spiflash.c revision 1.8 1 /* $NetBSD: spiflash.c,v 1.8 2008/05/04 14:21:56 xtraeme Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 * Copyright (c) 2006 Garrett D'Amore.
6 * All rights reserved.
7 *
8 * Portions of this code were written by Garrett D'Amore for the
9 * Champaign-Urbana Community Wireless Network Project.
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgements:
22 * This product includes software developed by the Urbana-Champaign
23 * Independent Media Center.
24 * This product includes software developed by Garrett D'Amore.
25 * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 * D'Amore's name may not be used to endorse or promote products
27 * derived from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.8 2008/05/04 14:21:56 xtraeme Exp $");
46
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66
67 /*
68 * This is an MI block driver for SPI flash devices. It could probably be
69 * converted to some more generic framework, if someone wanted to create one
70 * for NOR flashes. Note that some flashes have the ability to handle
71 * interrupts.
72 */
73
74 struct spiflash_softc {
75 struct disk sc_dk;
76
77 struct spiflash_hw_if sc_hw;
78 void *sc_cookie;
79
80 const char *sc_name;
81 struct spi_handle *sc_handle;
82 int sc_device_size;
83 int sc_write_size;
84 int sc_erase_size;
85 int sc_read_size;
86 int sc_device_blks;
87
88 struct bufq_state *sc_waitq;
89 struct bufq_state *sc_workq;
90 struct bufq_state *sc_doneq;
91 lwp_t *sc_thread;
92 };
93
94 #define sc_getname sc_hw.sf_getname
95 #define sc_gethandle sc_hw.sf_gethandle
96 #define sc_getsize sc_hw.sf_getsize
97 #define sc_getflags sc_hw.sf_getflags
98 #define sc_erase sc_hw.sf_erase
99 #define sc_write sc_hw.sf_write
100 #define sc_read sc_hw.sf_read
101 #define sc_getstatus sc_hw.sf_getstatus
102 #define sc_setstatus sc_hw.sf_setstatus
103
104 struct spiflash_attach_args {
105 const struct spiflash_hw_if *hw;
106 void *cookie;
107 };
108
109 #define STATIC
110 STATIC int spiflash_match(device_t , cfdata_t , void *);
111 STATIC void spiflash_attach(device_t , device_t , void *);
112 STATIC int spiflash_print(void *, const char *);
113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
115 const uint8_t *);
116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
117 STATIC void spiflash_process_done(spiflash_handle_t, int);
118 STATIC void spiflash_process_read(spiflash_handle_t);
119 STATIC void spiflash_process_write(spiflash_handle_t);
120 STATIC void spiflash_thread(void *);
121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
124
125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
126 spiflash_match, spiflash_attach, NULL, NULL);
127
128 #ifdef SPIFLASH_DEBUG
129 #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/)
130 #else
131 #define DPRINTF(x) do { } while (0/*CONSTCOND*/)
132 #endif
133
134 extern struct cfdriver spiflash_cd;
135
136 dev_type_open(spiflash_open);
137 dev_type_close(spiflash_close);
138 dev_type_read(spiflash_read);
139 dev_type_write(spiflash_write);
140 dev_type_ioctl(spiflash_ioctl);
141 dev_type_strategy(spiflash_strategy);
142
143 const struct bdevsw spiflash_bdevsw = {
144 .d_open = spiflash_open,
145 .d_close = spiflash_close,
146 .d_strategy = spiflash_strategy,
147 .d_ioctl = spiflash_ioctl,
148 .d_dump = nodump,
149 .d_psize = nosize,
150 .d_flag = D_DISK,
151 };
152
153 const struct cdevsw spiflash_cdevsw = {
154 .d_open = spiflash_open,
155 .d_close = spiflash_close,
156 .d_read = spiflash_read,
157 .d_write = spiflash_write,
158 .d_ioctl = spiflash_ioctl,
159 .d_stop = nostop,
160 .d_tty = notty,
161 .d_poll = nopoll,
162 .d_mmap = nommap,
163 .d_kqfilter = nokqfilter,
164 .d_flag = D_DISK,
165 };
166
167 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
168
169 spiflash_handle_t
170 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
171 device_t dev)
172 {
173 struct spiflash_attach_args sfa;
174 sfa.hw = hw;
175 sfa.cookie = cookie;
176
177 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
178 }
179
180 int
181 spiflash_print(void *aux, const char *pnp)
182 {
183 if (pnp != NULL)
184 printf("spiflash at %s\n", pnp);
185
186 return UNCONF;
187 }
188
189 int
190 spiflash_match(device_t parent, cfdata_t cf, void *aux)
191 {
192
193 return 1;
194 }
195
196 void
197 spiflash_attach(device_t parent, device_t self, void *aux)
198 {
199 struct spiflash_softc *sc = device_private(self);
200 struct spiflash_attach_args *sfa = aux;
201 void *cookie = sfa->cookie;
202
203 sc->sc_hw = *sfa->hw;
204 sc->sc_cookie = cookie;
205 sc->sc_name = sc->sc_getname(cookie);
206 sc->sc_handle = sc->sc_gethandle(cookie);
207 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
208 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
209 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
210 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
