spiflash.c revision 1.14 1 /* $NetBSD: spiflash.c,v 1.14 2014/07/25 08:02:20 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 * Copyright (c) 2006 Garrett D'Amore.
6 * All rights reserved.
7 *
8 * Portions of this code were written by Garrett D'Amore for the
9 * Champaign-Urbana Community Wireless Network Project.
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgements:
22 * This product includes software developed by the Urbana-Champaign
23 * Independent Media Center.
24 * This product includes software developed by Garrett D'Amore.
25 * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 * D'Amore's name may not be used to endorse or promote products
27 * derived from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.14 2014/07/25 08:02:20 dholland Exp $");
46
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66
67 /*
68 * This is an MI block driver for SPI flash devices. It could probably be
69 * converted to some more generic framework, if someone wanted to create one
70 * for NOR flashes. Note that some flashes have the ability to handle
71 * interrupts.
72 */
73
74 struct spiflash_softc {
75 struct disk sc_dk;
76
77 struct spiflash_hw_if sc_hw;
78 void *sc_cookie;
79
80 const char *sc_name;
81 struct spi_handle *sc_handle;
82 int sc_device_size;
83 int sc_write_size;
84 int sc_erase_size;
85 int sc_read_size;
86 int sc_device_blks;
87
88 struct bufq_state *sc_waitq;
89 struct bufq_state *sc_workq;
90 struct bufq_state *sc_doneq;
91 lwp_t *sc_thread;
92 };
93
94 #define sc_getname sc_hw.sf_getname
95 #define sc_gethandle sc_hw.sf_gethandle
96 #define sc_getsize sc_hw.sf_getsize
97 #define sc_getflags sc_hw.sf_getflags
98 #define sc_erase sc_hw.sf_erase
99 #define sc_write sc_hw.sf_write
100 #define sc_read sc_hw.sf_read
101 #define sc_getstatus sc_hw.sf_getstatus
102 #define sc_setstatus sc_hw.sf_setstatus
103
104 struct spiflash_attach_args {
105 const struct spiflash_hw_if *hw;
106 void *cookie;
107 };
108
109 #define STATIC
110 STATIC int spiflash_match(device_t , cfdata_t , void *);
111 STATIC void spiflash_attach(device_t , device_t , void *);
112 STATIC int spiflash_print(void *, const char *);
113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
115 const uint8_t *);
116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
117 STATIC void spiflash_process_done(spiflash_handle_t, int);
118 STATIC void spiflash_process_read(spiflash_handle_t);
119 STATIC void spiflash_process_write(spiflash_handle_t);
120 STATIC void spiflash_thread(void *);
121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
124
125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
126 spiflash_match, spiflash_attach, NULL, NULL);
127
128 #ifdef SPIFLASH_DEBUG
129 #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/)
130 #else
131 #define DPRINTF(x) do { } while (0/*CONSTCOND*/)
132 #endif
133
134 extern struct cfdriver spiflash_cd;
135
136 dev_type_open(spiflash_open);
137 dev_type_close(spiflash_close);
138 dev_type_read(spiflash_read);
139 dev_type_write(spiflash_write);
140 dev_type_ioctl(spiflash_ioctl);
141 dev_type_strategy(spiflash_strategy);
142
143 const struct bdevsw spiflash_bdevsw = {
144 .d_open = spiflash_open,
145 .d_close = spiflash_close,
146 .d_strategy = spiflash_strategy,
147 .d_ioctl = spiflash_ioctl,
148 .d_dump = nodump,
149 .d_psize = nosize,
150 .d_discard = nodiscard,
