spiflash.c revision 1.9 1 /* $NetBSD: spiflash.c,v 1.9 2008/06/11 19:31:10 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
5 * Copyright (c) 2006 Garrett D'Amore.
6 * All rights reserved.
7 *
8 * Portions of this code were written by Garrett D'Amore for the
9 * Champaign-Urbana Community Wireless Network Project.
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgements:
22 * This product includes software developed by the Urbana-Champaign
23 * Independent Media Center.
24 * This product includes software developed by Garrett D'Amore.
25 * 4. Urbana-Champaign Independent Media Center's name and Garrett
26 * D'Amore's name may not be used to endorse or promote products
27 * derived from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
30 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
34 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
38 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
41 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.9 2008/06/11 19:31:10 cegger Exp $");
46
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/kernel.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/disk.h>
56 #include <sys/disklabel.h>
57 #include <sys/buf.h>
58 #include <sys/bufq.h>
59 #include <sys/uio.h>
60 #include <sys/kthread.h>
61 #include <sys/malloc.h>
62 #include <sys/errno.h>
63
64 #include <dev/spi/spivar.h>
65 #include <dev/spi/spiflash.h>
66
67 /*
68 * This is an MI block driver for SPI flash devices. It could probably be
69 * converted to some more generic framework, if someone wanted to create one
70 * for NOR flashes. Note that some flashes have the ability to handle
71 * interrupts.
72 */
73
74 struct spiflash_softc {
75 struct disk sc_dk;
76
77 struct spiflash_hw_if sc_hw;
78 void *sc_cookie;
79
80 const char *sc_name;
81 struct spi_handle *sc_handle;
82 int sc_device_size;
83 int sc_write_size;
84 int sc_erase_size;
85 int sc_read_size;
86 int sc_device_blks;
87
88 struct bufq_state *sc_waitq;
89 struct bufq_state *sc_workq;
90 struct bufq_state *sc_doneq;
91 lwp_t *sc_thread;
92 };
93
94 #define sc_getname sc_hw.sf_getname
95 #define sc_gethandle sc_hw.sf_gethandle
96 #define sc_getsize sc_hw.sf_getsize
97 #define sc_getflags sc_hw.sf_getflags
98 #define sc_erase sc_hw.sf_erase
99 #define sc_write sc_hw.sf_write
100 #define sc_read sc_hw.sf_read
101 #define sc_getstatus sc_hw.sf_getstatus
102 #define sc_setstatus sc_hw.sf_setstatus
103
104 struct spiflash_attach_args {
105 const struct spiflash_hw_if *hw;
106 void *cookie;
107 };
108
109 #define STATIC
110 STATIC int spiflash_match(device_t , cfdata_t , void *);
111 STATIC void spiflash_attach(device_t , device_t , void *);
112 STATIC int spiflash_print(void *, const char *);
113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
115 const uint8_t *);
116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
117 STATIC void spiflash_process_done(spiflash_handle_t, int);
118 STATIC void spiflash_process_read(spiflash_handle_t);
119 STATIC void spiflash_process_write(spiflash_handle_t);
120 STATIC void spiflash_thread(void *);
121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
124
125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
126 spiflash_match, spiflash_attach, NULL, NULL);
127
128 #ifdef SPIFLASH_DEBUG
129 #define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/)
130 #else
131 #define DPRINTF(x) do { } while (0/*CONSTCOND*/)
132 #endif
133
134 extern struct cfdriver spiflash_cd;
135
136 dev_type_open(spiflash_open);
137 dev_type_close(spiflash_close);
138 dev_type_read(spiflash_read);
139 dev_type_write(spiflash_write);
140 dev_type_ioctl(spiflash_ioctl);
141 dev_type_strategy(spiflash_strategy);
