spiflash.c revision 1.4 1 /* $NetBSD: spiflash.c,v 1.4 2007/07/09 21:01:23 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 * Copyright (c) 2006 Garrett D'Amore.
6 * All rights reserved.
7 *
8 * Portions of this code were written by Garrett D'Amore for the
9 * Champaign-Urbana Community Wireless Network Project.
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgements:
22 * This product includes software developed by the Urbana-Champaign
23 * Independent Media Center.
24 * This product includes software developed by Garrett D'Amore.
25 * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 * D'Amore's name may not be used to endorse or promote products
27 * derived from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.4 2007/07/09 21:01:23 ad Exp $");
46
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66
67 /*
68 * This is an MI block driver for SPI flash devices. It could probably be
69 * converted to some more generic framework, if someone wanted to create one
70 * for NOR flashes. Note that some flashes have the ability to handle
71 * interrupts.
72 */
73
74 struct spiflash_softc {
75 struct device sc_dev;
76 struct disk sc_dk;
77
78 struct spiflash_hw_if sc_hw;
79 void *sc_cookie;
80
81 const char *sc_name;
82 struct spi_handle *sc_handle;
83 int sc_device_size;
84 int sc_write_size;
85 int sc_erase_size;
86 int sc_read_size;
87 int sc_device_blks;
88
89 struct bufq_state *sc_waitq;
90 struct bufq_state *sc_workq;
91 struct bufq_state *sc_doneq;
92 struct proc *sc_thread;
93 };
94
95 #define sc_getname sc_hw.sf_getname
96 #define sc_gethandle sc_hw.sf_gethandle
97 #define sc_getsize sc_hw.sf_getsize
98 #define sc_getflags sc_hw.sf_getflags
99 #define sc_erase sc_hw.sf_erase
100 #define sc_write sc_hw.sf_write
101 #define sc_read sc_hw.sf_read
102 #define sc_getstatus sc_hw.sf_getstatus
103 #define sc_setstatus sc_hw.sf_setstatus
104
105 struct spiflash_attach_args {
106 const struct spiflash_hw_if *hw;
107 void *cookie;
108 };
109
110 #define STATIC
111 STATIC int spiflash_match(struct device *, struct cfdata *, void *);
112 STATIC void spiflash_attach(struct device *, struct device *, void *);
113 STATIC int spiflash_print(void *, const char *);
114 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
115 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
116 const uint8_t *);
117 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
118 STATIC void spiflash_process_done(spiflash_handle_t, int);
119 STATIC void spiflash_process_read(spiflash_handle_t);
120 STATIC void spiflash_process_write(spiflash_handle_t);
121 STATIC void spiflash_thread(void *);
122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
124 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
125
126 CFATTACH_DECL(spiflash, sizeof(struct spiflash_softc),
127 spiflash_match, spiflash_attach, NULL, NULL);
128
129 #ifdef SPIFLASH_DEBUG
130 #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/)
131 #else
132 #define DPRINTF(x) do { } while (0/*CONSTCOND*/)
133 #endif
134
135 extern struct cfdriver spiflash_cd;
136
137 dev_type_open(spiflash_open);
138 dev_type_close(spiflash_close);
139 dev_type_read(spiflash_read);
140 dev_type_write(spiflash_write);
141 dev_type_ioctl(spiflash_ioctl);
142 dev_type_strategy(spiflash_strategy);
143
144 const struct bdevsw spiflash_bdevsw = {
145 .d_open = spiflash_open,
146 .d_close = spiflash_close,
147 .d_strategy = spiflash_strategy,
148 .d_ioctl = spiflash_ioctl,
