stb_image.c revision 1.1 1 1.1 jmcneill /* stbi-1.29 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c
2 1.1 jmcneill when you control the images you're loading
3 1.1 jmcneill no warranty implied; use at your own risk
4 1.1 jmcneill
5 1.1 jmcneill QUICK NOTES:
6 1.1 jmcneill Primarily of interest to game developers and other people who can
7 1.1 jmcneill avoid problematic images and only need the trivial interface
8 1.1 jmcneill
9 1.1 jmcneill JPEG baseline (no JPEG progressive)
10 1.1 jmcneill PNG 8-bit only
11 1.1 jmcneill
12 1.1 jmcneill TGA (not sure what subset, if a subset)
13 1.1 jmcneill BMP non-1bpp, non-RLE
14 1.1 jmcneill PSD (composited view only, no extra channels)
15 1.1 jmcneill
16 1.1 jmcneill GIF (*comp always reports as 4-channel)
17 1.1 jmcneill HDR (radiance rgbE format)
18 1.1 jmcneill PIC (Softimage PIC)
19 1.1 jmcneill
20 1.1 jmcneill - decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code)
21 1.1 jmcneill - supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD)
22 1.1 jmcneill
23 1.1 jmcneill Latest revisions:
24 1.1 jmcneill 1.29 (2010-08-16) various warning fixes from Aurelien Pocheville
25 1.1 jmcneill 1.28 (2010-08-01) fix bug in GIF palette transparency (SpartanJ)
26 1.1 jmcneill 1.27 (2010-08-01) cast-to-uint8 to fix warnings (Laurent Gomila)
27 1.1 jmcneill allow trailing 0s at end of image data (Laurent Gomila)
28 1.1 jmcneill 1.26 (2010-07-24) fix bug in file buffering for PNG reported by SpartanJ
29 1.1 jmcneill 1.25 (2010-07-17) refix trans_data warning (Won Chun)
30 1.1 jmcneill 1.24 (2010-07-12) perf improvements reading from files
31 1.1 jmcneill minor perf improvements for jpeg
32 1.1 jmcneill deprecated type-specific functions in hope of feedback
33 1.1 jmcneill attempt to fix trans_data warning (Won Chun)
34 1.1 jmcneill 1.23 fixed bug in iPhone support
35 1.1 jmcneill 1.22 (2010-07-10) removed image *writing* support to stb_image_write.h
36 1.1 jmcneill stbi_info support from Jetro Lauha
37 1.1 jmcneill GIF support from Jean-Marc Lienher
38 1.1 jmcneill iPhone PNG-extensions from James Brown
39 1.1 jmcneill warning-fixes from Nicolas Schulz and Janez Zemva
40 1.1 jmcneill 1.21 fix use of 'uint8' in header (reported by jon blow)
41 1.1 jmcneill 1.20 added support for Softimage PIC, by Tom Seddon
42 1.1 jmcneill
43 1.1 jmcneill See end of file for full revision history.
44 1.1 jmcneill
45 1.1 jmcneill TODO:
46 1.1 jmcneill stbi_info support for BMP,PSD,HDR,PIC
47 1.1 jmcneill rewrite stbi_info and load_file variations to share file handling code
48 1.1 jmcneill (current system allows individual functions to be called directly,
49 1.1 jmcneill since each does all the work, but I doubt anyone uses this in practice)
50 1.1 jmcneill
51 1.1 jmcneill
52 1.1 jmcneill ============================ Contributors =========================
53 1.1 jmcneill
54 1.1 jmcneill Image formats Optimizations & bugfixes
55 1.1 jmcneill Sean Barrett (jpeg, png, bmp) Fabian "ryg" Giesen
56 1.1 jmcneill Nicolas Schulz (hdr, psd)
57 1.1 jmcneill Jonathan Dummer (tga) Bug fixes & warning fixes
58 1.1 jmcneill Jean-Marc Lienher (gif) Marc LeBlanc
59 1.1 jmcneill Tom Seddon (pic) Christpher Lloyd
60 1.1 jmcneill Thatcher Ulrich (psd) Dave Moore
61 1.1 jmcneill Won Chun
62 1.1 jmcneill the Horde3D community
63 1.1 jmcneill Extensions, features Janez Zemva
64 1.1 jmcneill Jetro Lauha (stbi_info) Jonathan Blow
65 1.1 jmcneill James "moose2000" Brown (iPhone PNG) Laurent Gomila
66 1.1 jmcneill Aruelien Pocheville
67 1.1 jmcneill
68 1.1 jmcneill If your name should be here but isn't, let Sean know.
69 1.1 jmcneill
70 1.1 jmcneill */
71 1.1 jmcneill
72 1.1 jmcneill #ifdef _KERNEL
73 1.1 jmcneill #include <dev/stbi/stbiconfig.h>
74 1.1 jmcneill #endif
75 1.1 jmcneill
76 1.1 jmcneill #ifndef STBI_INCLUDE_STB_IMAGE_H
77 1.1 jmcneill #define STBI_INCLUDE_STB_IMAGE_H
78 1.1 jmcneill
79 1.1 jmcneill // To get a header file for this, either cut and paste the header,
80 1.1 jmcneill // or create stb_image.h, #define STBI_HEADER_FILE_ONLY, and
81 1.1 jmcneill // then include stb_image.c from it.
82 1.1 jmcneill
83 1.1 jmcneill //// begin header file ////////////////////////////////////////////////////
84 1.1 jmcneill //
85 1.1 jmcneill // Limitations:
86 1.1 jmcneill // - no jpeg progressive support
87 1.1 jmcneill // - non-HDR formats support 8-bit samples only (jpeg, png)
88 1.1 jmcneill // - no delayed line count (jpeg) -- IJG doesn't support either
89 1.1 jmcneill // - no 1-bit BMP
90 1.1 jmcneill // - GIF always returns *comp=4
91 1.1 jmcneill //
92 1.1 jmcneill // Basic usage (see HDR discussion below):
93 1.1 jmcneill // int x,y,n;
94 1.1 jmcneill // unsigned char *data = stbi_load(filename, &x, &y, &n, 0);
95 1.1 jmcneill // // ... process data if not NULL ...
96 1.1 jmcneill // // ... x = width, y = height, n = # 8-bit components per pixel ...
97 1.1 jmcneill // // ... replace '0' with '1'..'4' to force that many components per pixel
98 1.1 jmcneill // stbi_image_free(data)
99 1.1 jmcneill //
100 1.1 jmcneill // Standard parameters:
101 1.1 jmcneill // int *x -- outputs image width in pixels
102 1.1 jmcneill // int *y -- outputs image height in pixels
103 1.1 jmcneill // int *comp -- outputs # of image components in image file
104 1.1 jmcneill // int req_comp -- if non-zero, # of image components requested in result
105 1.1 jmcneill //
106 1.1 jmcneill // The return value from an image loader is an 'unsigned char *' which points
107 1.1 jmcneill // to the pixel data. The pixel data consists of *y scanlines of *x pixels,
108 1.1 jmcneill // with each pixel consisting of N interleaved 8-bit components; the first
109 1.1 jmcneill // pixel pointed to is top-left-most in the image. There is no padding between
110 1.1 jmcneill // image scanlines or between pixels, regardless of format. The number of
111 1.1 jmcneill // components N is 'req_comp' if req_comp is non-zero, or *comp otherwise.
112 1.1 jmcneill // If req_comp is non-zero, *comp has the number of components that _would_
113 1.1 jmcneill // have been output otherwise. E.g. if you set req_comp to 4, you will always
114 1.1 jmcneill // get RGBA output, but you can check *comp to easily see if it's opaque.
115 1.1 jmcneill //
116 1.1 jmcneill // An output image with N components has the following components interleaved
117 1.1 jmcneill // in this order in each pixel:
118 1.1 jmcneill //
119 1.1 jmcneill // N=#comp components
120 1.1 jmcneill // 1 grey
121 1.1 jmcneill // 2 grey, alpha
122 1.1 jmcneill // 3 red, green, blue
123 1.1 jmcneill // 4 red, green, blue, alpha
124 1.1 jmcneill //
125 1.1 jmcneill // If image loading fails for any reason, the return value will be NULL,
126 1.1 jmcneill // and *x, *y, *comp will be unchanged. The function stbi_failure_reason()
127 1.1 jmcneill // can be queried for an extremely brief, end-user unfriendly explanation
128 1.1 jmcneill // of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid
129 1.1 jmcneill // compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
130 1.1 jmcneill // more user-friendly ones.
131 1.1 jmcneill //
132 1.1 jmcneill // Paletted PNG, BMP, GIF, and PIC images are automatically depalettized.
133 1.1 jmcneill //
134 1.1 jmcneill // ===========================================================================
135 1.1 jmcneill //
136 1.1 jmcneill // iPhone PNG support:
137 1.1 jmcneill //
138 1.1 jmcneill // By default we convert iphone-formatted PNGs back to RGB; nominally they
139 1.1 jmcneill // would silently load as BGR, except the existing code should have just
140 1.1 jmcneill // failed on such iPhone PNGs. But you can disable this conversion by
141 1.1 jmcneill // by calling stbi_convert_iphone_png_to_rgb(0), in which case
142 1.1 jmcneill // you will always just get the native iphone "format" through.
143 1.1 jmcneill //
144 1.1 jmcneill // Call stbi_set_unpremultiply_on_load(1) as well to force a divide per
145 1.1 jmcneill // pixel to remove any premultiplied alpha *only* if the image file explicitly
146 1.1 jmcneill // says there's premultiplied data (currently only happens in iPhone images,
147 1.1 jmcneill // and only if iPhone convert-to-rgb processing is on).
148 1.1 jmcneill //
149 1.1 jmcneill // ===========================================================================
150 1.1 jmcneill //
151 1.1 jmcneill // HDR image support (disable by defining STBI_NO_HDR)
152 1.1 jmcneill //
153 1.1 jmcneill // stb_image now supports loading HDR images in general, and currently
154 1.1 jmcneill // the Radiance .HDR file format, although the support is provided
155 1.1 jmcneill // generically. You can still load any file through the existing interface;
156 1.1 jmcneill // if you attempt to load an HDR file, it will be automatically remapped to
157 1.1 jmcneill // LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
158 1.1 jmcneill // both of these constants can be reconfigured through this interface:
159 1.1 jmcneill //
160 1.1 jmcneill // stbi_hdr_to_ldr_gamma(2.2f);
161 1.1 jmcneill // stbi_hdr_to_ldr_scale(1.0f);
162 1.1 jmcneill //
163 1.1 jmcneill // (note, do not use _inverse_ constants; stbi_image will invert them
164 1.1 jmcneill // appropriately).
165 1.1 jmcneill //
166 1.1 jmcneill // Additionally, there is a new, parallel interface for loading files as
167 1.1 jmcneill // (linear) floats to preserve the full dynamic range:
168 1.1 jmcneill //
169 1.1 jmcneill // float *data = stbi_loadf(filename, &x, &y, &n, 0);
170 1.1 jmcneill //
171 1.1 jmcneill // If you load LDR images through this interface, those images will
172 1.1 jmcneill // be promoted to floating point values, run through the inverse of
173 1.1 jmcneill // constants corresponding to the above:
174 1.1 jmcneill //
175 1.1 jmcneill // stbi_ldr_to_hdr_scale(1.0f);
176 1.1 jmcneill // stbi_ldr_to_hdr_gamma(2.2f);
177 1.1 jmcneill //
178 1.1 jmcneill // Finally, given a filename (or an open file or memory block--see header
179 1.1 jmcneill // file for details) containing image data, you can query for the "most
180 1.1 jmcneill // appropriate" interface to use (that is, whether the image is HDR or
181 1.1 jmcneill // not), using:
182 1.1 jmcneill //
183 1.1 jmcneill // stbi_is_hdr(char *filename);
184 1.1 jmcneill
185 1.1 jmcneill #ifndef STBI_NO_STDIO
186 1.1 jmcneill #include <stdio.h>
187 1.1 jmcneill #endif
188 1.1 jmcneill
189 1.1 jmcneill #define STBI_VERSION 1
190 1.1 jmcneill
191 1.1 jmcneill enum
192 1.1 jmcneill {
193 1.1 jmcneill STBI_default = 0, // only used for req_comp
194 1.1 jmcneill
195 1.1 jmcneill STBI_grey = 1,
196 1.1 jmcneill STBI_grey_alpha = 2,
197 1.1 jmcneill STBI_rgb = 3,
198 1.1 jmcneill STBI_rgb_alpha = 4
199 1.1 jmcneill };
200 1.1 jmcneill
201 1.1 jmcneill typedef unsigned char stbi_uc;
202 1.1 jmcneill
203 1.1 jmcneill #ifdef __cplusplus
204 1.1 jmcneill extern "C" {
205 1.1 jmcneill #endif
206 1.1 jmcneill
207 1.1 jmcneill // PRIMARY API - works on images of any type
208 1.1 jmcneill
209 1.1 jmcneill // load image by filename, open file, or memory buffer
210 1.1 jmcneill extern stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
211 1.1 jmcneill
212 1.1 jmcneill #ifndef STBI_NO_STDIO
213 1.1 jmcneill extern stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp);
214 1.1 jmcneill extern stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
215 1.1 jmcneill // for stbi_load_from_file, file pointer is left pointing immediately after image
216 1.1 jmcneill #endif
217 1.1 jmcneill
218 1.1 jmcneill #ifndef STBI_NO_HDR
219 1.1 jmcneill extern float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
220 1.1 jmcneill
221 1.1 jmcneill #ifndef STBI_NO_STDIO
222 1.1 jmcneill extern float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp);
223 1.1 jmcneill extern float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
224 1.1 jmcneill #endif
225 1.1 jmcneill
226 1.1 jmcneill extern void stbi_hdr_to_ldr_gamma(float gamma);
227 1.1 jmcneill extern void stbi_hdr_to_ldr_scale(float scale);
228 1.1 jmcneill
229 1.1 jmcneill extern void stbi_ldr_to_hdr_gamma(float gamma);
230 1.1 jmcneill extern void stbi_ldr_to_hdr_scale(float scale);
231 1.1 jmcneill #endif // STBI_NO_HDR
232 1.1 jmcneill
233 1.1 jmcneill // get a VERY brief reason for failure
234 1.1 jmcneill // NOT THREADSAFE
235 1.1 jmcneill extern const char *stbi_failure_reason (void);
236 1.1 jmcneill
237 1.1 jmcneill // free the loaded image -- this is just free()
238 1.1 jmcneill extern void stbi_image_free (void *retval_from_stbi_load);
239 1.1 jmcneill
240 1.1 jmcneill // get image dimensions & components without fully decoding
241 1.1 jmcneill extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
242 1.1 jmcneill extern int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len);
243 1.1 jmcneill
244 1.1 jmcneill #ifndef STBI_NO_STDIO
245 1.1 jmcneill extern int stbi_info (char const *filename, int *x, int *y, int *comp);
246 1.1 jmcneill extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp);
247 1.1 jmcneill
248 1.1 jmcneill extern int stbi_is_hdr (char const *filename);
249 1.1 jmcneill extern int stbi_is_hdr_from_file(FILE *f);
250 1.1 jmcneill #endif
251 1.1 jmcneill
252 1.1 jmcneill // for image formats that explicitly notate that they have premultiplied alpha,
253 1.1 jmcneill // we just return the colors as stored in the file. set this flag to force
254 1.1 jmcneill // unpremultiplication. results are undefined if the unpremultiply overflow.
255 1.1 jmcneill extern void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply);
256 1.1 jmcneill
257 1.1 jmcneill // indicate whether we should process iphone images back to canonical format,
258 1.1 jmcneill // or just pass them through "as-is"
259 1.1 jmcneill extern void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert);
260 1.1 jmcneill
261 1.1 jmcneill
262 1.1 jmcneill // ZLIB client - used by PNG, available for other purposes
263 1.1 jmcneill
264 1.1 jmcneill extern char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen);
265 1.1 jmcneill extern char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header);
266 1.1 jmcneill extern char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen);
267 1.1 jmcneill extern int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
268 1.1 jmcneill
269 1.1 jmcneill extern char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen);
270 1.1 jmcneill extern int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
271 1.1 jmcneill
272 1.1 jmcneill // define new loaders
273 1.1 jmcneill typedef struct
274 1.1 jmcneill {
275 1.1 jmcneill int (*test_memory)(stbi_uc const *buffer, int len);
276 1.1 jmcneill stbi_uc * (*load_from_memory)(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
277 1.1 jmcneill #ifndef STBI_NO_STDIO
278 1.1 jmcneill int (*test_file)(FILE *f);
279 1.1 jmcneill stbi_uc * (*load_from_file)(FILE *f, int *x, int *y, int *comp, int req_comp);
280 1.1 jmcneill #endif
281 1.1 jmcneill } stbi_loader;
282 1.1 jmcneill
283 1.1 jmcneill // register a loader by filling out the above structure (you must define ALL functions)
284 1.1 jmcneill // returns 1 if added or already added, 0 if not added (too many loaders)
285 1.1 jmcneill // NOT THREADSAFE
286 1.1 jmcneill extern int stbi_register_loader(stbi_loader *loader);
287 1.1 jmcneill
288 1.1 jmcneill // define faster low-level operations (typically SIMD support)
289 1.1 jmcneill #ifdef STBI_SIMD
290 1.1 jmcneill typedef void (*stbi_idct_8x8)(stbi_uc *out, int out_stride, short data[64], unsigned short *dequantize);
291 1.1 jmcneill // compute an integer IDCT on "input"
292 1.1 jmcneill // input[x] = data[x] * dequantize[x]
293 1.1 jmcneill // write results to 'out': 64 samples, each run of 8 spaced by 'out_stride'
294 1.1 jmcneill // CLAMP results to 0..255
295 1.1 jmcneill typedef void (*stbi_YCbCr_to_RGB_run)(stbi_uc *output, stbi_uc const *y, stbi_uc const *cb, stbi_uc const *cr, int count, int step);
296 1.1 jmcneill // compute a conversion from YCbCr to RGB
297 1.1 jmcneill // 'count' pixels
298 1.1 jmcneill // write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B
299 1.1 jmcneill // y: Y input channel
300 1.1 jmcneill // cb: Cb input channel; scale/biased to be 0..255
301 1.1 jmcneill // cr: Cr input channel; scale/biased to be 0..255
302 1.1 jmcneill
303 1.1 jmcneill extern void stbi_install_idct(stbi_idct_8x8 func);
304 1.1 jmcneill extern void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func);
305 1.1 jmcneill #endif // STBI_SIMD
306 1.1 jmcneill
307 1.1 jmcneill
308 1.1 jmcneill
309 1.1 jmcneill
310 1.1 jmcneill // TYPE-SPECIFIC ACCESS
311 1.1 jmcneill
312 1.1 jmcneill #ifdef STBI_TYPE_SPECIFIC_FUNCTIONS
313 1.1 jmcneill
314 1.1 jmcneill // is it a jpeg?
315 1.1 jmcneill extern int stbi_jpeg_test_memory (stbi_uc const *buffer, int len);
316 1.1 jmcneill extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
317 1.1 jmcneill extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
318 1.1 jmcneill
319 1.1 jmcneill #ifndef STBI_NO_STDIO
320 1.1 jmcneill extern stbi_uc *stbi_jpeg_load (char const *filename, int *x, int *y, int *comp, int req_comp);
321 1.1 jmcneill extern int stbi_jpeg_test_file (FILE *f);
322 1.1 jmcneill extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
323 1.1 jmcneill
324 1.1 jmcneill extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp);
325 1.1 jmcneill extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp);
326 1.1 jmcneill #endif
327 1.1 jmcneill
328 1.1 jmcneill // is it a png?
329 1.1 jmcneill extern int stbi_png_test_memory (stbi_uc const *buffer, int len);
330 1.1 jmcneill extern stbi_uc *stbi_png_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
331 1.1 jmcneill extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp);
332 1.1 jmcneill
333 1.1 jmcneill #ifndef STBI_NO_STDIO
334 1.1 jmcneill extern stbi_uc *stbi_png_load (char const *filename, int *x, int *y, int *comp, int req_comp);
335 1.1 jmcneill extern int stbi_png_info (char const *filename, int *x, int *y, int *comp);
336 1.1 jmcneill extern int stbi_png_test_file (FILE *f);
337 1.1 jmcneill extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
338 1.1 jmcneill extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp);
339 1.1 jmcneill #endif
340 1.1 jmcneill
341 1.1 jmcneill // is it a bmp?
342 1.1 jmcneill extern int stbi_bmp_test_memory (stbi_uc const *buffer, int len);
343 1.1 jmcneill
344 1.1 jmcneill extern stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp);
345 1.1 jmcneill extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
346 1.1 jmcneill #ifndef STBI_NO_STDIO
347 1.1 jmcneill extern int stbi_bmp_test_file (FILE *f);
348 1.1 jmcneill extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
349 1.1 jmcneill #endif
350 1.1 jmcneill
351 1.1 jmcneill // is it a tga?
352 1.1 jmcneill extern int stbi_tga_test_memory (stbi_uc const *buffer, int len);
353 1.1 jmcneill
354 1.1 jmcneill extern stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp);
355 1.1 jmcneill extern stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
356 1.1 jmcneill extern int stbi_tga_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp);
357 1.1 jmcneill #ifndef STBI_NO_STDIO
358 1.1 jmcneill extern int stbi_tga_info_from_file (FILE *f, int *x, int *y, int *comp);
359 1.1 jmcneill extern int stbi_tga_test_file (FILE *f);
360 1.1 jmcneill extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
361 1.1 jmcneill #endif
362 1.1 jmcneill
363 1.1 jmcneill // is it a psd?
364 1.1 jmcneill extern int stbi_psd_test_memory (stbi_uc const *buffer, int len);
365 1.1 jmcneill
366 1.1 jmcneill extern stbi_uc *stbi_psd_load (char const *filename, int *x, int *y, int *comp, int req_comp);
367 1.1 jmcneill extern stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
368 1.1 jmcneill #ifndef STBI_NO_STDIO
369 1.1 jmcneill extern int stbi_psd_test_file (FILE *f);
370 1.1 jmcneill extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
371 1.1 jmcneill #endif
372 1.1 jmcneill
373 1.1 jmcneill // is it an hdr?
374 1.1 jmcneill extern int stbi_hdr_test_memory (stbi_uc const *buffer, int len);
375 1.1 jmcneill
376 1.1 jmcneill extern float * stbi_hdr_load (char const *filename, int *x, int *y, int *comp, int req_comp);
377 1.1 jmcneill extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
378 1.1 jmcneill #ifndef STBI_NO_STDIO
379 1.1 jmcneill extern int stbi_hdr_test_file (FILE *f);
380 1.1 jmcneill extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
381 1.1 jmcneill #endif
382 1.1 jmcneill
383 1.1 jmcneill // is it a pic?
384 1.1 jmcneill extern int stbi_pic_test_memory (stbi_uc const *buffer, int len);
385 1.1 jmcneill
386 1.1 jmcneill extern stbi_uc *stbi_pic_load (char const *filename, int *x, int *y, int *comp, int req_comp);
387 1.1 jmcneill extern stbi_uc *stbi_pic_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
388 1.1 jmcneill #ifndef STBI_NO_STDIO
389 1.1 jmcneill extern int stbi_pic_test_file (FILE *f);
390 1.1 jmcneill extern stbi_uc *stbi_pic_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
391 1.1 jmcneill #endif
392 1.1 jmcneill
393 1.1 jmcneill // is it a gif?
394 1.1 jmcneill extern int stbi_gif_test_memory (stbi_uc const *buffer, int len);
395 1.1 jmcneill
396 1.1 jmcneill extern stbi_uc *stbi_gif_load (char const *filename, int *x, int *y, int *comp, int req_comp);
397 1.1 jmcneill extern stbi_uc *stbi_gif_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
398 1.1 jmcneill extern int stbi_gif_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp);
399 1.1 jmcneill
400 1.1 jmcneill #ifndef STBI_NO_STDIO
401 1.1 jmcneill extern int stbi_gif_test_file (FILE *f);
402 1.1 jmcneill extern stbi_uc *stbi_gif_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
403 1.1 jmcneill extern int stbi_gif_info (char const *filename, int *x, int *y, int *comp);
404 1.1 jmcneill extern int stbi_gif_info_from_file (FILE *f, int *x, int *y, int *comp);
405 1.1 jmcneill #endif
406 1.1 jmcneill
407 1.1 jmcneill #endif//STBI_TYPE_SPECIFIC_FUNCTIONS
408 1.1 jmcneill
409 1.1 jmcneill
410 1.1 jmcneill
411 1.1 jmcneill
412 1.1 jmcneill #ifdef __cplusplus
413 1.1 jmcneill }
414 1.1 jmcneill #endif
415 1.1 jmcneill
416 1.1 jmcneill //
417 1.1 jmcneill //
418 1.1 jmcneill //// end header file /////////////////////////////////////////////////////
419 1.1 jmcneill #endif // STBI_INCLUDE_STB_IMAGE_H
420 1.1 jmcneill
421 1.1 jmcneill #ifndef STBI_HEADER_FILE_ONLY
422 1.1 jmcneill
423 1.1 jmcneill #ifndef STBI_NO_HDR
424 1.1 jmcneill #include <math.h> // ldexp
425 1.1 jmcneill #include <string.h> // strcmp
426 1.1 jmcneill #endif
427 1.1 jmcneill
428 1.1 jmcneill #ifndef STBI_NO_STDIO
429 1.1 jmcneill #include <stdio.h>
430 1.1 jmcneill #endif
431 1.1 jmcneill #ifdef _KERNEL
432 1.1 jmcneill #include <sys/cdefs.h>
433 1.1 jmcneill __KERNEL_RCSID(0, "$NetBSD: stb_image.c,v 1.1 2011/02/06 23:13:04 jmcneill Exp $");
434 1.1 jmcneill #include <sys/param.h>
435 1.1 jmcneill #include <sys/systm.h>
436 1.1 jmcneill #include <sys/kernel.h>
437 1.1 jmcneill #include <sys/types.h>
438 1.1 jmcneill #include <sys/malloc.h>
439 1.1 jmcneill #else
440 1.1 jmcneill #include <stdlib.h>
441 1.1 jmcneill #include <memory.h>
442 1.1 jmcneill #include <assert.h>
443 1.1 jmcneill #include <stdarg.h>
444 1.1 jmcneill #endif
445 1.1 jmcneill
446 1.1 jmcneill #ifdef _KERNEL
447 1.1 jmcneill #define MALLOC(size) malloc((size), M_TEMP, M_WAITOK)
448 1.1 jmcneill #define REALLOC(ptr, size) realloc((ptr), (size), M_TEMP, M_WAITOK)
449 1.1 jmcneill #define FREE(ptr) free((ptr), M_TEMP)
450 1.1 jmcneill #else
451 1.1 jmcneill #define MALLOC(size) malloc((size))
452 1.1 jmcneill #define REALLOC(ptr, size) realloc((ptr), (size))
453 1.1 jmcneill #define FREE(ptr) free((ptr))
454 1.1 jmcneill #endif
455 1.1 jmcneill
456 1.1 jmcneill #ifndef _MSC_VER
457 1.1 jmcneill #ifdef __cplusplus
458 1.1 jmcneill #define __forceinline inline
459 1.1 jmcneill #else
460 1.1 jmcneill #define __forceinline
461 1.1 jmcneill #endif
462 1.1 jmcneill #endif
463 1.1 jmcneill
464 1.1 jmcneill
465 1.1 jmcneill // implementation:
466 1.1 jmcneill typedef unsigned char uint8;
467 1.1 jmcneill typedef unsigned short uint16;
468 1.1 jmcneill typedef signed short int16;
469 1.1 jmcneill typedef unsigned int uint32;
470 1.1 jmcneill typedef signed int int32;
471 1.1 jmcneill #ifndef __NetBSD__
472 1.1 jmcneill typedef unsigned int uint;
473 1.1 jmcneill #endif
474 1.1 jmcneill
475 1.1 jmcneill // should produce compiler error if size is wrong
476 1.1 jmcneill typedef unsigned char validate_uint32[sizeof(uint32)==4 ? 1 : -1];
477 1.1 jmcneill
478 1.1 jmcneill #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE)
479 1.1 jmcneill #define STBI_NO_WRITE
480 1.1 jmcneill #endif
481 1.1 jmcneill
482 1.1 jmcneill #define STBI_NOTUSED(v) v=v
483 1.1 jmcneill
484 1.1 jmcneill #ifdef _MSC_VER
485 1.1 jmcneill #define STBI_HAS_LRTOL
486 1.1 jmcneill #endif
487 1.1 jmcneill
488 1.1 jmcneill #ifdef STBI_HAS_LRTOL
489 1.1 jmcneill #define stbi_lrot(x,y) _lrotl(x,y)
490 1.1 jmcneill #else
491 1.1 jmcneill #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y))))
492 1.1 jmcneill #endif
493 1.1 jmcneill
494 1.1 jmcneill //////////////////////////////////////////////////////////////////////////////
495 1.1 jmcneill //
496 1.1 jmcneill // Generic API that works on all image types
497 1.1 jmcneill //
498 1.1 jmcneill
499 1.1 jmcneill // deprecated functions
500 1.1 jmcneill
501 1.1 jmcneill // is it a jpeg?
502 1.1 jmcneill extern int stbi_jpeg_test_memory (stbi_uc const *buffer, int len);
503 1.1 jmcneill extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
504 1.1 jmcneill extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
505 1.1 jmcneill
506 1.1 jmcneill #ifndef STBI_NO_STDIO
507 1.1 jmcneill extern stbi_uc *stbi_jpeg_load (char const *filename, int *x, int *y, int *comp, int req_comp);
508 1.1 jmcneill extern int stbi_jpeg_test_file (FILE *f);
509 1.1 jmcneill extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
510 1.1 jmcneill
511 1.1 jmcneill extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp);
512 1.1 jmcneill extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp);
513 1.1 jmcneill #endif
514 1.1 jmcneill
515 1.1 jmcneill // is it a png?
516 1.1 jmcneill extern int stbi_png_test_memory (stbi_uc const *buffer, int len);
517 1.1 jmcneill extern stbi_uc *stbi_png_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
518 1.1 jmcneill extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp);
519 1.1 jmcneill
520 1.1 jmcneill #ifndef STBI_NO_STDIO
521 1.1 jmcneill extern stbi_uc *stbi_png_load (char const *filename, int *x, int *y, int *comp, int req_comp);
522 1.1 jmcneill extern int stbi_png_info (char const *filename, int *x, int *y, int *comp);
523 1.1 jmcneill extern int stbi_png_test_file (FILE *f);
524 1.1 jmcneill extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
525 1.1 jmcneill extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp);
526 1.1 jmcneill #endif
527 1.1 jmcneill
528 1.1 jmcneill // is it a bmp?
529 1.1 jmcneill extern int stbi_bmp_test_memory (stbi_uc const *buffer, int len);
530 1.1 jmcneill
531 1.1 jmcneill extern stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp);
532 1.1 jmcneill extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
533 1.1 jmcneill #ifndef STBI_NO_STDIO
534 1.1 jmcneill extern int stbi_bmp_test_file (FILE *f);
535 1.1 jmcneill extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
536 1.1 jmcneill #endif
537 1.1 jmcneill
538 1.1 jmcneill // is it a tga?
539 1.1 jmcneill extern int stbi_tga_test_memory (stbi_uc const *buffer, int len);
540 1.1 jmcneill
541 1.1 jmcneill extern stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp);
542 1.1 jmcneill extern stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
543 1.1 jmcneill #ifndef STBI_NO_STDIO
544 1.1 jmcneill extern int stbi_tga_test_file (FILE *f);
545 1.1 jmcneill extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
546 1.1 jmcneill #endif
547 1.1 jmcneill
548 1.1 jmcneill // is it a psd?
549 1.1 jmcneill extern int stbi_psd_test_memory (stbi_uc const *buffer, int len);
550 1.1 jmcneill
551 1.1 jmcneill extern stbi_uc *stbi_psd_load (char const *filename, int *x, int *y, int *comp, int req_comp);
552 1.1 jmcneill extern stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
553 1.1 jmcneill #ifndef STBI_NO_STDIO
554 1.1 jmcneill extern int stbi_psd_test_file (FILE *f);
555 1.1 jmcneill extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
556 1.1 jmcneill #endif
557 1.1 jmcneill
558 1.1 jmcneill // is it an hdr?
559 1.1 jmcneill extern int stbi_hdr_test_memory (stbi_uc const *buffer, int len);
560 1.1 jmcneill
561 1.1 jmcneill extern float * stbi_hdr_load (char const *filename, int *x, int *y, int *comp, int req_comp);
562 1.1 jmcneill extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
563 1.1 jmcneill #ifndef STBI_NO_STDIO
564 1.1 jmcneill extern int stbi_hdr_test_file (FILE *f);
565 1.1 jmcneill extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
566 1.1 jmcneill #endif
567 1.1 jmcneill
568 1.1 jmcneill // is it a pic?
569 1.1 jmcneill extern int stbi_pic_test_memory (stbi_uc const *buffer, int len);
570 1.1 jmcneill
571 1.1 jmcneill extern stbi_uc *stbi_pic_load (char const *filename, int *x, int *y, int *comp, int req_comp);
572 1.1 jmcneill extern stbi_uc *stbi_pic_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
573 1.1 jmcneill #ifndef STBI_NO_STDIO
574 1.1 jmcneill extern int stbi_pic_test_file (FILE *f);
575 1.1 jmcneill extern stbi_uc *stbi_pic_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
576 1.1 jmcneill #endif
577 1.1 jmcneill
578 1.1 jmcneill // is it a gif?