142
143 const struct bdevsw spiflash_bdevsw = {
144 .d_open = spiflash_open,
145 .d_close = spiflash_close,
146 .d_strategy = spiflash_strategy,
147 .d_ioctl = spiflash_ioctl,
148 .d_dump = nodump,
149 .d_psize = nosize,
150 .d_flag = D_DISK,
151 };
152
153 const struct cdevsw spiflash_cdevsw = {
154 .d_open = spiflash_open,
155 .d_close = spiflash_close,
156 .d_read = spiflash_read,
157 .d_write = spiflash_write,
158 .d_ioctl = spiflash_ioctl,
159 .d_stop = nostop,
160 .d_tty = notty,
161 .d_poll = nopoll,
162 .d_mmap = nommap,
163 .d_kqfilter = nokqfilter,
164 .d_flag = D_DISK,
165 };
166
167 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
168
169 spiflash_handle_t
170 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
171 device_t dev)
172 {
173 struct spiflash_attach_args sfa;
174 sfa.hw = hw;
175 sfa.cookie = cookie;
176
177 return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
178 }
179
180 int
181 spiflash_print(void *aux, const char *pnp)
182 {
183 if (pnp != NULL)
184 printf("spiflash at %s\n", pnp);
185
186 return UNCONF;
187 }
188
189 int
190 spiflash_match(device_t parent, cfdata_t cf, void *aux)
191 {
192
193 return 1;
194 }
195
196 void
197 spiflash_attach(device_t parent, device_t self, void *aux)
198 {
199 struct spiflash_softc *sc = device_private(self);
200 struct spiflash_attach_args *sfa = aux;
201 void *cookie = sfa->cookie;
202
203 sc->sc_hw = *sfa->hw;
204 sc->sc_cookie = cookie;
205 sc->sc_name = sc->sc_getname(cookie);
206 sc->sc_handle = sc->sc_gethandle(cookie);
207 sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
208 sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
209 sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
210 sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
211 sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
212
213 if (sc->sc_read == NULL)
214 sc->sc_read = spiflash_common_read;
215 if (sc->sc_write == NULL)
216 sc->sc_write = spiflash_common_write;
217 if (sc->sc_erase == NULL)
218 sc->sc_erase = spiflash_common_erase;
219
220 aprint_naive(": SPI flash\n");
221 aprint_normal(": %s SPI flash\n", sc->sc_name);
222 /* XXX: note that this has to change for boot-sectored flash */
223 aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
224 sc->sc_device_size / 1024,
225 sc->sc_device_size / sc->sc_erase_size,
226 sc->sc_erase_size / 1024);
227
228 /* first-come first-served strategy works best for us */
229 bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
230 bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
231 bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
232
233 sc->sc_dk.dk_driver = &spiflash_dkdriver;
234 sc->sc_dk.dk_name = device_xname(self);
235
236 disk_attach(&sc->sc_dk);
237
238 /* arrange to allocate the kthread */
239 kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
240 &sc->sc_thread, "spiflash");
241 }
242
243 int
244 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
245 {
246 spiflash_handle_t sc;
247
248 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
249 if (sc == NULL)
250 return ENXIO;
251
252 /*
253 * XXX: We need to handle partitions here. The problem is
254 * that it isn't entirely clear to me how to deal with this.
255 * There are devices that could be used "in the raw" with a
256 * NetBSD label, but then you get into devices that have other
257 * kinds of data on them -- some have VxWorks data, some have
258 * RedBoot data, and some have other contraints -- for example
259 * some devices might have a portion that is read-only,
260 * whereas others might have a portion that is read-write.
261 *
262 * For now we just permit access to the entire device.
