Home | History | Annotate | Line # | Download | only in spi
spiflash.c revision 1.9
      1 /* $NetBSD: spiflash.c,v 1.9 2008/06/11 19:31:10 cegger Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
      5  * Copyright (c) 2006 Garrett D'Amore.
      6  * All rights reserved.
      7  *
      8  * Portions of this code were written by Garrett D'Amore for the
      9  * Champaign-Urbana Community Wireless Network Project.
     10  *
     11  * Redistribution and use in source and binary forms, with or
     12  * without modification, are permitted provided that the following
     13  * conditions are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above
     17  *    copyright notice, this list of conditions and the following
     18  *    disclaimer in the documentation and/or other materials provided
     19  *    with the distribution.
     20  * 3. All advertising materials mentioning features or use of this
     21  *    software must display the following acknowledgements:
     22  *      This product includes software developed by the Urbana-Champaign
     23  *      Independent Media Center.
     24  *	This product includes software developed by Garrett D'Amore.
     25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
     26  *    D'Amore's name may not be used to endorse or promote products
     27  *    derived from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
     30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
     31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
     34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.9 2008/06/11 19:31:10 cegger Exp $");
     46 
     47 #include <sys/param.h>
     48 #include <sys/conf.h>
     49 #include <sys/proc.h>
     50 #include <sys/systm.h>
     51 #include <sys/device.h>
     52 #include <sys/kernel.h>
     53 #include <sys/file.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/disk.h>
     56 #include <sys/disklabel.h>
     57 #include <sys/buf.h>
     58 #include <sys/bufq.h>
     59 #include <sys/uio.h>
     60 #include <sys/kthread.h>
     61 #include <sys/malloc.h>
     62 #include <sys/errno.h>
     63 
     64 #include <dev/spi/spivar.h>
     65 #include <dev/spi/spiflash.h>
     66 
     67 /*
     68  * This is an MI block driver for SPI flash devices.  It could probably be
     69  * converted to some more generic framework, if someone wanted to create one
     70  * for NOR flashes.  Note that some flashes have the ability to handle
     71  * interrupts.
     72  */
     73 
     74 struct spiflash_softc {
     75 	struct disk		sc_dk;
     76 
     77 	struct spiflash_hw_if	sc_hw;
     78 	void			*sc_cookie;
     79 
     80 	const char		*sc_name;
     81 	struct spi_handle	*sc_handle;
     82 	int			sc_device_size;
     83 	int			sc_write_size;
     84 	int			sc_erase_size;
     85 	int			sc_read_size;
     86 	int			sc_device_blks;
     87 
     88 	struct bufq_state	*sc_waitq;
     89 	struct bufq_state	*sc_workq;
     90 	struct bufq_state	*sc_doneq;
     91 	lwp_t			*sc_thread;
     92 };
     93 
     94 #define	sc_getname	sc_hw.sf_getname
     95 #define	sc_gethandle	sc_hw.sf_gethandle
     96 #define	sc_getsize	sc_hw.sf_getsize
     97 #define	sc_getflags	sc_hw.sf_getflags
     98 #define	sc_erase	sc_hw.sf_erase
     99 #define	sc_write	sc_hw.sf_write
    100 #define	sc_read		sc_hw.sf_read
    101 #define	sc_getstatus	sc_hw.sf_getstatus
    102 #define	sc_setstatus	sc_hw.sf_setstatus
    103 
    104 struct spiflash_attach_args {
    105 	const struct spiflash_hw_if	*hw;
    106 	void				*cookie;
    107 };
    108 
    109 #define	STATIC
    110 STATIC int spiflash_match(device_t , cfdata_t , void *);
    111 STATIC void spiflash_attach(device_t , device_t , void *);
    112 STATIC int spiflash_print(void *, const char *);
    113 STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
    114 STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
    115     const uint8_t *);
    116 STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
    117 STATIC void spiflash_process_done(spiflash_handle_t, int);
    118 STATIC void spiflash_process_read(spiflash_handle_t);
    119 STATIC void spiflash_process_write(spiflash_handle_t);
    120 STATIC void spiflash_thread(void *);
    121 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
    122 STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
    123 STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