579 1.1 jmcneill extern int stbi_gif_test_memory (stbi_uc const *buffer, int len);
580 1.1 jmcneill
581 1.1 jmcneill extern stbi_uc *stbi_gif_load (char const *filename, int *x, int *y, int *comp, int req_comp);
582 1.1 jmcneill extern stbi_uc *stbi_gif_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
583 1.1 jmcneill extern int stbi_gif_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp);
584 1.1 jmcneill
585 1.1 jmcneill #ifndef STBI_NO_STDIO
586 1.1 jmcneill extern int stbi_gif_test_file (FILE *f);
587 1.1 jmcneill extern stbi_uc *stbi_gif_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
588 1.1 jmcneill extern int stbi_gif_info (char const *filename, int *x, int *y, int *comp);
589 1.1 jmcneill extern int stbi_gif_info_from_file (FILE *f, int *x, int *y, int *comp);
590 1.1 jmcneill #endif
591 1.1 jmcneill
592 1.1 jmcneill
593 1.1 jmcneill // this is not threadsafe
594 1.1 jmcneill static const char *failure_reason;
595 1.1 jmcneill
596 1.1 jmcneill const char *stbi_failure_reason(void)
597 1.1 jmcneill {
598 1.1 jmcneill return failure_reason;
599 1.1 jmcneill }
600 1.1 jmcneill
601 1.1 jmcneill #ifndef STBI_NO_FAILURE_STRINGS
602 1.1 jmcneill static int e(const char *str)
603 1.1 jmcneill {
604 1.1 jmcneill failure_reason = str;
605 1.1 jmcneill return 0;
606 1.1 jmcneill }
607 1.1 jmcneill #endif
608 1.1 jmcneill
609 1.1 jmcneill #ifdef STBI_NO_FAILURE_STRINGS
610 1.1 jmcneill #define e(x,y) 0
611 1.1 jmcneill #elif defined(STBI_FAILURE_USERMSG)
612 1.1 jmcneill #define e(x,y) e(y)
613 1.1 jmcneill #else
614 1.1 jmcneill #define e(x,y) e(x)
615 1.1 jmcneill #endif
616 1.1 jmcneill
617 1.1 jmcneill #define epf(x,y) ((float *) (e(x,y)?NULL:NULL))
618 1.1 jmcneill #define epuc(x,y) ((unsigned char *) (e(x,y)?NULL:NULL))
619 1.1 jmcneill
620 1.1 jmcneill void stbi_image_free(void *retval_from_stbi_load)
621 1.1 jmcneill {
622 1.1 jmcneill FREE(retval_from_stbi_load);
623 1.1 jmcneill }
624 1.1 jmcneill
625 1.1 jmcneill #define MAX_LOADERS 32
626 1.1 jmcneill stbi_loader *loaders[MAX_LOADERS];
627 1.1 jmcneill static int max_loaders = 0;
628 1.1 jmcneill
629 1.1 jmcneill int stbi_register_loader(stbi_loader *loader)
630 1.1 jmcneill {
631 1.1 jmcneill int i;
632 1.1 jmcneill for (i=0; i < MAX_LOADERS; ++i) {
633 1.1 jmcneill // already present?
634 1.1 jmcneill if (loaders[i] == loader)
635 1.1 jmcneill return 1;
636 1.1 jmcneill // end of the list?
637 1.1 jmcneill if (loaders[i] == NULL) {
638 1.1 jmcneill loaders[i] = loader;
639 1.1 jmcneill max_loaders = i+1;
640 1.1 jmcneill return 1;
641 1.1 jmcneill }
642 1.1 jmcneill }
643 1.1 jmcneill // no room for it
644 1.1 jmcneill return 0;
645 1.1 jmcneill }
646 1.1 jmcneill
647 1.1 jmcneill #ifndef STBI_NO_HDR
648 1.1 jmcneill static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp);
649 1.1 jmcneill static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp);
650 1.1 jmcneill #endif
651 1.1 jmcneill
652 1.1 jmcneill #ifndef STBI_NO_STDIO
653 1.1 jmcneill unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp)
654 1.1 jmcneill {
655 1.1 jmcneill FILE *f = fopen(filename, "rb");
656 1.1 jmcneill unsigned char *result;
657 1.1 jmcneill if (!f) return epuc("can't fopen", "Unable to open file");
658 1.1 jmcneill result = stbi_load_from_file(f,x,y,comp,req_comp);
659 1.1 jmcneill fclose(f);
660 1.1 jmcneill return result;
661 1.1 jmcneill }
662 1.1 jmcneill
663 1.1 jmcneill unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
664 1.1 jmcneill {
665 1.1 jmcneill int i;
666 1.1 jmcneill if (stbi_jpeg_test_file(f)) return stbi_jpeg_load_from_file(f,x,y,comp,req_comp);
667 1.1 jmcneill if (stbi_png_test_file(f)) return stbi_png_load_from_file(f,x,y,comp,req_comp);
668 1.1 jmcneill if (stbi_bmp_test_file(f)) return stbi_bmp_load_from_file(f,x,y,comp,req_comp);
669 1.1 jmcneill if (stbi_gif_test_file(f)) return stbi_gif_load_from_file(f,x,y,comp,req_comp);
670 1.1 jmcneill if (stbi_psd_test_file(f)) return stbi_psd_load_from_file(f,x,y,comp,req_comp);
671 1.1 jmcneill if (stbi_pic_test_file(f)) return stbi_pic_load_from_file(f,x,y,comp,req_comp);
672 1.1 jmcneill
673 1.1 jmcneill #ifndef STBI_NO_HDR
674 1.1 jmcneill if (stbi_hdr_test_file(f)) {
675 1.1 jmcneill float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp);
676 1.1 jmcneill return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
677 1.1 jmcneill }
678 1.1 jmcneill #endif
679 1.1 jmcneill
680 1.1 jmcneill for (i=0; i < max_loaders; ++i)
681 1.1 jmcneill if (loaders[i]->test_file(f))
682 1.1 jmcneill return loaders[i]->load_from_file(f,x,y,comp,req_comp);
683 1.1 jmcneill // test tga last because it's a crappy test!
684 1.1 jmcneill if (stbi_tga_test_file(f))
685 1.1 jmcneill return stbi_tga_load_from_file(f,x,y,comp,req_comp);
686 1.1 jmcneill return epuc("unknown image type", "Image not of any known type, or corrupt");
687 1.1 jmcneill }
688 1.1 jmcneill #endif
689 1.1 jmcneill
690 1.1 jmcneill unsigned char *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
691 1.1 jmcneill {
692 1.1 jmcneill int i;
693 1.1 jmcneill if (stbi_jpeg_test_memory(buffer,len)) return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp);
694 1.1 jmcneill if (stbi_png_test_memory(buffer,len)) return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp);
695 1.1 jmcneill if (stbi_bmp_test_memory(buffer,len)) return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp);
696 1.1 jmcneill if (stbi_gif_test_memory(buffer,len)) return stbi_gif_load_from_memory(buffer,len,x,y,comp,req_comp);
697 1.1 jmcneill if (stbi_psd_test_memory(buffer,len)) return stbi_psd_load_from_memory(buffer,len,x,y,comp,req_comp);
698 1.1 jmcneill if (stbi_pic_test_memory(buffer,len)) return stbi_pic_load_from_memory(buffer,len,x,y,comp,req_comp);
699 1.1 jmcneill
700 1.1 jmcneill #ifndef STBI_NO_HDR
701 1.1 jmcneill if (stbi_hdr_test_memory(buffer, len)) {
702 1.1 jmcneill float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp);
703 1.1 jmcneill return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
704 1.1 jmcneill }
705 1.1 jmcneill #endif
706 1.1 jmcneill
707 1.1 jmcneill for (i=0; i < max_loaders; ++i)
708 1.1 jmcneill if (loaders[i]->test_memory(buffer,len))
709 1.1 jmcneill return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp);
710 1.1 jmcneill // test tga last because it's a crappy test!
711 1.1 jmcneill if (stbi_tga_test_memory(buffer,len))
712 1.1 jmcneill return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp);
713 1.1 jmcneill return epuc("unknown image type", "Image not of any known type, or corrupt");
714 1.1 jmcneill }
715 1.1 jmcneill
716 1.1 jmcneill #ifndef STBI_NO_HDR
717 1.1 jmcneill
718 1.1 jmcneill #ifndef STBI_NO_STDIO
719 1.1 jmcneill float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp)
720 1.1 jmcneill {
721 1.1 jmcneill FILE *f = fopen(filename, "rb");
722 1.1 jmcneill float *result;
723 1.1 jmcneill if (!f) return epf("can't fopen", "Unable to open file");
724 1.1 jmcneill result = stbi_loadf_from_file(f,x,y,comp,req_comp);
725 1.1 jmcneill fclose(f);
726 1.1 jmcneill return result;
727 1.1 jmcneill }
728 1.1 jmcneill
729 1.1 jmcneill float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
730 1.1 jmcneill {
731 1.1 jmcneill unsigned char *data;
732 1.1 jmcneill #ifndef STBI_NO_HDR
733 1.1 jmcneill if (stbi_hdr_test_file(f))
734 1.1 jmcneill return stbi_hdr_load_from_file(f,x,y,comp,req_comp);
735 1.1 jmcneill #endif
736 1.1 jmcneill data = stbi_load_from_file(f, x, y, comp, req_comp);
737 1.1 jmcneill if (data)
738 1.1 jmcneill return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
739 1.1 jmcneill return epf("unknown image type", "Image not of any known type, or corrupt");
740 1.1 jmcneill }
741 1.1 jmcneill #endif
742 1.1 jmcneill
743 1.1 jmcneill float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
744 1.1 jmcneill {
745 1.1 jmcneill stbi_uc *data;
746 1.1 jmcneill #ifndef STBI_NO_HDR
747 1.1 jmcneill if (stbi_hdr_test_memory(buffer, len))
748 1.1 jmcneill return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp);
749 1.1 jmcneill #endif
750 1.1 jmcneill data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp);
751 1.1 jmcneill if (data)
752 1.1 jmcneill return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
753 1.1 jmcneill return epf("unknown image type", "Image not of any known type, or corrupt");
754 1.1 jmcneill }
755 1.1 jmcneill #endif
756 1.1 jmcneill
757 1.1 jmcneill // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is
758 1.1 jmcneill // defined, for API simplicity; if STBI_NO_HDR is defined, it always
759 1.1 jmcneill // reports false!
760 1.1 jmcneill
761 1.1 jmcneill int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len)
762 1.1 jmcneill {
763 1.1 jmcneill #ifndef STBI_NO_HDR
764 1.1 jmcneill return stbi_hdr_test_memory(buffer, len);
765 1.1 jmcneill #else
766 1.1 jmcneill STBI_NOTUSED(buffer);
767 1.1 jmcneill STBI_NOTUSED(len);
768 1.1 jmcneill return 0;
769 1.1 jmcneill #endif
770 1.1 jmcneill }
771 1.1 jmcneill
772 1.1 jmcneill #ifndef STBI_NO_STDIO
773 1.1 jmcneill extern int stbi_is_hdr (char const *filename)
774 1.1 jmcneill {
775 1.1 jmcneill FILE *f = fopen(filename, "rb");
776 1.1 jmcneill int result=0;
777 1.1 jmcneill if (f) {
778 1.1 jmcneill result = stbi_is_hdr_from_file(f);
779 1.1 jmcneill fclose(f);
780 1.1 jmcneill }
781 1.1 jmcneill return result;
782 1.1 jmcneill }
783 1.1 jmcneill
784 1.1 jmcneill extern int stbi_is_hdr_from_file(FILE *f)
785 1.1 jmcneill {
786 1.1 jmcneill #ifndef STBI_NO_HDR
787 1.1 jmcneill return stbi_hdr_test_file(f);
788 1.1 jmcneill #else
789 1.1 jmcneill return 0;
790 1.1 jmcneill #endif
791 1.1 jmcneill }
792 1.1 jmcneill
793 1.1 jmcneill #endif
794 1.1 jmcneill
795 1.1 jmcneill #ifndef STBI_NO_HDR
796 1.1 jmcneill static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f;
797 1.1 jmcneill static float l2h_gamma=2.2f, l2h_scale=1.0f;
798 1.1 jmcneill
799 1.1 jmcneill void stbi_hdr_to_ldr_gamma(float gamma) { h2l_gamma_i = 1/gamma; }
800 1.1 jmcneill void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; }
801 1.1 jmcneill
802 1.1 jmcneill void stbi_ldr_to_hdr_gamma(float gamma) { l2h_gamma = gamma; }
803 1.1 jmcneill void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; }
804 1.1 jmcneill #endif
805 1.1 jmcneill
806 1.1 jmcneill
807 1.1 jmcneill //////////////////////////////////////////////////////////////////////////////
808 1.1 jmcneill //
809 1.1 jmcneill // Common code used by all image loaders
810 1.1 jmcneill //
811 1.1 jmcneill
812 1.1 jmcneill enum
813 1.1 jmcneill {
814 1.1 jmcneill SCAN_load=0,
815 1.1 jmcneill SCAN_type,
816 1.1 jmcneill SCAN_header
817 1.1 jmcneill };
818 1.1 jmcneill
819 1.1 jmcneill typedef struct
820 1.1 jmcneill {
821 1.1 jmcneill uint32 img_x, img_y;
822 1.1 jmcneill int img_n, img_out_n;
823 1.1 jmcneill
824 1.1 jmcneill #ifndef STBI_NO_STDIO
825 1.1 jmcneill FILE *img_file;
826 1.1 jmcneill int buflen;
827 1.1 jmcneill uint8 buffer_start[128];
828 1.1 jmcneill int from_file;
829 1.1 jmcneill #endif
830 1.1 jmcneill uint8 const *img_buffer, *img_buffer_end;
831 1.1 jmcneill } stbi;
832 1.1 jmcneill
833 1.1 jmcneill #ifndef STBI_NO_STDIO
834 1.1 jmcneill static void start_file(stbi *s, FILE *f)
835 1.1 jmcneill {
836 1.1 jmcneill s->img_file = f;
837 1.1 jmcneill s->buflen = sizeof(s->buffer_start);
838 1.1 jmcneill s->img_buffer_end = s->buffer_start + s->buflen;
839 1.1 jmcneill s->img_buffer = s->img_buffer_end;
840 1.1 jmcneill s->from_file = 1;
841 1.1 jmcneill }
842 1.1 jmcneill #endif
843 1.1 jmcneill
844 1.1 jmcneill static void start_mem(stbi *s, uint8 const *buffer, int len)
845 1.1 jmcneill {
846 1.1 jmcneill #ifndef STBI_NO_STDIO
847 1.1 jmcneill s->img_file = NULL;
848 1.1 jmcneill s->from_file = 0;
849 1.1 jmcneill #endif
850 1.1 jmcneill s->img_buffer = (uint8 const *) buffer;
851 1.1 jmcneill s->img_buffer_end = (uint8 const *) buffer+len;
852 1.1 jmcneill }
853 1.1 jmcneill
854 1.1 jmcneill #ifndef STBI_NO_STDIO
855 1.1 jmcneill static void refill_buffer(stbi *s)
856 1.1 jmcneill {
857 1.1 jmcneill int n = fread(s->buffer_start, 1, s->buflen, s->img_file);
858 1.1 jmcneill if (n == 0) {
859 1.1 jmcneill s->from_file = 0;
860 1.1 jmcneill s->img_buffer = s->img_buffer_end-1;
861 1.1 jmcneill #if 0
862 1.1 jmcneill *s->img_buffer = 0;
863 1.1 jmcneill #endif
864 1.1 jmcneill } else {
865 1.1 jmcneill s->img_buffer = s->buffer_start;
866 1.1 jmcneill s->img_buffer_end = s->buffer_start + n;
867 1.1 jmcneill }
868 1.1 jmcneill }
869 1.1 jmcneill #endif
870 1.1 jmcneill
871 1.1 jmcneill __forceinline static int get8(stbi *s)
872 1.1 jmcneill {
873 1.1 jmcneill if (s->img_buffer < s->img_buffer_end)
874 1.1 jmcneill return *s->img_buffer++;
875 1.1 jmcneill #ifndef STBI_NO_STDIO
876 1.1 jmcneill if (s->from_file) {
877 1.1 jmcneill refill_buffer(s);
878 1.1 jmcneill return *s->img_buffer++;
879 1.1 jmcneill }
880 1.1 jmcneill #endif
881 1.1 jmcneill return 0;
882 1.1 jmcneill }
883 1.1 jmcneill
884 1.1 jmcneill __forceinline static int at_eof(stbi *s)
885 1.1 jmcneill {
886 1.1 jmcneill #ifndef STBI_NO_STDIO
887 1.1 jmcneill if (s->img_file) {
888 1.1 jmcneill if (!feof(s->img_file)) return 0;
889 1.1 jmcneill // if feof() is true, check if buffer = end
890 1.1 jmcneill // special case: we've only got the special 0 character at the end
891 1.1 jmcneill if (s->from_file == 0) return 1;
892 1.1 jmcneill }
893 1.1 jmcneill #endif
894 1.1 jmcneill return s->img_buffer >= s->img_buffer_end;
895 1.1 jmcneill }
896 1.1 jmcneill
897 1.1 jmcneill __forceinline static uint8 get8u(stbi *s)
898 1.1 jmcneill {
899 1.1 jmcneill return (uint8) get8(s);
900 1.1 jmcneill }
901 1.1 jmcneill
902 1.1 jmcneill static void skip(stbi *s, int n)
903 1.1 jmcneill {
904 1.1 jmcneill #ifndef STBI_NO_STDIO
905 1.1 jmcneill if (s->img_file) {
906 1.1 jmcneill int blen = s->img_buffer_end - s->img_buffer;
907 1.1 jmcneill if (blen < n) {
908 1.1 jmcneill s->img_buffer = s->img_buffer_end;
909 1.1 jmcneill fseek(s->img_file, n - blen, SEEK_CUR);
910 1.1 jmcneill return;
911 1.1 jmcneill }
912 1.1 jmcneill }
913 1.1 jmcneill #endif
914 1.1 jmcneill s->img_buffer += n;
915 1.1 jmcneill }
916 1.1 jmcneill
917 1.1 jmcneill static int getn(stbi *s, stbi_uc *buffer, int n)
918 1.1 jmcneill {
919 1.1 jmcneill #ifndef STBI_NO_STDIO
920 1.1 jmcneill if (s->img_file) {
921 1.1 jmcneill int blen = s->img_buffer_end - s->img_buffer;
922 1.1 jmcneill if (blen < n) {
923 1.1 jmcneill int res;
924 1.1 jmcneill memcpy(buffer, s->img_buffer, blen);
925 1.1 jmcneill res = ((int) fread(buffer + blen, 1, n - blen, s->img_file) == (n-blen));
926 1.1 jmcneill s->img_buffer = s->img_buffer_end;
927 1.1 jmcneill return res;
928 1.1 jmcneill }
929 1.1 jmcneill }
930 1.1 jmcneill #endif
931 1.1 jmcneill if (s->img_buffer+n <= s->img_buffer_end) {
932 1.1 jmcneill memcpy(buffer, s->img_buffer, n);
933 1.1 jmcneill s->img_buffer += n;
934 1.1 jmcneill return 1;
935 1.1 jmcneill } else
936 1.1 jmcneill return 0;
937 1.1 jmcneill }
938 1.1 jmcneill
939 1.1 jmcneill static int get16(stbi *s)
940 1.1 jmcneill {
941 1.1 jmcneill int z = get8(s);
942 1.1 jmcneill return (z << 8) + get8(s);
943 1.1 jmcneill }
944 1.1 jmcneill
945 1.1 jmcneill static uint32 get32(stbi *s)
946 1.1 jmcneill {
947 1.1 jmcneill uint32 z = get16(s);
948 1.1 jmcneill return (z << 16) + get16(s);
949 1.1 jmcneill }
950 1.1 jmcneill
951 1.1 jmcneill static int get16le(stbi *s)
952 1.1 jmcneill {
953 1.1 jmcneill int z = get8(s);
954 1.1 jmcneill return z + (get8(s) << 8);
955 1.1 jmcneill }
956 1.1 jmcneill
957 1.1 jmcneill static uint32 get32le(stbi *s)
958 1.1 jmcneill {
959 1.1 jmcneill uint32 z = get16le(s);
960 1.1 jmcneill return z + (get16le(s) << 16);
961 1.1 jmcneill }
962 1.1 jmcneill
963 1.1 jmcneill //////////////////////////////////////////////////////////////////////////////
964 1.1 jmcneill //
965 1.1 jmcneill // generic converter from built-in img_n to req_comp
966 1.1 jmcneill // individual types do this automatically as much as possible (e.g. jpeg
967 1.1 jmcneill // does all cases internally since it needs to colorspace convert anyway,
968 1.1 jmcneill // and it never has alpha, so very few cases ). png can automatically
969 1.1 jmcneill // interleave an alpha=255 channel, but falls back to this for other cases
970 1.1 jmcneill //
971 1.1 jmcneill // assume data buffer is malloced, so malloc a new one and free that one
972 1.1 jmcneill // only failure mode is malloc failing
973 1.1 jmcneill
974 1.1 jmcneill static uint8 compute_y(int r, int g, int b)
975 1.1 jmcneill {
976 1.1 jmcneill return (uint8) (((r*77) + (g*150) + (29*b)) >> 8);
977 1.1 jmcneill }
978 1.1 jmcneill
979 1.1 jmcneill static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, uint x, uint y)
980 1.1 jmcneill {
981 1.1 jmcneill int i,j;
982 1.1 jmcneill unsigned char *good;
983 1.1 jmcneill
984 1.1 jmcneill if (req_comp == img_n) return data;
985 1.1 jmcneill assert(req_comp >= 1 && req_comp <= 4);
986 1.1 jmcneill
987 1.1 jmcneill good = (unsigned char *) MALLOC(req_comp * x * y);
988 1.1 jmcneill if (good == NULL) {
989 1.1 jmcneill FREE(data);
990 1.1 jmcneill return epuc("outofmem", "Out of memory");
991 1.1 jmcneill }
992 1.1 jmcneill
993 1.1 jmcneill for (j=0; j < (int) y; ++j) {
994 1.1 jmcneill unsigned char *src = data + j * x * img_n ;
995 1.1 jmcneill unsigned char *dest = good + j * x * req_comp;
996 1.1 jmcneill
997 1.1 jmcneill #define COMBO(a,b) ((a)*8+(b))
998 1.1 jmcneill #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
999 1.1 jmcneill // convert source image with img_n components to one with req_comp components;
1000 1.1 jmcneill // avoid switch per pixel, so use switch per scanline and massive macros
1001 1.1 jmcneill switch (COMBO(img_n, req_comp)) {
1002 1.1 jmcneill CASE(1,2) dest[0]=src[0], dest[1]=255; break;
1003 1.1 jmcneill CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break;
1004 1.1 jmcneill CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break;
1005 1.1 jmcneill CASE(2,1) dest[0]=src[0]; break;
1006 1.1 jmcneill CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break;
1007 1.1 jmcneill CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break;
1008 1.1 jmcneill CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break;
1009 1.1 jmcneill CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break;
1010 1.1 jmcneill CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break;
1011 1.1 jmcneill CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break;
1012 1.1 jmcneill CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break;
1013 1.1 jmcneill CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break;
1014 1.1 jmcneill default: assert(0);
1015 1.1 jmcneill }
1016 1.1 jmcneill #undef CASE
1017 1.1 jmcneill }
1018 1.1 jmcneill
1019 1.1 jmcneill FREE(data);
1020 1.1 jmcneill return good;
1021 1.1 jmcneill }
1022 1.1 jmcneill
1023 1.1 jmcneill #ifndef STBI_NO_HDR
1024 1.1 jmcneill static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp)
1025 1.1 jmcneill {
1026 1.1 jmcneill int i,k,n;
1027 1.1 jmcneill float *output = (float *) MALLOC(x * y * comp * sizeof(float));
1028 1.1 jmcneill if (output == NULL) { FREE(data); return epf("outofmem", "Out of memory"); }
1029 1.1 jmcneill // compute number of non-alpha components
1030 1.1 jmcneill if (comp & 1) n = comp; else n = comp-1;
1031 1.1 jmcneill for (i=0; i < x*y; ++i) {
1032 1.1 jmcneill for (k=0; k < n; ++k) {
1033 1.1 jmcneill output[i*comp + k] = (float) pow(data[i*comp+k]/255.0f, l2h_gamma) * l2h_scale;
1034 1.1 jmcneill }
1035 1.1 jmcneill if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f;
1036 1.1 jmcneill }
1037 1.1 jmcneill FREE(data);
1038 1.1 jmcneill return output;
1039 1.1 jmcneill }
1040 1.1 jmcneill
1041 1.1 jmcneill #define float2int(x) ((int) (x))
1042 1.1 jmcneill static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp)
1043 1.1 jmcneill {
1044 1.1 jmcneill int i,k,n;
1045 1.1 jmcneill stbi_uc *output = (stbi_uc *) MALLOC(x * y * comp);
1046 1.1 jmcneill if (output == NULL) { FREE(data); return epuc("outofmem", "Out of memory"); }
1047 1.1 jmcneill // compute number of non-alpha components
1048 1.1 jmcneill if (comp & 1) n = comp; else n = comp-1;
1049 1.1 jmcneill for (i=0; i < x*y; ++i) {
1050 1.1 jmcneill for (k=0; k < n; ++k) {
1051 1.1 jmcneill float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f;
1052 1.1 jmcneill if (z < 0) z = 0;
1053 1.1 jmcneill if (z > 255) z = 255;
1054 1.1 jmcneill output[i*comp + k] = (uint8) float2int(z);
1055 1.1 jmcneill }
1056 1.1 jmcneill if (k < comp) {
1057 1.1 jmcneill float z = data[i*comp+k] * 255 + 0.5f;
1058 1.1 jmcneill if (z < 0) z = 0;
1059 1.1 jmcneill if (z > 255) z = 255;
1060 1.1 jmcneill output[i*comp + k] = (uint8) float2int(z);
1061 1.1 jmcneill }
1062 1.1 jmcneill }
1063 1.1 jmcneill FREE(data);
1064 1.1 jmcneill return output;
1065 1.1 jmcneill }
1066 1.1 jmcneill #endif
1067 1.1 jmcneill
1068 1.1 jmcneill //////////////////////////////////////////////////////////////////////////////
1069 1.1 jmcneill //
1070 1.1 jmcneill // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation)
1071 1.1 jmcneill //
1072 1.1 jmcneill // simple implementation
1073 1.1 jmcneill // - channel subsampling of at most 2 in each dimension
1074 1.1 jmcneill // - doesn't support delayed output of y-dimension
1075 1.1 jmcneill // - simple interface (only one output format: 8-bit interleaved RGB)
1076 1.1 jmcneill // - doesn't try to recover corrupt jpegs
1077 1.1 jmcneill // - doesn't allow partial loading, loading multiple at once
1078 1.1 jmcneill // - still fast on x86 (copying globals into locals doesn't help x86)
1079 1.1 jmcneill // - allocates lots of intermediate memory (full size of all components)
1080 1.1 jmcneill // - non-interleaved case requires this anyway
1081 1.1 jmcneill // - allows good upsampling (see next)
1082 1.1 jmcneill // high-quality
1083 1.1 jmcneill // - upsampled channels are bilinearly interpolated, even across blocks
1084 1.1 jmcneill // - quality integer IDCT derived from IJG's 'slow'
1085 1.1 jmcneill // performance
1086 1.1 jmcneill // - fast huffman; reasonable integer IDCT
1087 1.1 jmcneill // - uses a lot of intermediate memory, could cache poorly
1088 1.1 jmcneill // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4
1089 1.1 jmcneill // stb_jpeg: 1.34 seconds (MSVC6, default release build)
1090 1.1 jmcneill // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro)
1091 1.1 jmcneill // IJL11.dll: 1.08 seconds (compiled by intel)
1092 1.1 jmcneill // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG)
1093 1.1 jmcneill // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro)
1094 1.1 jmcneill
1095 1.1 jmcneill // huffman decoding acceleration
1096 1.1 jmcneill #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache
1097 1.1 jmcneill
1098 1.1 jmcneill typedef struct
1099 1.1 jmcneill {
1100 1.1 jmcneill uint8 fast[1 << FAST_BITS];
1101 1.1 jmcneill // weirdly, repacking this into AoS is a 10% speed loss, instead of a win
1102 1.1 jmcneill uint16 code[256];
1103 1.1 jmcneill uint8 values[256];
1104 1.1 jmcneill uint8 size[257];
1105 1.1 jmcneill unsigned int maxcode[18];
1106 1.1 jmcneill int delta[17]; // old 'firstsymbol' - old 'firstcode'
1107 1.1 jmcneill } huffman;
1108 1.1 jmcneill
1109 1.1 jmcneill typedef struct
1110 1.1 jmcneill {
1111 1.1 jmcneill #ifdef STBI_SIMD
1112 1.1 jmcneill unsigned short dequant2[4][64];
1113 1.1 jmcneill #endif
1114 1.1 jmcneill stbi s;
1115 1.1 jmcneill huffman huff_dc[4];
1116 1.1 jmcneill huffman huff_ac[4];
1117 1.1 jmcneill uint8 dequant[4][64];
1118 1.1 jmcneill
1119 1.1 jmcneill // sizes for components, interleaved MCUs
1120 1.1 jmcneill int img_h_max, img_v_max;
1121 1.1 jmcneill int img_mcu_x, img_mcu_y;
1122 1.1 jmcneill int img_mcu_w, img_mcu_h;
1123 1.1 jmcneill
1124 1.1 jmcneill // definition of jpeg image component
1125 1.1 jmcneill struct
1126 1.1 jmcneill {
1127 1.1 jmcneill int id;
1128 1.1 jmcneill int h,v;
1129 1.1 jmcneill int tq;
1130 1.1 jmcneill int hd,ha;
1131 1.1 jmcneill int dc_pred;
1132 1.1 jmcneill
1133 1.1 jmcneill int x,y,w2,h2;
1134 1.1 jmcneill uint8 *data;
1135 1.1 jmcneill void *raw_data;
1136 1.1 jmcneill uint8 *linebuf;
1137 1.1 jmcneill } img_comp[4];
1138 1.1 jmcneill
1139 1.1 jmcneill uint32 code_buffer; // jpeg entropy-coded buffer
1140 1.1 jmcneill int code_bits; // number of valid bits
1141 1.1 jmcneill unsigned char marker; // marker seen while filling entropy buffer
1142 1.1 jmcneill int nomore; // flag if we saw a marker so must stop
1143 1.1 jmcneill
1144 1.1 jmcneill int scan_n, order[4];
1145 1.1 jmcneill int restart_interval, todo;
1146 1.1 jmcneill } jpeg;
1147 1.1 jmcneill
1148 1.1 jmcneill static int build_huffman(huffman *h, int *count)
1149 1.1 jmcneill {
1150 1.1 jmcneill int i,j,k=0,code;
1151 1.1 jmcneill // build size list for each symbol (from JPEG spec)
1152 1.1 jmcneill for (i=0; i < 16; ++i)
1153 1.1 jmcneill for (j=0; j < count[i]; ++j)
1154 1.1 jmcneill h->size[k++] = (uint8) (i+1);
1155 1.1 jmcneill h->size[k] = 0;
1156 1.1 jmcneill
1157 1.1 jmcneill // compute actual symbols (from jpeg spec)
1158 1.1 jmcneill code = 0;
1159 1.1 jmcneill k = 0;
1160 1.1 jmcneill for(j=1; j <= 16; ++j) {
1161 1.1 jmcneill // compute delta to add to code to compute symbol id
1162 1.1 jmcneill h->delta[j] = k - code;
1163 1.1 jmcneill if (h->size[k] == j) {
1164 1.1 jmcneill while (h->size[k] == j)
1165 1.1 jmcneill h->code[k++] = (uint16) (code++);
1166 1.1 jmcneill if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG");
1167 1.1 jmcneill }
1168 1.1 jmcneill // compute largest code + 1 for this size, preshifted as needed later
1169 1.1 jmcneill h->maxcode[j] = code << (16-j);
1170 1.1 jmcneill code <<= 1;
1171 1.1 jmcneill }
1172 1.1 jmcneill h->maxcode[j] = 0xffffffff;
1173 1.1 jmcneill
1174 1.1 jmcneill // build non-spec acceleration table; 255 is flag for not-accelerated
1175 1.1 jmcneill memset(h->fast, 255, 1 << FAST_BITS);
1176 1.1 jmcneill for (i=0; i < k; ++i) {
1177 1.1 jmcneill int s = h->size[i];
1178 1.1 jmcneill if (s <= FAST_BITS) {
1179 1.1 jmcneill int c = h->code[i] << (FAST_BITS-s);
1180 1.1 jmcneill int m = 1 << (FAST_BITS-s);
1181 1.1 jmcneill for (j=0; j < m; ++j) {
1182 1.1 jmcneill h->fast[c+j] = (uint8) i;
1183 1.1 jmcneill }
1184 1.1 jmcneill }
1185 1.1 jmcneill }
1186 1.1 jmcneill return 1;
1187 1.1 jmcneill }
1188 1.1 jmcneill
1189 1.1 jmcneill static void grow_buffer_unsafe(jpeg *j)
1190 1.1 jmcneill {
1191 1.1 jmcneill do {
1192 1.1 jmcneill int b = j->nomore ? 0 : get8(&j->s);
1193 1.1 jmcneill if (b == 0xff) {
1194 1.1 jmcneill int c = get8(&j->s);
1195 1.1 jmcneill if (c != 0) {
1196 1.1 jmcneill j->marker = (unsigned char) c;
1197 1.1 jmcneill j->nomore = 1;
1198 1.1 jmcneill return;
1199 1.1 jmcneill }
1200 1.1 jmcneill }
1201 1.1 jmcneill j->code_buffer |= b << (24 - j->code_bits);
1202 1.1 jmcneill j->code_bits += 8;
1203 1.1 jmcneill } while (j->code_bits <= 24);
1204 1.1 jmcneill }
1205 1.1 jmcneill
1206 1.1 jmcneill // (1 << n) - 1
1207 1.1 jmcneill static uint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
1208 1.1 jmcneill
1209 1.1 jmcneill // decode a jpeg huffman value from the bitstream
1210 1.1 jmcneill __forceinline static int decode(jpeg *j, huffman *h)
1211 1.1 jmcneill {
1212 1.1 jmcneill unsigned int temp;
1213 1.1 jmcneill int c,k;
1214 1.1 jmcneill
1215 1.1 jmcneill if (j->code_bits < 16) grow_buffer_unsafe(j);
1216 1.1 jmcneill
1217 1.1 jmcneill // look at the top FAST_BITS and determine what symbol ID it is,
1218 1.1 jmcneill // if the code is <= FAST_BITS
1219 1.1 jmcneill c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
1220 1.1 jmcneill k = h->fast[c];
1221 1.1 jmcneill if (k < 255) {
1222 1.1 jmcneill int s = h->size[k];
1223 1.1 jmcneill if (s > j->code_bits)
1224 1.1 jmcneill return -1;
1225 1.1 jmcneill j->code_buffer <<= s;
1226 1.1 jmcneill j->code_bits -= s;
1227 1.1 jmcneill return h->values[k];
1228 1.1 jmcneill }
1229 1.1 jmcneill
1230 1.1 jmcneill // naive test is to shift the code_buffer down so k bits are
1231 1.1 jmcneill // valid, then test against maxcode. To speed this up, we've
1232 1.1 jmcneill // preshifted maxcode left so that it has (16-k) 0s at the
1233 1.1 jmcneill // end; in other words, regardless of the number of bits, it
1234 1.1 jmcneill // wants to be compared against something shifted to have 16;
1235 1.1 jmcneill // that way we don't need to shift inside the loop.