149 .d_dump = nodump,
150 .d_psize = nosize,
151 .d_flag = D_DISK,
152 };
153
154 const struct cdevsw spiflash_cdevsw = {
155 .d_open = spiflash_open,
156 .d_close = spiflash_close,
157 .d_read = spiflash_read,
158 .d_write = spiflash_write,
159 .d_ioctl = spiflash_ioctl,
160 .d_stop = nostop,
161 .d_tty = notty,
162 .d_poll = nopoll,
163 .d_mmap = nommap,
164 .d_kqfilter = nokqfilter,
165 .d_flag = D_DISK,
166 };
167
168 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
169
170 spiflash_handle_t
171 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
172 struct device *dev)
173 {
174 struct spiflash_attach_args sfa;
175 sfa.hw = hw;
176 sfa.cookie = cookie;
177
178 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
179 }
180
181 int
182 spiflash_print(void *aux, const char *pnp)
183 {
184 if (pnp != NULL)
185 printf("spiflash at %s\n", pnp);
186
187 return UNCONF;
188 }
189
190 int
191 spiflash_match(struct device *parent, struct cfdata *cf, void *aux)
192 {
193
194 return 1;
195 }
196
197 void
198 spiflash_attach(struct device *parent, struct device *self, void *aux)
199 {
200 struct spiflash_softc *sc = device_private(self);
201 struct spiflash_attach_args *sfa = aux;
202 void *cookie = sfa->cookie;
203
204 sc->sc_hw = *sfa->hw;
205 sc->sc_cookie = cookie;
206 sc->sc_name = sc->sc_getname(cookie);
207 sc->sc_handle = sc->sc_gethandle(cookie);
208 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
209 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
210 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
211 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
212 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
213
214 if (sc->sc_read == NULL)
215 sc->sc_read = spiflash_common_read;
216 if (sc->sc_write == NULL)
217 sc->sc_write = spiflash_common_write;
218 if (sc->sc_erase == NULL)
219 sc->sc_erase = spiflash_common_erase;
220
221 aprint_naive(": SPI flash\n");
222 aprint_normal(": %s SPI flash\n", sc->sc_name);
223 /* XXX: note that this has to change for boot-sectored flash */
224 aprint_normal("%s: %d KB, %d sectors of %d KB each\n",
225 sc->sc_dev.dv_xname, sc->sc_device_size / 1024,
226 sc->sc_device_size / sc->sc_erase_size,
227 sc->sc_erase_size / 1024);
228
229 /* first-come first-served strategy works best for us */
230 bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
232 bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
233
234 sc->sc_dk.dk_driver = &spiflash_dkdriver;
235 sc->sc_dk.dk_name = sc->sc_dev.dv_xname;
236
237 disk_attach(&sc->sc_dk);
238
239 /* arrange to allocate the kthread */
240 kthread_create(PRI_NONE, 0, NULL, spiflash_thread, arg,
241 &sc->sc_thread, "spiflash");
242 }
243
244 int
245 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
246 {
247 spiflash_handle_t sc;
248
249 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
250 return ENXIO;
251
252 /*
253 * XXX: We need to handle partitions here. The problem is
254 * that it isn't entirely clear to me how to deal with this.
255 * There are devices that could be used "in the raw" with a
256 * NetBSD label, but then you get into devices that have other
257 * kinds of data on them -- some have VxWorks data, some have
258 * RedBoot data, and some have other contraints -- for example
259 * some devices might have a portion that is read-only,
260 * whereas others might have a portion that is read-write.
261 *
262 * For now we just permit access to the entire device.