    124 
    125 CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
    126 	      spiflash_match, spiflash_attach, NULL, NULL);
    127 
    128 #ifdef	SPIFLASH_DEBUG
    129 #define	DPRINTF(x)	do { printf x; } while (0/*CONSTCOND*/)
    130 #else
    131 #define	DPRINTF(x)	do {  } while (0/*CONSTCOND*/)
    132 #endif
    133 
    134 extern struct cfdriver spiflash_cd;
    135 
    136 dev_type_open(spiflash_open);
    137 dev_type_close(spiflash_close);
    138 dev_type_read(spiflash_read);
    139 dev_type_write(spiflash_write);
    140 dev_type_ioctl(spiflash_ioctl);
    141 dev_type_strategy(spiflash_strategy);
    142 
    143 const struct bdevsw spiflash_bdevsw = {
    144 	.d_open = spiflash_open,
    145 	.d_close = spiflash_close,
    146 	.d_strategy = spiflash_strategy,
    147 	.d_ioctl = spiflash_ioctl,
    148 	.d_dump = nodump,
    149 	.d_psize = nosize,
    150 	.d_flag = D_DISK,
    151 };
    152 
    153 const struct cdevsw spiflash_cdevsw = {
    154 	.d_open = spiflash_open,
    155 	.d_close = spiflash_close,
    156 	.d_read = spiflash_read,
    157 	.d_write = spiflash_write,
    158 	.d_ioctl = spiflash_ioctl,
    159 	.d_stop = nostop,
    160 	.d_tty = notty,
    161 	.d_poll = nopoll,
    162 	.d_mmap = nommap,
    163 	.d_kqfilter = nokqfilter,
    164 	.d_flag = D_DISK,
    165 };
    166 
    167 static struct dkdriver spiflash_dkdriver = { spiflash_strategy, NULL };
    168 
    169 spiflash_handle_t
    170 spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
    171     device_t dev)
    172 {
    173 	struct spiflash_attach_args sfa;
    174 	sfa.hw = hw;
    175 	sfa.cookie = cookie;
    176 
    177 	return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
    178 }
    179 
    180 int
    181 spiflash_print(void *aux, const char *pnp)
    182 {
    183 	if (pnp != NULL)
    184 		printf("spiflash at %s\n", pnp);
    185 
    186 	return UNCONF;
    187 }
    188 
    189 int
    190 spiflash_match(device_t parent, cfdata_t cf, void *aux)
    191 {
    192 
    193 	return 1;
    194 }
    195 
    196 void
    197 spiflash_attach(device_t parent, device_t self, void *aux)
    198 {
    199 	struct spiflash_softc *sc = device_private(self);
    200 	struct spiflash_attach_args *sfa = aux;
    201 	void *cookie = sfa->cookie;
    202 
    203 	sc->sc_hw = *sfa->hw;
    204 	sc->sc_cookie = cookie;
    205 	sc->sc_name = sc->sc_getname(cookie);
    206 	sc->sc_handle = sc->sc_gethandle(cookie);
    207 	sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
    208 	sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
    209 	sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
    210 	sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
    211 	sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
    212 
    213 	if (sc->sc_read == NULL)
    214 		sc->sc_read = spiflash_common_read;
    215 	if (sc->sc_write == NULL)
    216 		sc->sc_write = spiflash_common_write;
    217 	if (sc->sc_erase == NULL)
    218 		sc->sc_erase = spiflash_common_erase;
    219 
    220 	aprint_naive(": SPI flash\n");
    221 	aprint_normal(": %s SPI flash\n", sc->sc_name);
    222 	/* XXX: note that this has to change for boot-sectored flash */
    223 	aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
    224 	    sc->sc_device_size / 1024,
    225 	    sc->sc_device_size / sc->sc_erase_size,
    226 	    sc->sc_erase_size / 1024);
    227 
    228 	/* first-come first-served strategy works best for us */
    229 	bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
    230 	bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
    231 	bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
    232 
    233 	sc->sc_dk.dk_driver = &spiflash_dkdriver;
    234 	sc->sc_dk.dk_name = device_xname(self);
    235 
    236 	disk_attach(&sc->sc_dk);
    237 
    238 	/* arrange to allocate the kthread */
    239 	kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
    240 	    &sc->sc_thread, "spiflash");
    241 }
    242 
    243 int
    244 spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
    245 {
    246 	spiflash_handle_t sc;
    247 
    248 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
    249 	if (sc == NULL)
    250 		return ENXIO;
    251 
    252 	/*
    253 	 * XXX: We need to handle partitions here.  The problem is
    254 	 * that it isn't entirely clear to me how to deal with this.