1236 1.1 jmcneill temp = j->code_buffer >> 16;
1237 1.1 jmcneill for (k=FAST_BITS+1 ; ; ++k)
1238 1.1 jmcneill if (temp < h->maxcode[k])
1239 1.1 jmcneill break;
1240 1.1 jmcneill if (k == 17) {
1241 1.1 jmcneill // error! code not found
1242 1.1 jmcneill j->code_bits -= 16;
1243 1.1 jmcneill return -1;
1244 1.1 jmcneill }
1245 1.1 jmcneill
1246 1.1 jmcneill if (k > j->code_bits)
1247 1.1 jmcneill return -1;
1248 1.1 jmcneill
1249 1.1 jmcneill // convert the huffman code to the symbol id
1250 1.1 jmcneill c = ((j->code_buffer >> (32 - k)) & bmask[k]) + h->delta[k];
1251 1.1 jmcneill assert((((j->code_buffer) >> (32 - h->size[c])) & bmask[h->size[c]]) == h->code[c]);
1252 1.1 jmcneill
1253 1.1 jmcneill // convert the id to a symbol
1254 1.1 jmcneill j->code_bits -= k;
1255 1.1 jmcneill j->code_buffer <<= k;
1256 1.1 jmcneill return h->values[c];
1257 1.1 jmcneill }
1258 1.1 jmcneill
1259 1.1 jmcneill // combined JPEG 'receive' and JPEG 'extend', since baseline
1260 1.1 jmcneill // always extends everything it receives.
1261 1.1 jmcneill __forceinline static int extend_receive(jpeg *j, int n)
1262 1.1 jmcneill {
1263 1.1 jmcneill unsigned int m = 1 << (n-1);
1264 1.1 jmcneill unsigned int k;
1265 1.1 jmcneill if (j->code_bits < n) grow_buffer_unsafe(j);
1266 1.1 jmcneill
1267 1.1 jmcneill #if 1
1268 1.1 jmcneill k = stbi_lrot(j->code_buffer, n);
1269 1.1 jmcneill j->code_buffer = k & ~bmask[n];
1270 1.1 jmcneill k &= bmask[n];
1271 1.1 jmcneill j->code_bits -= n;
1272 1.1 jmcneill #else
1273 1.1 jmcneill k = (j->code_buffer >> (32 - n)) & bmask[n];
1274 1.1 jmcneill j->code_bits -= n;
1275 1.1 jmcneill j->code_buffer <<= n;
1276 1.1 jmcneill #endif
1277 1.1 jmcneill // the following test is probably a random branch that won't
1278 1.1 jmcneill // predict well. I tried to table accelerate it but failed.
1279 1.1 jmcneill // maybe it's compiling as a conditional move?
1280 1.1 jmcneill if (k < m)
1281 1.1 jmcneill return (-1 << n) + k + 1;
1282 1.1 jmcneill else
1283 1.1 jmcneill return k;
1284 1.1 jmcneill }
1285 1.1 jmcneill
1286 1.1 jmcneill // given a value that's at position X in the zigzag stream,
1287 1.1 jmcneill // where does it appear in the 8x8 matrix coded as row-major?
1288 1.1 jmcneill static uint8 dezigzag[64+15] =
1289 1.1 jmcneill {
1290 1.1 jmcneill 0, 1, 8, 16, 9, 2, 3, 10,
1291 1.1 jmcneill 17, 24, 32, 25, 18, 11, 4, 5,
1292 1.1 jmcneill 12, 19, 26, 33, 40, 48, 41, 34,
1293 1.1 jmcneill 27, 20, 13, 6, 7, 14, 21, 28,
1294 1.1 jmcneill 35, 42, 49, 56, 57, 50, 43, 36,
1295 1.1 jmcneill 29, 22, 15, 23, 30, 37, 44, 51,
1296 1.1 jmcneill 58, 59, 52, 45, 38, 31, 39, 46,
1297 1.1 jmcneill 53, 60, 61, 54, 47, 55, 62, 63,
1298 1.1 jmcneill // let corrupt input sample past end
1299 1.1 jmcneill 63, 63, 63, 63, 63, 63, 63, 63,
1300 1.1 jmcneill 63, 63, 63, 63, 63, 63, 63
1301 1.1 jmcneill };
1302 1.1 jmcneill
1303 1.1 jmcneill // decode one 64-entry block--
1304 1.1 jmcneill static int decode_block(jpeg *j, short data[64], huffman *hdc, huffman *hac, int b)
1305 1.1 jmcneill {
1306 1.1 jmcneill int diff,dc,k;
1307 1.1 jmcneill int t = decode(j, hdc);
1308 1.1 jmcneill if (t < 0) return e("bad huffman code","Corrupt JPEG");
1309 1.1 jmcneill
1310 1.1 jmcneill // 0 all the ac values now so we can do it 32-bits at a time
1311 1.1 jmcneill memset(data,0,64*sizeof(data[0]));
1312 1.1 jmcneill
1313 1.1 jmcneill diff = t ? extend_receive(j, t) : 0;
1314 1.1 jmcneill dc = j->img_comp[b].dc_pred + diff;
1315 1.1 jmcneill j->img_comp[b].dc_pred = dc;
1316 1.1 jmcneill data[0] = (short) dc;
1317 1.1 jmcneill
1318 1.1 jmcneill // decode AC components, see JPEG spec
1319 1.1 jmcneill k = 1;
1320 1.1 jmcneill do {
1321 1.1 jmcneill int r,s;
1322 1.1 jmcneill int rs = decode(j, hac);
1323 1.1 jmcneill if (rs < 0) return e("bad huffman code","Corrupt JPEG");
1324 1.1 jmcneill s = rs & 15;
1325 1.1 jmcneill r = rs >> 4;
1326 1.1 jmcneill if (s == 0) {
1327 1.1 jmcneill if (rs != 0xf0) break; // end block
1328 1.1 jmcneill k += 16;
1329 1.1 jmcneill } else {
1330 1.1 jmcneill k += r;
1331 1.1 jmcneill // decode into unzigzag'd location
1332 1.1 jmcneill data[dezigzag[k++]] = (short) extend_receive(j,s);
1333 1.1 jmcneill }
1334 1.1 jmcneill } while (k < 64);
1335 1.1 jmcneill return 1;
1336 1.1 jmcneill }
1337 1.1 jmcneill
1338 1.1 jmcneill // take a -128..127 value and clamp it and convert to 0..255
1339 1.1 jmcneill __forceinline static uint8 clamp(int x)
1340 1.1 jmcneill {
1341 1.1 jmcneill // trick to use a single test to catch both cases
1342 1.1 jmcneill if ((unsigned int) x > 255) {
1343 1.1 jmcneill if (x < 0) return 0;
1344 1.1 jmcneill if (x > 255) return 255;
1345 1.1 jmcneill }
1346 1.1 jmcneill return (uint8) x;
1347 1.1 jmcneill }
1348 1.1 jmcneill
1349 1.1 jmcneill #define f2f(x) (int) (((x) * 4096 + 0.5))
1350 1.1 jmcneill #define fsh(x) ((x) << 12)
1351 1.1 jmcneill
1352 1.1 jmcneill // derived from jidctint -- DCT_ISLOW
1353 1.1 jmcneill #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
1354 1.1 jmcneill int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \
1355 1.1 jmcneill p2 = s2; \
1356 1.1 jmcneill p3 = s6; \
1357 1.1 jmcneill p1 = (p2+p3) * f2f(0.5411961f); \
1358 1.1 jmcneill t2 = p1 + p3*f2f(-1.847759065f); \
1359 1.1 jmcneill t3 = p1 + p2*f2f( 0.765366865f); \
1360 1.1 jmcneill p2 = s0; \
1361 1.1 jmcneill p3 = s4; \
1362 1.1 jmcneill t0 = fsh(p2+p3); \
1363 1.1 jmcneill t1 = fsh(p2-p3); \
1364 1.1 jmcneill x0 = t0+t3; \
1365 1.1 jmcneill x3 = t0-t3; \
1366 1.1 jmcneill x1 = t1+t2; \
1367 1.1 jmcneill x2 = t1-t2; \
1368 1.1 jmcneill t0 = s7; \
1369 1.1 jmcneill t1 = s5; \
1370 1.1 jmcneill t2 = s3; \
1371 1.1 jmcneill t3 = s1; \
1372 1.1 jmcneill p3 = t0+t2; \
1373 1.1 jmcneill p4 = t1+t3; \
1374 1.1 jmcneill p1 = t0+t3; \
1375 1.1 jmcneill p2 = t1+t2; \
1376 1.1 jmcneill p5 = (p3+p4)*f2f( 1.175875602f); \
1377 1.1 jmcneill t0 = t0*f2f( 0.298631336f); \
1378 1.1 jmcneill t1 = t1*f2f( 2.053119869f); \
1379 1.1 jmcneill t2 = t2*f2f( 3.072711026f); \
1380 1.1 jmcneill t3 = t3*f2f( 1.501321110f); \
1381 1.1 jmcneill p1 = p5 + p1*f2f(-0.899976223f); \
1382 1.1 jmcneill p2 = p5 + p2*f2f(-2.562915447f); \
1383 1.1 jmcneill p3 = p3*f2f(-1.961570560f); \
1384 1.1 jmcneill p4 = p4*f2f(-0.390180644f); \
1385 1.1 jmcneill t3 += p1+p4; \
1386 1.1 jmcneill t2 += p2+p3; \
1387 1.1 jmcneill t1 += p2+p4; \
1388 1.1 jmcneill t0 += p1+p3;
1389 1.1 jmcneill
1390 1.1 jmcneill #ifdef STBI_SIMD
1391 1.1 jmcneill typedef unsigned short stbi_dequantize_t;
1392 1.1 jmcneill #else
1393 1.1 jmcneill typedef uint8 stbi_dequantize_t;
1394 1.1 jmcneill #endif
1395 1.1 jmcneill
1396 1.1 jmcneill // .344 seconds on 3*anemones.jpg
1397 1.1 jmcneill static void idct_block(uint8 *out, int out_stride, short data[64], stbi_dequantize_t *dequantize)
1398 1.1 jmcneill {
1399 1.1 jmcneill int i,val[64],*v=val;
1400 1.1 jmcneill stbi_dequantize_t *dq = dequantize;
1401 1.1 jmcneill uint8 *o;
1402 1.1 jmcneill short *d = data;
1403 1.1 jmcneill
1404 1.1 jmcneill // columns
1405 1.1 jmcneill for (i=0; i < 8; ++i,++d,++dq, ++v) {
1406 1.1 jmcneill // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
1407 1.1 jmcneill if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
1408 1.1 jmcneill && d[40]==0 && d[48]==0 && d[56]==0) {
1409 1.1 jmcneill // no shortcut 0 seconds
1410 1.1 jmcneill // (1|2|3|4|5|6|7)==0 0 seconds
1411 1.1 jmcneill // all separate -0.047 seconds
1412 1.1 jmcneill // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
1413 1.1 jmcneill int dcterm = d[0] * dq[0] << 2;
1414 1.1 jmcneill v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
1415 1.1 jmcneill } else {
1416 1.1 jmcneill IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24],
1417 1.1 jmcneill d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56])
1418 1.1 jmcneill // constants scaled things up by 1<<12; let's bring them back
1419 1.1 jmcneill // down, but keep 2 extra bits of precision
1420 1.1 jmcneill x0 += 512; x1 += 512; x2 += 512; x3 += 512;
1421 1.1 jmcneill v[ 0] = (x0+t3) >> 10;
1422 1.1 jmcneill v[56] = (x0-t3) >> 10;
1423 1.1 jmcneill v[ 8] = (x1+t2) >> 10;
1424 1.1 jmcneill v[48] = (x1-t2) >> 10;
1425 1.1 jmcneill v[16] = (x2+t1) >> 10;
1426 1.1 jmcneill v[40] = (x2-t1) >> 10;
1427 1.1 jmcneill v[24] = (x3+t0) >> 10;
1428 1.1 jmcneill v[32] = (x3-t0) >> 10;
1429 1.1 jmcneill }
1430 1.1 jmcneill }
1431 1.1 jmcneill
1432 1.1 jmcneill for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) {
1433 1.1 jmcneill // no fast case since the first 1D IDCT spread components out
1434 1.1 jmcneill IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
1435 1.1 jmcneill // constants scaled things up by 1<<12, plus we had 1<<2 from first
1436 1.1 jmcneill // loop, plus horizontal and vertical each scale by sqrt(8) so together
1437 1.1 jmcneill // we've got an extra 1<<3, so 1<<17 total we need to remove.
1438 1.1 jmcneill // so we want to round that, which means adding 0.5 * 1<<17,
1439 1.1 jmcneill // aka 65536. Also, we'll end up with -128 to 127 that we want
1440 1.1 jmcneill // to encode as 0..255 by adding 128, so we'll add that before the shift
1441 1.1 jmcneill x0 += 65536 + (128<<17);
1442 1.1 jmcneill x1 += 65536 + (128<<17);
1443 1.1 jmcneill x2 += 65536 + (128<<17);
1444 1.1 jmcneill x3 += 65536 + (128<<17);
1445 1.1 jmcneill // tried computing the shifts into temps, or'ing the temps to see
1446 1.1 jmcneill // if any were out of range, but that was slower
1447 1.1 jmcneill o[0] = clamp((x0+t3) >> 17);
1448 1.1 jmcneill o[7] = clamp((x0-t3) >> 17);
1449 1.1 jmcneill o[1] = clamp((x1+t2) >> 17);
1450 1.1 jmcneill o[6] = clamp((x1-t2) >> 17);
1451 1.1 jmcneill o[2] = clamp((x2+t1) >> 17);
1452 1.1 jmcneill o[5] = clamp((x2-t1) >> 17);
1453 1.1 jmcneill o[3] = clamp((x3+t0) >> 17);
1454 1.1 jmcneill o[4] = clamp((x3-t0) >> 17);
1455 1.1 jmcneill }
1456 1.1 jmcneill }
1457 1.1 jmcneill
1458 1.1 jmcneill #ifdef STBI_SIMD
1459 1.1 jmcneill static stbi_idct_8x8 stbi_idct_installed = idct_block;
1460 1.1 jmcneill
1461 1.1 jmcneill extern void stbi_install_idct(stbi_idct_8x8 func)
1462 1.1 jmcneill {
1463 1.1 jmcneill stbi_idct_installed = func;
1464 1.1 jmcneill }
1465 1.1 jmcneill #endif
1466 1.1 jmcneill
1467 1.1 jmcneill #define MARKER_none 0xff
1468 1.1 jmcneill // if there's a pending marker from the entropy stream, return that
1469 1.1 jmcneill // otherwise, fetch from the stream and get a marker. if there's no
1470 1.1 jmcneill // marker, return 0xff, which is never a valid marker value
1471 1.1 jmcneill static uint8 get_marker(jpeg *j)
1472 1.1 jmcneill {
1473 1.1 jmcneill uint8 x;
1474 1.1 jmcneill if (j->marker != MARKER_none) { x = j->marker; j->marker = MARKER_none; return x; }
1475 1.1 jmcneill x = get8u(&j->s);
1476 1.1 jmcneill if (x != 0xff) return MARKER_none;
1477 1.1 jmcneill while (x == 0xff)
1478 1.1 jmcneill x = get8u(&j->s);
1479 1.1 jmcneill return x;
1480 1.1 jmcneill }
1481 1.1 jmcneill
1482 1.1 jmcneill // in each scan, we'll have scan_n components, and the order
1483 1.1 jmcneill // of the components is specified by order[]
1484 1.1 jmcneill #define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7)
1485 1.1 jmcneill
1486 1.1 jmcneill // after a restart interval, reset the entropy decoder and
1487 1.1 jmcneill // the dc prediction
1488 1.1 jmcneill static void reset(jpeg *j)
1489 1.1 jmcneill {
1490 1.1 jmcneill j->code_bits = 0;
1491 1.1 jmcneill j->code_buffer = 0;
1492 1.1 jmcneill j->nomore = 0;
1493 1.1 jmcneill j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0;
1494 1.1 jmcneill j->marker = MARKER_none;
1495 1.1 jmcneill j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
1496 1.1 jmcneill // no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
1497 1.1 jmcneill // since we don't even allow 1<<30 pixels
1498 1.1 jmcneill }
1499 1.1 jmcneill
1500 1.1 jmcneill static int parse_entropy_coded_data(jpeg *z)
1501 1.1 jmcneill {
1502 1.1 jmcneill reset(z);
1503 1.1 jmcneill if (z->scan_n == 1) {
1504 1.1 jmcneill int i,j;
1505 1.1 jmcneill #ifdef STBI_SIMD
1506 1.1 jmcneill __declspec(align(16))
1507 1.1 jmcneill #endif
1508 1.1 jmcneill short data[64];
1509 1.1 jmcneill int n = z->order[0];
1510 1.1 jmcneill // non-interleaved data, we just need to process one block at a time,
1511 1.1 jmcneill // in trivial scanline order
1512 1.1 jmcneill // number of blocks to do just depends on how many actual "pixels" this
1513 1.1 jmcneill // component has, independent of interleaved MCU blocking and such
1514 1.1 jmcneill int w = (z->img_comp[n].x+7) >> 3;
1515 1.1 jmcneill int h = (z->img_comp[n].y+7) >> 3;
1516 1.1 jmcneill for (j=0; j < h; ++j) {
1517 1.1 jmcneill for (i=0; i < w; ++i) {
1518 1.1 jmcneill if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0;
1519 1.1 jmcneill #ifdef STBI_SIMD
1520 1.1 jmcneill stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]);
1521 1.1 jmcneill #else
1522 1.1 jmcneill idct_block(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]);
1523 1.1 jmcneill #endif
1524 1.1 jmcneill // every data block is an MCU, so countdown the restart interval
1525 1.1 jmcneill if (--z->todo <= 0) {
1526 1.1 jmcneill if (z->code_bits < 24) grow_buffer_unsafe(z);
1527 1.1 jmcneill // if it's NOT a restart, then just bail, so we get corrupt data
1528 1.1 jmcneill // rather than no data
1529 1.1 jmcneill if (!RESTART(z->marker)) return 1;
1530 1.1 jmcneill reset(z);
1531 1.1 jmcneill }
1532 1.1 jmcneill }
1533 1.1 jmcneill }
1534 1.1 jmcneill } else { // interleaved!
1535 1.1 jmcneill int i,j,k,x,y;
1536 1.1 jmcneill short data[64];
1537 1.1 jmcneill for (j=0; j < z->img_mcu_y; ++j) {
1538 1.1 jmcneill for (i=0; i < z->img_mcu_x; ++i) {
1539 1.1 jmcneill // scan an interleaved mcu... process scan_n components in order
1540 1.1 jmcneill for (k=0; k < z->scan_n; ++k) {
1541 1.1 jmcneill int n = z->order[k];
1542 1.1 jmcneill // scan out an mcu's worth of this component; that's just determined
1543 1.1 jmcneill // by the basic H and V specified for the component
1544 1.1 jmcneill for (y=0; y < z->img_comp[n].v; ++y) {
1545 1.1 jmcneill for (x=0; x < z->img_comp[n].h; ++x) {
1546 1.1 jmcneill int x2 = (i*z->img_comp[n].h + x)*8;
1547 1.1 jmcneill int y2 = (j*z->img_comp[n].v + y)*8;
1548 1.1 jmcneill if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0;
1549 1.1 jmcneill #ifdef STBI_SIMD
1550 1.1 jmcneill stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]);
1551 1.1 jmcneill #else
1552 1.1 jmcneill idct_block(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]);
1553 1.1 jmcneill #endif
1554 1.1 jmcneill }
1555 1.1 jmcneill }
1556 1.1 jmcneill }
1557 1.1 jmcneill // after all interleaved components, that's an interleaved MCU,
1558 1.1 jmcneill // so now count down the restart interval
1559 1.1 jmcneill if (--z->todo <= 0) {
1560 1.1 jmcneill if (z->code_bits < 24) grow_buffer_unsafe(z);
1561 1.1 jmcneill // if it's NOT a restart, then just bail, so we get corrupt data
1562 1.1 jmcneill // rather than no data
1563 1.1 jmcneill if (!RESTART(z->marker)) return 1;
1564 1.1 jmcneill reset(z);
1565 1.1 jmcneill }
1566 1.1 jmcneill }
1567 1.1 jmcneill }
1568 1.1 jmcneill }
1569 1.1 jmcneill return 1;
1570 1.1 jmcneill }
1571 1.1 jmcneill
1572 1.1 jmcneill static int process_marker(jpeg *z, int marker)
1573 1.1 jmcneill {
1574 1.1 jmcneill int L;
1575 1.1 jmcneill switch (marker) {
1576 1.1 jmcneill case MARKER_none: // no marker found
1577 1.1 jmcneill return e("expected marker","Corrupt JPEG");
1578 1.1 jmcneill
1579 1.1 jmcneill case 0xC2: // SOF - progressive
1580 1.1 jmcneill return e("progressive jpeg","JPEG format not supported (progressive)");
1581 1.1 jmcneill
1582 1.1 jmcneill case 0xDD: // DRI - specify restart interval
1583 1.1 jmcneill if (get16(&z->s) != 4) return e("bad DRI len","Corrupt JPEG");
1584 1.1 jmcneill z->restart_interval = get16(&z->s);
1585 1.1 jmcneill return 1;
1586 1.1 jmcneill
1587 1.1 jmcneill case 0xDB: // DQT - define quantization table
1588 1.1 jmcneill L = get16(&z->s)-2;
1589 1.1 jmcneill while (L > 0) {
1590 1.1 jmcneill int q = get8(&z->s);
1591 1.1 jmcneill int p = q >> 4;
1592 1.1 jmcneill int t = q & 15,i;
1593 1.1 jmcneill if (p != 0) return e("bad DQT type","Corrupt JPEG");
1594 1.1 jmcneill if (t > 3) return e("bad DQT table","Corrupt JPEG");
1595 1.1 jmcneill for (i=0; i < 64; ++i)
1596 1.1 jmcneill z->dequant[t][dezigzag[i]] = get8u(&z->s);
1597 1.1 jmcneill #ifdef STBI_SIMD
1598 1.1 jmcneill for (i=0; i < 64; ++i)
1599 1.1 jmcneill z->dequant2[t][i] = z->dequant[t][i];
1600 1.1 jmcneill #endif
1601 1.1 jmcneill L -= 65;
1602 1.1 jmcneill }
1603 1.1 jmcneill return L==0;
1604 1.1 jmcneill
1605 1.1 jmcneill case 0xC4: // DHT - define huffman table
1606 1.1 jmcneill L = get16(&z->s)-2;
1607 1.1 jmcneill while (L > 0) {
1608 1.1 jmcneill uint8 *v;
1609 1.1 jmcneill int sizes[16],i,m=0;
1610 1.1 jmcneill int q = get8(&z->s);
1611 1.1 jmcneill int tc = q >> 4;
1612 1.1 jmcneill int th = q & 15;
1613 1.1 jmcneill if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG");
1614 1.1 jmcneill for (i=0; i < 16; ++i) {
1615 1.1 jmcneill sizes[i] = get8(&z->s);
1616 1.1 jmcneill m += sizes[i];
1617 1.1 jmcneill }
1618 1.1 jmcneill L -= 17;
1619 1.1 jmcneill if (tc == 0) {
1620 1.1 jmcneill if (!build_huffman(z->huff_dc+th, sizes)) return 0;
1621 1.1 jmcneill v = z->huff_dc[th].values;
1622 1.1 jmcneill } else {
1623 1.1 jmcneill if (!build_huffman(z->huff_ac+th, sizes)) return 0;
1624 1.1 jmcneill v = z->huff_ac[th].values;
1625 1.1 jmcneill }
1626 1.1 jmcneill for (i=0; i < m; ++i)
1627 1.1 jmcneill v[i] = get8u(&z->s);
1628 1.1 jmcneill L -= m;
1629 1.1 jmcneill }
1630 1.1 jmcneill return L==0;
1631 1.1 jmcneill }
1632 1.1 jmcneill // check for comment block or APP blocks
1633 1.1 jmcneill if ((marker >= 0xE0 && marker <= 0xEF) || marker == 0xFE) {
1634 1.1 jmcneill skip(&z->s, get16(&z->s)-2);
1635 1.1 jmcneill return 1;
1636 1.1 jmcneill }
1637 1.1 jmcneill return 0;
1638 1.1 jmcneill }
1639 1.1 jmcneill
1640 1.1 jmcneill // after we see SOS
1641 1.1 jmcneill static int process_scan_header(jpeg *z)
1642 1.1 jmcneill {
1643 1.1 jmcneill int i;
1644 1.1 jmcneill int Ls = get16(&z->s);
1645 1.1 jmcneill z->scan_n = get8(&z->s);
1646 1.1 jmcneill if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s.img_n) return e("bad SOS component count","Corrupt JPEG");
1647 1.1 jmcneill if (Ls != 6+2*z->scan_n) return e("bad SOS len","Corrupt JPEG");
1648 1.1 jmcneill for (i=0; i < z->scan_n; ++i) {
1649 1.1 jmcneill int id = get8(&z->s), which;
1650 1.1 jmcneill int q = get8(&z->s);
1651 1.1 jmcneill for (which = 0; which < z->s.img_n; ++which)
1652 1.1 jmcneill if (z->img_comp[which].id == id)
1653 1.1 jmcneill break;
1654 1.1 jmcneill if (which == z->s.img_n) return 0;
1655 1.1 jmcneill z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG");
1656 1.1 jmcneill z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG");
1657 1.1 jmcneill z->order[i] = which;
1658 1.1 jmcneill }
1659 1.1 jmcneill if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG");
1660 1.1 jmcneill get8(&z->s); // should be 63, but might be 0
1661 1.1 jmcneill if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG");
1662 1.1 jmcneill
1663 1.1 jmcneill return 1;
1664 1.1 jmcneill }
1665 1.1 jmcneill
1666 1.1 jmcneill static int process_frame_header(jpeg *z, int scan)
1667 1.1 jmcneill {
1668 1.1 jmcneill stbi *s = &z->s;
1669 1.1 jmcneill int Lf,p,i,q, h_max=1,v_max=1,c;
1670 1.1 jmcneill Lf = get16(s); if (Lf < 11) return e("bad SOF len","Corrupt JPEG"); // JPEG
1671 1.1 jmcneill p = get8(s); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline
1672 1.1 jmcneill s->img_y = get16(s); if (s->img_y == 0) return e("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG
1673 1.1 jmcneill s->img_x = get16(s); if (s->img_x == 0) return e("0 width","Corrupt JPEG"); // JPEG requires
1674 1.1 jmcneill c = get8(s);
1675 1.1 jmcneill if (c != 3 && c != 1) return e("bad component count","Corrupt JPEG"); // JFIF requires
1676 1.1 jmcneill s->img_n = c;
1677 1.1 jmcneill for (i=0; i < c; ++i) {
1678 1.1 jmcneill z->img_comp[i].data = NULL;
1679 1.1 jmcneill z->img_comp[i].linebuf = NULL;
1680 1.1 jmcneill }
1681 1.1 jmcneill
1682 1.1 jmcneill if (Lf != 8+3*s->img_n) return e("bad SOF len","Corrupt JPEG");
1683 1.1 jmcneill
1684 1.1 jmcneill for (i=0; i < s->img_n; ++i) {
1685 1.1 jmcneill z->img_comp[i].id = get8(s);
1686 1.1 jmcneill if (z->img_comp[i].id != i+1) // JFIF requires
1687 1.1 jmcneill if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files!