211 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
212
213 if (sc->sc_read == NULL)
214 sc->sc_read = spiflash_common_read;
215 if (sc->sc_write == NULL)
216 sc->sc_write = spiflash_common_write;
217 if (sc->sc_erase == NULL)
218 sc->sc_erase = spiflash_common_erase;
219
220 aprint_naive(": SPI flash\n");
221 aprint_normal(": %s SPI flash\n", sc->sc_name);
222 /* XXX: note that this has to change for boot-sectored flash */
223 aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
224 sc->sc_device_size / 1024,
225 sc->sc_device_size / sc->sc_erase_size,
226 sc->sc_erase_size / 1024);
227
228 /* first-come first-served strategy works best for us */
229 bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
230 bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
232
233 sc->sc_dk.dk_driver = &spiflash_dkdriver;
234 sc->sc_dk.dk_name = device_xname(self);
235
236 disk_attach(&sc->sc_dk);
237
238 /* arrange to allocate the kthread */
239 kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
240 &sc->sc_thread, "spiflash");
241 }
242
243 int
244 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
245 {
246 spiflash_handle_t sc;
247
248 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
249 return ENXIO;
250
251 /*
252 * XXX: We need to handle partitions here. The problem is
253 * that it isn't entirely clear to me how to deal with this.
254 * There are devices that could be used "in the raw" with a
255 * NetBSD label, but then you get into devices that have other
256 * kinds of data on them -- some have VxWorks data, some have
257 * RedBoot data, and some have other contraints -- for example
258 * some devices might have a portion that is read-only,
259 * whereas others might have a portion that is read-write.
260 *
261 * For now we just permit access to the entire device.
262 */
263 return 0;
264 }
265
266 int
267 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
268 {
269 spiflash_handle_t sc;
270
271 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
272 return ENXIO;
273
274 return 0;
275 }
276
277 int
278 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
279 {
280
281 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
282 }
283
284 int
285 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
286 {
287
288 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
289 }
290
291 int
292 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
293 {
294 spiflash_handle_t sc;
295
296 if ((sc = device_lookup(&spiflash_cd, DISKUNIT(dev))) == NULL)
297 return ENXIO;
298
299 return EINVAL;
300 }
301
302 void
303 spiflash_strategy(struct buf *bp)
304 {
305 spiflash_handle_t sc;
306 int s;
307
308 sc = device_lookup(&spiflash_cd, DISKUNIT(bp->b_dev));
309 if (sc == NULL) {
310 bp->b_error = ENXIO;
311 biodone(bp);
312 return;
313 }
314
315 if (((bp->b_bcount % sc->sc_write_size) != 0) ||
316 (bp->b_blkno < 0)) {
317 bp->b_error = EINVAL;
318 biodone(bp);
319 return;
320 }
321
322 /* no work? */
323 if (bp->b_bcount == 0) {
324 biodone(bp);
325 return;
326 }
327
328 if (bounds_check_with_mediasize(bp, DEV_BSIZE,
329 sc->sc_device_blks) <= 0) {
330 biodone(bp);
331 return;
332 }
333
334 bp->b_resid = bp->b_bcount;
335
336 /* all ready, hand off to thread for async processing */
337 s = splbio();
338 BUFQ_PUT(sc->sc_waitq, bp);
339 wakeup(&sc->sc_thread);
340 splx(s);
341 }
342
343 void
344 spiflash_process_done(spiflash_handle_t sc, int err)
345 {
346 struct buf *bp;
347 int cnt = 0;
348 int flag = 0;
349
350 while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
351 flag = bp->b_flags & B_READ;
352 if ((bp->b_error = err) == 0)
353 bp->b_resid = 0;
354 cnt += bp->b_bcount - bp->b_resid;
355 biodone(bp);
356 }
357 disk_unbusy(&sc->sc_dk, cnt, flag);
358 }
359
360 void
361 spiflash_process_read(spiflash_handle_t sc)
362 {
363 struct buf *bp;
364 int err = 0;
365
366 disk_busy(&sc->sc_dk);
367 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
368 size_t addr = bp->b_blkno * DEV_BSIZE;
369 uint8_t *data = bp->b_data;
370 int cnt = bp->b_resid;
371
372 BUFQ_PUT(sc->sc_doneq, bp);
373
374 DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
375
376 if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
377 /* error occurred, fail all pending workq bufs */
378 bufq_move(sc->sc_doneq, sc->sc_workq);
379 break;
380 }
381
382 bp->b_resid -= cnt;
383 data += cnt;
384 addr += cnt;
385 }
386 spiflash_process_done(sc, err);
387 }
388
389 void
390 spiflash_process_write(spiflash_handle_t sc)
391 {
392 int len;
393 size_t base;
394 daddr_t blkno;
395 uint8_t *save;
396 int err = 0, neederase = 0;
397 struct buf *bp;
398
399 /*
400 * due to other considerations, we are guaranteed that
401 * we will only have multiple buffers if they are all in
402 * the same erase sector. Therefore we never need to look
403 * beyond the first block to determine how much data we need
404 * to save.