    255 	 * There are devices that could be used "in the raw" with a
    256 	 * NetBSD label, but then you get into devices that have other
    257 	 * kinds of data on them -- some have VxWorks data, some have
    258 	 * RedBoot data, and some have other contraints -- for example
    259 	 * some devices might have a portion that is read-only,
    260 	 * whereas others might have a portion that is read-write.
    261 	 *
    262 	 * For now we just permit access to the entire device.
    263 	 */
    264 	return 0;
    265 }
    266 
    267 int
    268 spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
    269 {
    270 	spiflash_handle_t sc;
    271 
    272 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
    273 	if (sc == NULL)
    274 		return ENXIO;
    275 
    276 	return 0;
    277 }
    278 
    279 int
    280 spiflash_read(dev_t dev, struct uio *uio, int ioflag)
    281 {
    282 
    283 	return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
    284 }
    285 
    286 int
    287 spiflash_write(dev_t dev, struct uio *uio, int ioflag)
    288 {
    289 
    290 	return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
    291 }
    292 
    293 int
    294 spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
    295 {
    296 	spiflash_handle_t sc;
    297 
    298 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
    299 	if (sc == NULL)
    300 		return ENXIO;
    301 
    302 	return EINVAL;
    303 }
    304 
    305 void
    306 spiflash_strategy(struct buf *bp)
    307 {
    308 	spiflash_handle_t sc;
    309 	int	s;
    310 
    311 	sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev));
    312 	if (sc == NULL) {
    313 		bp->b_error = ENXIO;
    314 		biodone(bp);
    315 		return;
    316 	}
    317 
    318 	if (((bp->b_bcount % sc->sc_write_size) != 0) ||
    319 	    (bp->b_blkno < 0)) {
    320 		bp->b_error = EINVAL;
    321 		biodone(bp);
    322 		return;
    323 	}
    324 
    325 	/* no work? */
    326 	if (bp->b_bcount == 0) {
    327 		biodone(bp);
    328 		return;
    329 	}
    330 
    331 	if (bounds_check_with_mediasize(bp, DEV_BSIZE,
    332 		sc->sc_device_blks) <= 0) {
    333 		biodone(bp);
    334 		return;
    335 	}
    336 
    337 	bp->b_resid = bp->b_bcount;
    338 
    339 	/* all ready, hand off to thread for async processing */
    340 	s = splbio();
    341 	BUFQ_PUT(sc->sc_waitq, bp);
    342 	wakeup(&sc->sc_thread);
    343 	splx(s);
    344 }
    345 
    346 void
    347 spiflash_process_done(spiflash_handle_t sc, int err)
    348 {
    349 	struct buf	*bp;
    350 	int		cnt = 0;
    351 	int		flag = 0;
    352 
    353 	while ((bp = BUFQ_GET(sc->sc_doneq)) != NULL) {
    354 		flag = bp->b_flags & B_READ;
    355 		if ((bp->b_error = err) == 0)
    356 			bp->b_resid = 0;
    357 		cnt += bp->b_bcount - bp->b_resid;
    358 		biodone(bp);
    359 	}
    360 	disk_unbusy(&sc->sc_dk, cnt, flag);
    361 }
    362 
    363 void
    364 spiflash_process_read(spiflash_handle_t sc)
    365 {
    366 	struct buf	*bp;
    367 	int		err = 0;
    368 
    369 	disk_busy(&sc->sc_dk);
    370 	while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
    371 		size_t addr = bp->b_blkno * DEV_BSIZE;
    372 		uint8_t *data = bp->b_data;
    373 		int cnt = bp->b_resid;
    374 
    375 		BUFQ_PUT(sc->sc_doneq, bp);
    376 
    377 		DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
    378 
    379 		if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
    380 			/* error occurred, fail all pending workq bufs */
    381 			bufq_move(sc->sc_doneq, sc->sc_workq);
    382 			break;
    383 		}
    384 
    385 		bp->b_resid -= cnt;
    386 		data += cnt;
    387 		addr += cnt;
    388 	}
    389 	spiflash_process_done(sc, err);
    390 }
    391 
    392 void
    393 spiflash_process_write(spiflash_handle_t sc)
    394 {
    395 	int	len;
    396 	size_t	base;
    397 	daddr_t	blkno;
    398 	uint8_t	*save;
    399 	int	err = 0, neederase = 0;
    400 	struct buf *bp;
    401 
    402 	/*
    403 	 * due to other considerations, we are guaranteed that
    404 	 * we will only have multiple buffers if they are all in
    405 	 * the same erase sector.  Therefore we never need to look
    406 	 * beyond the first block to determine how much data we need
    407 	 * to save.