1688 1.1 jmcneill return e("bad component ID","Corrupt JPEG");
1689 1.1 jmcneill q = get8(s);
1690 1.1 jmcneill z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return e("bad H","Corrupt JPEG");
1691 1.1 jmcneill z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return e("bad V","Corrupt JPEG");
1692 1.1 jmcneill z->img_comp[i].tq = get8(s); if (z->img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG");
1693 1.1 jmcneill }
1694 1.1 jmcneill
1695 1.1 jmcneill if (scan != SCAN_load) return 1;
1696 1.1 jmcneill
1697 1.1 jmcneill if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode");
1698 1.1 jmcneill
1699 1.1 jmcneill for (i=0; i < s->img_n; ++i) {
1700 1.1 jmcneill if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
1701 1.1 jmcneill if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
1702 1.1 jmcneill }
1703 1.1 jmcneill
1704 1.1 jmcneill // compute interleaved mcu info
1705 1.1 jmcneill z->img_h_max = h_max;
1706 1.1 jmcneill z->img_v_max = v_max;
1707 1.1 jmcneill z->img_mcu_w = h_max * 8;
1708 1.1 jmcneill z->img_mcu_h = v_max * 8;
1709 1.1 jmcneill z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
1710 1.1 jmcneill z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;
1711 1.1 jmcneill
1712 1.1 jmcneill for (i=0; i < s->img_n; ++i) {
1713 1.1 jmcneill // number of effective pixels (e.g. for non-interleaved MCU)
1714 1.1 jmcneill z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
1715 1.1 jmcneill z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
1716 1.1 jmcneill // to simplify generation, we'll allocate enough memory to decode
1717 1.1 jmcneill // the bogus oversized data from using interleaved MCUs and their
1718 1.1 jmcneill // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
1719 1.1 jmcneill // discard the extra data until colorspace conversion
1720 1.1 jmcneill z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
1721 1.1 jmcneill z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
1722 1.1 jmcneill z->img_comp[i].raw_data = MALLOC(z->img_comp[i].w2 * z->img_comp[i].h2+15);
1723 1.1 jmcneill if (z->img_comp[i].raw_data == NULL) {
1724 1.1 jmcneill for(--i; i >= 0; --i) {
1725 1.1 jmcneill FREE(z->img_comp[i].raw_data);
1726 1.1 jmcneill z->img_comp[i].data = NULL;
1727 1.1 jmcneill }
1728 1.1 jmcneill return e("outofmem", "Out of memory");
1729 1.1 jmcneill }
1730 1.1 jmcneill // align blocks for installable-idct using mmx/sse
1731 1.1 jmcneill z->img_comp[i].data = (uint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
1732 1.1 jmcneill z->img_comp[i].linebuf = NULL;
1733 1.1 jmcneill }
1734 1.1 jmcneill
1735 1.1 jmcneill return 1;
1736 1.1 jmcneill }
1737 1.1 jmcneill
1738 1.1 jmcneill // use comparisons since in some cases we handle more than one case (e.g. SOF)
1739 1.1 jmcneill #define DNL(x) ((x) == 0xdc)
1740 1.1 jmcneill #define SOI(x) ((x) == 0xd8)
1741 1.1 jmcneill #define EOI(x) ((x) == 0xd9)
1742 1.1 jmcneill #define SOF(x) ((x) == 0xc0 || (x) == 0xc1)
1743 1.1 jmcneill #define SOS(x) ((x) == 0xda)
1744 1.1 jmcneill
1745 1.1 jmcneill static int decode_jpeg_header(jpeg *z, int scan)
1746 1.1 jmcneill {
1747 1.1 jmcneill int m;
1748 1.1 jmcneill z->marker = MARKER_none; // initialize cached marker to empty
1749 1.1 jmcneill m = get_marker(z);
1750 1.1 jmcneill if (!SOI(m)) return e("no SOI","Corrupt JPEG");
1751 1.1 jmcneill if (scan == SCAN_type) return 1;
1752 1.1 jmcneill m = get_marker(z);
1753 1.1 jmcneill while (!SOF(m)) {
1754 1.1 jmcneill if (!process_marker(z,m)) return 0;
1755 1.1 jmcneill m = get_marker(z);
1756 1.1 jmcneill while (m == MARKER_none) {
1757 1.1 jmcneill // some files have extra padding after their blocks, so ok, we'll scan
1758 1.1 jmcneill if (at_eof(&z->s)) return e("no SOF", "Corrupt JPEG");
1759 1.1 jmcneill m = get_marker(z);
1760 1.1 jmcneill }
1761 1.1 jmcneill }
1762 1.1 jmcneill if (!process_frame_header(z, scan)) return 0;
1763 1.1 jmcneill return 1;
1764 1.1 jmcneill }
1765 1.1 jmcneill
1766 1.1 jmcneill static int decode_jpeg_image(jpeg *j)
1767 1.1 jmcneill {
1768 1.1 jmcneill int m;
1769 1.1 jmcneill j->restart_interval = 0;
1770 1.1 jmcneill if (!decode_jpeg_header(j, SCAN_load)) return 0;
1771 1.1 jmcneill m = get_marker(j);
1772 1.1 jmcneill while (!EOI(m)) {
1773 1.1 jmcneill if (SOS(m)) {
1774 1.1 jmcneill if (!process_scan_header(j)) return 0;
1775 1.1 jmcneill if (!parse_entropy_coded_data(j)) return 0;
1776 1.1 jmcneill if (j->marker == MARKER_none ) {
1777 1.1 jmcneill // handle 0s at the end of image data from IP Kamera 9060
1778 1.1 jmcneill while (!at_eof(&j->s)) {
1779 1.1 jmcneill int x = get8(&j->s);
1780 1.1 jmcneill if (x == 255) {
1781 1.1 jmcneill j->marker = get8u(&j->s);
1782 1.1 jmcneill break;
1783 1.1 jmcneill } else if (x != 0) {
1784 1.1 jmcneill return 0;
1785 1.1 jmcneill }
1786 1.1 jmcneill }
1787 1.1 jmcneill // if we reach eof without hitting a marker, get_marker() below will fail and we'll eventually return 0
1788 1.1 jmcneill }
1789 1.1 jmcneill } else {
1790 1.1 jmcneill if (!process_marker(j, m)) return 0;
1791 1.1 jmcneill }
1792 1.1 jmcneill m = get_marker(j);
1793 1.1 jmcneill }
1794 1.1 jmcneill return 1;
1795 1.1 jmcneill }
1796 1.1 jmcneill
1797 1.1 jmcneill // static jfif-centered resampling (across block boundaries)
1798 1.1 jmcneill
1799 1.1 jmcneill typedef uint8 *(*resample_row_func)(uint8 *out, uint8 *in0, uint8 *in1,
1800 1.1 jmcneill int w, int hs);
1801 1.1 jmcneill
1802 1.1 jmcneill #define div4(x) ((uint8) ((x) >> 2))
1803 1.1 jmcneill
1804 1.1 jmcneill static uint8 *resample_row_1(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
1805 1.1 jmcneill {
1806 1.1 jmcneill STBI_NOTUSED(out);
1807 1.1 jmcneill STBI_NOTUSED(in_far);
1808 1.1 jmcneill STBI_NOTUSED(w);
1809 1.1 jmcneill STBI_NOTUSED(hs);
1810 1.1 jmcneill return in_near;
1811 1.1 jmcneill }
1812 1.1 jmcneill
1813 1.1 jmcneill static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
1814 1.1 jmcneill {
1815 1.1 jmcneill // need to generate two samples vertically for every one in input
1816 1.1 jmcneill int i;
1817 1.1 jmcneill STBI_NOTUSED(hs);
1818 1.1 jmcneill for (i=0; i < w; ++i)
1819 1.1 jmcneill out[i] = div4(3*in_near[i] + in_far[i] + 2);
1820 1.1 jmcneill return out;
1821 1.1 jmcneill }
1822 1.1 jmcneill
1823 1.1 jmcneill static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
1824 1.1 jmcneill {
1825 1.1 jmcneill // need to generate two samples horizontally for every one in input
1826 1.1 jmcneill int i;
1827 1.1 jmcneill uint8 *input = in_near;
1828 1.1 jmcneill
1829 1.1 jmcneill if (w == 1) {
1830 1.1 jmcneill // if only one sample, can't do any interpolation
1831 1.1 jmcneill out[0] = out[1] = input[0];
1832 1.1 jmcneill return out;
1833 1.1 jmcneill }
1834 1.1 jmcneill
1835 1.1 jmcneill out[0] = input[0];
1836 1.1 jmcneill out[1] = div4(input[0]*3 + input[1] + 2);
1837 1.1 jmcneill for (i=1; i < w-1; ++i) {
1838 1.1 jmcneill int n = 3*input[i]+2;
1839 1.1 jmcneill out[i*2+0] = div4(n+input[i-1]);
1840 1.1 jmcneill out[i*2+1] = div4(n+input[i+1]);
1841 1.1 jmcneill }
1842 1.1 jmcneill out[i*2+0] = div4(input[w-2]*3 + input[w-1] + 2);
1843 1.1 jmcneill out[i*2+1] = input[w-1];
1844 1.1 jmcneill
1845 1.1 jmcneill STBI_NOTUSED(in_far);
1846 1.1 jmcneill STBI_NOTUSED(hs);
1847 1.1 jmcneill
1848 1.1 jmcneill return out;
1849 1.1 jmcneill }
1850 1.1 jmcneill
1851 1.1 jmcneill #define div16(x) ((uint8) ((x) >> 4))
1852 1.1 jmcneill
1853 1.1 jmcneill static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
1854 1.1 jmcneill {
1855 1.1 jmcneill // need to generate 2x2 samples for every one in input
1856 1.1 jmcneill int i,t0,t1;
1857 1.1 jmcneill if (w == 1) {
1858 1.1 jmcneill out[0] = out[1] = div4(3*in_near[0] + in_far[0] + 2);
1859 1.1 jmcneill return out;
1860 1.1 jmcneill }
1861 1.1 jmcneill
1862 1.1 jmcneill t1 = 3*in_near[0] + in_far[0];
1863 1.1 jmcneill out[0] = div4(t1+2);
1864 1.1 jmcneill for (i=1; i < w; ++i) {
1865 1.1 jmcneill t0 = t1;
1866 1.1 jmcneill t1 = 3*in_near[i]+in_far[i];
1867 1.1 jmcneill out[i*2-1] = div16(3*t0 + t1 + 8);
1868 1.1 jmcneill out[i*2 ] = div16(3*t1 + t0 + 8);
1869 1.1 jmcneill }
1870 1.1 jmcneill out[w*2-1] = div4(t1+2);
1871 1.1 jmcneill
1872 1.1 jmcneill STBI_NOTUSED(hs);
1873 1.1 jmcneill
1874 1.1 jmcneill return out;
1875 1.1 jmcneill }
1876 1.1 jmcneill
1877 1.1 jmcneill static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
1878 1.1 jmcneill {
1879 1.1 jmcneill // resample with nearest-neighbor
1880 1.1 jmcneill int i,j;
1881 1.1 jmcneill in_far = in_far;
1882 1.1 jmcneill for (i=0; i < w; ++i)
1883 1.1 jmcneill for (j=0; j < hs; ++j)
1884 1.1 jmcneill out[i*hs+j] = in_near[i];
1885 1.1 jmcneill return out;
1886 1.1 jmcneill }
1887 1.1 jmcneill
1888 1.1 jmcneill #define float2fixed(x) ((int) ((x) * 65536 + 0.5))
1889 1.1 jmcneill
1890 1.1 jmcneill // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro)
1891 1.1 jmcneill // VC6 without processor=Pro is generating multiple LEAs per multiply!
1892 1.1 jmcneill static void YCbCr_to_RGB_row(uint8 *out, const uint8 *y, const uint8 *pcb, const uint8 *pcr, int count, int step)
1893 1.1 jmcneill {
1894 1.1 jmcneill int i;
1895 1.1 jmcneill for (i=0; i < count; ++i) {
1896 1.1 jmcneill int y_fixed = (y[i] << 16) + 32768; // rounding
1897 1.1 jmcneill int r,g,b;
1898 1.1 jmcneill int cr = pcr[i] - 128;
1899 1.1 jmcneill int cb = pcb[i] - 128;
1900 1.1 jmcneill r = y_fixed + cr*float2fixed(1.40200f);
1901 1.1 jmcneill g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f);
1902 1.1 jmcneill b = y_fixed + cb*float2fixed(1.77200f);
1903 1.1 jmcneill r >>= 16;
1904 1.1 jmcneill g >>= 16;
1905 1.1 jmcneill b >>= 16;
1906 1.1 jmcneill if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
1907 1.1 jmcneill if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
1908 1.1 jmcneill if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
1909 1.1 jmcneill out[0] = (uint8)r;
1910 1.1 jmcneill out[1] = (uint8)g;
1911 1.1 jmcneill out[2] = (uint8)b;
1912 1.1 jmcneill out[3] = 255;
1913 1.1 jmcneill out += step;
1914 1.1 jmcneill }
1915 1.1 jmcneill }
1916 1.1 jmcneill
1917 1.1 jmcneill #ifdef STBI_SIMD
1918 1.1 jmcneill static stbi_YCbCr_to_RGB_run stbi_YCbCr_installed = YCbCr_to_RGB_row;
1919 1.1 jmcneill
1920 1.1 jmcneill void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func)
1921 1.1 jmcneill {
1922 1.1 jmcneill stbi_YCbCr_installed = func;
1923 1.1 jmcneill }
1924 1.1 jmcneill #endif
1925 1.1 jmcneill
1926 1.1 jmcneill
1927 1.1 jmcneill // clean up the temporary component buffers
1928 1.1 jmcneill static void cleanup_jpeg(jpeg *j)
1929 1.1 jmcneill {
1930 1.1 jmcneill int i;
1931 1.1 jmcneill for (i=0; i < j->s.img_n; ++i) {
1932 1.1 jmcneill if (j->img_comp[i].data) {
1933 1.1 jmcneill FREE(j->img_comp[i].raw_data);
1934 1.1 jmcneill j->img_comp[i].data = NULL;
1935 1.1 jmcneill }
1936 1.1 jmcneill if (j->img_comp[i].linebuf) {
1937 1.1 jmcneill FREE(j->img_comp[i].linebuf);
1938 1.1 jmcneill j->img_comp[i].linebuf = NULL;
1939 1.1 jmcneill }
1940 1.1 jmcneill }
1941 1.1 jmcneill }
1942 1.1 jmcneill
1943 1.1 jmcneill typedef struct
1944 1.1 jmcneill {
1945 1.1 jmcneill resample_row_func resample;
1946 1.1 jmcneill uint8 *line0,*line1;
1947 1.1 jmcneill int hs,vs; // expansion factor in each axis
1948 1.1 jmcneill int w_lores; // horizontal pixels pre-expansion
1949 1.1 jmcneill int ystep; // how far through vertical expansion we are
1950 1.1 jmcneill int ypos; // which pre-expansion row we're on
1951 1.1 jmcneill } stbi_resample;
1952 1.1 jmcneill
1953 1.1 jmcneill static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp)
1954 1.1 jmcneill {
1955 1.1 jmcneill int n, decode_n;
1956 1.1 jmcneill // validate req_comp
1957 1.1 jmcneill if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error");
1958 1.1 jmcneill z->s.img_n = 0;
1959 1.1 jmcneill
1960 1.1 jmcneill // load a jpeg image from whichever source
1961 1.1 jmcneill if (!decode_jpeg_image(z)) { cleanup_jpeg(z); return NULL; }
1962 1.1 jmcneill
1963 1.1 jmcneill // determine actual number of components to generate
1964 1.1 jmcneill n = req_comp ? req_comp : z->s.img_n;
1965 1.1 jmcneill
1966 1.1 jmcneill if (z->s.img_n == 3 && n < 3)
1967 1.1 jmcneill decode_n = 1;
1968 1.1 jmcneill else
1969 1.1 jmcneill decode_n = z->s.img_n;
1970 1.1 jmcneill
1971 1.1 jmcneill // resample and color-convert
1972 1.1 jmcneill {
1973 1.1 jmcneill int k;
1974 1.1 jmcneill uint i,j;
1975 1.1 jmcneill uint8 *output;
1976 1.1 jmcneill uint8 *coutput[4];
1977 1.1 jmcneill
1978 1.1 jmcneill stbi_resample res_comp[4];
1979 1.1 jmcneill
1980 1.1 jmcneill for (k=0; k < decode_n; ++k) {
1981 1.1 jmcneill stbi_resample *r = &res_comp[k];
1982 1.1 jmcneill
1983 1.1 jmcneill // allocate line buffer big enough for upsampling off the edges
1984 1.1 jmcneill // with upsample factor of 4
1985 1.1 jmcneill z->img_comp[k].linebuf = (uint8 *) MALLOC(z->s.img_x + 3);
1986 1.1 jmcneill if (!z->img_comp[k].linebuf) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); }
1987 1.1 jmcneill
1988 1.1 jmcneill r->hs = z->img_h_max / z->img_comp[k].h;
1989 1.1 jmcneill r->vs = z->img_v_max / z->img_comp[k].v;
1990 1.1 jmcneill r->ystep = r->vs >> 1;
1991 1.1 jmcneill r->w_lores = (z->s.img_x + r->hs-1) / r->hs;
1992 1.1 jmcneill r->ypos = 0;
1993 1.1 jmcneill r->line0 = r->line1 = z->img_comp[k].data;
1994 1.1 jmcneill
1995 1.1 jmcneill if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1;
1996 1.1 jmcneill else if (r->hs == 1 && r->vs == 2) r->resample = resample_row_v_2;
1997 1.1 jmcneill else if (r->hs == 2 && r->vs == 1) r->resample = resample_row_h_2;
1998 1.1 jmcneill else if (r->hs == 2 && r->vs == 2) r->resample = resample_row_hv_2;
1999 1.1 jmcneill else r->resample = resample_row_generic;
2000 1.1 jmcneill }
2001 1.1 jmcneill
2002 1.1 jmcneill // can't error after this so, this is safe
2003 1.1 jmcneill output = (uint8 *) MALLOC(n * z->s.img_x * z->s.img_y + 1);
2004 1.1 jmcneill if (!output) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); }
2005 1.1 jmcneill
2006 1.1 jmcneill // now go ahead and resample
2007 1.1 jmcneill for (j=0; j < z->s.img_y; ++j) {
2008 1.1 jmcneill uint8 *out = output + n * z->s.img_x * j;
2009 1.1 jmcneill for (k=0; k < decode_n; ++k) {
2010 1.1 jmcneill stbi_resample *r = &res_comp[k];
2011 1.1 jmcneill int y_bot = r->ystep >= (r->vs >> 1);
2012 1.1 jmcneill coutput[k] = r->resample(z->img_comp[k].linebuf,
2013 1.1 jmcneill y_bot ? r->line1 : r->line0,
2014 1.1 jmcneill y_bot ? r->line0 : r->line1,
2015 1.1 jmcneill r->w_lores, r->hs);
2016 1.1 jmcneill if (++r->ystep >= r->vs) {
2017 1.1 jmcneill r->ystep = 0;
2018 1.1 jmcneill r->line0 = r->line1;
2019 1.1 jmcneill if (++r->ypos < z->img_comp[k].y)
2020 1.1 jmcneill r->line1 += z->img_comp[k].w2;
2021 1.1 jmcneill }
2022 1.1 jmcneill }
2023 1.1 jmcneill if (n >= 3) {
2024 1.1 jmcneill uint8 *y = coutput[0];
2025 1.1 jmcneill if (z->s.img_n == 3) {
2026 1.1 jmcneill #ifdef STBI_SIMD
2027 1.1 jmcneill stbi_YCbCr_installed(out, y, coutput[1], coutput[2], z->s.img_x, n);
2028 1.1 jmcneill #else
2029 1.1 jmcneill YCbCr_to_RGB_row(out, y, coutput[1], coutput[2], z->s.img_x, n);
2030 1.1 jmcneill #endif
2031 1.1 jmcneill } else
2032 1.1 jmcneill for (i=0; i < z->s.img_x; ++i) {
2033 1.1 jmcneill out[0] = out[1] = out[2] = y[i];
2034 1.1 jmcneill out[3] = 255; // not used if n==3
2035 1.1 jmcneill out += n;
2036 1.1 jmcneill }
2037 1.1 jmcneill } else {
2038 1.1 jmcneill uint8 *y = coutput[0];
2039 1.1 jmcneill if (n == 1)
2040 1.1 jmcneill for (i=0; i < z->s.img_x; ++i) out[i] = y[i];
2041 1.1 jmcneill else
2042 1.1 jmcneill for (i=0; i < z->s.img_x; ++i) *out++ = y[i], *out++ = 255;
2043 1.1 jmcneill }
2044 1.1 jmcneill }
2045 1.1 jmcneill cleanup_jpeg(z);
2046 1.1 jmcneill *out_x = z->s.img_x;
2047 1.1 jmcneill *out_y = z->s.img_y;
2048 1.1 jmcneill if (comp) *comp = z->s.img_n; // report original components, not output
2049 1.1 jmcneill return output;
2050 1.1 jmcneill }
2051 1.1 jmcneill }
2052 1.1 jmcneill
2053 1.1 jmcneill #ifndef STBI_NO_STDIO
2054 1.1 jmcneill unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
2055 1.1 jmcneill {
2056 1.1 jmcneill jpeg j;
2057 1.1 jmcneill start_file(&j.s, f);
2058 1.1 jmcneill return load_jpeg_image(&j, x,y,comp,req_comp);
2059 1.1 jmcneill }
2060 1.1 jmcneill
2061 1.1 jmcneill unsigned char *stbi_jpeg_load(char const *filename, int *x, int *y, int *comp, int req_comp)
2062 1.1 jmcneill {
2063 1.1 jmcneill unsigned char *data;
2064 1.1 jmcneill FILE *f = fopen(filename, "rb");
2065 1.1 jmcneill if (!f) return NULL;
2066 1.1 jmcneill data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp);
2067 1.1 jmcneill fclose(f);
2068 1.1 jmcneill return data;
2069 1.1 jmcneill }
2070 1.1 jmcneill #endif
2071 1.1 jmcneill
2072 1.1 jmcneill unsigned char *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
2073 1.1 jmcneill {
2074 1.1 jmcneill #ifdef STBI_SMALL_STACK
2075 1.1 jmcneill unsigned char *result;
2076 1.1 jmcneill jpeg *j = (jpeg *) MALLOC(sizeof(*j));
2077 1.1 jmcneill start_mem(&j->s, buffer, len);
2078 1.1 jmcneill result = load_jpeg_image(j,x,y,comp,req_comp);
2079 1.1 jmcneill FREE(j);
2080 1.1 jmcneill return result;
2081 1.1 jmcneill #else
2082 1.1 jmcneill jpeg j;
2083 1.1 jmcneill start_mem(&j.s, buffer,len);
2084 1.1 jmcneill return load_jpeg_image(&j, x,y,comp,req_comp);
2085 1.1 jmcneill #endif
2086 1.1 jmcneill }
2087 1.1 jmcneill
2088 1.1 jmcneill static int stbi_jpeg_info_raw(jpeg *j, int *x, int *y, int *comp)
2089 1.1 jmcneill {
2090 1.1 jmcneill if (!decode_jpeg_header(j, SCAN_header))
2091 1.1 jmcneill return 0;
2092 1.1 jmcneill if (x) *x = j->s.img_x;
2093 1.1 jmcneill if (y) *y = j->s.img_y;
2094 1.1 jmcneill if (comp) *comp = j->s.img_n;
2095 1.1 jmcneill return 1;
2096 1.1 jmcneill }
2097 1.1 jmcneill
2098 1.1 jmcneill #ifndef STBI_NO_STDIO
2099 1.1 jmcneill int stbi_jpeg_test_file(FILE *f)
2100 1.1 jmcneill {
2101 1.1 jmcneill int n,r;
2102 1.1 jmcneill jpeg j;
2103 1.1 jmcneill n = ftell(f);
2104 1.1 jmcneill start_file(&j.s, f);
2105 1.1 jmcneill r = decode_jpeg_header(&j, SCAN_type);
2106 1.1 jmcneill fseek(f,n,SEEK_SET);
2107 1.1 jmcneill return r;
2108 1.1 jmcneill }
2109 1.1 jmcneill
2110 1.1 jmcneill int stbi_jpeg_info_from_file(FILE *f, int *x, int *y, int *comp)
2111 1.1 jmcneill {
2112 1.1 jmcneill jpeg j;
2113 1.1 jmcneill long n = ftell(f);
2114 1.1 jmcneill int res;
2115 1.1 jmcneill start_file(&j.s, f);
2116 1.1 jmcneill res = stbi_jpeg_info_raw(&j, x, y, comp);
2117 1.1 jmcneill fseek(f, n, SEEK_SET);
2118 1.1 jmcneill return res;
2119 1.1 jmcneill }
2120 1.1 jmcneill
2121 1.1 jmcneill int stbi_jpeg_info(char const *filename, int *x, int *y, int *comp)
2122 1.1 jmcneill {
2123 1.1 jmcneill FILE *f = fopen(filename, "rb");
2124 1.1 jmcneill int result;
2125 1.1 jmcneill if (!f) return e("can't fopen", "Unable to open file");
2126 1.1 jmcneill result = stbi_jpeg_info_from_file(f, x, y, comp);
2127 1.1 jmcneill fclose(f);
2128 1.1 jmcneill return result;
2129 1.1 jmcneill }
2130 1.1 jmcneill #endif
2131 1.1 jmcneill
2132 1.1 jmcneill int stbi_jpeg_test_memory(stbi_uc const *buffer, int len)
2133 1.1 jmcneill {
2134 1.1 jmcneill jpeg j;
2135 1.1 jmcneill start_mem(&j.s, buffer,len);
2136 1.1 jmcneill return decode_jpeg_header(&j, SCAN_type);
2137 1.1 jmcneill }
2138 1.1 jmcneill
2139 1.1 jmcneill int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
2140 1.1 jmcneill {
2141 1.1 jmcneill jpeg j;
2142 1.1 jmcneill start_mem(&j.s, buffer, len);
2143 1.1 jmcneill return stbi_jpeg_info_raw(&j, x, y, comp);
2144 1.1 jmcneill }
2145 1.1 jmcneill
2146 1.1 jmcneill #ifndef STBI_NO_STDIO
2147 1.1 jmcneill extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp);
2148 1.1 jmcneill extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp);
2149 1.1 jmcneill #endif
2150 1.1 jmcneill extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
2151 1.1 jmcneill
2152 1.1 jmcneill // public domain zlib decode v0.2 Sean Barrett 2006-11-18
2153 1.1 jmcneill // simple implementation
2154 1.1 jmcneill // - all input must be provided in an upfront buffer
2155 1.1 jmcneill // - all output is written to a single output buffer (can malloc/realloc)
2156 1.1 jmcneill // performance
2157 1.1 jmcneill // - fast huffman
2158 1.1 jmcneill
2159 1.1 jmcneill // fast-way is faster to check than jpeg huffman, but slow way is slower
2160 1.1 jmcneill #define ZFAST_BITS 9 // accelerate all cases in default tables
2161 1.1 jmcneill #define ZFAST_MASK ((1 << ZFAST_BITS) - 1)
2162 1.1 jmcneill
2163 1.1 jmcneill // zlib-style huffman encoding
2164 1.1 jmcneill // (jpegs packs from left, zlib from right, so can't share code)
2165 1.1 jmcneill typedef struct
2166 1.1 jmcneill {
2167 1.1 jmcneill uint16 fast[1 << ZFAST_BITS];
2168 1.1 jmcneill uint16 firstcode[16];
2169 1.1 jmcneill int maxcode[17];
2170 1.1 jmcneill uint16 firstsymbol[16];
2171 1.1 jmcneill uint8 size[288];
2172 1.1 jmcneill uint16 value[288];
2173 1.1 jmcneill } zhuffman;
2174 1.1 jmcneill
2175 1.1 jmcneill __forceinline static int bitreverse16(int n)
2176 1.1 jmcneill {
2177 1.1 jmcneill n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
2178 1.1 jmcneill n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
2179 1.1 jmcneill n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
2180 1.1 jmcneill n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
2181 1.1 jmcneill return n;
2182 1.1 jmcneill }
2183 1.1 jmcneill
2184 1.1 jmcneill __forceinline static int bit_reverse(int v, int bits)
2185 1.1 jmcneill {
2186 1.1 jmcneill assert(bits <= 16);
2187 1.1 jmcneill // to bit reverse n bits, reverse 16 and shift
2188 1.1 jmcneill // e.g. 11 bits, bit reverse and shift away 5
2189 1.1 jmcneill return bitreverse16(v) >> (16-bits);
2190 1.1 jmcneill }
2191 1.1 jmcneill
2192 1.1 jmcneill static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num)
2193 1.1 jmcneill {
2194 1.1 jmcneill int i,k=0;
2195 1.1 jmcneill int code, next_code[16], sizes[17];
2196 1.1 jmcneill
2197 1.1 jmcneill // DEFLATE spec for generating codes
2198 1.1 jmcneill memset(sizes, 0, sizeof(sizes));
2199 1.1 jmcneill memset(z->fast, 255, sizeof(z->fast));
2200 1.1 jmcneill for (i=0; i < num; ++i)
2201 1.1 jmcneill ++sizes[sizelist[i]];
2202 1.1 jmcneill sizes[0] = 0;
2203 1.1 jmcneill for (i=1; i < 16; ++i)
2204 1.1 jmcneill assert(sizes[i] <= (1 << i));
2205 1.1 jmcneill code = 0;
2206 1.1 jmcneill for (i=1; i < 16; ++i) {
2207 1.1 jmcneill next_code[i] = code;
2208 1.1 jmcneill z->firstcode[i] = (uint16) code;
2209 1.1 jmcneill z->firstsymbol[i] = (uint16) k;
2210 1.1 jmcneill code = (code + sizes[i]);
2211 1.1 jmcneill if (sizes[i])
2212 1.1 jmcneill if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG");
2213 1.1 jmcneill z->maxcode[i] = code << (16-i); // preshift for inner loop
2214 1.1 jmcneill code <<= 1;
2215 1.1 jmcneill k += sizes[i];
2216 1.1 jmcneill }
2217 1.1 jmcneill z->maxcode[16] = 0x10000; // sentinel
2218 1.1 jmcneill for (i=0; i < num; ++i) {
2219 1.1 jmcneill int s = sizelist[i];
2220 1.1 jmcneill if (s) {
2221 1.1 jmcneill int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
2222 1.1 jmcneill z->size[c] = (uint8)s;
2223 1.1 jmcneill z->value[c] = (uint16)i;
2224 1.1 jmcneill if (s <= ZFAST_BITS) {
2225 1.1 jmcneill int m = bit_reverse(next_code[s],s);
2226 1.1 jmcneill while (m < (1 << ZFAST_BITS)) {
2227 1.1 jmcneill z->fast[m] = (uint16) c;
2228 1.1 jmcneill m += (1 << s);
2229 1.1 jmcneill }
2230 1.1 jmcneill }
2231 1.1 jmcneill ++next_code[s];
2232 1.1 jmcneill }
2233 1.1 jmcneill }
2234 1.1 jmcneill return 1;
2235 1.1 jmcneill }
2236 1.1 jmcneill
2237 1.1 jmcneill // zlib-from-memory implementation for PNG reading
2238 1.1 jmcneill // because PNG allows splitting the zlib stream arbitrarily,
2239 1.1 jmcneill // and it's annoying structurally to have PNG call ZLIB call PNG,
2240 1.1 jmcneill // we require PNG read all the IDATs and combine them into a single
2241 1.1 jmcneill // memory buffer
2242 1.1 jmcneill
2243 1.1 jmcneill typedef struct
2244 1.1 jmcneill {
2245 1.1 jmcneill uint8 const *zbuffer, *zbuffer_end;
2246 1.1 jmcneill int num_bits;
2247 1.1 jmcneill uint32 code_buffer;
2248 1.1 jmcneill
2249 1.1 jmcneill char *zout;
2250 1.1 jmcneill char *zout_start;
2251 1.1 jmcneill char *zout_end;
2252 1.1 jmcneill int z_expandable;
2253 1.1 jmcneill
2254 1.1 jmcneill zhuffman z_length, z_distance;
2255 1.1 jmcneill } zbuf;
2256 1.1 jmcneill
2257 1.1 jmcneill __forceinline static int zget8(zbuf *z)
2258 1.1 jmcneill {
2259 1.1 jmcneill if (z->zbuffer >= z->zbuffer_end) return 0;
2260 1.1 jmcneill return *z->zbuffer++;
2261 1.1 jmcneill }
2262 1.1 jmcneill
2263 1.1 jmcneill static void fill_bits(zbuf *z)
2264 1.1 jmcneill {
2265 1.1 jmcneill do {
2266 1.1 jmcneill assert(z->code_buffer < (1U << z->num_bits));
2267 1.1 jmcneill z->code_buffer |= zget8(z) << z->num_bits;
2268 1.1 jmcneill z->num_bits += 8;
2269 1.1 jmcneill } while (z->num_bits <= 24);
2270 1.1 jmcneill }
2271 1.1 jmcneill
2272 1.1 jmcneill __forceinline static unsigned int zreceive(zbuf *z, int n)
2273 1.1 jmcneill {
2274 1.1 jmcneill unsigned int k;
2275 1.1 jmcneill if (z->num_bits < n) fill_bits(z);
2276 1.1 jmcneill k = z->code_buffer & ((1 << n) - 1);
2277 1.1 jmcneill z->code_buffer >>= n;
2278 1.1 jmcneill z->num_bits -= n;
2279 1.1 jmcneill return k;
2280 1.1 jmcneill }
2281 1.1 jmcneill
2282 1.1 jmcneill __forceinline static int zhuffman_decode(zbuf *a, zhuffman *z)
2283 1.1 jmcneill {
2284 1.1 jmcneill int b,s,k;
2285 1.1 jmcneill if (a->num_bits < 16) fill_bits(a);
2286 1.1 jmcneill b = z->fast[a->code_buffer & ZFAST_MASK];
2287 1.1 jmcneill if (b < 0xffff) {
2288 1.1 jmcneill s = z->size[b];
2289 1.1 jmcneill a->code_buffer >>= s;
2290 1.1 jmcneill a->num_bits -= s;
2291 1.1 jmcneill return z->value[b];
2292 1.1 jmcneill }
2293 1.1 jmcneill
2294 1.1 jmcneill // not resolved by fast table, so compute it the slow way
2295 1.1 jmcneill // use jpeg approach, which requires MSbits at top
2296 1.1 jmcneill k = bit_reverse(a->code_buffer, 16);
2297 1.1 jmcneill for (s=ZFAST_BITS+1; ; ++s)
2298 1.1 jmcneill if (k < z->maxcode[s])
2299 1.1 jmcneill break;
2300 1.1 jmcneill if (s == 16) return -1; // invalid code!