151 .d_flag = D_DISK,
152 };
153
154 const struct cdevsw spiflash_cdevsw = {
155 .d_open = spiflash_open,
156 .d_close = spiflash_close,
157 .d_read = spiflash_read,
158 .d_write = spiflash_write,
159 .d_ioctl = spiflash_ioctl,
160 .d_stop = nostop,
161 .d_tty = notty,
162 .d_poll = nopoll,
163 .d_mmap = nommap,
164 .d_kqfilter = nokqfilter,
165 .d_flag = D_DISK,
166 };
167
168 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
169
170 spiflash_handle_t
171 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
172 device_t dev)
173 {
174 struct spiflash_attach_args sfa;
175 sfa.hw = hw;
176 sfa.cookie = cookie;
177
178 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
179 }
180
181 int
182 spiflash_print(void *aux, const char *pnp)
183 {
184 if (pnp != NULL)
185 printf("spiflash at %s\n", pnp);
186
187 return UNCONF;
188 }
189
190 int
191 spiflash_match(device_t parent, cfdata_t cf, void *aux)
192 {
193
194 return 1;
195 }
196
197 void
198 spiflash_attach(device_t parent, device_t self, void *aux)
199 {
200 struct spiflash_softc *sc = device_private(self);
201 struct spiflash_attach_args *sfa = aux;
202 void *cookie = sfa->cookie;
203
204 sc->sc_hw = *sfa->hw;
205 sc->sc_cookie = cookie;
206 sc->sc_name = sc->sc_getname(cookie);
207 sc->sc_handle = sc->sc_gethandle(cookie);
208 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
209 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
210 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
211 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
212 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
213
214 if (sc->sc_read == NULL)
215 sc->sc_read = spiflash_common_read;
216 if (sc->sc_write == NULL)
217 sc->sc_write = spiflash_common_write;
218 if (sc->sc_erase == NULL)
219 sc->sc_erase = spiflash_common_erase;
220
221 aprint_naive(": SPI flash\n");
222 aprint_normal(": %s SPI flash\n", sc->sc_name);
223 /* XXX: note that this has to change for boot-sectored flash */
224 aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
225 sc->sc_device_size / 1024,
226 sc->sc_device_size / sc->sc_erase_size,
227 sc->sc_erase_size / 1024);
228
229 /* first-come first-served strategy works best for us */
230 bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
232 bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
233
234 sc->sc_dk.dk_driver = &spiflash_dkdriver;
235 sc->sc_dk.dk_name = device_xname(self);
236
237 disk_attach(&sc->sc_dk);
238
239 /* arrange to allocate the kthread */
240 kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
241 &sc->sc_thread, "spiflash");
242 }
243
244 int
245 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
246 {
247 spiflash_handle_t sc;
248
249 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
250 if (sc == NULL)
251 return ENXIO;
252
253 /*
254 * XXX: We need to handle partitions here. The problem is
255 * that it isn't entirely clear to me how to deal with this.
256 * There are devices that could be used "in the raw" with a
257 * NetBSD label, but then you get into devices that have other
258 * kinds of data on them -- some have VxWorks data, some have
259 * RedBoot data, and some have other contraints -- for example
260 * some devices might have a portion that is read-only,
261 * whereas others might have a portion that is read-write.
262 *
263 * For now we just permit access to the entire device.