263 */
264 return 0;
265 }
266
267 int
268 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
269 {
270 spiflash_handle_t sc;
271
272 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
273 return ENXIO;
274
275 return 0;
276 }
277
278 int
279 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
280 {
281
282 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
283 }
284
285 int
286 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
287 {
288
289 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
290 }
291
292 int
293 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
294 {
295 spiflash_handle_t sc;
296
297 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
298 return ENXIO;
299
300 return EINVAL;
301 }
302
303 void
304 spiflash_strategy(struct buf *bp)
305 {
306 spiflash_handle_t sc;
307 int s;
308
309 sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev));
310 if (sc == NULL) {
311 bp->b_error = ENXIO;
312 bp->b_flags |= B_ERROR;
313 biodone(bp);
314 return;
315 }
316
317 if (((bp->b_bcount % sc->sc_write_size) != 0) ||
318 (bp->b_blkno < 0)) {
319 bp->b_error = EINVAL;
320 bp->b_flags |= B_ERROR;
321 biodone(bp);
322 return;
323 }
324
325 /* no work? */
326 if (bp->b_bcount == 0) {
327 biodone(bp);
328 return;
329 }
330
331 if (bounds_check_with_mediasize(bp, DEV_BSIZE,
332 sc->sc_device_blks) <= 0) {
333 biodone(bp);
334 return;
335 }
336
337 bp->b_resid = bp->b_bcount;
338
339 /* all ready, hand off to thread for async processing */
340 s = splbio();
341 BUFQ_PUT(sc->sc_waitq, bp);
342 wakeup(&sc->sc_thread);
343 splx(s);
344 }
345
346 void
347 spiflash_process_done(spiflash_handle_t sc, int err)
348 {
349 struct buf *bp;
350 int cnt = 0;
351 int flag = 0;
352
353 while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
354 flag = bp->b_flags & B_READ;
355 if ((bp->b_error = err) != 0)
356 bp->b_flags |= B_ERROR;
357 else
358 bp->b_resid = 0;
359 cnt += bp->b_bcount - bp->b_resid;
360 biodone(bp);
361 }
362 disk_unbusy(&sc->sc_dk, cnt, flag);
363 }
364
365 void
366 spiflash_process_read(spiflash_handle_t sc)
367 {
368 struct buf *bp;
369 int err = 0;
370
371 disk_busy(&sc->sc_dk);
372 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
373 size_t addr = bp->b_blkno * DEV_BSIZE;
374 uint8_t *data = bp->b_data;
375 int cnt = bp->b_resid;
376
377 BUFQ_PUT(sc->sc_doneq, bp);
378
379 DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
380
381 if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
382 /* error occurred, fail all pending workq bufs */
383 bufq_move(sc->sc_doneq, sc->sc_workq);
384 break;
385 }
386
387 bp->b_resid -= cnt;
388 data += cnt;
389 addr += cnt;
390 }
391 spiflash_process_done(sc, err);
392 }
393
394 void
395 spiflash_process_write(spiflash_handle_t sc)
396 {
397 int len;
398 size_t base;
399 daddr_t blkno;
400 uint8_t *save;
401 int err = 0, neederase = 0;
402 struct buf *bp;
403
404 /*
405 * due to other considerations, we are guaranteed that
406 * we will only have multiple buffers if they are all in
407 * the same erase sector. Therefore we never need to look
408 * beyond the first block to determine how much data we need
409 * to save.
410 */
411
412 bp = BUFQ_PEEK(sc->sc_workq);
413 len = spiflash_nsectors(sc, bp) * sc->sc_erase_size;
414 blkno = bp->b_blkno;
415 base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
416
417 /* get ourself a scratch buffer */
418 save = malloc(len, M_DEVBUF, M_WAITOK);
419
420 disk_busy(&sc->sc_dk);
421 /* read in as much of the data as we need */
422 DPRINTF(("reading in %d bytes\n", len));
423 if ((err = sc->sc_read(sc, base, len, save)) != 0) {
424 bufq_move(sc->sc_doneq, sc->sc_workq);
425 spiflash_process_done(sc, err);
426 return;
427 }
428
429 /*
430 * now coalesce the writes into the save area, but also
431 * check to see if we need to do an erase
432 */
433 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
434 uint8_t *data, *dst;
435 int resid = bp->b_resid;
436
437 DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
438 (unsigned)bp->b_blkno, bp->b_bcount, resid));
439
440 data = bp->b_data;
441 dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
442
443 /*
444 * NOR flash bits. We can clear a bit, but we cannot
445 * set a bit, without erasing. This should help reduce
446 * unnecessary erases.