405 */
406
407 bp = BUFQ_PEEK(sc->sc_workq);
408 len = spiflash_nsectors(sc, bp) * sc->sc_erase_size;
409 blkno = bp->b_blkno;
410 base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
411
412 /* get ourself a scratch buffer */
413 save = malloc(len, M_DEVBUF, M_WAITOK);
414
415 disk_busy(&sc->sc_dk);
416 /* read in as much of the data as we need */
417 DPRINTF(("reading in %d bytes\n", len));
418 if ((err = sc->sc_read(sc, base, len, save)) != 0) {
419 bufq_move(sc->sc_doneq, sc->sc_workq);
420 spiflash_process_done(sc, err);
421 return;
422 }
423
424 /*
425 * now coalesce the writes into the save area, but also
426 * check to see if we need to do an erase
427 */
428 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
429 uint8_t *data, *dst;
430 int resid = bp->b_resid;
431
432 DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
433 (unsigned)bp->b_blkno, bp->b_bcount, resid));
434
435 data = bp->b_data;
436 dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
437
438 /*
439 * NOR flash bits. We can clear a bit, but we cannot
440 * set a bit, without erasing. This should help reduce
441 * unnecessary erases.
442 */
443 while (resid) {
444 if ((*data) & ~(*dst))
445 neederase = 1;
446 *dst++ = *data++;
447 resid--;
448 }
449
450 BUFQ_PUT(sc->sc_doneq, bp);
451 }
452
453 /*
454 * do the erase, if we need to.
455 */
456 if (neederase) {
457 DPRINTF(("erasing from %x - %x\n", base, base + len));
458 if ((err = sc->sc_erase(sc, base, len)) != 0) {
459 spiflash_process_done(sc, err);
460 return;
461 }
462 }
463
464 /*
465 * now write our save area, and finish up.
466 */
467 DPRINTF(("flashing %d bytes to %x from %x\n", len,
468 base, (unsigned)save));
469 err = sc->sc_write(sc, base, len, save);
470 spiflash_process_done(sc, err);
471 }
472
473
474 int
475 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
476 {
477 unsigned addr, sector;
478
479 addr = bp->b_blkno * DEV_BSIZE;
480 sector = addr / sc->sc_erase_size;
481
482 addr += bp->b_bcount;
483 addr--;
484 return (((addr / sc->sc_erase_size) - sector) + 1);
485 }
486
487 int
488 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
489 {
490 unsigned addr, sector;
491
492 addr = bp->b_blkno * DEV_BSIZE;
493 sector = addr / sc->sc_erase_size;
494
495 /* if it spans multiple blocks, error it */
496 addr += bp->b_bcount;
497 addr--;
498 if (sector != (addr / sc->sc_erase_size))
499 return -1;
500
501 return sector;
502 }
503
504 void
505 spiflash_thread(void *arg)
506 {
507 spiflash_handle_t sc = arg;
508 struct buf *bp;
509 int s;
510 int sector;
511
512 s = splbio();
513 for (;;) {
514 if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
515 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
516 continue;
517 }
518
519 BUFQ_PUT(sc->sc_workq, bp);
520
521 if (bp->b_flags & B_READ) {
522 /* just do the read */
523 spiflash_process_read(sc);
524 continue;
525 }
526
527 /*
528 * Because writing a flash filesystem is particularly
529 * painful, involving erase, modify, write, we prefer
530 * to coalesce writes to the same sector together.
531 */
532
533 sector = spiflash_sector(sc, bp);
534
535 /*
536 * if the write spans multiple sectors, skip
537 * coalescing. (It would be nice if we could break
538 * these up. minphys is honored for read/write, but
539 * not necessarily for bread.)
540 */
541 if (sector < 0)
542 goto dowrite;
543
544 while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
545 /* can't deal with read requests! */
546 if (bp->b_flags & B_READ)
547 break;
548
549 /* is it for the same sector? */
550 if (spiflash_sector(sc, bp) != sector)
551 break;
552
553 bp = BUFQ_GET(sc->sc_waitq);
554 BUFQ_PUT(sc->sc_workq, bp);
555 }
556
557 dowrite:
558 spiflash_process_write(sc);
559 }
560 }
561 /*
562 * SPI flash common implementation.