264 */
265 return 0;
266 }
267
268 int
269 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
270 {
271 spiflash_handle_t sc;
272
273 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
274 if (sc == NULL)
275 return ENXIO;
276
277 return 0;
278 }
279
280 int
281 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
282 {
283
284 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
285 }
286
287 int
288 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
289 {
290
291 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
292 }
293
294 int
295 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
296 {
297 spiflash_handle_t sc;
298
299 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
300 if (sc == NULL)
301 return ENXIO;
302
303 return EINVAL;
304 }
305
306 void
307 spiflash_strategy(struct buf *bp)
308 {
309 spiflash_handle_t sc;
310 int s;
311
312 sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev));
313 if (sc == NULL) {
314 bp->b_error = ENXIO;
315 biodone(bp);
316 return;
317 }
318
319 if (((bp->b_bcount % sc->sc_write_size) != 0) ||
320 (bp->b_blkno < 0)) {
321 bp->b_error = EINVAL;
322 biodone(bp);
323 return;
324 }
325
326 /* no work? */
327 if (bp->b_bcount == 0) {
328 biodone(bp);
329 return;
330 }
331
332 if (bounds_check_with_mediasize(bp, DEV_BSIZE,
333 sc->sc_device_blks) <= 0) {
334 biodone(bp);
335 return;
336 }
337
338 bp->b_resid = bp->b_bcount;
339
340 /* all ready, hand off to thread for async processing */
341 s = splbio();
342 bufq_put(sc->sc_waitq, bp);
343 wakeup(&sc->sc_thread);
344 splx(s);
345 }
346
347 void
348 spiflash_process_done(spiflash_handle_t sc, int err)
349 {
350 struct buf *bp;
351 int cnt = 0;
352 int flag = 0;
353
354 while ((bp = bufq_get(sc->sc_doneq)) != NULL) {
355 flag = bp->b_flags & B_READ;
356 if ((bp->b_error = err) == 0)
357 bp->b_resid = 0;
358 cnt += bp->b_bcount - bp->b_resid;
359 biodone(bp);
360 }
361 disk_unbusy(&sc->sc_dk, cnt, flag);
362 }
363
364 void
365 spiflash_process_read(spiflash_handle_t sc)
366 {
367 struct buf *bp;
368 int err = 0;
369
370 disk_busy(&sc->sc_dk);
371 while ((bp = bufq_get(sc->sc_workq)) != NULL) {
372 size_t addr = bp->b_blkno * DEV_BSIZE;
373 uint8_t *data = bp->b_data;
374 int cnt = bp->b_resid;
375
376 bufq_put(sc->sc_doneq, bp);
377
378 DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
379
380 if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
381 /* error occurred, fail all pending workq bufs */
382 bufq_move(sc->sc_doneq, sc->sc_workq);
383 break;
384 }
385
386 bp->b_resid -= cnt;
387 data += cnt;
388 addr += cnt;
389 }
390 spiflash_process_done(sc, err);
391 }
392
393 void
394 spiflash_process_write(spiflash_handle_t sc)
395 {
396 int len;
397 size_t base;
398 daddr_t blkno;
399 uint8_t *save;
400 int err = 0, neederase = 0;
401 struct buf *bp;
402
403 /*
404 * due to other considerations, we are guaranteed that
405 * we will only have multiple buffers if they are all in
406 * the same erase sector. Therefore we never need to look
407 * beyond the first block to determine how much data we need
408 * to save.
409 */
410
411 bp = bufq_peek(sc->sc_workq);
412 len = spiflash_nsectors(sc, bp) * sc->sc_erase_size;
413 blkno = bp->b_blkno;
414 base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
415
416 /* get ourself a scratch buffer */
417 save = malloc(len, M_DEVBUF, M_WAITOK);
418
419 disk_busy(&sc->sc_dk);
420 /* read in as much of the data as we need */
421 DPRINTF(("reading in %d bytes\n", len));
422 if ((err = sc->sc_read(sc, base, len, save)) != 0) {
423 bufq_move(sc->sc_doneq, sc->sc_workq);
424 spiflash_process_done(sc, err);
425 return;
426 }
427
428 /*
429 * now coalesce the writes into the save area, but also
430 * check to see if we need to do an erase
431 */
432 while ((bp = bufq_get(sc->sc_workq)) != NULL) {
433 uint8_t *data, *dst;
434 int resid = bp->b_resid;
435
436 DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
437 (unsigned)bp->b_blkno, bp->b_bcount, resid));
438
439 data = bp->b_data;
440 dst = save + (bp->b_blkno * DEV_BSIZE) - base;
441
442 /*
443 * NOR flash bits. We can clear a bit, but we cannot
444 * set a bit, without erasing. This should help reduce
445 * unnecessary erases.