2301 1.1 jmcneill // code size is s, so:
2302 1.1 jmcneill b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s];
2303 1.1 jmcneill assert(z->size[b] == s);
2304 1.1 jmcneill a->code_buffer >>= s;
2305 1.1 jmcneill a->num_bits -= s;
2306 1.1 jmcneill return z->value[b];
2307 1.1 jmcneill }
2308 1.1 jmcneill
2309 1.1 jmcneill static int expand(zbuf *z, int n) // need to make room for n bytes
2310 1.1 jmcneill {
2311 1.1 jmcneill char *q;
2312 1.1 jmcneill int cur, limit;
2313 1.1 jmcneill if (!z->z_expandable) return e("output buffer limit","Corrupt PNG");
2314 1.1 jmcneill cur = (int) (z->zout - z->zout_start);
2315 1.1 jmcneill limit = (int) (z->zout_end - z->zout_start);
2316 1.1 jmcneill while (cur + n > limit)
2317 1.1 jmcneill limit *= 2;
2318 1.1 jmcneill q = (char *) REALLOC(z->zout_start, limit);
2319 1.1 jmcneill if (q == NULL) return e("outofmem", "Out of memory");
2320 1.1 jmcneill z->zout_start = q;
2321 1.1 jmcneill z->zout = q + cur;
2322 1.1 jmcneill z->zout_end = q + limit;
2323 1.1 jmcneill return 1;
2324 1.1 jmcneill }
2325 1.1 jmcneill
2326 1.1 jmcneill static int length_base[31] = {
2327 1.1 jmcneill 3,4,5,6,7,8,9,10,11,13,
2328 1.1 jmcneill 15,17,19,23,27,31,35,43,51,59,
2329 1.1 jmcneill 67,83,99,115,131,163,195,227,258,0,0 };
2330 1.1 jmcneill
2331 1.1 jmcneill static int length_extra[31]=
2332 1.1 jmcneill { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
2333 1.1 jmcneill
2334 1.1 jmcneill static int dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
2335 1.1 jmcneill 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
2336 1.1 jmcneill
2337 1.1 jmcneill static int dist_extra[32] =
2338 1.1 jmcneill { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
2339 1.1 jmcneill
2340 1.1 jmcneill static int parse_huffman_block(zbuf *a)
2341 1.1 jmcneill {
2342 1.1 jmcneill for(;;) {
2343 1.1 jmcneill int z = zhuffman_decode(a, &a->z_length);
2344 1.1 jmcneill if (z < 256) {
2345 1.1 jmcneill if (z < 0) return e("bad huffman code","Corrupt PNG"); // error in huffman codes
2346 1.1 jmcneill if (a->zout >= a->zout_end) if (!expand(a, 1)) return 0;
2347 1.1 jmcneill *a->zout++ = (char) z;
2348 1.1 jmcneill } else {
2349 1.1 jmcneill uint8 *p;
2350 1.1 jmcneill int len,dist;
2351 1.1 jmcneill if (z == 256) return 1;
2352 1.1 jmcneill z -= 257;
2353 1.1 jmcneill len = length_base[z];
2354 1.1 jmcneill if (length_extra[z]) len += zreceive(a, length_extra[z]);
2355 1.1 jmcneill z = zhuffman_decode(a, &a->z_distance);
2356 1.1 jmcneill if (z < 0) return e("bad huffman code","Corrupt PNG");
2357 1.1 jmcneill dist = dist_base[z];
2358 1.1 jmcneill if (dist_extra[z]) dist += zreceive(a, dist_extra[z]);
2359 1.1 jmcneill if (a->zout - a->zout_start < dist) return e("bad dist","Corrupt PNG");
2360 1.1 jmcneill if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0;
2361 1.1 jmcneill p = (uint8 *) (a->zout - dist);
2362 1.1 jmcneill while (len--)
2363 1.1 jmcneill *a->zout++ = *p++;
2364 1.1 jmcneill }
2365 1.1 jmcneill }
2366 1.1 jmcneill }
2367 1.1 jmcneill
2368 1.1 jmcneill static int compute_huffman_codes(zbuf *a)
2369 1.1 jmcneill {
2370 1.1 jmcneill static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
2371 1.1 jmcneill zhuffman z_codelength;
2372 1.1 jmcneill uint8 lencodes[286+32+137];//padding for maximum single op
2373 1.1 jmcneill uint8 codelength_sizes[19];
2374 1.1 jmcneill int i,n;
2375 1.1 jmcneill
2376 1.1 jmcneill int hlit = zreceive(a,5) + 257;
2377 1.1 jmcneill int hdist = zreceive(a,5) + 1;
2378 1.1 jmcneill int hclen = zreceive(a,4) + 4;
2379 1.1 jmcneill
2380 1.1 jmcneill memset(codelength_sizes, 0, sizeof(codelength_sizes));
2381 1.1 jmcneill for (i=0; i < hclen; ++i) {
2382 1.1 jmcneill int s = zreceive(a,3);
2383 1.1 jmcneill codelength_sizes[length_dezigzag[i]] = (uint8) s;
2384 1.1 jmcneill }
2385 1.1 jmcneill if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
2386 1.1 jmcneill
2387 1.1 jmcneill n = 0;
2388 1.1 jmcneill while (n < hlit + hdist) {
2389 1.1 jmcneill int c = zhuffman_decode(a, &z_codelength);
2390 1.1 jmcneill assert(c >= 0 && c < 19);
2391 1.1 jmcneill if (c < 16)
2392 1.1 jmcneill lencodes[n++] = (uint8) c;
2393 1.1 jmcneill else if (c == 16) {
2394 1.1 jmcneill c = zreceive(a,2)+3;
2395 1.1 jmcneill memset(lencodes+n, lencodes[n-1], c);
2396 1.1 jmcneill n += c;
2397 1.1 jmcneill } else if (c == 17) {
2398 1.1 jmcneill c = zreceive(a,3)+3;
2399 1.1 jmcneill memset(lencodes+n, 0, c);
2400 1.1 jmcneill n += c;
2401 1.1 jmcneill } else {
2402 1.1 jmcneill assert(c == 18);
2403 1.1 jmcneill c = zreceive(a,7)+11;
2404 1.1 jmcneill memset(lencodes+n, 0, c);
2405 1.1 jmcneill n += c;
2406 1.1 jmcneill }
2407 1.1 jmcneill }
2408 1.1 jmcneill if (n != hlit+hdist) return e("bad codelengths","Corrupt PNG");
2409 1.1 jmcneill if (!zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
2410 1.1 jmcneill if (!zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
2411 1.1 jmcneill return 1;
2412 1.1 jmcneill }
2413 1.1 jmcneill
2414 1.1 jmcneill static int parse_uncompressed_block(zbuf *a)
2415 1.1 jmcneill {
2416 1.1 jmcneill uint8 header[4];
2417 1.1 jmcneill int len,nlen,k;
2418 1.1 jmcneill if (a->num_bits & 7)
2419 1.1 jmcneill zreceive(a, a->num_bits & 7); // discard
2420 1.1 jmcneill // drain the bit-packed data into header
2421 1.1 jmcneill k = 0;
2422 1.1 jmcneill while (a->num_bits > 0) {
2423 1.1 jmcneill header[k++] = (uint8) (a->code_buffer & 255); // wtf this warns?
2424 1.1 jmcneill a->code_buffer >>= 8;
2425 1.1 jmcneill a->num_bits -= 8;
2426 1.1 jmcneill }
2427 1.1 jmcneill assert(a->num_bits == 0);
2428 1.1 jmcneill // now fill header the normal way
2429 1.1 jmcneill while (k < 4)
2430 1.1 jmcneill header[k++] = (uint8) zget8(a);
2431 1.1 jmcneill len = header[1] * 256 + header[0];
2432 1.1 jmcneill nlen = header[3] * 256 + header[2];
2433 1.1 jmcneill if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG");
2434 1.1 jmcneill if (a->zbuffer + len > a->zbuffer_end) return e("read past buffer","Corrupt PNG");
2435 1.1 jmcneill if (a->zout + len > a->zout_end)
2436 1.1 jmcneill if (!expand(a, len)) return 0;
2437 1.1 jmcneill memcpy(a->zout, a->zbuffer, len);
2438 1.1 jmcneill a->zbuffer += len;
2439 1.1 jmcneill a->zout += len;
2440 1.1 jmcneill return 1;
2441 1.1 jmcneill }
2442 1.1 jmcneill
2443 1.1 jmcneill static int parse_zlib_header(zbuf *a)
2444 1.1 jmcneill {
2445 1.1 jmcneill int cmf = zget8(a);
2446 1.1 jmcneill int cm = cmf & 15;
2447 1.1 jmcneill /* int cinfo = cmf >> 4; */
2448 1.1 jmcneill int flg = zget8(a);
2449 1.1 jmcneill if ((cmf*256+flg) % 31 != 0) return e("bad zlib header","Corrupt PNG"); // zlib spec
2450 1.1 jmcneill if (flg & 32) return e("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png
2451 1.1 jmcneill if (cm != 8) return e("bad compression","Corrupt PNG"); // DEFLATE required for png
2452 1.1 jmcneill // window = 1 << (8 + cinfo)... but who cares, we fully buffer output
2453 1.1 jmcneill return 1;
2454 1.1 jmcneill }
2455 1.1 jmcneill
2456 1.1 jmcneill // @TODO: should statically initialize these for optimal thread safety
2457 1.1 jmcneill static uint8 default_length[288], default_distance[32];
2458 1.1 jmcneill static void init_defaults(void)
2459 1.1 jmcneill {
2460 1.1 jmcneill int i; // use <= to match clearly with spec
2461 1.1 jmcneill for (i=0; i <= 143; ++i) default_length[i] = 8;
2462 1.1 jmcneill for ( ; i <= 255; ++i) default_length[i] = 9;
2463 1.1 jmcneill for ( ; i <= 279; ++i) default_length[i] = 7;
2464 1.1 jmcneill for ( ; i <= 287; ++i) default_length[i] = 8;
2465 1.1 jmcneill
2466 1.1 jmcneill for (i=0; i <= 31; ++i) default_distance[i] = 5;
2467 1.1 jmcneill }
2468 1.1 jmcneill
2469 1.1 jmcneill int stbi_png_partial; // a quick hack to only allow decoding some of a PNG... I should implement real streaming support instead
2470 1.1 jmcneill static int parse_zlib(zbuf *a, int parse_header)
2471 1.1 jmcneill {
2472 1.1 jmcneill int final, type;
2473 1.1 jmcneill if (parse_header)
2474 1.1 jmcneill if (!parse_zlib_header(a)) return 0;
2475 1.1 jmcneill a->num_bits = 0;
2476 1.1 jmcneill a->code_buffer = 0;
2477 1.1 jmcneill do {
2478 1.1 jmcneill final = zreceive(a,1);
2479 1.1 jmcneill type = zreceive(a,2);
2480 1.1 jmcneill if (type == 0) {
2481 1.1 jmcneill if (!parse_uncompressed_block(a)) return 0;
2482 1.1 jmcneill } else if (type == 3) {
2483 1.1 jmcneill return 0;
2484 1.1 jmcneill } else {
2485 1.1 jmcneill if (type == 1) {
2486 1.1 jmcneill // use fixed code lengths
2487 1.1 jmcneill if (!default_distance[31]) init_defaults();
2488 1.1 jmcneill if (!zbuild_huffman(&a->z_length , default_length , 288)) return 0;
2489 1.1 jmcneill if (!zbuild_huffman(&a->z_distance, default_distance, 32)) return 0;
2490 1.1 jmcneill } else {
2491 1.1 jmcneill if (!compute_huffman_codes(a)) return 0;
2492 1.1 jmcneill }
2493 1.1 jmcneill if (!parse_huffman_block(a)) return 0;
2494 1.1 jmcneill }
2495 1.1 jmcneill if (stbi_png_partial && a->zout - a->zout_start > 65536)
2496 1.1 jmcneill break;
2497 1.1 jmcneill } while (!final);
2498 1.1 jmcneill return 1;
2499 1.1 jmcneill }
2500 1.1 jmcneill
2501 1.1 jmcneill static int do_zlib(zbuf *a, char *obuf, int olen, int exp, int parse_header)
2502 1.1 jmcneill {
2503 1.1 jmcneill a->zout_start = obuf;
2504 1.1 jmcneill a->zout = obuf;
2505 1.1 jmcneill a->zout_end = obuf + olen;
2506 1.1 jmcneill a->z_expandable = exp;
2507 1.1 jmcneill
2508 1.1 jmcneill return parse_zlib(a, parse_header);
2509 1.1 jmcneill }
2510 1.1 jmcneill
2511 1.1 jmcneill char *stbi_zlib_decode_malloc_guesssize(const char * buffer, int len, int initial_size, int *outlen)
2512 1.1 jmcneill {
2513 1.1 jmcneill zbuf a;
2514 1.1 jmcneill char *p = (char *) MALLOC(initial_size);
2515 1.1 jmcneill if (p == NULL) return NULL;
2516 1.1 jmcneill a.zbuffer = (uint8 const *) buffer;
2517 1.1 jmcneill a.zbuffer_end = (uint8 const *) buffer + len;
2518 1.1 jmcneill if (do_zlib(&a, p, initial_size, 1, 1)) {
2519 1.1 jmcneill if (outlen) *outlen = (int) (a.zout - a.zout_start);
2520 1.1 jmcneill return a.zout_start;
2521 1.1 jmcneill } else {
2522 1.1 jmcneill FREE(a.zout_start);
2523 1.1 jmcneill return NULL;
2524 1.1 jmcneill }
2525 1.1 jmcneill }
2526 1.1 jmcneill
2527 1.1 jmcneill char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen)
2528 1.1 jmcneill {
2529 1.1 jmcneill return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
2530 1.1 jmcneill }
2531 1.1 jmcneill
2532 1.1 jmcneill char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header)
2533 1.1 jmcneill {
2534 1.1 jmcneill zbuf a;
2535 1.1 jmcneill char *p = (char *) MALLOC(initial_size);
2536 1.1 jmcneill if (p == NULL) return NULL;
2537 1.1 jmcneill a.zbuffer = (uint8 const *) buffer;
2538 1.1 jmcneill a.zbuffer_end = (uint8 const *) buffer + len;
2539 1.1 jmcneill if (do_zlib(&a, p, initial_size, 1, parse_header)) {
2540 1.1 jmcneill if (outlen) *outlen = (int) (a.zout - a.zout_start);
2541 1.1 jmcneill return a.zout_start;
2542 1.1 jmcneill } else {
2543 1.1 jmcneill FREE(a.zout_start);
2544 1.1 jmcneill return NULL;
2545 1.1 jmcneill }
2546 1.1 jmcneill }
2547 1.1 jmcneill
2548 1.1 jmcneill int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen)
2549 1.1 jmcneill {
2550 1.1 jmcneill zbuf a;
2551 1.1 jmcneill a.zbuffer = (uint8 const *) ibuffer;
2552 1.1 jmcneill a.zbuffer_end = (uint8 const *) ibuffer + ilen;
2553 1.1 jmcneill if (do_zlib(&a, obuffer, olen, 0, 1))
2554 1.1 jmcneill return (int) (a.zout - a.zout_start);
2555 1.1 jmcneill else
2556 1.1 jmcneill return -1;
2557 1.1 jmcneill }
2558 1.1 jmcneill
2559 1.1 jmcneill char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen)
2560 1.1 jmcneill {
2561 1.1 jmcneill zbuf a;
2562 1.1 jmcneill char *p = (char *) MALLOC(16384);
2563 1.1 jmcneill if (p == NULL) return NULL;
2564 1.1 jmcneill a.zbuffer = (uint8 const *) buffer;
2565 1.1 jmcneill a.zbuffer_end = (uint8 const *) buffer+len;
2566 1.1 jmcneill if (do_zlib(&a, p, 16384, 1, 0)) {
2567 1.1 jmcneill if (outlen) *outlen = (int) (a.zout - a.zout_start);
2568 1.1 jmcneill return a.zout_start;
2569 1.1 jmcneill } else {
2570 1.1 jmcneill FREE(a.zout_start);
2571 1.1 jmcneill return NULL;
2572 1.1 jmcneill }
2573 1.1 jmcneill }
2574 1.1 jmcneill
2575 1.1 jmcneill int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen)
2576 1.1 jmcneill {
2577 1.1 jmcneill zbuf a;
2578 1.1 jmcneill a.zbuffer = (uint8 const *) ibuffer;
2579 1.1 jmcneill a.zbuffer_end = (uint8 const *) ibuffer + ilen;
2580 1.1 jmcneill if (do_zlib(&a, obuffer, olen, 0, 0))
2581 1.1 jmcneill return (int) (a.zout - a.zout_start);
2582 1.1 jmcneill else
2583 1.1 jmcneill return -1;
2584 1.1 jmcneill }
2585 1.1 jmcneill
2586 1.1 jmcneill // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18
2587 1.1 jmcneill // simple implementation
2588 1.1 jmcneill // - only 8-bit samples
2589 1.1 jmcneill // - no CRC checking
2590 1.1 jmcneill // - allocates lots of intermediate memory
2591 1.1 jmcneill // - avoids problem of streaming data between subsystems
2592 1.1 jmcneill // - avoids explicit window management
2593 1.1 jmcneill // performance
2594 1.1 jmcneill // - uses stb_zlib, a PD zlib implementation with fast huffman decoding
2595 1.1 jmcneill
2596 1.1 jmcneill
2597 1.1 jmcneill typedef struct
2598 1.1 jmcneill {
2599 1.1 jmcneill uint32 length;
2600 1.1 jmcneill uint32 type;
2601 1.1 jmcneill } chunk;
2602 1.1 jmcneill
2603 1.1 jmcneill #define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
2604 1.1 jmcneill
2605 1.1 jmcneill static chunk get_chunk_header(stbi *s)
2606 1.1 jmcneill {
2607 1.1 jmcneill chunk c;
2608 1.1 jmcneill c.length = get32(s);
2609 1.1 jmcneill c.type = get32(s);
2610 1.1 jmcneill return c;
2611 1.1 jmcneill }
2612 1.1 jmcneill
2613 1.1 jmcneill static int check_png_header(stbi *s)
2614 1.1 jmcneill {
2615 1.1 jmcneill static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 };
2616 1.1 jmcneill int i;
2617 1.1 jmcneill for (i=0; i < 8; ++i)
2618 1.1 jmcneill if (get8(s) != png_sig[i]) return e("bad png sig","Not a PNG");
2619 1.1 jmcneill return 1;
2620 1.1 jmcneill }
2621 1.1 jmcneill
2622 1.1 jmcneill typedef struct
2623 1.1 jmcneill {
2624 1.1 jmcneill stbi s;
2625 1.1 jmcneill uint8 *idata, *expanded, *out;
2626 1.1 jmcneill } png;
2627 1.1 jmcneill
2628 1.1 jmcneill
2629 1.1 jmcneill enum {
2630 1.1 jmcneill F_none=0, F_sub=1, F_up=2, F_avg=3, F_paeth=4,
2631 1.1 jmcneill F_avg_first, F_paeth_first
2632 1.1 jmcneill };
2633 1.1 jmcneill
2634 1.1 jmcneill static uint8 first_row_filter[5] =
2635 1.1 jmcneill {
2636 1.1 jmcneill F_none, F_sub, F_none, F_avg_first, F_paeth_first
2637 1.1 jmcneill };
2638 1.1 jmcneill
2639 1.1 jmcneill static int paeth(int a, int b, int c)
2640 1.1 jmcneill {
2641 1.1 jmcneill int p = a + b - c;
2642 1.1 jmcneill int pa = abs(p-a);
2643 1.1 jmcneill int pb = abs(p-b);
2644 1.1 jmcneill int pc = abs(p-c);
2645 1.1 jmcneill if (pa <= pb && pa <= pc) return a;
2646 1.1 jmcneill if (pb <= pc) return b;
2647 1.1 jmcneill return c;
2648 1.1 jmcneill }
2649 1.1 jmcneill
2650 1.1 jmcneill // create the png data from post-deflated data
2651 1.1 jmcneill static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, uint32 x, uint32 y)
2652 1.1 jmcneill {
2653 1.1 jmcneill stbi *s = &a->s;
2654 1.1 jmcneill uint32 i,j,stride = x*out_n;
2655 1.1 jmcneill int k;
2656 1.1 jmcneill int img_n = s->img_n; // copy it into a local for later
2657 1.1 jmcneill assert(out_n == s->img_n || out_n == s->img_n+1);
2658 1.1 jmcneill if (stbi_png_partial) y = 1;
2659 1.1 jmcneill a->out = (uint8 *) MALLOC(x * y * out_n);
2660 1.1 jmcneill if (!a->out) return e("outofmem", "Out of memory");
2661 1.1 jmcneill if (!stbi_png_partial) {
2662 1.1 jmcneill if (s->img_x == x && s->img_y == y) {
2663 1.1 jmcneill if (raw_len != (img_n * x + 1) * y) return e("not enough pixels","Corrupt PNG");
2664 1.1 jmcneill } else { // interlaced:
2665 1.1 jmcneill if (raw_len < (img_n * x + 1) * y) return e("not enough pixels","Corrupt PNG");
2666 1.1 jmcneill }
2667 1.1 jmcneill }
2668 1.1 jmcneill for (j=0; j < y; ++j) {
2669 1.1 jmcneill uint8 *cur = a->out + stride*j;
2670 1.1 jmcneill uint8 *prior = cur - stride;
2671 1.1 jmcneill int filter = *raw++;
2672 1.1 jmcneill if (filter > 4) return e("invalid filter","Corrupt PNG");
2673 1.1 jmcneill // if first row, use special filter that doesn't sample previous row
2674 1.1 jmcneill if (j == 0) filter = first_row_filter[filter];
2675 1.1 jmcneill // handle first pixel explicitly
2676 1.1 jmcneill for (k=0; k < img_n; ++k) {
2677 1.1 jmcneill switch (filter) {
2678 1.1 jmcneill case F_none : cur[k] = raw[k]; break;
2679 1.1 jmcneill case F_sub : cur[k] = raw[k]; break;
2680 1.1 jmcneill case F_up : cur[k] = raw[k] + prior[k]; break;
2681 1.1 jmcneill case F_avg : cur[k] = raw[k] + (prior[k]>>1); break;
2682 1.1 jmcneill case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break;
2683 1.1 jmcneill case F_avg_first : cur[k] = raw[k]; break;
2684 1.1 jmcneill case F_paeth_first: cur[k] = raw[k]; break;
2685 1.1 jmcneill }
2686 1.1 jmcneill }
2687 1.1 jmcneill if (img_n != out_n) cur[img_n] = 255;
2688 1.1 jmcneill raw += img_n;
2689 1.1 jmcneill cur += out_n;
2690 1.1 jmcneill prior += out_n;
2691 1.1 jmcneill // this is a little gross, so that we don't switch per-pixel or per-component
2692 1.1 jmcneill if (img_n == out_n) {
2693 1.1 jmcneill #define CASE(f) \
2694 1.1 jmcneill case f: \
2695 1.1 jmcneill for (i=x-1; i >= 1; --i, raw+=img_n,cur+=img_n,prior+=img_n) \
2696 1.1 jmcneill for (k=0; k < img_n; ++k)
2697 1.1 jmcneill switch (filter) {
2698 1.1 jmcneill CASE(F_none) cur[k] = raw[k]; break;
2699 1.1 jmcneill CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break;
2700 1.1 jmcneill CASE(F_up) cur[k] = raw[k] + prior[k]; break;
2701 1.1 jmcneill CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break;
2702 1.1 jmcneill CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break;
2703 1.1 jmcneill CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break;
2704 1.1 jmcneill CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break;
2705 1.1 jmcneill }
2706 1.1 jmcneill #undef CASE
2707 1.1 jmcneill } else {
2708 1.1 jmcneill assert(img_n+1 == out_n);
2709 1.1 jmcneill #define CASE(f) \
2710 1.1 jmcneill case f: \
2711 1.1 jmcneill for (i=x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \
2712 1.1 jmcneill for (k=0; k < img_n; ++k)
2713 1.1 jmcneill switch (filter) {
2714 1.1 jmcneill CASE(F_none) cur[k] = raw[k]; break;
2715 1.1 jmcneill CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break;
2716 1.1 jmcneill CASE(F_up) cur[k] = raw[k] + prior[k]; break;
2717 1.1 jmcneill CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break;
2718 1.1 jmcneill CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break;
2719 1.1 jmcneill CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break;
2720 1.1 jmcneill CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break;
2721 1.1 jmcneill }
2722 1.1 jmcneill #undef CASE
2723 1.1 jmcneill }
2724 1.1 jmcneill }
2725 1.1 jmcneill return 1;
2726 1.1 jmcneill }
2727 1.1 jmcneill
2728 1.1 jmcneill static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n, int interlaced)
2729 1.1 jmcneill {
2730 1.1 jmcneill uint8 *final;
2731 1.1 jmcneill int p;
2732 1.1 jmcneill int save;
2733 1.1 jmcneill if (!interlaced)
2734 1.1 jmcneill return create_png_image_raw(a, raw, raw_len, out_n, a->s.img_x, a->s.img_y);
2735 1.1 jmcneill save = stbi_png_partial;
2736 1.1 jmcneill stbi_png_partial = 0;
2737 1.1 jmcneill
2738 1.1 jmcneill // de-interlacing
2739 1.1 jmcneill final = (uint8 *) MALLOC(a->s.img_x * a->s.img_y * out_n);
2740 1.1 jmcneill for (p=0; p < 7; ++p) {
2741 1.1 jmcneill int xorig[] = { 0,4,0,2,0,1,0 };
2742 1.1 jmcneill int yorig[] = { 0,0,4,0,2,0,1 };
2743 1.1 jmcneill int xspc[] = { 8,8,4,4,2,2,1 };
2744 1.1 jmcneill int yspc[] = { 8,8,8,4,4,2,2 };
2745 1.1 jmcneill int i,j,x,y;
2746 1.1 jmcneill // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
2747 1.1 jmcneill x = (a->s.img_x - xorig[p] + xspc[p]-1) / xspc[p];
2748 1.1 jmcneill y = (a->s.img_y - yorig[p] + yspc[p]-1) / yspc[p];
2749 1.1 jmcneill if (x && y) {
2750 1.1 jmcneill if (!create_png_image_raw(a, raw, raw_len, out_n, x, y)) {
2751 1.1 jmcneill FREE(final);
2752 1.1 jmcneill return 0;
2753 1.1 jmcneill }
2754 1.1 jmcneill for (j=0; j < y; ++j)
2755 1.1 jmcneill for (i=0; i < x; ++i)
2756 1.1 jmcneill memcpy(final + (j*yspc[p]+yorig[p])*a->s.img_x*out_n + (i*xspc[p]+xorig[p])*out_n,
2757 1.1 jmcneill a->out + (j*x+i)*out_n, out_n);
2758 1.1 jmcneill FREE(a->out);
2759 1.1 jmcneill raw += (x*out_n+1)*y;
2760 1.1 jmcneill raw_len -= (x*out_n+1)*y;
2761 1.1 jmcneill }
2762 1.1 jmcneill }
2763 1.1 jmcneill a->out = final;
2764 1.1 jmcneill
2765 1.1 jmcneill stbi_png_partial = save;
2766 1.1 jmcneill return 1;
2767 1.1 jmcneill }
2768 1.1 jmcneill
2769 1.1 jmcneill static int compute_transparency(png *z, uint8 tc[3], int out_n)
2770 1.1 jmcneill {
2771 1.1 jmcneill stbi *s = &z->s;
2772 1.1 jmcneill uint32 i, pixel_count = s->img_x * s->img_y;
2773 1.1 jmcneill uint8 *p = z->out;
2774 1.1 jmcneill
2775 1.1 jmcneill // compute color-based transparency, assuming we've
2776 1.1 jmcneill // already got 255 as the alpha value in the output
2777 1.1 jmcneill assert(out_n == 2 || out_n == 4);
2778 1.1 jmcneill
2779 1.1 jmcneill if (out_n == 2) {
2780 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2781 1.1 jmcneill p[1] = (p[0] == tc[0] ? 0 : 255);
2782 1.1 jmcneill p += 2;
2783 1.1 jmcneill }
2784 1.1 jmcneill } else {
2785 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2786 1.1 jmcneill if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
2787 1.1 jmcneill p[3] = 0;
2788 1.1 jmcneill p += 4;
2789 1.1 jmcneill }
2790 1.1 jmcneill }
2791 1.1 jmcneill return 1;
2792 1.1 jmcneill }
2793 1.1 jmcneill
2794 1.1 jmcneill static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n)
2795 1.1 jmcneill {
2796 1.1 jmcneill uint32 i, pixel_count = a->s.img_x * a->s.img_y;
2797 1.1 jmcneill uint8 *p, *temp_out, *orig = a->out;
2798 1.1 jmcneill
2799 1.1 jmcneill p = (uint8 *) MALLOC(pixel_count * pal_img_n);
2800 1.1 jmcneill if (p == NULL) return e("outofmem", "Out of memory");
2801 1.1 jmcneill
2802 1.1 jmcneill // between here and FREE(out) below, exitting would leak
2803 1.1 jmcneill temp_out = p;
2804 1.1 jmcneill
2805 1.1 jmcneill if (pal_img_n == 3) {
2806 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2807 1.1 jmcneill int n = orig[i]*4;
2808 1.1 jmcneill p[0] = palette[n ];
2809 1.1 jmcneill p[1] = palette[n+1];
2810 1.1 jmcneill p[2] = palette[n+2];
2811 1.1 jmcneill p += 3;
2812 1.1 jmcneill }
2813 1.1 jmcneill } else {
2814 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2815 1.1 jmcneill int n = orig[i]*4;
2816 1.1 jmcneill p[0] = palette[n ];
2817 1.1 jmcneill p[1] = palette[n+1];
2818 1.1 jmcneill p[2] = palette[n+2];
2819 1.1 jmcneill p[3] = palette[n+3];
2820 1.1 jmcneill p += 4;
2821 1.1 jmcneill }
2822 1.1 jmcneill }
2823 1.1 jmcneill FREE(a->out);
2824 1.1 jmcneill a->out = temp_out;
2825 1.1 jmcneill
2826 1.1 jmcneill STBI_NOTUSED(len);
2827 1.1 jmcneill
2828 1.1 jmcneill return 1;
2829 1.1 jmcneill }
2830 1.1 jmcneill
2831 1.1 jmcneill static int stbi_unpremultiply_on_load = 0;
2832 1.1 jmcneill static int stbi_de_iphone_flag = 0;
2833 1.1 jmcneill
2834 1.1 jmcneill void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply)
2835 1.1 jmcneill {
2836 1.1 jmcneill stbi_unpremultiply_on_load = flag_true_if_should_unpremultiply;
2837 1.1 jmcneill }
2838 1.1 jmcneill void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert)
2839 1.1 jmcneill {
2840 1.1 jmcneill stbi_de_iphone_flag = flag_true_if_should_convert;
2841 1.1 jmcneill }
2842 1.1 jmcneill
2843 1.1 jmcneill static void stbi_de_iphone(png *z)
2844 1.1 jmcneill {
2845 1.1 jmcneill stbi *s = &z->s;
2846 1.1 jmcneill uint32 i, pixel_count = s->img_x * s->img_y;
2847 1.1 jmcneill uint8 *p = z->out;
2848 1.1 jmcneill
2849 1.1 jmcneill if (s->img_out_n == 3) { // convert bgr to rgb
2850 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2851 1.1 jmcneill uint8 t = p[0];
2852 1.1 jmcneill p[0] = p[2];
2853 1.1 jmcneill p[2] = t;
2854 1.1 jmcneill p += 3;
2855 1.1 jmcneill }
2856 1.1 jmcneill } else {
2857 1.1 jmcneill assert(s->img_out_n == 4);
2858 1.1 jmcneill if (stbi_unpremultiply_on_load) {
2859 1.1 jmcneill // convert bgr to rgb and unpremultiply
2860 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2861 1.1 jmcneill uint8 a = p[3];
2862 1.1 jmcneill uint8 t = p[0];
2863 1.1 jmcneill if (a) {
2864 1.1 jmcneill p[0] = p[2] * 255 / a;
2865 1.1 jmcneill p[1] = p[1] * 255 / a;
2866 1.1 jmcneill p[2] = t * 255 / a;
2867 1.1 jmcneill } else {
2868 1.1 jmcneill p[0] = p[2];
2869 1.1 jmcneill p[2] = t;
2870 1.1 jmcneill }
2871 1.1 jmcneill p += 4;
2872 1.1 jmcneill }
2873 1.1 jmcneill } else {
2874 1.1 jmcneill // convert bgr to rgb
2875 1.1 jmcneill for (i=0; i < pixel_count; ++i) {
2876 1.1 jmcneill uint8 t = p[0];
2877 1.1 jmcneill p[0] = p[2];
2878 1.1 jmcneill p[2] = t;
2879 1.1 jmcneill p += 4;
2880 1.1 jmcneill }
2881 1.1 jmcneill }
2882 1.1 jmcneill }
2883 1.1 jmcneill }
2884 1.1 jmcneill
2885 1.1 jmcneill static int parse_png_file(png *z, int scan, int req_comp)
2886 1.1 jmcneill {
2887 1.1 jmcneill uint8 palette[1024], pal_img_n=0;
2888 1.1 jmcneill uint8 has_trans=0, tc[3];
2889 1.1 jmcneill uint32 ioff=0, idata_limit=0, i, pal_len=0;
2890 1.1 jmcneill int first=1,k,interlace=0, iphone=0;
2891 1.1 jmcneill stbi *s = &z->s;
2892 1.1 jmcneill
2893 1.1 jmcneill if (!check_png_header(s)) return 0;
2894 1.1 jmcneill
2895 1.1 jmcneill if (scan == SCAN_type) return 1;
2896 1.1 jmcneill
2897 1.1 jmcneill for (;;) {
2898 1.1 jmcneill chunk c = get_chunk_header(s);
2899 1.1 jmcneill switch (c.type) {
2900 1.1 jmcneill case PNG_TYPE('C','g','B','I'):
2901 1.1 jmcneill iphone = stbi_de_iphone_flag;
2902 1.1 jmcneill skip(s, c.length);
2903 1.1 jmcneill break;
2904 1.1 jmcneill case PNG_TYPE('I','H','D','R'): {
2905 1.1 jmcneill int depth,color,comp,filter;
2906 1.1 jmcneill if (!first) return e("multiple IHDR","Corrupt PNG");
2907 1.1 jmcneill first = 0;
2908 1.1 jmcneill if (c.length != 13) return e("bad IHDR len","Corrupt PNG");
2909 1.1 jmcneill s->img_x = get32(s); if (s->img_x > (1 << 24)) return e("too large","Very large image (corrupt?)");
2910 1.1 jmcneill s->img_y = get32(s); if (s->img_y > (1 << 24)) return e("too large","Very large image (corrupt?)");
2911 1.1 jmcneill depth = get8(s); if (depth != 8) return e("8bit only","PNG not supported: 8-bit only");
2912 1.1 jmcneill color = get8(s); if (color > 6) return e("bad ctype","Corrupt PNG");
2913 1.1 jmcneill if (color == 3) pal_img_n = 3; else if (color & 1) return e("bad ctype","Corrupt PNG");
2914 1.1 jmcneill comp = get8(s); if (comp) return e("bad comp method","Corrupt PNG");
2915 1.1 jmcneill filter= get8(s); if (filter) return e("bad filter method","Corrupt PNG");
2916 1.1 jmcneill interlace = get8(s); if (interlace>1) return e("bad interlace method","Corrupt PNG");
2917 1.1 jmcneill if (!s->img_x || !s->img_y) return e("0-pixel image","Corrupt PNG");
2918 1.1 jmcneill if (!pal_img_n) {
2919 1.1 jmcneill s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
2920 1.1 jmcneill if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode");
2921 1.1 jmcneill if (scan == SCAN_header) return 1;
2922 1.1 jmcneill } else {
2923 1.1 jmcneill // if paletted, then pal_n is our final components, and
2924 1.1 jmcneill // img_n is # components to decompress/filter.