563 */
564
565 /*
566 * Most devices take on the order of 1 second for each block that they
567 * delete.
568 */
569 int
570 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
571 {
572 int rv;
573
574 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
575 return EINVAL;
576
577 /* the second test is to test against wrap */
578 if ((start > sc->sc_device_size) ||
579 ((start + size) > sc->sc_device_size))
580 return EINVAL;
581
582 /*
583 * XXX: check protection status? Requires master table mapping
584 * sectors to status bits, and so forth.
585 */
586
587 while (size) {
588 if ((rv = spiflash_write_enable(sc)) != 0) {
589 spiflash_write_disable(sc);
590 return rv;
591 }
592 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
593 NULL, NULL)) != 0) {
594 spiflash_write_disable(sc);
595 return rv;
596 }
597
598 /*
599 * The devices I have all say typical for sector erase
600 * is ~1sec. We check ten times that often. (There
601 * is no way to interrupt on this.)
602 */
603 if ((rv = spiflash_wait(sc, hz / 10)) != 0)
604 return rv;
605
606 start += sc->sc_erase_size;
607 size -= sc->sc_erase_size;
608
609 /* NB: according to the docs I have, the write enable
610 * is automatically cleared upon completion of an erase
611 * command, so there is no need to explicitly disable it.
612 */
613 }
614
615 return 0;
616 }
617
618 int
619 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
620 const uint8_t *data)
621 {
622 int rv;
623
624 if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
625 return EINVAL;
626
627 while (size) {
628 int cnt;
629
630 if ((rv = spiflash_write_enable(sc)) != 0) {
631 spiflash_write_disable(sc);
632 return rv;
633 }
634
635 cnt = min(size, sc->sc_write_size);
636 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
637 cnt, data, NULL)) != 0) {
638 spiflash_write_disable(sc);
639 return rv;
640 }
641
642 /*
643 * It seems that most devices can write bits fairly
644 * quickly. For example, one part I have access to
645 * takes ~5msec to process the entire 256 byte page.
646 * Probably this should be modified to cope with
647 * device-specific timing, and maybe also take into
648 * account systems with higher values of HZ (which
649 * could benefit from sleeping.)
650 */
651 if ((rv = spiflash_wait(sc, 0)) != 0)
652 return rv;
653
654 data += cnt;
655 start += cnt;
656 size -= cnt;
657 }
658
659 return 0;
660 }
661
662 int
663 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
664 uint8_t *data)
665 {
666 int rv;
667
668 while (size) {
669 int cnt;
670
671 if (sc->sc_read_size > 0)
672 cnt = min(size, sc->sc_read_size);
673 else
674 cnt = size;
675
676 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
677 cnt, NULL, data)) != 0) {
678 return rv;
679 }
680
681 start += cnt;
682 size -= cnt;
683 }
684
685 return 0;
686 }
687
688 /* read status register */
689 int
690 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
691 {
692
693 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
694 }
695
696 int
697 spiflash_write_enable(spiflash_handle_t sc)
698 {
699
700 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
701 }
702
703 int
704 spiflash_write_disable(spiflash_handle_t sc)
705 {
706
707 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
708 }
709
710 int
711 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
712 size_t addrlen, uint32_t addr,
713 size_t cnt, const uint8_t *wdata, uint8_t *rdata)
714 {
715 struct spi_transfer trans;
716 struct spi_chunk chunk1, chunk2;
717 char buf[4];
718 int i;
719
720 buf[0] = cmd;
721
722 if (addrlen > 3)
723 return EINVAL;
724
725 for (i = addrlen; i > 0; i--) {
726 buf[i] = addr & 0xff;
727 addr >>= 8;
728 }
729 spi_transfer_init(&trans);
730 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
731 spi_transfer_add(&trans, &chunk1);
732 if (cnt) {
733 spi_chunk_init(&chunk2, cnt, wdata, rdata);
734 spi_transfer_add(&trans, &chunk2);
735 }
736
737 spi_transfer(sc->sc_handle, &trans);
738 spi_wait(&trans);
739
740 if (trans.st_flags & SPI_F_ERROR)
741 return trans.st_errno;
742 return 0;
743 }
744
745 int
746 spiflash_wait(spiflash_handle_t sc, int tmo)
747 {
748 int rv;
749 uint8_t sr;
750
751 for (;;) {
752 if ((rv = spiflash_read_status(sc, &sr)) != 0)
753 return rv;
754
755 if ((sr & SPIFLASH_SR_BUSY) == 0)
756 break;
757 /*
758 * The devices I have all say typical for sector
759 * erase is ~1sec. We check time times that often.
760 * (There is no way to interrupt on this.)
761 */
762 if (tmo)
763 tsleep(&sr, PWAIT, "spiflash_wait", tmo);
764 }
765 return 0;
766 }
767