446 */
447 while (resid) {
448 if ((*data) & ~(*dst))
449 neederase = 1;
450 *dst++ = *data++;
451 resid--;
452 }
453
454 bufq_put(sc->sc_doneq, bp);
455 }
456
457 /*
458 * do the erase, if we need to.
459 */
460 if (neederase) {
461 DPRINTF(("erasing from %zx - %zx\n", base, base + len));
462 if ((err = sc->sc_erase(sc, base, len)) != 0) {
463 spiflash_process_done(sc, err);
464 return;
465 }
466 }
467
468 /*
469 * now write our save area, and finish up.
470 */
471 DPRINTF(("flashing %d bytes to %zx from %p\n", len, base, save));
472 err = sc->sc_write(sc, base, len, save);
473 spiflash_process_done(sc, err);
474 }
475
476
477 int
478 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
479 {
480 unsigned addr, sector;
481
482 addr = bp->b_blkno * DEV_BSIZE;
483 sector = addr / sc->sc_erase_size;
484
485 addr += bp->b_bcount;
486 addr--;
487 return (((addr / sc->sc_erase_size) - sector) + 1);
488 }
489
490 int
491 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
492 {
493 unsigned addr, sector;
494
495 addr = bp->b_blkno * DEV_BSIZE;
496 sector = addr / sc->sc_erase_size;
497
498 /* if it spans multiple blocks, error it */
499 addr += bp->b_bcount;
500 addr--;
501 if (sector != (addr / sc->sc_erase_size))
502 return -1;
503
504 return sector;
505 }
506
507 void
508 spiflash_thread(void *arg)
509 {
510 spiflash_handle_t sc = arg;
511 struct buf *bp;
512 int sector;
513
514 (void)splbio();
515 for (;;) {
516 if ((bp = bufq_get(sc->sc_waitq)) == NULL) {
517 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
518 continue;
519 }
520
521 bufq_put(sc->sc_workq, bp);
522
523 if (bp->b_flags & B_READ) {
524 /* just do the read */
525 spiflash_process_read(sc);
526 continue;
527 }
528
529 /*
530 * Because writing a flash filesystem is particularly
531 * painful, involving erase, modify, write, we prefer
532 * to coalesce writes to the same sector together.
533 */
534
535 sector = spiflash_sector(sc, bp);
536
537 /*
538 * if the write spans multiple sectors, skip
539 * coalescing. (It would be nice if we could break
540 * these up. minphys is honored for read/write, but
541 * not necessarily for bread.)
542 */
543 if (sector < 0)
544 goto dowrite;
545
546 while ((bp = bufq_peek(sc->sc_waitq)) != NULL) {
547 /* can't deal with read requests! */
548 if (bp->b_flags & B_READ)
549 break;
550
551 /* is it for the same sector? */
552 if (spiflash_sector(sc, bp) != sector)
553 break;
554
555 bp = bufq_get(sc->sc_waitq);
556 bufq_put(sc->sc_workq, bp);
557 }
558
559 dowrite:
560 spiflash_process_write(sc);
561 }
562 }
563 /*
564 * SPI flash common implementation.
565 */
566
567 /*
568 * Most devices take on the order of 1 second for each block that they
569 * delete.
570 */
571 int
572 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
573 {
574 int rv;
575
576 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
577 return EINVAL;
578
579 /* the second test is to test against wrap */
580 if ((start > sc->sc_device_size) ||
581 ((start + size) > sc->sc_device_size))
582 return EINVAL;
583
584 /*
585 * XXX: check protection status? Requires master table mapping
586 * sectors to status bits, and so forth.
587 */
588
589 while (size) {
590 if ((rv = spiflash_write_enable(sc)) != 0) {
591 spiflash_write_disable(sc);
592 return rv;
593 }
594 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
595 NULL, NULL)) != 0) {
596 spiflash_write_disable(sc);
597 return rv;
598 }
599
600 /*
601 * The devices I have all say typical for sector erase
602 * is ~1sec. We check ten times that often. (There
603 * is no way to interrupt on this.)