447 */
448 while (resid) {
449 if ((*data) & ~(*dst))
450 neederase = 1;
451 *dst++ = *data++;
452 resid--;
453 }
454
455 BUFQ_PUT(sc->sc_doneq, bp);
456 }
457
458 /*
459 * do the erase, if we need to.
460 */
461 if (neederase) {
462 DPRINTF(("erasing from %x - %x\n", base, base + len));
463 if ((err = sc->sc_erase(sc, base, len)) != 0) {
464 spiflash_process_done(sc, err);
465 return;
466 }
467 }
468
469 /*
470 * now write our save area, and finish up.
471 */
472 DPRINTF(("flashing %d bytes to %x from %x\n", len,
473 base, (unsigned)save));
474 err = sc->sc_write(sc, base, len, save);
475 spiflash_process_done(sc, err);
476 }
477
478
479 int
480 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
481 {
482 unsigned addr, sector;
483
484 addr = bp->b_blkno * DEV_BSIZE;
485 sector = addr / sc->sc_erase_size;
486
487 addr += bp->b_bcount;
488 addr--;
489 return (((addr / sc->sc_erase_size) - sector) + 1);
490 }
491
492 int
493 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
494 {
495 unsigned addr, sector;
496
497 addr = bp->b_blkno * DEV_BSIZE;
498 sector = addr / sc->sc_erase_size;
499
500 /* if it spans multiple blocks, error it */
501 addr += bp->b_bcount;
502 addr--;
503 if (sector != (addr / sc->sc_erase_size))
504 return -1;
505
506 return sector;
507 }
508
509 void
510 spiflash_thread(void *arg)
511 {
512 spiflash_handle_t sc = arg;
513 struct buf *bp;
514 int s;
515 int sector;
516
517 s = splbio();
518 for (;;) {
519 if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
520 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
521 continue;
522 }
523
524 BUFQ_PUT(sc->sc_workq, bp);
525
526 if (bp->b_flags & B_READ) {
527 /* just do the read */
528 spiflash_process_read(sc);
529 continue;
530 }
531
532 /*
533 * Because writing a flash filesystem is particularly
534 * painful, involving erase, modify, write, we prefer
535 * to coalesce writes to the same sector together.
536 */
537
538 sector = spiflash_sector(sc, bp);
539
540 /*
541 * if the write spans multiple sectors, skip
542 * coalescing. (It would be nice if we could break
543 * these up. minphys is honored for read/write, but
544 * not necessarily for bread.)
545 */
546 if (sector < 0)
547 goto dowrite;
548
549 while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
550 /* can't deal with read requests! */
551 if (bp->b_flags & B_READ)
552 break;
553
554 /* is it for the same sector? */
555 if (spiflash_sector(sc, bp) != sector)
556 break;
557
558 bp = BUFQ_GET(sc->sc_waitq);
559 BUFQ_PUT(sc->sc_workq, bp);
560 }
561
562 dowrite:
563 spiflash_process_write(sc);
564 }
565 }
566 /*
567 * SPI flash common implementation.
568 */
569
570 /*
571 * Most devices take on the order of 1 second for each block that they
572 * delete.
573 */
574 int
575 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
576 {
577 int rv;
578
579 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
580 return EINVAL;
581
582 /* the second test is to test against wrap */
583 if ((start > sc->sc_device_size) ||
584 ((start + size) > sc->sc_device_size))
585 return EINVAL;
586
587 /*
588 * XXX: check protection status? Requires master table mapping
589 * sectors to status bits, and so forth.
590 */
591
592 while (size) {
593 if ((rv = spiflash_write_enable(sc)) != 0) {
594 spiflash_write_disable(sc);
595 return rv;
596 }
597 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
598 NULL, NULL)) != 0) {
599 spiflash_write_disable(sc);
600 return rv;
601 }
602
603 /*
604 * The devices I have all say typical for sector erase
605 * is ~1sec. We check ten times that often. (There
606 * is no way to interrupt on this.)