2925 1.1 jmcneill s->img_n = 1;
2926 1.1 jmcneill if ((1 << 30) / s->img_x / 4 < s->img_y) return e("too large","Corrupt PNG");
2927 1.1 jmcneill // if SCAN_header, have to scan to see if we have a tRNS
2928 1.1 jmcneill }
2929 1.1 jmcneill break;
2930 1.1 jmcneill }
2931 1.1 jmcneill
2932 1.1 jmcneill case PNG_TYPE('P','L','T','E'): {
2933 1.1 jmcneill if (first) return e("first not IHDR", "Corrupt PNG");
2934 1.1 jmcneill if (c.length > 256*3) return e("invalid PLTE","Corrupt PNG");
2935 1.1 jmcneill pal_len = c.length / 3;
2936 1.1 jmcneill if (pal_len * 3 != c.length) return e("invalid PLTE","Corrupt PNG");
2937 1.1 jmcneill for (i=0; i < pal_len; ++i) {
2938 1.1 jmcneill palette[i*4+0] = get8u(s);
2939 1.1 jmcneill palette[i*4+1] = get8u(s);
2940 1.1 jmcneill palette[i*4+2] = get8u(s);
2941 1.1 jmcneill palette[i*4+3] = 255;
2942 1.1 jmcneill }
2943 1.1 jmcneill break;
2944 1.1 jmcneill }
2945 1.1 jmcneill
2946 1.1 jmcneill case PNG_TYPE('t','R','N','S'): {
2947 1.1 jmcneill if (first) return e("first not IHDR", "Corrupt PNG");
2948 1.1 jmcneill if (z->idata) return e("tRNS after IDAT","Corrupt PNG");
2949 1.1 jmcneill if (pal_img_n) {
2950 1.1 jmcneill if (scan == SCAN_header) { s->img_n = 4; return 1; }
2951 1.1 jmcneill if (pal_len == 0) return e("tRNS before PLTE","Corrupt PNG");
2952 1.1 jmcneill if (c.length > pal_len) return e("bad tRNS len","Corrupt PNG");
2953 1.1 jmcneill pal_img_n = 4;
2954 1.1 jmcneill for (i=0; i < c.length; ++i)
2955 1.1 jmcneill palette[i*4+3] = get8u(s);
2956 1.1 jmcneill } else {
2957 1.1 jmcneill if (!(s->img_n & 1)) return e("tRNS with alpha","Corrupt PNG");
2958 1.1 jmcneill if (c.length != (uint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG");
2959 1.1 jmcneill has_trans = 1;
2960 1.1 jmcneill for (k=0; k < s->img_n; ++k)
2961 1.1 jmcneill tc[k] = (uint8) get16(s); // non 8-bit images will be larger
2962 1.1 jmcneill }
2963 1.1 jmcneill break;
2964 1.1 jmcneill }
2965 1.1 jmcneill
2966 1.1 jmcneill case PNG_TYPE('I','D','A','T'): {
2967 1.1 jmcneill if (first) return e("first not IHDR", "Corrupt PNG");
2968 1.1 jmcneill if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG");
2969 1.1 jmcneill if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; }
2970 1.1 jmcneill if (ioff + c.length > idata_limit) {
2971 1.1 jmcneill uint8 *p;
2972 1.1 jmcneill if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
2973 1.1 jmcneill while (ioff + c.length > idata_limit)
2974 1.1 jmcneill idata_limit *= 2;
2975 1.1 jmcneill p = (uint8 *) REALLOC(z->idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory");
2976 1.1 jmcneill z->idata = p;
2977 1.1 jmcneill }
2978 1.1 jmcneill if (!getn(s, z->idata+ioff,c.length)) return e("outofdata","Corrupt PNG");
2979 1.1 jmcneill ioff += c.length;
2980 1.1 jmcneill break;
2981 1.1 jmcneill }
2982 1.1 jmcneill
2983 1.1 jmcneill case PNG_TYPE('I','E','N','D'): {
2984 1.1 jmcneill uint32 raw_len;
2985 1.1 jmcneill if (first) return e("first not IHDR", "Corrupt PNG");
2986 1.1 jmcneill if (scan != SCAN_load) return 1;
2987 1.1 jmcneill if (z->idata == NULL) return e("no IDAT","Corrupt PNG");
2988 1.1 jmcneill z->expanded = (uint8 *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, 16384, (int *) &raw_len, !iphone);
2989 1.1 jmcneill if (z->expanded == NULL) return 0; // zlib should set error
2990 1.1 jmcneill FREE(z->idata); z->idata = NULL;
2991 1.1 jmcneill if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
2992 1.1 jmcneill s->img_out_n = s->img_n+1;
2993 1.1 jmcneill else
2994 1.1 jmcneill s->img_out_n = s->img_n;
2995 1.1 jmcneill if (!create_png_image(z, z->expanded, raw_len, s->img_out_n, interlace)) return 0;
2996 1.1 jmcneill if (has_trans)
2997 1.1 jmcneill if (!compute_transparency(z, tc, s->img_out_n)) return 0;
2998 1.1 jmcneill if (iphone && s->img_out_n > 2)
2999 1.1 jmcneill stbi_de_iphone(z);
3000 1.1 jmcneill if (pal_img_n) {
3001 1.1 jmcneill // pal_img_n == 3 or 4
3002 1.1 jmcneill s->img_n = pal_img_n; // record the actual colors we had
3003 1.1 jmcneill s->img_out_n = pal_img_n;
3004 1.1 jmcneill if (req_comp >= 3) s->img_out_n = req_comp;
3005 1.1 jmcneill if (!expand_palette(z, palette, pal_len, s->img_out_n))
3006 1.1 jmcneill return 0;
3007 1.1 jmcneill }
3008 1.1 jmcneill FREE(z->expanded); z->expanded = NULL;
3009 1.1 jmcneill return 1;
3010 1.1 jmcneill }
3011 1.1 jmcneill
3012 1.1 jmcneill default:
3013 1.1 jmcneill // if critical, fail
3014 1.1 jmcneill if (first) return e("first not IHDR", "Corrupt PNG");
3015 1.1 jmcneill if ((c.type & (1 << 29)) == 0) {
3016 1.1 jmcneill #ifndef STBI_NO_FAILURE_STRINGS
3017 1.1 jmcneill // not threadsafe
3018 1.1 jmcneill static char invalid_chunk[] = "XXXX chunk not known";
3019 1.1 jmcneill invalid_chunk[0] = (uint8) (c.type >> 24);
3020 1.1 jmcneill invalid_chunk[1] = (uint8) (c.type >> 16);
3021 1.1 jmcneill invalid_chunk[2] = (uint8) (c.type >> 8);
3022 1.1 jmcneill invalid_chunk[3] = (uint8) (c.type >> 0);
3023 1.1 jmcneill #endif
3024 1.1 jmcneill return e(invalid_chunk, "PNG not supported: unknown chunk type");
3025 1.1 jmcneill }
3026 1.1 jmcneill skip(s, c.length);
3027 1.1 jmcneill break;
3028 1.1 jmcneill }
3029 1.1 jmcneill // end of chunk, read and skip CRC
3030 1.1 jmcneill get32(s);
3031 1.1 jmcneill }
3032 1.1 jmcneill }
3033 1.1 jmcneill
3034 1.1 jmcneill static unsigned char *do_png(png *p, int *x, int *y, int *n, int req_comp)
3035 1.1 jmcneill {
3036 1.1 jmcneill unsigned char *result=NULL;
3037 1.1 jmcneill p->expanded = NULL;
3038 1.1 jmcneill p->idata = NULL;
3039 1.1 jmcneill p->out = NULL;
3040 1.1 jmcneill if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error");
3041 1.1 jmcneill if (parse_png_file(p, SCAN_load, req_comp)) {
3042 1.1 jmcneill result = p->out;
3043 1.1 jmcneill p->out = NULL;
3044 1.1 jmcneill if (req_comp && req_comp != p->s.img_out_n) {
3045 1.1 jmcneill result = convert_format(result, p->s.img_out_n, req_comp, p->s.img_x, p->s.img_y);
3046 1.1 jmcneill p->s.img_out_n = req_comp;
3047 1.1 jmcneill if (result == NULL) return result;
3048 1.1 jmcneill }
3049 1.1 jmcneill *x = p->s.img_x;
3050 1.1 jmcneill *y = p->s.img_y;
3051 1.1 jmcneill if (n) *n = p->s.img_n;
3052 1.1 jmcneill }
3053 1.1 jmcneill FREE(p->out); p->out = NULL;
3054 1.1 jmcneill FREE(p->expanded); p->expanded = NULL;
3055 1.1 jmcneill FREE(p->idata); p->idata = NULL;
3056 1.1 jmcneill
3057 1.1 jmcneill return result;
3058 1.1 jmcneill }
3059 1.1 jmcneill
3060 1.1 jmcneill #ifndef STBI_NO_STDIO
3061 1.1 jmcneill unsigned char *stbi_png_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
3062 1.1 jmcneill {
3063 1.1 jmcneill png p;
3064 1.1 jmcneill start_file(&p.s, f);
3065 1.1 jmcneill return do_png(&p, x,y,comp,req_comp);
3066 1.1 jmcneill }
3067 1.1 jmcneill
3068 1.1 jmcneill unsigned char *stbi_png_load(char const *filename, int *x, int *y, int *comp, int req_comp)
3069 1.1 jmcneill {
3070 1.1 jmcneill unsigned char *data;
3071 1.1 jmcneill FILE *f = fopen(filename, "rb");
3072 1.1 jmcneill if (!f) return NULL;
3073 1.1 jmcneill data = stbi_png_load_from_file(f,x,y,comp,req_comp);
3074 1.1 jmcneill fclose(f);
3075 1.1 jmcneill return data;
3076 1.1 jmcneill }
3077 1.1 jmcneill #endif
3078 1.1 jmcneill
3079 1.1 jmcneill unsigned char *stbi_png_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
3080 1.1 jmcneill {
3081 1.1 jmcneill png p;
3082 1.1 jmcneill start_mem(&p.s, buffer,len);
3083 1.1 jmcneill return do_png(&p, x,y,comp,req_comp);
3084 1.1 jmcneill }
3085 1.1 jmcneill
3086 1.1 jmcneill #ifndef STBI_NO_STDIO
3087 1.1 jmcneill int stbi_png_test_file(FILE *f)
3088 1.1 jmcneill {
3089 1.1 jmcneill png p;
3090 1.1 jmcneill int n,r;
3091 1.1 jmcneill n = ftell(f);
3092 1.1 jmcneill start_file(&p.s, f);
3093 1.1 jmcneill r = parse_png_file(&p, SCAN_type,STBI_default);
3094 1.1 jmcneill fseek(f,n,SEEK_SET);
3095 1.1 jmcneill return r;
3096 1.1 jmcneill }
3097 1.1 jmcneill #endif
3098 1.1 jmcneill
3099 1.1 jmcneill int stbi_png_test_memory(stbi_uc const *buffer, int len)
3100 1.1 jmcneill {
3101 1.1 jmcneill png p;
3102 1.1 jmcneill start_mem(&p.s, buffer, len);
3103 1.1 jmcneill return parse_png_file(&p, SCAN_type,STBI_default);
3104 1.1 jmcneill }
3105 1.1 jmcneill
3106 1.1 jmcneill static int stbi_png_info_raw(png *p, int *x, int *y, int *comp)
3107 1.1 jmcneill {
3108 1.1 jmcneill if (!parse_png_file(p, SCAN_header, 0))
3109 1.1 jmcneill return 0;
3110 1.1 jmcneill if (x) *x = p->s.img_x;
3111 1.1 jmcneill if (y) *y = p->s.img_y;
3112 1.1 jmcneill if (comp) *comp = p->s.img_n;
3113 1.1 jmcneill return 1;
3114 1.1 jmcneill }
3115 1.1 jmcneill
3116 1.1 jmcneill #ifndef STBI_NO_STDIO
3117 1.1 jmcneill int stbi_png_info (char const *filename, int *x, int *y, int *comp)
3118 1.1 jmcneill {
3119 1.1 jmcneill int res;
3120 1.1 jmcneill FILE *f = fopen(filename, "rb");
3121 1.1 jmcneill if (!f) return 0;
3122 1.1 jmcneill res = stbi_png_info_from_file(f, x, y, comp);
3123 1.1 jmcneill fclose(f);
3124 1.1 jmcneill return res;
3125 1.1 jmcneill }
3126 1.1 jmcneill
3127 1.1 jmcneill int stbi_png_info_from_file(FILE *f, int *x, int *y, int *comp)
3128 1.1 jmcneill {
3129 1.1 jmcneill png p;
3130 1.1 jmcneill int res;
3131 1.1 jmcneill long n = ftell(f);
3132 1.1 jmcneill start_file(&p.s, f);
3133 1.1 jmcneill res = stbi_png_info_raw(&p, x, y, comp);
3134 1.1 jmcneill fseek(f, n, SEEK_SET);
3135 1.1 jmcneill return res;
3136 1.1 jmcneill }
3137 1.1 jmcneill #endif // !STBI_NO_STDIO
3138 1.1 jmcneill
3139 1.1 jmcneill int stbi_png_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
3140 1.1 jmcneill {
3141 1.1 jmcneill png p;
3142 1.1 jmcneill start_mem(&p.s, buffer, len);
3143 1.1 jmcneill return stbi_png_info_raw(&p, x, y, comp);
3144 1.1 jmcneill }
3145 1.1 jmcneill
3146 1.1 jmcneill // Microsoft/Windows BMP image
3147 1.1 jmcneill
3148 1.1 jmcneill static int bmp_test(stbi *s)
3149 1.1 jmcneill {
3150 1.1 jmcneill int sz;
3151 1.1 jmcneill if (get8(s) != 'B') return 0;
3152 1.1 jmcneill if (get8(s) != 'M') return 0;
3153 1.1 jmcneill get32le(s); // discard filesize
3154 1.1 jmcneill get16le(s); // discard reserved
3155 1.1 jmcneill get16le(s); // discard reserved
3156 1.1 jmcneill get32le(s); // discard data offset
3157 1.1 jmcneill sz = get32le(s);
3158 1.1 jmcneill if (sz == 12 || sz == 40 || sz == 56 || sz == 108) return 1;
3159 1.1 jmcneill return 0;
3160 1.1 jmcneill }
3161 1.1 jmcneill
3162 1.1 jmcneill #ifndef STBI_NO_STDIO
3163 1.1 jmcneill int stbi_bmp_test_file (FILE *f)
3164 1.1 jmcneill {
3165 1.1 jmcneill stbi s;
3166 1.1 jmcneill int r,n = ftell(f);
3167 1.1 jmcneill start_file(&s,f);
3168 1.1 jmcneill r = bmp_test(&s);
3169 1.1 jmcneill fseek(f,n,SEEK_SET);
3170 1.1 jmcneill return r;
3171 1.1 jmcneill }
3172 1.1 jmcneill #endif
3173 1.1 jmcneill
3174 1.1 jmcneill int stbi_bmp_test_memory (stbi_uc const *buffer, int len)
3175 1.1 jmcneill {
3176 1.1 jmcneill stbi s;
3177 1.1 jmcneill start_mem(&s, buffer, len);
3178 1.1 jmcneill return bmp_test(&s);
3179 1.1 jmcneill }
3180 1.1 jmcneill
3181 1.1 jmcneill // returns 0..31 for the highest set bit
3182 1.1 jmcneill static int high_bit(unsigned int z)
3183 1.1 jmcneill {
3184 1.1 jmcneill int n=0;
3185 1.1 jmcneill if (z == 0) return -1;
3186 1.1 jmcneill if (z >= 0x10000) n += 16, z >>= 16;
3187 1.1 jmcneill if (z >= 0x00100) n += 8, z >>= 8;
3188 1.1 jmcneill if (z >= 0x00010) n += 4, z >>= 4;
3189 1.1 jmcneill if (z >= 0x00004) n += 2, z >>= 2;
3190 1.1 jmcneill if (z >= 0x00002) n += 1, z >>= 1;
3191 1.1 jmcneill return n;
3192 1.1 jmcneill }
3193 1.1 jmcneill
3194 1.1 jmcneill static int bitcount(unsigned int a)
3195 1.1 jmcneill {
3196 1.1 jmcneill a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2
3197 1.1 jmcneill a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4
3198 1.1 jmcneill a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
3199 1.1 jmcneill a = (a + (a >> 8)); // max 16 per 8 bits
3200 1.1 jmcneill a = (a + (a >> 16)); // max 32 per 8 bits
3201 1.1 jmcneill return a & 0xff;
3202 1.1 jmcneill }
3203 1.1 jmcneill
3204 1.1 jmcneill static int shiftsigned(int v, int shift, int bits)
3205 1.1 jmcneill {
3206 1.1 jmcneill int result;
3207 1.1 jmcneill int z=0;
3208 1.1 jmcneill
3209 1.1 jmcneill if (shift < 0) v <<= -shift;
3210 1.1 jmcneill else v >>= shift;
3211 1.1 jmcneill result = v;
3212 1.1 jmcneill
3213 1.1 jmcneill z = bits;
3214 1.1 jmcneill while (z < 8) {
3215 1.1 jmcneill result += v >> z;
3216 1.1 jmcneill z += bits;
3217 1.1 jmcneill }
3218 1.1 jmcneill return result;
3219 1.1 jmcneill }
3220 1.1 jmcneill
3221 1.1 jmcneill static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp)
3222 1.1 jmcneill {
3223 1.1 jmcneill uint8 *out;
3224 1.1 jmcneill unsigned int mr=0,mg=0,mb=0,ma=0, fake_a=0;
3225 1.1 jmcneill stbi_uc pal[256][4];
3226 1.1 jmcneill int psize=0,i,j,compress=0,width;
3227 1.1 jmcneill int bpp, flip_vertically, pad, target, offset, hsz;
3228 1.1 jmcneill if (get8(s) != 'B' || get8(s) != 'M') return epuc("not BMP", "Corrupt BMP");
3229 1.1 jmcneill get32le(s); // discard filesize
3230 1.1 jmcneill get16le(s); // discard reserved
3231 1.1 jmcneill get16le(s); // discard reserved
3232 1.1 jmcneill offset = get32le(s);
3233 1.1 jmcneill hsz = get32le(s);
3234 1.1 jmcneill if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108) return epuc("unknown BMP", "BMP type not supported: unknown");
3235 1.1 jmcneill if (hsz == 12) {
3236 1.1 jmcneill s->img_x = get16le(s);
3237 1.1 jmcneill s->img_y = get16le(s);
3238 1.1 jmcneill } else {
3239 1.1 jmcneill s->img_x = get32le(s);
3240 1.1 jmcneill s->img_y = get32le(s);
3241 1.1 jmcneill }
3242 1.1 jmcneill if (get16le(s) != 1) return epuc("bad BMP", "bad BMP");
3243 1.1 jmcneill bpp = get16le(s);
3244 1.1 jmcneill if (bpp == 1) return epuc("monochrome", "BMP type not supported: 1-bit");
3245 1.1 jmcneill flip_vertically = ((int) s->img_y) > 0;
3246 1.1 jmcneill s->img_y = abs((int) s->img_y);
3247 1.1 jmcneill if (hsz == 12) {
3248 1.1 jmcneill if (bpp < 24)
3249 1.1 jmcneill psize = (offset - 14 - 24) / 3;
3250 1.1 jmcneill } else {
3251 1.1 jmcneill compress = get32le(s);
3252 1.1 jmcneill if (compress == 1 || compress == 2) return epuc("BMP RLE", "BMP type not supported: RLE");
3253 1.1 jmcneill get32le(s); // discard sizeof
3254 1.1 jmcneill get32le(s); // discard hres
3255 1.1 jmcneill get32le(s); // discard vres
3256 1.1 jmcneill get32le(s); // discard colorsused
3257 1.1 jmcneill get32le(s); // discard max important
3258 1.1 jmcneill if (hsz == 40 || hsz == 56) {
3259 1.1 jmcneill if (hsz == 56) {
3260 1.1 jmcneill get32le(s);
3261 1.1 jmcneill get32le(s);
3262 1.1 jmcneill get32le(s);
3263 1.1 jmcneill get32le(s);
3264 1.1 jmcneill }
3265 1.1 jmcneill if (bpp == 16 || bpp == 32) {
3266 1.1 jmcneill mr = mg = mb = 0;
3267 1.1 jmcneill if (compress == 0) {
3268 1.1 jmcneill if (bpp == 32) {
3269 1.1 jmcneill mr = 0xffu << 16;
3270 1.1 jmcneill mg = 0xffu << 8;
3271 1.1 jmcneill mb = 0xffu << 0;
3272 1.1 jmcneill ma = 0xffu << 24;
3273 1.1 jmcneill fake_a = 1; // @TODO: check for cases like alpha value is all 0 and switch it to 255
3274 1.1 jmcneill } else {
3275 1.1 jmcneill mr = 31u << 10;
3276 1.1 jmcneill mg = 31u << 5;
3277 1.1 jmcneill mb = 31u << 0;
3278 1.1 jmcneill }
3279 1.1 jmcneill } else if (compress == 3) {
3280 1.1 jmcneill mr = get32le(s);
3281 1.1 jmcneill mg = get32le(s);
3282 1.1 jmcneill mb = get32le(s);
3283 1.1 jmcneill // not documented, but generated by photoshop and handled by mspaint
3284 1.1 jmcneill if (mr == mg && mg == mb) {
3285 1.1 jmcneill // ?!?!?
3286 1.1 jmcneill return epuc("bad BMP", "bad BMP");
3287 1.1 jmcneill }
3288 1.1 jmcneill } else
3289 1.1 jmcneill return epuc("bad BMP", "bad BMP");
3290 1.1 jmcneill }
3291 1.1 jmcneill } else {
3292 1.1 jmcneill assert(hsz == 108);
3293 1.1 jmcneill mr = get32le(s);
3294 1.1 jmcneill mg = get32le(s);
3295 1.1 jmcneill mb = get32le(s);
3296 1.1 jmcneill ma = get32le(s);
3297 1.1 jmcneill get32le(s); // discard color space
3298 1.1 jmcneill for (i=0; i < 12; ++i)
3299 1.1 jmcneill get32le(s); // discard color space parameters
3300 1.1 jmcneill }
3301 1.1 jmcneill if (bpp < 16)
3302 1.1 jmcneill psize = (offset - 14 - hsz) >> 2;
3303 1.1 jmcneill }
3304 1.1 jmcneill s->img_n = ma ? 4 : 3;
3305 1.1 jmcneill if (req_comp && req_comp >= 3) // we can directly decode 3 or 4
3306 1.1 jmcneill target = req_comp;
3307 1.1 jmcneill else
3308 1.1 jmcneill target = s->img_n; // if they want monochrome, we'll post-convert
3309 1.1 jmcneill out = (stbi_uc *) MALLOC(target * s->img_x * s->img_y);
3310 1.1 jmcneill if (!out) return epuc("outofmem", "Out of memory");
3311 1.1 jmcneill if (bpp < 16) {
3312 1.1 jmcneill int z=0;
3313 1.1 jmcneill if (psize == 0 || psize > 256) { FREE(out); return epuc("invalid", "Corrupt BMP"); }
3314 1.1 jmcneill for (i=0; i < psize; ++i) {
3315 1.1 jmcneill pal[i][2] = get8u(s);
3316 1.1 jmcneill pal[i][1] = get8u(s);
3317 1.1 jmcneill pal[i][0] = get8u(s);
3318 1.1 jmcneill if (hsz != 12) get8(s);
3319 1.1 jmcneill pal[i][3] = 255;
3320 1.1 jmcneill }
3321 1.1 jmcneill skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4));
3322 1.1 jmcneill if (bpp == 4) width = (s->img_x + 1) >> 1;
3323 1.1 jmcneill else if (bpp == 8) width = s->img_x;
3324 1.1 jmcneill else { FREE(out); return epuc("bad bpp", "Corrupt BMP"); }
3325 1.1 jmcneill pad = (-width)&3;
3326 1.1 jmcneill for (j=0; j < (int) s->img_y; ++j) {
3327 1.1 jmcneill for (i=0; i < (int) s->img_x; i += 2) {
3328 1.1 jmcneill int v=get8(s),v2=0;
3329 1.1 jmcneill if (bpp == 4) {
3330 1.1 jmcneill v2 = v & 15;
3331 1.1 jmcneill v >>= 4;
3332 1.1 jmcneill }
3333 1.1 jmcneill out[z++] = pal[v][0];
3334 1.1 jmcneill out[z++] = pal[v][1];
3335 1.1 jmcneill out[z++] = pal[v][2];
3336 1.1 jmcneill if (target == 4) out[z++] = 255;
3337 1.1 jmcneill if (i+1 == (int) s->img_x) break;
3338 1.1 jmcneill v = (bpp == 8) ? get8(s) : v2;
3339 1.1 jmcneill out[z++] = pal[v][0];
3340 1.1 jmcneill out[z++] = pal[v][1];
3341 1.1 jmcneill out[z++] = pal[v][2];
3342 1.1 jmcneill if (target == 4) out[z++] = 255;
3343 1.1 jmcneill }
3344 1.1 jmcneill skip(s, pad);
3345 1.1 jmcneill }
3346 1.1 jmcneill } else {
3347 1.1 jmcneill int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0;
3348 1.1 jmcneill int z = 0;
3349 1.1 jmcneill int easy=0;
3350 1.1 jmcneill skip(s, offset - 14 - hsz);
3351 1.1 jmcneill if (bpp == 24) width = 3 * s->img_x;
3352 1.1 jmcneill else if (bpp == 16) width = 2*s->img_x;
3353 1.1 jmcneill else /* bpp = 32 and pad = 0 */ width=0;
3354 1.1 jmcneill pad = (-width) & 3;
3355 1.1 jmcneill if (bpp == 24) {
3356 1.1 jmcneill easy = 1;
3357 1.1 jmcneill } else if (bpp == 32) {
3358 1.1 jmcneill if (mb == 0xff && mg == 0xff00 && mr == 0xff000000 && ma == 0xff000000)
3359 1.1 jmcneill easy = 2;
3360 1.1 jmcneill }
3361 1.1 jmcneill if (!easy) {
3362 1.1 jmcneill if (!mr || !mg || !mb) return epuc("bad masks", "Corrupt BMP");
3363 1.1 jmcneill // right shift amt to put high bit in position #7
3364 1.1 jmcneill rshift = high_bit(mr)-7; rcount = bitcount(mr);
3365 1.1 jmcneill gshift = high_bit(mg)-7; gcount = bitcount(mr);
3366 1.1 jmcneill bshift = high_bit(mb)-7; bcount = bitcount(mr);
3367 1.1 jmcneill ashift = high_bit(ma)-7; acount = bitcount(mr);
3368 1.1 jmcneill }
3369 1.1 jmcneill for (j=0; j < (int) s->img_y; ++j) {
3370 1.1 jmcneill if (easy) {
3371 1.1 jmcneill for (i=0; i < (int) s->img_x; ++i) {
3372 1.1 jmcneill int a;
3373 1.1 jmcneill out[z+2] = get8u(s);
3374 1.1 jmcneill out[z+1] = get8u(s);
3375 1.1 jmcneill out[z+0] = get8u(s);
3376 1.1 jmcneill z += 3;
3377 1.1 jmcneill a = (easy == 2 ? get8(s) : 255);
3378 1.1 jmcneill if (target == 4) out[z++] = (uint8) a;
3379 1.1 jmcneill }
3380 1.1 jmcneill } else {
3381 1.1 jmcneill for (i=0; i < (int) s->img_x; ++i) {
3382 1.1 jmcneill uint32 v = (bpp == 16 ? get16le(s) : get32le(s));
3383 1.1 jmcneill int a;
3384 1.1 jmcneill out[z++] = (uint8) shiftsigned(v & mr, rshift, rcount);
3385 1.1 jmcneill out[z++] = (uint8) shiftsigned(v & mg, gshift, gcount);
3386 1.1 jmcneill out[z++] = (uint8) shiftsigned(v & mb, bshift, bcount);
3387 1.1 jmcneill a = (ma ? shiftsigned(v & ma, ashift, acount) : 255);
3388 1.1 jmcneill if (target == 4) out[z++] = (uint8) a;
3389 1.1 jmcneill }
3390 1.1 jmcneill }
3391 1.1 jmcneill skip(s, pad);
3392 1.1 jmcneill }
3393 1.1 jmcneill }
3394 1.1 jmcneill if (flip_vertically) {
3395 1.1 jmcneill stbi_uc t;
3396 1.1 jmcneill for (j=0; j < (int) s->img_y>>1; ++j) {
3397 1.1 jmcneill stbi_uc *p1 = out + j *s->img_x*target;
3398 1.1 jmcneill stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target;
3399 1.1 jmcneill for (i=0; i < (int) s->img_x*target; ++i) {
3400 1.1 jmcneill t = p1[i], p1[i] = p2[i], p2[i] = t;
3401 1.1 jmcneill }
3402 1.1 jmcneill }
3403 1.1 jmcneill }
3404 1.1 jmcneill
3405 1.1 jmcneill if (req_comp && req_comp != target) {
3406 1.1 jmcneill out = convert_format(out, target, req_comp, s->img_x, s->img_y);
3407 1.1 jmcneill if (out == NULL) return out; // convert_format frees input on failure
3408 1.1 jmcneill }
3409 1.1 jmcneill
3410 1.1 jmcneill *x = s->img_x;
3411 1.1 jmcneill *y = s->img_y;
3412 1.1 jmcneill if (comp) *comp = target;
3413 1.1 jmcneill return out;
3414 1.1 jmcneill }
3415 1.1 jmcneill
3416 1.1 jmcneill #ifndef STBI_NO_STDIO
3417 1.1 jmcneill stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp)
3418 1.1 jmcneill {
3419 1.1 jmcneill stbi_uc *data;
3420 1.1 jmcneill FILE *f = fopen(filename, "rb");
3421 1.1 jmcneill if (!f) return NULL;
3422 1.1 jmcneill data = stbi_bmp_load_from_file(f, x,y,comp,req_comp);
3423 1.1 jmcneill fclose(f);
3424 1.1 jmcneill return data;
3425 1.1 jmcneill }
3426 1.1 jmcneill
3427 1.1 jmcneill stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp)
3428 1.1 jmcneill {
3429 1.1 jmcneill stbi s;
3430 1.1 jmcneill start_file(&s, f);
3431 1.1 jmcneill return bmp_load(&s, x,y,comp,req_comp);
3432 1.1 jmcneill }
3433 1.1 jmcneill #endif
3434 1.1 jmcneill
3435 1.1 jmcneill stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
3436 1.1 jmcneill {
3437 1.1 jmcneill stbi s;
3438 1.1 jmcneill start_mem(&s, buffer, len);
3439 1.1 jmcneill return bmp_load(&s, x,y,comp,req_comp);
3440 1.1 jmcneill }
3441 1.1 jmcneill
3442 1.1 jmcneill // Targa Truevision - TGA
3443 1.1 jmcneill // by Jonathan Dummer
3444 1.1 jmcneill
3445 1.1 jmcneill static int tga_info(stbi *s, int *x, int *y, int *comp)
3446 1.1 jmcneill {
3447 1.1 jmcneill int tga_w, tga_h, tga_comp;
3448 1.1 jmcneill int sz;
3449 1.1 jmcneill get8u(s); // discard Offset
3450 1.1 jmcneill sz = get8u(s); // color type
3451 1.1 jmcneill if( sz > 1 ) return 0; // only RGB or indexed allowed
3452 1.1 jmcneill sz = get8u(s); // image type
3453 1.1 jmcneill // only RGB or grey allowed, +/- RLE
3454 1.1 jmcneill if ((sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11)) return 0;
3455 1.1 jmcneill get16le(s); // discard palette start
3456 1.1 jmcneill get16le(s); // discard palette length
3457 1.1 jmcneill get8(s); // discard bits per palette color entry
3458 1.1 jmcneill get16le(s); // discard x origin
3459 1.1 jmcneill get16le(s); // discard y origin
3460 1.1 jmcneill tga_w = get16le(s);
3461 1.1 jmcneill if( tga_w < 1 ) return 0; // test width
3462 1.1 jmcneill tga_h = get16le(s);
3463 1.1 jmcneill if( tga_h < 1 ) return 0; // test height
3464 1.1 jmcneill sz = get8(s); // bits per pixel
3465 1.1 jmcneill // only RGB or RGBA or grey allowed
3466 1.1 jmcneill if ((sz != 8) && (sz != 16) && (sz != 24) && (sz != 32)) return 0;
3467 1.1 jmcneill tga_comp = sz;
3468 1.1 jmcneill if (x) *x = tga_w;
3469 1.1 jmcneill if (y) *y = tga_h;
3470 1.1 jmcneill if (comp) *comp = tga_comp / 8;
3471 1.1 jmcneill return 1; // seems to have passed everything
3472 1.1 jmcneill }
3473 1.1 jmcneill
3474 1.1 jmcneill #ifndef STBI_NO_STDIO
3475 1.1 jmcneill int stbi_tga_info_from_file(FILE *f, int *x, int *y, int *comp)
3476 1.1 jmcneill {
3477 1.1 jmcneill stbi s;
3478 1.1 jmcneill int r;
3479 1.1 jmcneill long n = ftell(f);
3480 1.1 jmcneill start_file(&s, f);
3481 1.1 jmcneill r = tga_info(&s, x, y, comp);
3482 1.1 jmcneill fseek(f, n, SEEK_SET);
3483 1.1 jmcneill return r;
3484 1.1 jmcneill }
3485 1.1 jmcneill #endif
3486 1.1 jmcneill
3487 1.1 jmcneill int stbi_tga_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
3488 1.1 jmcneill {
3489 1.1 jmcneill stbi s;
3490 1.1 jmcneill start_mem(&s, buffer, len);
3491 1.1 jmcneill return tga_info(&s, x, y, comp);
3492 1.1 jmcneill }
3493 1.1 jmcneill
3494 1.1 jmcneill static int tga_test(stbi *s)
3495 1.1 jmcneill {
3496 1.1 jmcneill int sz;
3497 1.1 jmcneill get8u(s); // discard Offset
3498 1.1 jmcneill sz = get8u(s); // color type
3499 1.1 jmcneill if ( sz > 1 ) return 0; // only RGB or indexed allowed
3500 1.1 jmcneill sz = get8u(s); // image type
3501 1.1 jmcneill if ( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE
3502 1.1 jmcneill get16(s); // discard palette start
3503 1.1 jmcneill get16(s); // discard palette length
3504 1.1 jmcneill get8(s); // discard bits per palette color entry
3505 1.1 jmcneill get16(s); // discard x origin
3506 1.1 jmcneill get16(s); // discard y origin
3507 1.1 jmcneill if ( get16(s) < 1 ) return 0; // test width
3508 1.1 jmcneill if ( get16(s) < 1 ) return 0; // test height
3509 1.1 jmcneill sz = get8(s); // bits per pixel
3510 1.1 jmcneill if ( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) ) return 0; // only RGB or RGBA or grey allowed
3511 1.1 jmcneill return 1; // seems to have passed everything
3512 1.1 jmcneill }
3513 1.1 jmcneill
3514 1.1 jmcneill #ifndef STBI_NO_STDIO
3515 1.1 jmcneill int stbi_tga_test_file (FILE *f)
3516 1.1 jmcneill {
3517 1.1 jmcneill stbi s;
3518 1.1 jmcneill int r,n = ftell(f);
3519 1.1 jmcneill start_file(&s, f);
3520 1.1 jmcneill r = tga_test(&s);
3521 1.1 jmcneill fseek(f,n,SEEK_SET);
3522 1.1 jmcneill return r;
3523 1.1 jmcneill }
3524 1.1 jmcneill #endif
3525 1.1 jmcneill
3526 1.1 jmcneill int stbi_tga_test_memory (stbi_uc const *buffer, int len)
3527 1.1 jmcneill {
3528 1.1 jmcneill stbi s;
3529 1.1 jmcneill start_mem(&s, buffer, len);
3530 1.1 jmcneill return tga_test(&s);
3531 1.1 jmcneill }
3532 1.1 jmcneill
3533 1.1 jmcneill static stbi_uc *tga_load(stbi *s, int *x, int *y, int *comp, int req_comp)
3534 1.1 jmcneill {
3535 1.1 jmcneill // read in the TGA header stuff
3536 1.1 jmcneill int tga_offset = get8u(s);
3537 1.1 jmcneill int tga_indexed = get8u(s);
3538 1.1 jmcneill int tga_image_type = get8u(s);
3539 1.1 jmcneill int tga_is_RLE = 0;
3540 1.1 jmcneill int tga_palette_start = get16le(s);
3541 1.1 jmcneill int tga_palette_len = get16le(s);
3542 1.1 jmcneill int tga_palette_bits = get8u(s);
3543 1.1 jmcneill int tga_x_origin = get16le(s);
3544 1.1 jmcneill int tga_y_origin = get16le(s);
3545 1.1 jmcneill int tga_width = get16le(s);
3546 1.1 jmcneill int tga_height = get16le(s);
3547 1.1 jmcneill int tga_bits_per_pixel = get8u(s);
3548 1.1 jmcneill int tga_inverted = get8u(s);
3549 1.1 jmcneill // image data
3550 1.1 jmcneill unsigned char *tga_data;
3551 1.1 jmcneill unsigned char *tga_palette = NULL;
3552 1.1 jmcneill int i, j;
3553 1.1 jmcneill unsigned char raw_data[4];
3554 1.1 jmcneill unsigned char trans_data[4];
3555 1.1 jmcneill int RLE_count = 0;
3556 1.1 jmcneill int RLE_repeating = 0;
3557 1.1 jmcneill int read_next_pixel = 1;
3558 1.1 jmcneill
3559 1.1 jmcneill // do a tiny bit of precessing
3560 1.1 jmcneill if ( tga_image_type >= 8 )
3561 1.1 jmcneill {
3562 1.1 jmcneill tga_image_type -= 8;
3563 1.1 jmcneill tga_is_RLE = 1;
3564 1.1 jmcneill }
3565 1.1 jmcneill /* int tga_alpha_bits = tga_inverted & 15; */
3566 1.1 jmcneill tga_inverted = 1 - ((tga_inverted >> 5) & 1);
3567 1.1 jmcneill
3568 1.1 jmcneill // error check
3569 1.1 jmcneill if ( //(tga_indexed) ||
3570 1.1 jmcneill (tga_width < 1) || (tga_height < 1) ||
3571 1.1 jmcneill (tga_image_type < 1) || (tga_image_type > 3) ||
3572 1.1 jmcneill ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) &&
3573 1.1 jmcneill (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32))
3574 1.1 jmcneill )
3575 1.1 jmcneill {
3576 1.1 jmcneill return NULL;
3577 1.1 jmcneill }
3578 1.1 jmcneill
3579 1.1 jmcneill // If I'm paletted, then I'll use the number of bits from the palette
3580 1.1 jmcneill if ( tga_indexed )
3581 1.1 jmcneill {
3582 1.1 jmcneill tga_bits_per_pixel = tga_palette_bits;
3583 1.1 jmcneill }
3584 1.1 jmcneill
3585 1.1 jmcneill // tga info
3586 1.1 jmcneill *x = tga_width;
3587 1.1 jmcneill *y = tga_height;
3588 1.1 jmcneill if ( (req_comp < 1) || (req_comp > 4) )
3589 1.1 jmcneill {
3590 1.1 jmcneill // just use whatever the file was
3591 1.1 jmcneill req_comp = tga_bits_per_pixel / 8;
3592 1.1 jmcneill *comp = req_comp;
3593 1.1 jmcneill } else
3594 1.1 jmcneill {
3595 1.1 jmcneill // force a new number of components
3596 1.1 jmcneill *comp = tga_bits_per_pixel/8;
3597 1.1 jmcneill }
3598 1.1 jmcneill tga_data = (unsigned char*)MALLOC( tga_width * tga_height * req_comp );
3599 1.1 jmcneill
3600 1.1 jmcneill // skip to the data's starting position (offset usually = 0)
3601 1.1 jmcneill skip(s, tga_offset );
3602 1.1 jmcneill // do I need to load a palette?