263 */
264 return 0;
265 }
266
267 int
268 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
269 {
270 spiflash_handle_t sc;
271
272 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
273 if (sc == NULL)
274 return ENXIO;
275
276 return 0;
277 }
278
279 int
280 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
281 {
282
283 return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
284 }
285
286 int
287 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
288 {
289
290 return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
291 }
292
293 int
294 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
295 {
296 spiflash_handle_t sc;
297
298 sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
299 if (sc == NULL)
300 return ENXIO;
301
302 return EINVAL;
303 }
304
305 void
306 spiflash_strategy(struct buf *bp)
307 {
308 spiflash_handle_t sc;
309 int s;
310
311 sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev));
312 if (sc == NULL) {
313 bp->b_error = ENXIO;
314 biodone(bp);
315 return;
316 }
317
318 if (((bp->b_bcount % sc->sc_write_size) != 0) ||
319 (bp->b_blkno < 0)) {
320 bp->b_error = EINVAL;
321 biodone(bp);
322 return;
323 }
324
325 /* no work? */
326 if (bp->b_bcount == 0) {
327 biodone(bp);
328 return;
329 }
330
331 if (bounds_check_with_mediasize(bp, DEV_BSIZE,
332 sc->sc_device_blks) <= 0) {
333 biodone(bp);
334 return;
335 }
336
337 bp->b_resid = bp->b_bcount;
338
339 /* all ready, hand off to thread for async processing */
340 s = splbio();
341 BUFQ_PUT(sc->sc_waitq, bp);
342 wakeup(&sc->sc_thread);
343 splx(s);
344 }
345
346 void
347 spiflash_process_done(spiflash_handle_t sc, int err)
348 {
349 struct buf *bp;
350 int cnt = 0;
351 int flag = 0;
352
353 while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
354 flag = bp->b_flags & B_READ;
355 if ((bp->b_error = err) == 0)
356 bp->b_resid = 0;
357 cnt += bp->b_bcount - bp->b_resid;
358 biodone(bp);
359 }
360 disk_unbusy(&sc->sc_dk, cnt, flag);
361 }
362
363 void
364 spiflash_process_read(spiflash_handle_t sc)
365 {
366 struct buf *bp;
367 int err = 0;
368
369 disk_busy(&sc->sc_dk);
370 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
371 size_t addr = bp->b_blkno * DEV_BSIZE;
372 uint8_t *data = bp->b_data;
373 int cnt = bp->b_resid;
374
375 BUFQ_PUT(sc->sc_doneq, bp);
376
377 DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
378
379 if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
380 /* error occurred, fail all pending workq bufs */
381 bufq_move(sc->sc_doneq, sc->sc_workq);
382 break;
383 }
384
385 bp->b_resid -= cnt;
386 data += cnt;
387 addr += cnt;
388 }
389 spiflash_process_done(sc, err);
390 }
391
392 void
393 spiflash_process_write(spiflash_handle_t sc)
394 {
395 int len;
396 size_t base;
397 daddr_t blkno;
398 uint8_t *save;
399 int err = 0, neederase = 0;
400 struct buf *bp;
401
402 /*
403 * due to other considerations, we are guaranteed that
404 * we will only have multiple buffers if they are all in
405 * the same erase sector. Therefore we never need to look
406 * beyond the first block to determine how much data we need
407 * to save.
408 */
409
410 bp = BUFQ_PEEK(sc->sc_workq);
411 len = spiflash_nsectors(sc, bp) * sc->sc_erase_size;
412 blkno = bp->b_blkno;
413 base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
414
415 /* get ourself a scratch buffer */
416 save = malloc(len, M_DEVBUF, M_WAITOK);
417
418 disk_busy(&sc->sc_dk);
419 /* read in as much of the data as we need */
420 DPRINTF(("reading in %d bytes\n", len));
421 if ((err = sc->sc_read(sc, base, len, save)) != 0) {
422 bufq_move(sc->sc_doneq, sc->sc_workq);
423 spiflash_process_done(sc, err);
424 return;
425 }
426
427 /*
428 * now coalesce the writes into the save area, but also
429 * check to see if we need to do an erase
430 */
431 while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
432 uint8_t *data, *dst;
433 int resid = bp->b_resid;
434
435 DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
436 (unsigned)bp->b_blkno, bp->b_bcount, resid));
437
438 data = bp->b_data;
439 dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
440
441 /*
442 * NOR flash bits. We can clear a bit, but we cannot
443 * set a bit, without erasing. This should help reduce
444 * unnecessary erases.