604 */
605 if ((rv = spiflash_wait(sc, hz / 10)) != 0)
606 return rv;
607
608 start += sc->sc_erase_size;
609 size -= sc->sc_erase_size;
610
611 /* NB: according to the docs I have, the write enable
612 * is automatically cleared upon completion of an erase
613 * command, so there is no need to explicitly disable it.
614 */
615 }
616
617 return 0;
618 }
619
620 int
621 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
622 const uint8_t *data)
623 {
624 int rv;
625
626 if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
627 return EINVAL;
628
629 while (size) {
630 int cnt;
631
632 if ((rv = spiflash_write_enable(sc)) != 0) {
633 spiflash_write_disable(sc);
634 return rv;
635 }
636
637 cnt = min(size, sc->sc_write_size);
638 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
639 cnt, data, NULL)) != 0) {
640 spiflash_write_disable(sc);
641 return rv;
642 }
643
644 /*
645 * It seems that most devices can write bits fairly
646 * quickly. For example, one part I have access to
647 * takes ~5msec to process the entire 256 byte page.
648 * Probably this should be modified to cope with
649 * device-specific timing, and maybe also take into
650 * account systems with higher values of HZ (which
651 * could benefit from sleeping.)
652 */
653 if ((rv = spiflash_wait(sc, 0)) != 0)
654 return rv;
655
656 data += cnt;
657 start += cnt;
658 size -= cnt;
659 }
660
661 return 0;
662 }
663
664 int
665 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
666 uint8_t *data)
667 {
668 int rv;
669
670 while (size) {
671 int cnt;
672
673 if (sc->sc_read_size > 0)
674 cnt = min(size, sc->sc_read_size);
675 else
676 cnt = size;
677
678 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
679 cnt, NULL, data)) != 0) {
680 return rv;
681 }
682
683 start += cnt;
684 size -= cnt;
685 }
686
687 return 0;
688 }
689
690 /* read status register */
691 int
692 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
693 {
694
695 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
696 }
697
698 int
699 spiflash_write_enable(spiflash_handle_t sc)
700 {
701
702 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
703 }
704
705 int
706 spiflash_write_disable(spiflash_handle_t sc)
707 {
708
709 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
710 }
711
712 int
713 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
714 size_t addrlen, uint32_t addr,
715 size_t cnt, const uint8_t *wdata, uint8_t *rdata)
716 {
717 struct spi_transfer trans;
718 struct spi_chunk chunk1, chunk2;
719 char buf[4];
720 int i;
721
722 buf[0] = cmd;
723
724 if (addrlen > 3)
725 return EINVAL;
726
727 for (i = addrlen; i > 0; i--) {
728 buf[i] = addr & 0xff;
729 addr >>= 8;
730 }
731 spi_transfer_init(&trans);
732 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
733 spi_transfer_add(&trans, &chunk1);
734 if (cnt) {
735 spi_chunk_init(&chunk2, cnt, wdata, rdata);
736 spi_transfer_add(&trans, &chunk2);
737 }
738
739 spi_transfer(sc->sc_handle, &trans);
740 spi_wait(&trans);
741
742 if (trans.st_flags & SPI_F_ERROR)
743 return trans.st_errno;
744 return 0;
745 }
746
747 int
748 spiflash_wait(spiflash_handle_t sc, int tmo)
749 {
750 int rv;
751 uint8_t sr;
752
753 for (;;) {
754 if ((rv = spiflash_read_status(sc, &sr)) != 0)
755 return rv;
756
757 if ((sr & SPIFLASH_SR_BUSY) == 0)
758 break;
759 /*
760 * The devices I have all say typical for sector
761 * erase is ~1sec. We check time times that often.
762 * (There is no way to interrupt on this.)
763 */
764 if (tmo)
765 tsleep(&sr, PWAIT, "spiflash_wait", tmo);
766 }
767 return 0;
768 }
769