3603 1.1 jmcneill if ( tga_indexed )
3604 1.1 jmcneill {
3605 1.1 jmcneill // any data to skip? (offset usually = 0)
3606 1.1 jmcneill skip(s, tga_palette_start );
3607 1.1 jmcneill // load the palette
3608 1.1 jmcneill tga_palette = (unsigned char*)MALLOC( tga_palette_len * tga_palette_bits / 8 );
3609 1.1 jmcneill if (!getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 ))
3610 1.1 jmcneill return NULL;
3611 1.1 jmcneill }
3612 1.1 jmcneill // load the data
3613 1.1 jmcneill trans_data[0] = trans_data[1] = trans_data[2] = trans_data[3] = 0;
3614 1.1 jmcneill for (i=0; i < tga_width * tga_height; ++i)
3615 1.1 jmcneill {
3616 1.1 jmcneill // if I'm in RLE mode, do I need to get a RLE chunk?
3617 1.1 jmcneill if ( tga_is_RLE )
3618 1.1 jmcneill {
3619 1.1 jmcneill if ( RLE_count == 0 )
3620 1.1 jmcneill {
3621 1.1 jmcneill // yep, get the next byte as a RLE command
3622 1.1 jmcneill int RLE_cmd = get8u(s);
3623 1.1 jmcneill RLE_count = 1 + (RLE_cmd & 127);
3624 1.1 jmcneill RLE_repeating = RLE_cmd >> 7;
3625 1.1 jmcneill read_next_pixel = 1;
3626 1.1 jmcneill } else if ( !RLE_repeating )
3627 1.1 jmcneill {
3628 1.1 jmcneill read_next_pixel = 1;
3629 1.1 jmcneill }
3630 1.1 jmcneill } else
3631 1.1 jmcneill {
3632 1.1 jmcneill read_next_pixel = 1;
3633 1.1 jmcneill }
3634 1.1 jmcneill // OK, if I need to read a pixel, do it now
3635 1.1 jmcneill if ( read_next_pixel )
3636 1.1 jmcneill {
3637 1.1 jmcneill // load however much data we did have
3638 1.1 jmcneill if ( tga_indexed )
3639 1.1 jmcneill {
3640 1.1 jmcneill // read in 1 byte, then perform the lookup
3641 1.1 jmcneill int pal_idx = get8u(s);
3642 1.1 jmcneill if ( pal_idx >= tga_palette_len )
3643 1.1 jmcneill {
3644 1.1 jmcneill // invalid index
3645 1.1 jmcneill pal_idx = 0;
3646 1.1 jmcneill }
3647 1.1 jmcneill pal_idx *= tga_bits_per_pixel / 8;
3648 1.1 jmcneill for (j = 0; j*8 < tga_bits_per_pixel; ++j)
3649 1.1 jmcneill {
3650 1.1 jmcneill raw_data[j] = tga_palette[pal_idx+j];
3651 1.1 jmcneill }
3652 1.1 jmcneill } else
3653 1.1 jmcneill {
3654 1.1 jmcneill // read in the data raw
3655 1.1 jmcneill for (j = 0; j*8 < tga_bits_per_pixel; ++j)
3656 1.1 jmcneill {
3657 1.1 jmcneill raw_data[j] = get8u(s);
3658 1.1 jmcneill }
3659 1.1 jmcneill }
3660 1.1 jmcneill // convert raw to the intermediate format
3661 1.1 jmcneill switch (tga_bits_per_pixel)
3662 1.1 jmcneill {
3663 1.1 jmcneill case 8:
3664 1.1 jmcneill // Luminous => RGBA
3665 1.1 jmcneill trans_data[0] = raw_data[0];
3666 1.1 jmcneill trans_data[1] = raw_data[0];
3667 1.1 jmcneill trans_data[2] = raw_data[0];
3668 1.1 jmcneill trans_data[3] = 255;
3669 1.1 jmcneill break;
3670 1.1 jmcneill case 16:
3671 1.1 jmcneill // Luminous,Alpha => RGBA
3672 1.1 jmcneill trans_data[0] = raw_data[0];
3673 1.1 jmcneill trans_data[1] = raw_data[0];
3674 1.1 jmcneill trans_data[2] = raw_data[0];
3675 1.1 jmcneill trans_data[3] = raw_data[1];
3676 1.1 jmcneill break;
3677 1.1 jmcneill case 24:
3678 1.1 jmcneill // BGR => RGBA
3679 1.1 jmcneill trans_data[0] = raw_data[2];
3680 1.1 jmcneill trans_data[1] = raw_data[1];
3681 1.1 jmcneill trans_data[2] = raw_data[0];
3682 1.1 jmcneill trans_data[3] = 255;
3683 1.1 jmcneill break;
3684 1.1 jmcneill case 32:
3685 1.1 jmcneill // BGRA => RGBA
3686 1.1 jmcneill trans_data[0] = raw_data[2];
3687 1.1 jmcneill trans_data[1] = raw_data[1];
3688 1.1 jmcneill trans_data[2] = raw_data[0];
3689 1.1 jmcneill trans_data[3] = raw_data[3];
3690 1.1 jmcneill break;
3691 1.1 jmcneill }
3692 1.1 jmcneill // clear the reading flag for the next pixel
3693 1.1 jmcneill read_next_pixel = 0;
3694 1.1 jmcneill } // end of reading a pixel
3695 1.1 jmcneill // convert to final format
3696 1.1 jmcneill switch (req_comp)
3697 1.1 jmcneill {
3698 1.1 jmcneill case 1:
3699 1.1 jmcneill // RGBA => Luminance
3700 1.1 jmcneill tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]);
3701 1.1 jmcneill break;
3702 1.1 jmcneill case 2:
3703 1.1 jmcneill // RGBA => Luminance,Alpha
3704 1.1 jmcneill tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]);
3705 1.1 jmcneill tga_data[i*req_comp+1] = trans_data[3];
3706 1.1 jmcneill break;
3707 1.1 jmcneill case 3:
3708 1.1 jmcneill // RGBA => RGB
3709 1.1 jmcneill tga_data[i*req_comp+0] = trans_data[0];
3710 1.1 jmcneill tga_data[i*req_comp+1] = trans_data[1];
3711 1.1 jmcneill tga_data[i*req_comp+2] = trans_data[2];
3712 1.1 jmcneill break;
3713 1.1 jmcneill case 4:
3714 1.1 jmcneill // RGBA => RGBA
3715 1.1 jmcneill tga_data[i*req_comp+0] = trans_data[0];
3716 1.1 jmcneill tga_data[i*req_comp+1] = trans_data[1];
3717 1.1 jmcneill tga_data[i*req_comp+2] = trans_data[2];
3718 1.1 jmcneill tga_data[i*req_comp+3] = trans_data[3];
3719 1.1 jmcneill break;
3720 1.1 jmcneill }
3721 1.1 jmcneill // in case we're in RLE mode, keep counting down
3722 1.1 jmcneill --RLE_count;
3723 1.1 jmcneill }
3724 1.1 jmcneill // do I need to invert the image?
3725 1.1 jmcneill if ( tga_inverted )
3726 1.1 jmcneill {
3727 1.1 jmcneill for (j = 0; j*2 < tga_height; ++j)
3728 1.1 jmcneill {
3729 1.1 jmcneill int index1 = j * tga_width * req_comp;
3730 1.1 jmcneill int index2 = (tga_height - 1 - j) * tga_width * req_comp;
3731 1.1 jmcneill for (i = tga_width * req_comp; i > 0; --i)
3732 1.1 jmcneill {
3733 1.1 jmcneill unsigned char temp = tga_data[index1];
3734 1.1 jmcneill tga_data[index1] = tga_data[index2];
3735 1.1 jmcneill tga_data[index2] = temp;
3736 1.1 jmcneill ++index1;
3737 1.1 jmcneill ++index2;
3738 1.1 jmcneill }
3739 1.1 jmcneill }
3740 1.1 jmcneill }
3741 1.1 jmcneill // clear my palette, if I had one
3742 1.1 jmcneill if ( tga_palette != NULL )
3743 1.1 jmcneill {
3744 1.1 jmcneill FREE( tga_palette );
3745 1.1 jmcneill }
3746 1.1 jmcneill // the things I do to get rid of an error message, and yet keep
3747 1.1 jmcneill // Microsoft's C compilers happy... [8^(
3748 1.1 jmcneill tga_palette_start = tga_palette_len = tga_palette_bits =
3749 1.1 jmcneill tga_x_origin = tga_y_origin = 0;
3750 1.1 jmcneill // OK, done
3751 1.1 jmcneill return tga_data;
3752 1.1 jmcneill }
3753 1.1 jmcneill
3754 1.1 jmcneill #ifndef STBI_NO_STDIO
3755 1.1 jmcneill stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp)
3756 1.1 jmcneill {
3757 1.1 jmcneill stbi_uc *data;
3758 1.1 jmcneill FILE *f = fopen(filename, "rb");
3759 1.1 jmcneill if (!f) return NULL;
3760 1.1 jmcneill data = stbi_tga_load_from_file(f, x,y,comp,req_comp);
3761 1.1 jmcneill fclose(f);
3762 1.1 jmcneill return data;
3763 1.1 jmcneill }
3764 1.1 jmcneill
3765 1.1 jmcneill stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp)
3766 1.1 jmcneill {
3767 1.1 jmcneill stbi s;
3768 1.1 jmcneill start_file(&s, f);
3769 1.1 jmcneill return tga_load(&s, x,y,comp,req_comp);
3770 1.1 jmcneill }
3771 1.1 jmcneill #endif
3772 1.1 jmcneill
3773 1.1 jmcneill stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
3774 1.1 jmcneill {
3775 1.1 jmcneill stbi s;
3776 1.1 jmcneill start_mem(&s, buffer, len);
3777 1.1 jmcneill return tga_load(&s, x,y,comp,req_comp);
3778 1.1 jmcneill }
3779 1.1 jmcneill
3780 1.1 jmcneill
3781 1.1 jmcneill // *************************************************************************************************
3782 1.1 jmcneill // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB
3783 1.1 jmcneill
3784 1.1 jmcneill static int psd_test(stbi *s)
3785 1.1 jmcneill {
3786 1.1 jmcneill if (get32(s) != 0x38425053) return 0; // "8BPS"
3787 1.1 jmcneill else return 1;
3788 1.1 jmcneill }
3789 1.1 jmcneill
3790 1.1 jmcneill #ifndef STBI_NO_STDIO
3791 1.1 jmcneill int stbi_psd_test_file(FILE *f)
3792 1.1 jmcneill {
3793 1.1 jmcneill stbi s;
3794 1.1 jmcneill int r,n = ftell(f);
3795 1.1 jmcneill start_file(&s, f);
3796 1.1 jmcneill r = psd_test(&s);
3797 1.1 jmcneill fseek(f,n,SEEK_SET);
3798 1.1 jmcneill return r;
3799 1.1 jmcneill }
3800 1.1 jmcneill #endif
3801 1.1 jmcneill
3802 1.1 jmcneill int stbi_psd_test_memory(stbi_uc const *buffer, int len)
3803 1.1 jmcneill {
3804 1.1 jmcneill stbi s;
3805 1.1 jmcneill start_mem(&s, buffer, len);
3806 1.1 jmcneill return psd_test(&s);
3807 1.1 jmcneill }
3808 1.1 jmcneill
3809 1.1 jmcneill static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp)
3810 1.1 jmcneill {
3811 1.1 jmcneill int pixelCount;
3812 1.1 jmcneill int channelCount, compression;
3813 1.1 jmcneill int channel, i, count, len;
3814 1.1 jmcneill int w,h;
3815 1.1 jmcneill uint8 *out;
3816 1.1 jmcneill
3817 1.1 jmcneill // Check identifier
3818 1.1 jmcneill if (get32(s) != 0x38425053) // "8BPS"
3819 1.1 jmcneill return epuc("not PSD", "Corrupt PSD image");
3820 1.1 jmcneill
3821 1.1 jmcneill // Check file type version.
3822 1.1 jmcneill if (get16(s) != 1)
3823 1.1 jmcneill return epuc("wrong version", "Unsupported version of PSD image");
3824 1.1 jmcneill
3825 1.1 jmcneill // Skip 6 reserved bytes.
3826 1.1 jmcneill skip(s, 6 );
3827 1.1 jmcneill
3828 1.1 jmcneill // Read the number of channels (R, G, B, A, etc).
3829 1.1 jmcneill channelCount = get16(s);
3830 1.1 jmcneill if (channelCount < 0 || channelCount > 16)
3831 1.1 jmcneill return epuc("wrong channel count", "Unsupported number of channels in PSD image");
3832 1.1 jmcneill
3833 1.1 jmcneill // Read the rows and columns of the image.
3834 1.1 jmcneill h = get32(s);
3835 1.1 jmcneill w = get32(s);
3836 1.1 jmcneill
3837 1.1 jmcneill // Make sure the depth is 8 bits.
3838 1.1 jmcneill if (get16(s) != 8)
3839 1.1 jmcneill return epuc("unsupported bit depth", "PSD bit depth is not 8 bit");
3840 1.1 jmcneill
3841 1.1 jmcneill // Make sure the color mode is RGB.
3842 1.1 jmcneill // Valid options are:
3843 1.1 jmcneill // 0: Bitmap
3844 1.1 jmcneill // 1: Grayscale
3845 1.1 jmcneill // 2: Indexed color
3846 1.1 jmcneill // 3: RGB color
3847 1.1 jmcneill // 4: CMYK color
3848 1.1 jmcneill // 7: Multichannel
3849 1.1 jmcneill // 8: Duotone
3850 1.1 jmcneill // 9: Lab color
3851 1.1 jmcneill if (get16(s) != 3)
3852 1.1 jmcneill return epuc("wrong color format", "PSD is not in RGB color format");
3853 1.1 jmcneill
3854 1.1 jmcneill // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.)
3855 1.1 jmcneill skip(s,get32(s) );
3856 1.1 jmcneill
3857 1.1 jmcneill // Skip the image resources. (resolution, pen tool paths, etc)
3858 1.1 jmcneill skip(s, get32(s) );
3859 1.1 jmcneill
3860 1.1 jmcneill // Skip the reserved data.
3861 1.1 jmcneill skip(s, get32(s) );
3862 1.1 jmcneill
3863 1.1 jmcneill // Find out if the data is compressed.
3864 1.1 jmcneill // Known values:
3865 1.1 jmcneill // 0: no compression
3866 1.1 jmcneill // 1: RLE compressed
3867 1.1 jmcneill compression = get16(s);
3868 1.1 jmcneill if (compression > 1)
3869 1.1 jmcneill return epuc("bad compression", "PSD has an unknown compression format");
3870 1.1 jmcneill
3871 1.1 jmcneill // Create the destination image.
3872 1.1 jmcneill out = (stbi_uc *) MALLOC(4 * w*h);
3873 1.1 jmcneill if (!out) return epuc("outofmem", "Out of memory");
3874 1.1 jmcneill pixelCount = w*h;
3875 1.1 jmcneill
3876 1.1 jmcneill // Initialize the data to zero.
3877 1.1 jmcneill //memset( out, 0, pixelCount * 4 );
3878 1.1 jmcneill
3879 1.1 jmcneill // Finally, the image data.
3880 1.1 jmcneill if (compression) {
3881 1.1 jmcneill // RLE as used by .PSD and .TIFF
3882 1.1 jmcneill // Loop until you get the number of unpacked bytes you are expecting:
3883 1.1 jmcneill // Read the next source byte into n.
3884 1.1 jmcneill // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
3885 1.1 jmcneill // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
3886 1.1 jmcneill // Else if n is 128, noop.
3887 1.1 jmcneill // Endloop
3888 1.1 jmcneill
3889 1.1 jmcneill // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data,
3890 1.1 jmcneill // which we're going to just skip.
3891 1.1 jmcneill skip(s, h * channelCount * 2 );
3892 1.1 jmcneill
3893 1.1 jmcneill // Read the RLE data by channel.
3894 1.1 jmcneill for (channel = 0; channel < 4; channel++) {
3895 1.1 jmcneill uint8 *p;
3896 1.1 jmcneill
3897 1.1 jmcneill p = out+channel;
3898 1.1 jmcneill if (channel >= channelCount) {
3899 1.1 jmcneill // Fill this channel with default data.
3900 1.1 jmcneill for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4;
3901 1.1 jmcneill } else {
3902 1.1 jmcneill // Read the RLE data.
3903 1.1 jmcneill count = 0;
3904 1.1 jmcneill while (count < pixelCount) {
3905 1.1 jmcneill len = get8(s);
3906 1.1 jmcneill if (len == 128) {
3907 1.1 jmcneill // No-op.
3908 1.1 jmcneill } else if (len < 128) {
3909 1.1 jmcneill // Copy next len+1 bytes literally.
3910 1.1 jmcneill len++;
3911 1.1 jmcneill count += len;
3912 1.1 jmcneill while (len) {
3913 1.1 jmcneill *p = get8u(s);
3914 1.1 jmcneill p += 4;
3915 1.1 jmcneill len--;
3916 1.1 jmcneill }
3917 1.1 jmcneill } else if (len > 128) {
3918 1.1 jmcneill uint8 val;
3919 1.1 jmcneill // Next -len+1 bytes in the dest are replicated from next source byte.
3920 1.1 jmcneill // (Interpret len as a negative 8-bit int.)
3921 1.1 jmcneill len ^= 0x0FF;
3922 1.1 jmcneill len += 2;
3923 1.1 jmcneill val = get8u(s);
3924 1.1 jmcneill count += len;
3925 1.1 jmcneill while (len) {
3926 1.1 jmcneill *p = val;
3927 1.1 jmcneill p += 4;
3928 1.1 jmcneill len--;
3929 1.1 jmcneill }
3930 1.1 jmcneill }
3931 1.1 jmcneill }
3932 1.1 jmcneill }
3933 1.1 jmcneill }
3934 1.1 jmcneill
3935 1.1 jmcneill } else {
3936 1.1 jmcneill // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...)
3937 1.1 jmcneill // where each channel consists of an 8-bit value for each pixel in the image.
3938 1.1 jmcneill
3939 1.1 jmcneill // Read the data by channel.
3940 1.1 jmcneill for (channel = 0; channel < 4; channel++) {
3941 1.1 jmcneill uint8 *p;
3942 1.1 jmcneill
3943 1.1 jmcneill p = out + channel;
3944 1.1 jmcneill if (channel > channelCount) {
3945 1.1 jmcneill // Fill this channel with default data.
3946 1.1 jmcneill for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4;
3947 1.1 jmcneill } else {
3948 1.1 jmcneill // Read the data.
3949 1.1 jmcneill for (i = 0; i < pixelCount; i++)
3950 1.1 jmcneill *p = get8u(s), p += 4;
3951 1.1 jmcneill }
3952 1.1 jmcneill }
3953 1.1 jmcneill }
3954 1.1 jmcneill
3955 1.1 jmcneill if (req_comp && req_comp != 4) {
3956 1.1 jmcneill out = convert_format(out, 4, req_comp, w, h);
3957 1.1 jmcneill if (out == NULL) return out; // convert_format frees input on failure
3958 1.1 jmcneill }
3959 1.1 jmcneill
3960 1.1 jmcneill if (comp) *comp = channelCount;
3961 1.1 jmcneill *y = h;
3962 1.1 jmcneill *x = w;
3963 1.1 jmcneill
3964 1.1 jmcneill return out;
3965 1.1 jmcneill }
3966 1.1 jmcneill
3967 1.1 jmcneill #ifndef STBI_NO_STDIO
3968 1.1 jmcneill stbi_uc *stbi_psd_load(char const *filename, int *x, int *y, int *comp, int req_comp)
3969 1.1 jmcneill {
3970 1.1 jmcneill stbi_uc *data;
3971 1.1 jmcneill FILE *f = fopen(filename, "rb");
3972 1.1 jmcneill if (!f) return NULL;
3973 1.1 jmcneill data = stbi_psd_load_from_file(f, x,y,comp,req_comp);
3974 1.1 jmcneill fclose(f);
3975 1.1 jmcneill return data;
3976 1.1 jmcneill }
3977 1.1 jmcneill
3978 1.1 jmcneill stbi_uc *stbi_psd_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
3979 1.1 jmcneill {
3980 1.1 jmcneill stbi s;
3981 1.1 jmcneill start_file(&s, f);
3982 1.1 jmcneill return psd_load(&s, x,y,comp,req_comp);
3983 1.1 jmcneill }
3984 1.1 jmcneill #endif
3985 1.1 jmcneill
3986 1.1 jmcneill stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
3987 1.1 jmcneill {
3988 1.1 jmcneill stbi s;
3989 1.1 jmcneill start_mem(&s, buffer, len);
3990 1.1 jmcneill return psd_load(&s, x,y,comp,req_comp);
3991 1.1 jmcneill }
3992 1.1 jmcneill
3993 1.1 jmcneill // *************************************************************************************************
3994 1.1 jmcneill // Softimage PIC loader
3995 1.1 jmcneill // by Tom Seddon
3996 1.1 jmcneill //
3997 1.1 jmcneill // See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format
3998 1.1 jmcneill // See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/
3999 1.1 jmcneill
4000 1.1 jmcneill static int pic_is4(stbi *s,const char *str)
4001 1.1 jmcneill {
4002 1.1 jmcneill int i;
4003 1.1 jmcneill for (i=0; i<4; ++i)
4004 1.1 jmcneill if (get8(s) != (stbi_uc)str[i])
4005 1.1 jmcneill return 0;
4006 1.1 jmcneill
4007 1.1 jmcneill return 1;
4008 1.1 jmcneill }
4009 1.1 jmcneill
4010 1.1 jmcneill static int pic_test(stbi *s)
4011 1.1 jmcneill {
4012 1.1 jmcneill int i;
4013 1.1 jmcneill
4014 1.1 jmcneill if (!pic_is4(s,"\x53\x80\xF6\x34"))
4015 1.1 jmcneill return 0;
4016 1.1 jmcneill
4017 1.1 jmcneill for(i=0;i<84;++i)
4018 1.1 jmcneill get8(s);
4019 1.1 jmcneill
4020 1.1 jmcneill if (!pic_is4(s,"PICT"))
4021 1.1 jmcneill return 0;
4022 1.1 jmcneill
4023 1.1 jmcneill return 1;
4024 1.1 jmcneill }
4025 1.1 jmcneill
4026 1.1 jmcneill typedef struct
4027 1.1 jmcneill {
4028 1.1 jmcneill stbi_uc size,type,channel;
4029 1.1 jmcneill } pic_packet_t;
4030 1.1 jmcneill
4031 1.1 jmcneill static stbi_uc *pic_readval(stbi *s, int channel, stbi_uc *dest)
4032 1.1 jmcneill {
4033 1.1 jmcneill int mask=0x80, i;
4034 1.1 jmcneill
4035 1.1 jmcneill for (i=0; i<4; ++i, mask>>=1) {
4036 1.1 jmcneill if (channel & mask) {
4037 1.1 jmcneill if (at_eof(s)) return epuc("bad file","PIC file too short");
4038 1.1 jmcneill dest[i]=get8u(s);
4039 1.1 jmcneill }
4040 1.1 jmcneill }
4041 1.1 jmcneill
4042 1.1 jmcneill return dest;
4043 1.1 jmcneill }
4044 1.1 jmcneill
4045 1.1 jmcneill static void pic_copyval(int channel,stbi_uc *dest,const stbi_uc *src)
4046 1.1 jmcneill {
4047 1.1 jmcneill int mask=0x80,i;
4048 1.1 jmcneill
4049 1.1 jmcneill for (i=0;i<4; ++i, mask>>=1)
4050 1.1 jmcneill if (channel&mask)
4051 1.1 jmcneill dest[i]=src[i];
4052 1.1 jmcneill }
4053 1.1 jmcneill
4054 1.1 jmcneill static stbi_uc *pic_load2(stbi *s,int width,int height,int *comp, stbi_uc *result)
4055 1.1 jmcneill {
4056 1.1 jmcneill int act_comp=0,num_packets=0,y,chained;
4057 1.1 jmcneill pic_packet_t packets[10];
4058 1.1 jmcneill
4059 1.1 jmcneill // this will (should...) cater for even some bizarre stuff like having data
4060 1.1 jmcneill // for the same channel in multiple packets.
4061 1.1 jmcneill do {
4062 1.1 jmcneill pic_packet_t *packet;
4063 1.1 jmcneill
4064 1.1 jmcneill if (num_packets==sizeof(packets)/sizeof(packets[0]))
4065 1.1 jmcneill return epuc("bad format","too many packets");
4066 1.1 jmcneill
4067 1.1 jmcneill packet = &packets[num_packets++];
4068 1.1 jmcneill
4069 1.1 jmcneill chained = get8(s);
4070 1.1 jmcneill packet->size = get8u(s);
4071 1.1 jmcneill packet->type = get8u(s);
4072 1.1 jmcneill packet->channel = get8u(s);
4073 1.1 jmcneill
4074 1.1 jmcneill act_comp |= packet->channel;
4075 1.1 jmcneill
4076 1.1 jmcneill if (at_eof(s)) return epuc("bad file","file too short (reading packets)");
4077 1.1 jmcneill if (packet->size != 8) return epuc("bad format","packet isn't 8bpp");
4078 1.1 jmcneill } while (chained);
4079 1.1 jmcneill
4080 1.1 jmcneill *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel?