445 */
446 while (resid) {
447 if ((*data) & ~(*dst))
448 neederase = 1;
449 *dst++ = *data++;
450 resid--;
451 }
452
453 BUFQ_PUT(sc->sc_doneq, bp);
454 }
455
456 /*
457 * do the erase, if we need to.
458 */
459 if (neederase) {
460 DPRINTF(("erasing from %x - %x\n", base, base + len));
461 if ((err = sc->sc_erase(sc, base, len)) != 0) {
462 spiflash_process_done(sc, err);
463 return;
464 }
465 }
466
467 /*
468 * now write our save area, and finish up.
469 */
470 DPRINTF(("flashing %d bytes to %x from %x\n", len,
471 base, (unsigned)save));
472 err = sc->sc_write(sc, base, len, save);
473 spiflash_process_done(sc, err);
474 }
475
476
477 int
478 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
479 {
480 unsigned addr, sector;
481
482 addr = bp->b_blkno * DEV_BSIZE;
483 sector = addr / sc->sc_erase_size;
484
485 addr += bp->b_bcount;
486 addr--;
487 return (((addr / sc->sc_erase_size) - sector) + 1);
488 }
489
490 int
491 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
492 {
493 unsigned addr, sector;
494
495 addr = bp->b_blkno * DEV_BSIZE;
496 sector = addr / sc->sc_erase_size;
497
498 /* if it spans multiple blocks, error it */
499 addr += bp->b_bcount;
500 addr--;
501 if (sector != (addr / sc->sc_erase_size))
502 return -1;
503
504 return sector;
505 }
506
507 void
508 spiflash_thread(void *arg)
509 {
510 spiflash_handle_t sc = arg;
511 struct buf *bp;
512 int s;
513 int sector;
514
515 s = splbio();
516 for (;;) {
517 if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
518 tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
519 continue;
520 }
521
522 BUFQ_PUT(sc->sc_workq, bp);
523
524 if (bp->b_flags & B_READ) {
525 /* just do the read */
526 spiflash_process_read(sc);
527 continue;
528 }
529
530 /*
531 * Because writing a flash filesystem is particularly
532 * painful, involving erase, modify, write, we prefer
533 * to coalesce writes to the same sector together.
534 */
535
536 sector = spiflash_sector(sc, bp);
537
538 /*
539 * if the write spans multiple sectors, skip
540 * coalescing. (It would be nice if we could break
541 * these up. minphys is honored for read/write, but
542 * not necessarily for bread.)
543 */
544 if (sector < 0)
545 goto dowrite;
546
547 while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
548 /* can't deal with read requests! */
549 if (bp->b_flags & B_READ)
550 break;
551
552 /* is it for the same sector? */
553 if (spiflash_sector(sc, bp) != sector)
554 break;
555
556 bp = BUFQ_GET(sc->sc_waitq);
557 BUFQ_PUT(sc->sc_workq, bp);
558 }
559
560 dowrite:
561 spiflash_process_write(sc);
562 }
563 }
564 /*
565 * SPI flash common implementation.
566 */
567
568 /*
569 * Most devices take on the order of 1 second for each block that they
570 * delete.
571 */
572 int
573 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
574 {
575 int rv;
576
577 if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
578 return EINVAL;
579
580 /* the second test is to test against wrap */
581 if ((start > sc->sc_device_size) ||
582 ((start + size) > sc->sc_device_size))
583 return EINVAL;
584
585 /*
586 * XXX: check protection status? Requires master table mapping
587 * sectors to status bits, and so forth.
588 */
589
590 while (size) {
591 if ((rv = spiflash_write_enable(sc)) != 0) {
592 spiflash_write_disable(sc);
593 return rv;
594 }
595 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
596 NULL, NULL)) != 0) {
597 spiflash_write_disable(sc);
598 return rv;
599 }
600
601 /*
602 * The devices I have all say typical for sector erase
603 * is ~1sec. We check ten times that often. (There
604 * is no way to interrupt on this.)