607 */
608 if ((rv = spiflash_wait(sc, hz / 10)) != 0)
609 return rv;
610
611 start += sc->sc_erase_size;
612 size -= sc->sc_erase_size;
613
614 /* NB: according to the docs I have, the write enable
615 * is automatically cleared upon completion of an erase
616 * command, so there is no need to explicitly disable it.
617 */
618 }
619
620 return 0;
621 }
622
623 int
624 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
625 const uint8_t *data)
626 {
627 int rv;
628
629 if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
630 return EINVAL;
631
632 while (size) {
633 int cnt;
634
635 if ((rv = spiflash_write_enable(sc)) != 0) {
636 spiflash_write_disable(sc);
637 return rv;
638 }
639
640 cnt = min(size, sc->sc_write_size);
641 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
642 cnt, data, NULL)) != 0) {
643 spiflash_write_disable(sc);
644 return rv;
645 }
646
647 /*
648 * It seems that most devices can write bits fairly
649 * quickly. For example, one part I have access to
650 * takes ~5msec to process the entire 256 byte page.
651 * Probably this should be modified to cope with
652 * device-specific timing, and maybe also take into
653 * account systems with higher values of HZ (which
654 * could benefit from sleeping.)
655 */
656 if ((rv = spiflash_wait(sc, 0)) != 0)
657 return rv;
658
659 data += cnt;
660 start += cnt;
661 size -= cnt;
662 }
663
664 return 0;
665 }
666
667 int
668 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
669 uint8_t *data)
670 {
671 int rv;
672
673 while (size) {
674 int cnt;
675
676 if (sc->sc_read_size > 0)
677 cnt = min(size, sc->sc_read_size);
678 else
679 cnt = size;
680
681 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
682 cnt, NULL, data)) != 0) {
683 return rv;
684 }
685
686 start += cnt;
687 size -= cnt;
688 }
689
690 return 0;
691 }
692
693 /* read status register */
694 int
695 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
696 {
697
698 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
699 }
700
701 int
702 spiflash_write_enable(spiflash_handle_t sc)
703 {
704
705 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
706 }
707
708 int
709 spiflash_write_disable(spiflash_handle_t sc)
710 {
711
712 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
713 }
714
715 int
716 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
717 size_t addrlen, uint32_t addr,
718 size_t cnt, const uint8_t *wdata, uint8_t *rdata)
719 {
720 struct spi_transfer trans;
721 struct spi_chunk chunk1, chunk2;
722 char buf[4];
723 int i;
724
725 buf[0] = cmd;
726
727 if (addrlen > 3)
728 return EINVAL;
729
730 for (i = addrlen; i > 0; i--) {
731 buf[i] = addr & 0xff;
732 addr >>= 8;
733 }
734 spi_transfer_init(&trans);
735 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
736 spi_transfer_add(&trans, &chunk1);
737 if (cnt) {
738 spi_chunk_init(&chunk2, cnt, wdata, rdata);
739 spi_transfer_add(&trans, &chunk2);
740 }
741
742 spi_transfer(sc->sc_handle, &trans);
743 spi_wait(&trans);
744
745 if (trans.st_flags & SPI_F_ERROR)
746 return trans.st_errno;
747 return 0;
748 }
749
750 int
751 spiflash_wait(spiflash_handle_t sc, int tmo)
752 {
753 int rv;
754 uint8_t sr;
755
756 for (;;) {
757 if ((rv = spiflash_read_status(sc, &sr)) != 0)
758 return rv;
759
760 if ((sr & SPIFLASH_SR_BUSY) == 0)
761 break;
762 /*
763 * The devices I have all say typical for sector
764 * erase is ~1sec. We check time times that often.
765 * (There is no way to interrupt on this.)
766 */
767 if (tmo)
768 tsleep(&sr, PWAIT, "spiflash_wait", tmo);
769 }
770 return 0;
771 }
772