    408 	 */
    409 
    410 	bp = BUFQ_PEEK(sc->sc_workq);
    411 	len = spiflash_nsectors(sc, bp)  * sc->sc_erase_size;
    412 	blkno = bp->b_blkno;
    413 	base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
    414 
    415 	/* get ourself a scratch buffer */
    416 	save = malloc(len, M_DEVBUF, M_WAITOK);
    417 
    418 	disk_busy(&sc->sc_dk);
    419 	/* read in as much of the data as we need */
    420 	DPRINTF(("reading in %d bytes\n", len));
    421 	if ((err = sc->sc_read(sc, base, len, save)) != 0) {
    422 		bufq_move(sc->sc_doneq, sc->sc_workq);
    423 		spiflash_process_done(sc, err);
    424 		return;
    425 	}
    426 
    427 	/*
    428 	 * now coalesce the writes into the save area, but also
    429 	 * check to see if we need to do an erase
    430 	 */
    431 	while ((bp = BUFQ_GET(sc->sc_workq)) != NULL) {
    432 		uint8_t	*data, *dst;
    433 		int resid = bp->b_resid;
    434 
    435 		DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
    436 			    (unsigned)bp->b_blkno, bp->b_bcount, resid));
    437 
    438 		data = bp->b_data;
    439 		dst = save + (bp->b_blkno - blkno) * DEV_BSIZE;
    440 
    441 		/*
    442 		 * NOR flash bits.  We can clear a bit, but we cannot
    443 		 * set a bit, without erasing.  This should help reduce
    444 		 * unnecessary erases.
    445 		 */
    446 		while (resid) {
    447 			if ((*data) & ~(*dst))
    448 				neederase = 1;
    449 			*dst++ = *data++;
    450 			resid--;
    451 		}
    452 
    453 		BUFQ_PUT(sc->sc_doneq, bp);
    454 	}
    455 
    456 	/*
    457 	 * do the erase, if we need to.
    458 	 */
    459 	if (neederase) {
    460 		DPRINTF(("erasing from %x - %x\n", base, base + len));
    461 		if ((err = sc->sc_erase(sc, base, len)) != 0) {
    462 			spiflash_process_done(sc, err);
    463 			return;
    464 		}
    465 	}
    466 
    467 	/*
    468 	 * now write our save area, and finish up.