605 */
606 if ((rv = spiflash_wait(sc, hz / 10)) != 0)
607 return rv;
608
609 start += sc->sc_erase_size;
610 size -= sc->sc_erase_size;
611
612 /* NB: according to the docs I have, the write enable
613 * is automatically cleared upon completion of an erase
614 * command, so there is no need to explicitly disable it.
615 */
616 }
617
618 return 0;
619 }
620
621 int
622 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
623 const uint8_t *data)
624 {
625 int rv;
626
627 if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
628 return EINVAL;
629
630 while (size) {
631 int cnt;
632
633 if ((rv = spiflash_write_enable(sc)) != 0) {
634 spiflash_write_disable(sc);
635 return rv;
636 }
637
638 cnt = min(size, sc->sc_write_size);
639 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
640 cnt, data, NULL)) != 0) {
641 spiflash_write_disable(sc);
642 return rv;
643 }
644
645 /*
646 * It seems that most devices can write bits fairly
647 * quickly. For example, one part I have access to
648 * takes ~5msec to process the entire 256 byte page.
649 * Probably this should be modified to cope with
650 * device-specific timing, and maybe also take into
651 * account systems with higher values of HZ (which
652 * could benefit from sleeping.)
653 */
654 if ((rv = spiflash_wait(sc, 0)) != 0)
655 return rv;
656
657 data += cnt;
658 start += cnt;
659 size -= cnt;
660 }
661
662 return 0;
663 }
664
665 int
666 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
667 uint8_t *data)
668 {
669 int rv;
670
671 while (size) {
672 int cnt;
673
674 if (sc->sc_read_size > 0)
675 cnt = min(size, sc->sc_read_size);
676 else
677 cnt = size;
678
679 if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
680 cnt, NULL, data)) != 0) {
681 return rv;
682 }
683
684 start += cnt;
685 size -= cnt;
686 }
687
688 return 0;
689 }
690
691 /* read status register */
692 int
693 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
694 {
695
696 return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
697 }
698
699 int
700 spiflash_write_enable(spiflash_handle_t sc)
701 {
702
703 return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
704 }
705
706 int
707 spiflash_write_disable(spiflash_handle_t sc)
708 {
709
710 return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
711 }
712
713 int
714 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
715 size_t addrlen, uint32_t addr,
716 size_t cnt, const uint8_t *wdata, uint8_t *rdata)
717 {
718 struct spi_transfer trans;
719 struct spi_chunk chunk1, chunk2;
720 char buf[4];
721 int i;
722
723 buf[0] = cmd;
724
725 if (addrlen > 3)
726 return EINVAL;
727
728 for (i = addrlen; i > 0; i--) {
729 buf[i] = addr & 0xff;
730 addr >>= 8;
731 }
732 spi_transfer_init(&trans);
733 spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
734 spi_transfer_add(&trans, &chunk1);
735 if (cnt) {
736 spi_chunk_init(&chunk2, cnt, wdata, rdata);
737 spi_transfer_add(&trans, &chunk2);
738 }
739
740 spi_transfer(sc->sc_handle, &trans);
741 spi_wait(&trans);
742
743 if (trans.st_flags & SPI_F_ERROR)
744 return trans.st_errno;
745 return 0;
746 }
747
748 int
749 spiflash_wait(spiflash_handle_t sc, int tmo)
750 {
751 int rv;
752 uint8_t sr;
753
754 for (;;) {
755 if ((rv = spiflash_read_status(sc, &sr)) != 0)
756 return rv;
757
758 if ((sr & SPIFLASH_SR_BUSY) == 0)
759 break;
760 /*
761 * The devices I have all say typical for sector
762 * erase is ~1sec. We check time times that often.
763 * (There is no way to interrupt on this.)
764 */
765 if (tmo)
766 tsleep(&sr, PWAIT, "spiflash_wait", tmo);
767 }
768 return 0;
769 }
770