strategy(struct buf *bp)
290 {
291 spiflash_handle_t sc;
292 int sz;
293 int s;
294
295 sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev));
296 if (sc == NULL) {
297 bp->b_error = ENXIO;
298 bp->b_flags |= B_ERROR;
299 biodone(bp);
300 return;
301 }
302
303 if ((bp->b_bcount % sc->sc_write_size) ||
304 (bp->b_blkno < 0)) {
305 bp->b_error = EINVAL;
306 bp->b_flags |= B_ERROR;
307 biodone(bp);
308 return;
309 }
310
311 /* no work? */
312 if (bp->b_bcount == 0) {
313 biodone(bp);
314 return;
315 }
316
317 sz = bp->b_bcount / DEV_BSIZE;
318
319 if ((bp->b_blkno + sz) > sc->sc_device_blks) {
320 sz = sc->sc_device_blks - bp->b_blkno;
321 /* exactly at end of media? return EOF */
322 if (sz == 0) {
323 biodone(bp);
324 return;
325 }
326 if (sz < 0) {
327 /* past end of disk */
328 bp->b_error = EINVAL;
329 bp->b_flags |= B_ERROR;
330 biodone(bp);
331 }
332 /* otherwise truncate it */
333 bp->b_bcount = sz << DEV_BSHIFT;
334 }
335
336 bp->b_resid = bp->b_bcount;
337
338 /* all ready, hand off to thread for async processing */
339 s = splbio();
340 BUFQ_PUT(sc->sc_bufq, bp);
341 wakeup(&sc->sc_thread);
342 splx(s);
343 }
344
345 void
346 spiflash_process(spiflash_handle_t sc, struct buf *bp)
347 {
348 int cnt;
349 size_t addr;
350 uint8_t *data;
351
352 addr = bp->b_blkno * DEV_BSIZE;
353 data = bp->b_data;
354
355 while (bp->b_resid > 0) {
356 cnt = max(sc->sc_write_size, DEV_BSIZE);
357 if (bp->b_flags & B_READ) {
358 bp->b_error = sc->sc_read(sc, addr, cnt, data);
359 } else {
360 bp->b_error = sc->sc_write(sc, addr, cnt, data);
361 }
362 if (bp->b_error) {
363 bp->b_flags |= B_ERROR;
364 biodone(bp);
365 return;
366 }
367 bp->b_resid -= cnt;
368 data += cnt;
369 addr += cnt;
370 }
371 biodone(bp);
372 }
373
374 void
375 spiflash_thread(void *arg)
376 {
377 spiflash_handle_t sc = arg;
378 struct buf *bp;
379 int s;
380
381 s = splbio();
382 for (;;) {
383 if ((bp = BUFQ_GET(sc->sc_bufq)) == NULL) {
384 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
385 continue;
386 }
387
388 spiflash_process(sc, bp);
389 }
390 }
391
392 void
393 spiflash_thread_create(void *arg)
394 {
395 spiflash_handle_t sc = arg;
396
397 kthread_create1(spiflash_thread, arg, &sc->sc_thread,
398 "spiflash_thread");
399 }
400
401 /*
402 * SPI flash common implementation.
403 */
404
405 /*
406 * Most devices take on the order of 1 second for each block that they
407 * delete.
408 */
409 int
410 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
411 {
412 int rv;
413
414 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
415 return EINVAL;
416
417 /* the second test is to test against wrap */
418 if ((start > sc->sc_device_size) ||
419 ((start + size) > sc->sc_device_size))
420 return EINVAL;
421
422 /*
423 * XXX: check protection status? Requires master table mapping
424 * sectors to status bits, and so forth.
425 */
426
427 while (size) {
428 if ((rv = spiflash_write_enable(sc)) != 0) {
429 spiflash_write_disable(sc);
430 return rv;
431 }
432 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
433 NULL, NULL)) != 0) {
434 spiflash_write_disable(sc);
435 return rv;
436 }
437
438 /*
439 * The devices I have all say typical for sector erase
440 * is ~1sec. We check ten times that often. (There
441 * is no way to interrupt on this.)
442 */
443 if ((rv = spiflash_wait(sc, hz / 10)) != 0)
444 return rv;
445
446 start += sc->sc_erase_size;
447 size -= sc->sc_erase_size;
448
449 /* NB: according to the docs I have, the write enable
450 * is automatically cleared upon completion of an erase
451 * command, so there is no need to explicitly disable it.