    469 	 */
    470 	DPRINTF(("flashing %d bytes to %x from %x\n", len,
    471 		    base, (unsigned)save));
    472 	err = sc->sc_write(sc, base, len, save);
    473 	spiflash_process_done(sc, err);
    474 }
    475 
    476 
    477 int
    478 spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
    479 {
    480 	unsigned	addr, sector;
    481 
    482 	addr = bp->b_blkno * DEV_BSIZE;
    483 	sector = addr / sc->sc_erase_size;
    484 
    485 	addr += bp->b_bcount;
    486 	addr--;
    487 	return (((addr / sc->sc_erase_size)  - sector) + 1);
    488 }
    489 
    490 int
    491 spiflash_sector(spiflash_handle_t sc, struct buf *bp)
    492 {
    493 	unsigned	addr, sector;
    494 
    495 	addr = bp->b_blkno * DEV_BSIZE;
    496 	sector = addr / sc->sc_erase_size;
    497 
    498 	/* if it spans multiple blocks, error it */
    499 	addr += bp->b_bcount;
    500 	addr--;
    501 	if (sector != (addr / sc->sc_erase_size))
    502 		return -1;
    503 
    504 	return sector;
    505 }
    506 
    507 void
    508 spiflash_thread(void *arg)
    509 {
    510 	spiflash_handle_t sc = arg;
    511 	struct buf	*bp;
    512 	int		s;
    513 	int		sector;
    514 
    515 	s = splbio();
    516 	for (;;) {
    517 		if ((bp = BUFQ_GET(sc->sc_waitq)) == NULL) {
    518 			tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
    519 			continue;
    520 		}
    521 
    522 		BUFQ_PUT(sc->sc_workq, bp);
    523 
    524 		if (bp->b_flags & B_READ) {
    525 			/* just do the read */
    526 			spiflash_process_read(sc);
    527 			continue;
    528 		}
    529 
    530 		/*
    531 		 * Because writing a flash filesystem is particularly
    532 		 * painful, involving erase, modify, write, we prefer
    533 		 * to coalesce writes to the same sector together.
    534 		 */
    535 
    536 		sector = spiflash_sector(sc, bp);
    537 
    538 		/*
    539 		 * if the write spans multiple sectors, skip
    540 		 * coalescing.  (It would be nice if we could break
    541 		 * these up.  minphys is honored for read/write, but
    542 		 * not necessarily for bread.)
    543 		 */
    544 		if (sector < 0)
    545 			goto dowrite;
    546 
    547 		while ((bp = BUFQ_PEEK(sc->sc_waitq)) != NULL) {
    548 			/* can't deal with read requests! */
    549 			if (bp->b_flags & B_READ)
    550 				break;
    551 
    552 			/* is it for the same sector? */
    553 			if (spiflash_sector(sc, bp) != sector)
    554 				break;
    555 
    556 			bp = BUFQ_GET(sc->sc_waitq);
    557 			BUFQ_PUT(sc->sc_workq, bp);
    558 		}
    559 
    560 	dowrite:
    561 		spiflash_process_write(sc);
    562 	}
    563 }
    564 /*
    565  * SPI flash common implementation.
    566  */
    567 
    568 /*
    569  * Most devices take on the order of 1 second for each block that they
    570  * delete.
    571  */
    572 int
    573 spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
    574 {
    575 	int		rv;
    576 
    577 	if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
    578 		return EINVAL;
    579 
    580 	/* the second test is to test against wrap */
    581 	if ((start > sc->sc_device_size) ||
    582 	    ((start + size) > sc->sc_device_size))
    583 		return EINVAL;
    584 
    585 	/*
    586 	 * XXX: check protection status?  Requires master table mapping
    587 	 * sectors to status bits, and so forth.
    588 	 */
    589 
    590 	while (size) {
    591 		if ((rv = spiflash_write_enable(sc)) != 0) {
    592 			spiflash_write_disable(sc);
    593 			return rv;
    594 		}
    595 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
    596 			 NULL, NULL)) != 0) {
    597 			spiflash_write_disable(sc);
    598 			return rv;
    599 		}
    600 
    601 		/*
    602 		 * The devices I have all say typical for sector erase
    603 		 * is ~1sec.  We check ten times that often.  (There
    604 		 * is no way to interrupt on this.)
    605 		 */
    606 		if ((rv = spiflash_wait(sc, hz / 10)) != 0)
    607 			return rv;
    608 
    609 		start += sc->sc_erase_size;
    610 		size -= sc->sc_erase_size;
    611 
    612 		/* NB: according to the docs I have, the write enable
    613 		 * is automatically cleared upon completion of an erase
    614 		 * command, so there is no need to explicitly disable it.
    615 		 */
    616 	}
    617 
    618 	return 0;
    619 }
    620 
    621 int
    622 spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
    623     const uint8_t *data)
    624 {
    625 	int		rv;
    626 
    627 	if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
    628 		return EINVAL;
    629 
    630 	while (size) {
    631 		int cnt;
    632 
    633 		if ((rv = spiflash_write_enable(sc)) != 0) {
    634 			spiflash_write_disable(sc);
    635 			return rv;
    636 		}
    637 
    638 		cnt = min(size, sc->sc_write_size);
    639 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
    640 			 cnt, data, NULL)) != 0) {
    641 			spiflash_write_disable(sc);
    642 			return rv;
    643 		}
    644 
    645 		/*
    646 		 * It seems that most devices can write bits fairly
    647 		 * quickly.  For example, one part I have access to
    648 		 * takes ~5msec to process the entire 256 byte page.
    649 		 * Probably this should be modified to cope with
    650 		 * device-specific timing, and maybe also take into
    651 		 * account systems with higher values of HZ (which
    652 		 * could benefit from sleeping.)
    653 		 */
    654 		if ((rv = spiflash_wait(sc, 0)) != 0)
    655 			return rv;
    656 
    657 		data += cnt;
    658 		start += cnt;
    659 		size -= cnt;
    660 	}
    661 
    662 	return 0;
    663 }
    664 
    665 int
    666 spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
    667     uint8_t *data)
    668 {
    669 	int		rv;
    670 
    671 	while (size) {
    672 		int cnt;
    673 
    674 		if (sc->sc_read_size > 0)
    675 			cnt = min(size, sc->sc_read_size);
    676 		else
    677 			cnt = size;
    678 
    679 		if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
    680 			 cnt, NULL, data)) != 0) {
    681 			return rv;
    682 		}
    683 
    684 		start += cnt;
    685 		size -= cnt;
    686 	}
    687 
    688 	return 0;
    689 }
    690 
    691 /* read status register */
    692 int
    693 spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
    694 {
    695 
    696 	return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
    697 }
    698 
    699 int
    700 spiflash_write_enable(spiflash_handle_t sc)
    701 {
    702 
    703 	return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
    704 }
    705 
    706 int
    707 spiflash_write_disable(spiflash_handle_t sc)
    708 {
    709 
    710 	return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
    711 }
    712 
    713 int
    714 spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
    715     size_t addrlen, uint32_t addr,
    716     size_t cnt, const uint8_t *wdata, uint8_t *rdata)
    717 {
    718 	struct spi_transfer	trans;
    719 	struct spi_chunk	chunk1, chunk2;
    720 	char buf[4];
    721 	int i;
    722 
    723 	buf[0] = cmd;
    724 
    725 	if (addrlen > 3)
    726 		return EINVAL;
    727 
    728 	for (i = addrlen; i > 0; i--) {
    729 		buf[i] = addr & 0xff;
    730 		addr >>= 8;
    731 	}
    732 	spi_transfer_init(&trans);
    733 	spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
    734 	spi_transfer_add(&trans, &chunk1);
    735 	if (cnt) {
    736 		spi_chunk_init(&chunk2, cnt, wdata, rdata);
    737 		spi_transfer_add(&trans, &chunk2);
    738 	}
    739 
    740 	spi_transfer(sc->sc_handle, &trans);
    741 	spi_wait(&trans);
    742 
    743 	if (trans.st_flags & SPI_F_ERROR)
    744 		return trans.st_errno;
    745 	return 0;
    746 }
    747 
    748 int
    749 spiflash_wait(spiflash_handle_t sc, int tmo)
    750 {
    751 	int	rv;
    752 	uint8_t	sr;
    753 
    754 	for (;;) {
    755 		if ((rv = spiflash_read_status(sc, &sr)) != 0)
    756 			return rv;
    757 
    758 		if ((sr & SPIFLASH_SR_BUSY) == 0)
    759 			break;
    760 		/*
    761 		 * The devices I have all say typical for sector
    762 		 * erase is ~1sec.  We check time times that often.
    763 		 * (There is no way to interrupt on this.)
    764 		 */
    765 		if (tmo)
    766 			tsleep(&sr, PWAIT, "spiflash_wait", tmo);
    767 	}
    768 	return 0;
    769 }
    770