452 */
453 }
454
455 return 0;
456 }
457
458 int
459 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
460 const uint8_t *data)
461 {
462 int rv;
463
464 if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
465 return EINVAL;
466
467 /* the second test is to test against wrap */
468 if ((start > sc->sc_device_size) ||
469 ((start + size) > sc->sc_device_size))
470 return EINVAL;
471
472 while (size) {
473 int cnt;
474
475 if ((rv = spiflash_write_enable(sc)) != 0) {
476 spiflash_write_disable(sc);
477 return rv;
478 }
479
480 cnt = min(size, sc->sc_write_size);
481 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
482 cnt, data, NULL)) != 0) {
483 spiflash_write_disable(sc);
484 return rv;
485 }
486
487 /*
488 * It seems that most devices can write bits fairly
489 * quickly. For example, one part I have access to
490 * takes ~5msec to process the entire 256 byte page.
491 * Probably this should be modified to cope with
492 * device-specific timing, and maybe also take into
493 * account systems with higher values of HZ (which
494 * could benefit from sleeping.)
495 */
496 if ((rv = spiflash_wait(sc, 0)) != 0)
497 return rv;
498
499 start += cnt;
500 size -= cnt;
501 }
502
503 return 0;
504 }
505
506 int
507 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
508 uint8_t *data)
509 {
510 int rv;
511 int align;
512
513 align = sc->sc_write_size;
514 if (sc->sc_read_size > 0)
515 align = sc->sc_read_size;
516
517 if ((start % align) || (size % align))
518 return EINVAL;
519
520 /* the second test is to test against wrap */
521 if ((start > sc->sc_device_size) ||
522 ((start + size) > sc->sc_device_size))
523 return EINVAL;
524
525 while (size) {
526 int cnt;
527
528 if ((rv = spiflash_write_enable(sc)) != 0) {
529 spiflash_write_disable(sc);
530 return rv;
531 }
532
533 if (sc->sc_read_size > 0)
534 cnt = min(size, sc->sc_read_size);
535 else
536 cnt = size;
537
538 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
539 cnt, NULL, data)) != 0) {
540 spiflash_write_disable(sc);
541 return rv;
542 }
543
544 start += cnt;
545 size -= cnt;
546 }
547
548 return 0;
549 }
550
551 /* read status register */
552 int
553 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
554 {
555
556 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
557 }
558
559 int
560 spiflash_write_enable(spiflash_handle_t sc)
561 {
562
563 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
564 }
565
566 int
567 spiflash_write_disable(spiflash_handle_t sc)
568 {
569
570 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
571 }
572
573 int
574 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
575 size_t addrlen, uint32_t addr,
576 size_t cnt, const uint8_t *wdata, uint8_t *rdata)
577 {
578 struct spi_transfer trans;
579 struct spi_chunk chunk1, chunk2;
580 char buf[4];
581 int i;
582
583 buf[0] = cmd;
584
585 if (addrlen > 3)
586 return EINVAL;
587
588 for (i = addrlen; i > 0; i--) {
589 buf[i] = (addr >> ((i - 1) * 8)) & 0xff;
590 }
591 spi_transfer_init(&trans);
592 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
593 spi_transfer_add(&trans, &chunk1);
594 if (cnt) {
595 spi_chunk_init(&chunk2, cnt, wdata, rdata);
596 spi_transfer_add(&trans, &chunk2);
597 }
598
599 spi_transfer(sc->sc_handle, &trans);
600 spi_wait(&trans);
601
602 if (trans.st_flags & SPI_F_ERROR)
603 return trans.st_errno;
604 return 0;
605 }
606
607 int
608 spiflash_wait(spiflash_handle_t sc, int tmo)
609 {
610 int rv;
611 uint8_t sr;
612
613 for (;;) {
614 if ((rv = spiflash_read_status(sc, &sr)) != 0)
615 return rv;
616
617 if ((sr & SPIFLASH_SR_BUSY) == 0)
618 break;
619 /*
620 * The devices I have all say typical for sector
621 * erase is ~1sec. We check time times that often.
622 * (There is no way to interrupt on this.)
623 */
624 if (tmo)
625 tsleep(&sr, PWAIT, "spiflash_wait", tmo);
626 }
627 return 0;
628 }
629