4081 1.1 jmcneill
4082 1.1 jmcneill for(y=0; y<height; ++y) {
4083 1.1 jmcneill int packet_idx;
4084 1.1 jmcneill
4085 1.1 jmcneill for(packet_idx=0; packet_idx < num_packets; ++packet_idx) {
4086 1.1 jmcneill pic_packet_t *packet = &packets[packet_idx];
4087 1.1 jmcneill stbi_uc *dest = result+y*width*4;
4088 1.1 jmcneill
4089 1.1 jmcneill switch (packet->type) {
4090 1.1 jmcneill default:
4091 1.1 jmcneill return epuc("bad format","packet has bad compression type");
4092 1.1 jmcneill
4093 1.1 jmcneill case 0: {//uncompressed
4094 1.1 jmcneill int x;
4095 1.1 jmcneill
4096 1.1 jmcneill for(x=0;x<width;++x, dest+=4)
4097 1.1 jmcneill if (!pic_readval(s,packet->channel,dest))
4098 1.1 jmcneill return 0;
4099 1.1 jmcneill break;
4100 1.1 jmcneill }
4101 1.1 jmcneill
4102 1.1 jmcneill case 1://Pure RLE
4103 1.1 jmcneill {
4104 1.1 jmcneill int left=width, i;
4105 1.1 jmcneill
4106 1.1 jmcneill while (left>0) {
4107 1.1 jmcneill stbi_uc count,value[4];
4108 1.1 jmcneill
4109 1.1 jmcneill count=get8u(s);
4110 1.1 jmcneill if (at_eof(s)) return epuc("bad file","file too short (pure read count)");
4111 1.1 jmcneill
4112 1.1 jmcneill if (count > left)
4113 1.1 jmcneill count = (uint8) left;
4114 1.1 jmcneill
4115 1.1 jmcneill if (!pic_readval(s,packet->channel,value)) return 0;
4116 1.1 jmcneill
4117 1.1 jmcneill for(i=0; i<count; ++i,dest+=4)
4118 1.1 jmcneill pic_copyval(packet->channel,dest,value);
4119 1.1 jmcneill left -= count;
4120 1.1 jmcneill }
4121 1.1 jmcneill }
4122 1.1 jmcneill break;
4123 1.1 jmcneill
4124 1.1 jmcneill case 2: {//Mixed RLE
4125 1.1 jmcneill int left=width;
4126 1.1 jmcneill while (left>0) {
4127 1.1 jmcneill int count = get8(s), i;
4128 1.1 jmcneill if (at_eof(s)) return epuc("bad file","file too short (mixed read count)");
4129 1.1 jmcneill
4130 1.1 jmcneill if (count >= 128) { // Repeated
4131 1.1 jmcneill stbi_uc value[4];
4132 1.1 jmcneill
4133 1.1 jmcneill if (count==128)
4134 1.1 jmcneill count = get16(s);
4135 1.1 jmcneill else
4136 1.1 jmcneill count -= 127;
4137 1.1 jmcneill if (count > left)
4138 1.1 jmcneill return epuc("bad file","scanline overrun");
4139 1.1 jmcneill
4140 1.1 jmcneill if (!pic_readval(s,packet->channel,value))
4141 1.1 jmcneill return 0;
4142 1.1 jmcneill
4143 1.1 jmcneill for(i=0;i<count;++i, dest += 4)
4144 1.1 jmcneill pic_copyval(packet->channel,dest,value);
4145 1.1 jmcneill } else { // Raw
4146 1.1 jmcneill ++count;
4147 1.1 jmcneill if (count>left) return epuc("bad file","scanline overrun");
4148 1.1 jmcneill
4149 1.1 jmcneill for(i=0;i<count;++i, dest+=4)
4150 1.1 jmcneill if (!pic_readval(s,packet->channel,dest))
4151 1.1 jmcneill return 0;
4152 1.1 jmcneill }
4153 1.1 jmcneill left-=count;
4154 1.1 jmcneill }
4155 1.1 jmcneill break;
4156 1.1 jmcneill }
4157 1.1 jmcneill }
4158 1.1 jmcneill }
4159 1.1 jmcneill }
4160 1.1 jmcneill
4161 1.1 jmcneill return result;
4162 1.1 jmcneill }
4163 1.1 jmcneill
4164 1.1 jmcneill static stbi_uc *pic_load(stbi *s,int *px,int *py,int *comp,int req_comp)
4165 1.1 jmcneill {
4166 1.1 jmcneill stbi_uc *result;
4167 1.1 jmcneill int i, x,y;
4168 1.1 jmcneill
4169 1.1 jmcneill for (i=0; i<92; ++i)
4170 1.1 jmcneill get8(s);
4171 1.1 jmcneill
4172 1.1 jmcneill x = get16(s);
4173 1.1 jmcneill y = get16(s);
4174 1.1 jmcneill if (at_eof(s)) return epuc("bad file","file too short (pic header)");
4175 1.1 jmcneill if ((1 << 28) / x < y) return epuc("too large", "Image too large to decode");
4176 1.1 jmcneill
4177 1.1 jmcneill get32(s); //skip `ratio'
4178 1.1 jmcneill get16(s); //skip `fields'
4179 1.1 jmcneill get16(s); //skip `pad'
4180 1.1 jmcneill
4181 1.1 jmcneill // intermediate buffer is RGBA
4182 1.1 jmcneill result = (stbi_uc *) MALLOC(x*y*4);
4183 1.1 jmcneill memset(result, 0xff, x*y*4);
4184 1.1 jmcneill
4185 1.1 jmcneill if (!pic_load2(s,x,y,comp, result)) {
4186 1.1 jmcneill FREE(result);
4187 1.1 jmcneill result=0;
4188 1.1 jmcneill }
4189 1.1 jmcneill *px = x;
4190 1.1 jmcneill *py = y;
4191 1.1 jmcneill if (req_comp == 0) req_comp = *comp;
4192 1.1 jmcneill result=convert_format(result,4,req_comp,x,y);
4193 1.1 jmcneill
4194 1.1 jmcneill return result;
4195 1.1 jmcneill }
4196 1.1 jmcneill
4197 1.1 jmcneill int stbi_pic_test_memory(stbi_uc const *buffer, int len)
4198 1.1 jmcneill {
4199 1.1 jmcneill stbi s;
4200 1.1 jmcneill start_mem(&s,buffer,len);
4201 1.1 jmcneill return pic_test(&s);
4202 1.1 jmcneill }
4203 1.1 jmcneill
4204 1.1 jmcneill stbi_uc *stbi_pic_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
4205 1.1 jmcneill {
4206 1.1 jmcneill stbi s;
4207 1.1 jmcneill start_mem(&s,buffer,len);
4208 1.1 jmcneill return pic_load(&s,x,y,comp,req_comp);
4209 1.1 jmcneill }
4210 1.1 jmcneill
4211 1.1 jmcneill #ifndef STBI_NO_STDIO
4212 1.1 jmcneill int stbi_pic_test_file(FILE *f)
4213 1.1 jmcneill {
4214 1.1 jmcneill int result;
4215 1.1 jmcneill long l = ftell(f);
4216 1.1 jmcneill stbi s;
4217 1.1 jmcneill start_file(&s,f);
4218 1.1 jmcneill result = pic_test(&s);
4219 1.1 jmcneill fseek(f,l,SEEK_SET);
4220 1.1 jmcneill return result;
4221 1.1 jmcneill }
4222 1.1 jmcneill
4223 1.1 jmcneill stbi_uc *stbi_pic_load(char const *filename,int *x, int *y, int *comp, int req_comp)
4224 1.1 jmcneill {
4225 1.1 jmcneill stbi_uc *result;
4226 1.1 jmcneill FILE *f=fopen(filename,"rb");
4227 1.1 jmcneill if (!f) return 0;
4228 1.1 jmcneill result = stbi_pic_load_from_file(f,x,y,comp,req_comp);
4229 1.1 jmcneill fclose(f);
4230 1.1 jmcneill return result;
4231 1.1 jmcneill }
4232 1.1 jmcneill
4233 1.1 jmcneill stbi_uc *stbi_pic_load_from_file(FILE *f,int *x, int *y, int *comp, int req_comp)
4234 1.1 jmcneill {
4235 1.1 jmcneill stbi s;
4236 1.1 jmcneill start_file(&s,f);
4237 1.1 jmcneill return pic_load(&s,x,y,comp,req_comp);
4238 1.1 jmcneill }
4239 1.1 jmcneill #endif
4240 1.1 jmcneill
4241 1.1 jmcneill // *************************************************************************************************
4242 1.1 jmcneill // GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb
4243 1.1 jmcneill typedef struct stbi_gif_lzw_struct {
4244 1.1 jmcneill int16 prefix;
4245 1.1 jmcneill uint8 first;
4246 1.1 jmcneill uint8 suffix;
4247 1.1 jmcneill } stbi_gif_lzw;
4248 1.1 jmcneill
4249 1.1 jmcneill typedef struct stbi_gif_struct
4250 1.1 jmcneill {
4251 1.1 jmcneill int w,h;
4252 1.1 jmcneill stbi_uc *out; // output buffer (always 4 components)
4253 1.1 jmcneill int flags, bgindex, ratio, transparent, eflags;
4254 1.1 jmcneill uint8 pal[256][4];
4255 1.1 jmcneill uint8 lpal[256][4];
4256 1.1 jmcneill stbi_gif_lzw codes[4096];
4257 1.1 jmcneill uint8 *color_table;
4258 1.1 jmcneill int parse, step;
4259 1.1 jmcneill int lflags;
4260 1.1 jmcneill int start_x, start_y;
4261 1.1 jmcneill int max_x, max_y;
4262 1.1 jmcneill int cur_x, cur_y;
4263 1.1 jmcneill int line_size;
4264 1.1 jmcneill } stbi_gif;
4265 1.1 jmcneill
4266 1.1 jmcneill static int gif_test(stbi *s)
4267 1.1 jmcneill {
4268 1.1 jmcneill int sz;
4269 1.1 jmcneill if (get8(s) != 'G' || get8(s) != 'I' || get8(s) != 'F' || get8(s) != '8') return 0;
4270 1.1 jmcneill sz = get8(s);
4271 1.1 jmcneill if (sz != '9' && sz != '7') return 0;
4272 1.1 jmcneill if (get8(s) != 'a') return 0;
4273 1.1 jmcneill return 1;
4274 1.1 jmcneill }
4275 1.1 jmcneill
4276 1.1 jmcneill #ifndef STBI_NO_STDIO
4277 1.1 jmcneill int stbi_gif_test_file (FILE *f)
4278 1.1 jmcneill {
4279 1.1 jmcneill stbi s;
4280 1.1 jmcneill int r,n = ftell(f);
4281 1.1 jmcneill start_file(&s,f);
4282 1.1 jmcneill r = gif_test(&s);
4283 1.1 jmcneill fseek(f,n,SEEK_SET);
4284 1.1 jmcneill return r;
4285 1.1 jmcneill }
4286 1.1 jmcneill #endif
4287 1.1 jmcneill
4288 1.1 jmcneill int stbi_gif_test_memory (stbi_uc const *buffer, int len)
4289 1.1 jmcneill {
4290 1.1 jmcneill stbi s;
4291 1.1 jmcneill start_mem(&s, buffer, len);
4292 1.1 jmcneill return gif_test(&s);
4293 1.1 jmcneill }
4294 1.1 jmcneill
4295 1.1 jmcneill static void stbi_gif_parse_colortable(stbi *s, uint8 pal[256][4], int num_entries, int transp)
4296 1.1 jmcneill {
4297 1.1 jmcneill int i;
4298 1.1 jmcneill for (i=0; i < num_entries; ++i) {
4299 1.1 jmcneill pal[i][2] = get8u(s);
4300 1.1 jmcneill pal[i][1] = get8u(s);
4301 1.1 jmcneill pal[i][0] = get8u(s);
4302 1.1 jmcneill pal[i][3] = transp ? 0 : 255;
4303 1.1 jmcneill }
4304 1.1 jmcneill }
4305 1.1 jmcneill
4306 1.1 jmcneill static int stbi_gif_header(stbi *s, stbi_gif *g, int *comp, int is_info)
4307 1.1 jmcneill {
4308 1.1 jmcneill uint8 ver;
4309 1.1 jmcneill if (get8(s) != 'G' || get8(s) != 'I' || get8(s) != 'F' || get8(s) != '8')
4310 1.1 jmcneill return e("not GIF", "Corrupt GIF");
4311 1.1 jmcneill
4312 1.1 jmcneill ver = get8u(s);
4313 1.1 jmcneill if (ver != '7' && ver != '9') return e("not GIF", "Corrupt GIF");
4314 1.1 jmcneill if (get8(s) != 'a') return e("not GIF", "Corrupt GIF");
4315 1.1 jmcneill
4316 1.1 jmcneill failure_reason = "";
4317 1.1 jmcneill g->w = get16le(s);
4318 1.1 jmcneill g->h = get16le(s);
4319 1.1 jmcneill g->flags = get8(s);
4320 1.1 jmcneill g->bgindex = get8(s);
4321 1.1 jmcneill g->ratio = get8(s);
4322 1.1 jmcneill g->transparent = -1;
4323 1.1 jmcneill
4324 1.1 jmcneill if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments
4325 1.1 jmcneill
4326 1.1 jmcneill if (is_info) return 1;
4327 1.1 jmcneill
4328 1.1 jmcneill if (g->flags & 0x80)
4329 1.1 jmcneill stbi_gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1);
4330 1.1 jmcneill
4331 1.1 jmcneill return 1;
4332 1.1 jmcneill }
4333 1.1 jmcneill
4334 1.1 jmcneill static int stbi_gif_info_raw(stbi *s, int *x, int *y, int *comp)
4335 1.1 jmcneill {
4336 1.1 jmcneill stbi_gif g;
4337 1.1 jmcneill if (!stbi_gif_header(s, &g, comp, 1)) return 0;
4338 1.1 jmcneill if (x) *x = g.w;
4339 1.1 jmcneill if (y) *y = g.h;
4340 1.1 jmcneill return 1;
4341 1.1 jmcneill }
4342 1.1 jmcneill
4343 1.1 jmcneill static void stbi_out_gif_code(stbi_gif *g, uint16 code)
4344 1.1 jmcneill {
4345 1.1 jmcneill uint8 *p, *c;
4346 1.1 jmcneill
4347 1.1 jmcneill // recurse to decode the prefixes, since the linked-list is backwards,
4348 1.1 jmcneill // and working backwards through an interleaved image would be nasty
4349 1.1 jmcneill if (g->codes[code].prefix >= 0)
4350 1.1 jmcneill stbi_out_gif_code(g, g->codes[code].prefix);
4351 1.1 jmcneill
4352 1.1 jmcneill if (g->cur_y >= g->max_y) return;
4353 1.1 jmcneill
4354 1.1 jmcneill p = &g->out[g->cur_x + g->cur_y];
4355 1.1 jmcneill c = &g->color_table[g->codes[code].suffix * 4];
4356 1.1 jmcneill
4357 1.1 jmcneill if (c[3] >= 128) {
4358 1.1 jmcneill p[0] = c[2];
4359 1.1 jmcneill p[1] = c[1];
4360 1.1 jmcneill p[2] = c[0];
4361 1.1 jmcneill p[3] = c[3];
4362 1.1 jmcneill }
4363 1.1 jmcneill g->cur_x += 4;
4364 1.1 jmcneill
4365 1.1 jmcneill if (g->cur_x >= g->max_x) {
4366 1.1 jmcneill g->cur_x = g->start_x;
4367 1.1 jmcneill g->cur_y += g->step;
4368 1.1 jmcneill
4369 1.1 jmcneill while (g->cur_y >= g->max_y && g->parse > 0) {
4370 1.1 jmcneill g->step = (1 << g->parse) * g->line_size;
4371 1.1 jmcneill g->cur_y = g->start_y + (g->step >> 1);
4372 1.1 jmcneill --g->parse;
4373 1.1 jmcneill }
4374 1.1 jmcneill }
4375 1.1 jmcneill }
4376 1.1 jmcneill
4377 1.1 jmcneill static uint8 *stbi_process_gif_raster(stbi *s, stbi_gif *g)
4378 1.1 jmcneill {
4379 1.1 jmcneill uint8 lzw_cs;
4380 1.1 jmcneill int32 len, code;
4381 1.1 jmcneill uint32 first;
4382 1.1 jmcneill int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear;
4383 1.1 jmcneill stbi_gif_lzw *p;
4384 1.1 jmcneill
4385 1.1 jmcneill lzw_cs = get8u(s);
4386 1.1 jmcneill clear = 1 << lzw_cs;
4387 1.1 jmcneill first = 1;
4388 1.1 jmcneill codesize = lzw_cs + 1;
4389 1.1 jmcneill codemask = (1 << codesize) - 1;
4390 1.1 jmcneill bits = 0;
4391 1.1 jmcneill valid_bits = 0;
4392 1.1 jmcneill for (code = 0; code < clear; code++) {
4393 1.1 jmcneill g->codes[code].prefix = -1;
4394 1.1 jmcneill g->codes[code].first = (uint8) code;
4395 1.1 jmcneill g->codes[code].suffix = (uint8) code;
4396 1.1 jmcneill }
4397 1.1 jmcneill
4398 1.1 jmcneill // support no starting clear code
4399 1.1 jmcneill avail = clear+2;
4400 1.1 jmcneill oldcode = -1;
4401 1.1 jmcneill
4402 1.1 jmcneill len = 0;
4403 1.1 jmcneill for(;;) {
4404 1.1 jmcneill if (valid_bits < codesize) {
4405 1.1 jmcneill if (len == 0) {
4406 1.1 jmcneill len = get8(s); // start new block
4407 1.1 jmcneill if (len == 0)
4408 1.1 jmcneill return g->out;
4409 1.1 jmcneill }
4410 1.1 jmcneill --len;
4411 1.1 jmcneill bits |= (int32) get8(s) << valid_bits;
4412 1.1 jmcneill valid_bits += 8;
4413 1.1 jmcneill } else {
4414 1.1 jmcneill code = bits & codemask;
4415 1.1 jmcneill bits >>= codesize;
4416 1.1 jmcneill valid_bits -= codesize;
4417 1.1 jmcneill // @OPTIMIZE: is there some way we can accelerate the non-clear path?
4418 1.1 jmcneill if (code == clear) { // clear code
4419 1.1 jmcneill codesize = lzw_cs + 1;
4420 1.1 jmcneill codemask = (1 << codesize) - 1;
4421 1.1 jmcneill avail = clear + 2;
4422 1.1 jmcneill oldcode = -1;
4423 1.1 jmcneill first = 0;
4424 1.1 jmcneill } else if (code == clear + 1) { // end of stream code
4425 1.1 jmcneill skip(s, len);
4426 1.1 jmcneill while ((len = get8(s)) > 0)
4427 1.1 jmcneill skip(s,len);
4428 1.1 jmcneill return g->out;
4429 1.1 jmcneill } else if (code <= avail) {
4430 1.1 jmcneill if (first) return epuc("no clear code", "Corrupt GIF");
4431 1.1 jmcneill
4432 1.1 jmcneill if (oldcode >= 0) {
4433 1.1 jmcneill p = &g->codes[avail++];
4434 1.1 jmcneill if (avail > 4096) return epuc("too many codes", "Corrupt GIF");
4435 1.1 jmcneill p->prefix = (int16) oldcode;
4436 1.1 jmcneill p->first = g->codes[oldcode].first;
4437 1.1 jmcneill p->suffix = (code == avail) ? p->first : g->codes[code].first;
4438 1.1 jmcneill } else if (code == avail)
4439 1.1 jmcneill return epuc("illegal code in raster", "Corrupt GIF");
4440 1.1 jmcneill
4441 1.1 jmcneill stbi_out_gif_code(g, (uint16) code);
4442 1.1 jmcneill
4443 1.1 jmcneill if ((avail & codemask) == 0 && avail <= 0x0FFF) {
4444 1.1 jmcneill codesize++;
4445 1.1 jmcneill codemask = (1 << codesize) - 1;
4446 1.1 jmcneill }
4447 1.1 jmcneill
4448 1.1 jmcneill oldcode = code;
4449 1.1 jmcneill } else {
4450 1.1 jmcneill return epuc("illegal code in raster", "Corrupt GIF");
4451 1.1 jmcneill }
4452 1.1 jmcneill }
4453 1.1 jmcneill }
4454 1.1 jmcneill }
4455 1.1 jmcneill
4456 1.1 jmcneill static void stbi_fill_gif_background(stbi_gif *g)
4457 1.1 jmcneill {
4458 1.1 jmcneill int i;
4459 1.1 jmcneill uint8 *c = g->pal[g->bgindex];
4460 1.1 jmcneill // @OPTIMIZE: write a dword at a time
4461 1.1 jmcneill for (i = 0; i < g->w * g->h * 4; i += 4) {
4462 1.1 jmcneill uint8 *p = &g->out[i];
4463 1.1 jmcneill p[0] = c[2];
4464 1.1 jmcneill p[1] = c[1];
4465 1.1 jmcneill p[2] = c[0];
4466 1.1 jmcneill p[3] = c[3];
4467 1.1 jmcneill }
4468 1.1 jmcneill }
4469 1.1 jmcneill
4470 1.1 jmcneill // this function is designed to support animated gifs, although stb_image doesn't support it
4471 1.1 jmcneill static uint8 *stbi_gif_load_next(stbi *s, stbi_gif *g, int *comp, int req_comp)
4472 1.1 jmcneill {
4473 1.1 jmcneill int i;
4474 1.1 jmcneill uint8 *old_out = 0;
4475 1.1 jmcneill
4476 1.1 jmcneill if (g->out == 0) {
4477 1.1 jmcneill if (!stbi_gif_header(s, g, comp,0)) return 0; // failure_reason set by stbi_gif_header
4478 1.1 jmcneill g->out = (uint8 *) MALLOC(4 * g->w * g->h);
4479 1.1 jmcneill if (g->out == 0) return epuc("outofmem", "Out of memory");
4480 1.1 jmcneill stbi_fill_gif_background(g);
4481 1.1 jmcneill } else {
4482 1.1 jmcneill // animated-gif-only path
4483 1.1 jmcneill if (((g->eflags & 0x1C) >> 2) == 3) {
4484 1.1 jmcneill old_out = g->out;
4485 1.1 jmcneill g->out = (uint8 *) MALLOC(4 * g->w * g->h);
4486 1.1 jmcneill if (g->out == 0) return epuc("outofmem", "Out of memory");
4487 1.1 jmcneill memcpy(g->out, old_out, g->w*g->h*4);
4488 1.1 jmcneill }
4489 1.1 jmcneill }
4490 1.1 jmcneill
4491 1.1 jmcneill for (;;) {
4492 1.1 jmcneill switch (get8(s)) {
4493 1.1 jmcneill case 0x2C: /* Image Descriptor */
4494 1.1 jmcneill {
4495 1.1 jmcneill int32 x, y, w, h;
4496 1.1 jmcneill uint8 *o;
4497 1.1 jmcneill
4498 1.1 jmcneill x = get16le(s);
4499 1.1 jmcneill y = get16le(s);
4500 1.1 jmcneill w = get16le(s);
4501 1.1 jmcneill h = get16le(s);
4502 1.1 jmcneill if (((x + w) > (g->w)) || ((y + h) > (g->h)))
4503 1.1 jmcneill return epuc("bad Image Descriptor", "Corrupt GIF");
4504 1.1 jmcneill
4505 1.1 jmcneill g->line_size = g->w * 4;
4506 1.1 jmcneill g->start_x = x * 4;
4507 1.1 jmcneill g->start_y = y * g->line_size;
4508 1.1 jmcneill g->max_x = g->start_x + w * 4;
4509 1.1 jmcneill g->max_y = g->start_y + h * g->line_size;
4510 1.1 jmcneill g->cur_x = g->start_x;
4511 1.1 jmcneill g->cur_y = g->start_y;
4512 1.1 jmcneill
4513 1.1 jmcneill g->lflags = get8(s);
4514 1.1 jmcneill
4515 1.1 jmcneill if (g->lflags & 0x40) {
4516 1.1 jmcneill g->step = 8 * g->line_size; // first interlaced spacing
4517 1.1 jmcneill g->parse = 3;
4518 1.1 jmcneill } else {
4519 1.1 jmcneill g->step = g->line_size;
4520 1.1 jmcneill g->parse = 0;
4521 1.1 jmcneill }
4522 1.1 jmcneill
4523 1.1 jmcneill if (g->lflags & 0x80) {
4524 1.1 jmcneill stbi_gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1);
4525 1.1 jmcneill g->color_table = (uint8 *) g->lpal;
4526 1.1 jmcneill } else if (g->flags & 0x80) {
4527 1.1 jmcneill for (i=0; i < 256; ++i) // @OPTIMIZE: reset only the previous transparent
4528 1.1 jmcneill g->pal[i][3] = 255;
4529 1.1 jmcneill if (g->transparent >= 0 && (g->eflags & 0x01))
4530 1.1 jmcneill g->pal[g->transparent][3] = 0;
4531 1.1 jmcneill g->color_table = (uint8 *) g->pal;
4532 1.1 jmcneill } else
4533 1.1 jmcneill return epuc("missing color table", "Corrupt GIF");
4534 1.1 jmcneill
4535 1.1 jmcneill o = stbi_process_gif_raster(s, g);
4536 1.1 jmcneill if (o == NULL) return NULL;
4537 1.1 jmcneill
4538 1.1 jmcneill if (req_comp && req_comp != 4)
4539 1.1 jmcneill o = convert_format(o, 4, req_comp, g->w, g->h);
4540 1.1 jmcneill return o;
4541 1.1 jmcneill }
4542 1.1 jmcneill
4543 1.1 jmcneill case 0x21: // Comment Extension.
4544 1.1 jmcneill {
4545 1.1 jmcneill int len;
4546 1.1 jmcneill if (get8(s) == 0xF9) { // Graphic Control Extension.
4547 1.1 jmcneill len = get8(s);
4548 1.1 jmcneill if (len == 4) {
4549 1.1 jmcneill g->eflags = get8(s);
4550 1.1 jmcneill get16le(s); // delay
4551 1.1 jmcneill g->transparent = get8(s);
4552 1.1 jmcneill } else {
4553 1.1 jmcneill skip(s, len);
4554 1.1 jmcneill break;
4555 1.1 jmcneill }
4556 1.1 jmcneill }
4557 1.1 jmcneill while ((len = get8(s)) != 0)
4558 1.1 jmcneill skip(s, len);
4559 1.1 jmcneill break;
4560 1.1 jmcneill }
4561 1.1 jmcneill
4562 1.1 jmcneill case 0x3B: // gif stream termination code
4563 1.1 jmcneill return (uint8 *) 1;
4564 1.1 jmcneill
4565 1.1 jmcneill default:
4566 1.1 jmcneill return epuc("unknown code", "Corrupt GIF");
4567 1.1 jmcneill }
4568 1.1 jmcneill }
4569 1.1 jmcneill }
4570 1.1 jmcneill
4571 1.1 jmcneill #ifndef STBI_NO_STDIO
4572 1.1 jmcneill stbi_uc *stbi_gif_load (char const *filename, int *x, int *y, int *comp, int req_comp)
4573 1.1 jmcneill {
4574 1.1 jmcneill uint8 *data;
4575 1.1 jmcneill FILE *f = fopen(filename, "rb");
4576 1.1 jmcneill if (!f) return NULL;
4577 1.1 jmcneill data = stbi_gif_load_from_file(f, x,y,comp,req_comp);
4578 1.1 jmcneill fclose(f);
4579 1.1 jmcneill return data;
4580 1.1 jmcneill }
4581 1.1 jmcneill
4582 1.1 jmcneill stbi_uc *stbi_gif_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp)
4583 1.1 jmcneill {
4584 1.1 jmcneill uint8 *u = 0;
4585 1.1 jmcneill stbi s;
4586 1.1 jmcneill stbi_gif g={0};
4587 1.1 jmcneill start_file(&s, f);
4588 1.1 jmcneill
4589 1.1 jmcneill u = stbi_gif_load_next(&s, &g, comp, req_comp);
4590 1.1 jmcneill if (u == (void *) 1) u = 0; // end of animated gif marker
4591 1.1 jmcneill if (u) {
4592 1.1 jmcneill *x = g.w;
4593 1.1 jmcneill *y = g.h;
4594 1.1 jmcneill }
4595 1.1 jmcneill
4596 1.1 jmcneill return u;
4597 1.1 jmcneill }
4598 1.1 jmcneill #endif
4599 1.1 jmcneill
4600 1.1 jmcneill stbi_uc *stbi_gif_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
4601 1.1 jmcneill {
4602 1.1 jmcneill uint8 *u = 0;
4603 1.1 jmcneill stbi s;
4604 1.1 jmcneill stbi_gif g;
4605 1.1 jmcneill
4606 1.1 jmcneill memset(&g, 0, sizeof(g));
4607 1.1 jmcneill start_mem(&s, buffer, len);
4608 1.1 jmcneill u = stbi_gif_load_next(&s, &g, comp, req_comp);
4609 1.1 jmcneill if (u == (void *) 1) u = 0; // end of animated gif marker
4610 1.1 jmcneill if (u) {
4611 1.1 jmcneill *x = g.w;
4612 1.1 jmcneill *y = g.h;
4613 1.1 jmcneill }
4614 1.1 jmcneill return u;
4615 1.1 jmcneill }
4616 1.1 jmcneill
4617 1.1 jmcneill #ifndef STBI_NO_STDIO
4618 1.1 jmcneill int stbi_gif_info (char const *filename, int *x, int *y, int *comp)
4619 1.1 jmcneill {
4620 1.1 jmcneill int res;
4621 1.1 jmcneill FILE *f = fopen(filename, "rb");
4622 1.1 jmcneill if (!f) return 0;
4623 1.1 jmcneill res = stbi_gif_info_from_file(f, x, y, comp);
4624 1.1 jmcneill fclose(f);
4625 1.1 jmcneill return res;
4626 1.1 jmcneill }
4627 1.1 jmcneill
4628 1.1 jmcneill int stbi_gif_info_from_file(FILE *f, int *x, int *y, int *comp)
4629 1.1 jmcneill {
4630 1.1 jmcneill stbi s;
4631 1.1 jmcneill int res;
4632 1.1 jmcneill long n = ftell(f);
4633 1.1 jmcneill start_file(&s, f);
4634 1.1 jmcneill res = stbi_gif_info_raw(&s, x, y, comp);
4635 1.1 jmcneill fseek(f, n, SEEK_SET);
4636 1.1 jmcneill return res;
4637 1.1 jmcneill }
4638 1.1 jmcneill #endif // !STBI_NO_STDIO
4639 1.1 jmcneill
4640 1.1 jmcneill int stbi_gif_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
4641 1.1 jmcneill {
4642 1.1 jmcneill stbi s;
4643 1.1 jmcneill start_mem(&s, buffer, len);
4644 1.1 jmcneill return stbi_gif_info_raw(&s, x, y, comp);
4645 1.1 jmcneill }
4646 1.1 jmcneill
4647 1.1 jmcneill
4648 1.1 jmcneill
4649 1.1 jmcneill
4650 1.1 jmcneill // *************************************************************************************************
4651 1.1 jmcneill // Radiance RGBE HDR loader
4652 1.1 jmcneill // originally by Nicolas Schulz
4653 1.1 jmcneill #ifndef STBI_NO_HDR
4654 1.1 jmcneill static int hdr_test(stbi *s)
4655 1.1 jmcneill {
4656 1.1 jmcneill const char *signature = "#?RADIANCE\n";
4657 1.1 jmcneill int i;
4658 1.1 jmcneill for (i=0; signature[i]; ++i)
4659 1.1 jmcneill if (get8(s) != signature[i])
4660 1.1 jmcneill return 0;
4661 1.1 jmcneill return 1;
4662 1.1 jmcneill }
4663 1.1 jmcneill
4664 1.1 jmcneill int stbi_hdr_test_memory(stbi_uc const *buffer, int len)
4665 1.1 jmcneill {
4666 1.1 jmcneill stbi s;
4667 1.1 jmcneill start_mem(&s, buffer, len);
4668 1.1 jmcneill return hdr_test(&s);
4669 1.1 jmcneill }
4670 1.1 jmcneill
4671 1.1 jmcneill #ifndef STBI_NO_STDIO
4672 1.1 jmcneill int stbi_hdr_test_file(FILE *f)
4673 1.1 jmcneill {
4674 1.1 jmcneill stbi s;
4675 1.1 jmcneill int r,n = ftell(f);
4676 1.1 jmcneill start_file(&s, f);
4677 1.1 jmcneill r = hdr_test(&s);
4678 1.1 jmcneill fseek(f,n,SEEK_SET);
4679 1.1 jmcneill return r;
4680 1.1 jmcneill }
4681 1.1 jmcneill #endif
4682 1.1 jmcneill
4683 1.1 jmcneill #define HDR_BUFLEN 1024
4684 1.1 jmcneill static char *hdr_gettoken(stbi *z, char *buffer)
4685 1.1 jmcneill {
4686 1.1 jmcneill int len=0;
4687 1.1 jmcneill char c = '\0';
4688 1.1 jmcneill
4689 1.1 jmcneill c = (char) get8(z);
4690 1.1 jmcneill
4691 1.1 jmcneill while (!at_eof(z) && c != '\n') {
4692 1.1 jmcneill buffer[len++] = c;
4693 1.1 jmcneill if (len == HDR_BUFLEN-1) {
4694 1.1 jmcneill // flush to end of line
4695 1.1 jmcneill while (!at_eof(z) && get8(z) != '\n')
4696 1.1 jmcneill ;
4697 1.1 jmcneill break;
4698 1.1 jmcneill }
4699 1.1 jmcneill c = (char) get8(z);
4700 1.1 jmcneill }
4701 1.1 jmcneill
4702 1.1 jmcneill buffer[len] = 0;
4703 1.1 jmcneill return buffer;
4704 1.1 jmcneill }
4705 1.1 jmcneill
4706 1.1 jmcneill static void hdr_convert(float *output, stbi_uc *input, int req_comp)
4707 1.1 jmcneill {
4708 1.1 jmcneill if ( input[3] != 0 ) {
4709 1.1 jmcneill float f1;
4710 1.1 jmcneill // Exponent
4711 1.1 jmcneill f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8));
4712 1.1 jmcneill if (req_comp <= 2)
4713 1.1 jmcneill output[0] = (input[0] + input[1] + input[2]) * f1 / 3;
4714 1.1 jmcneill else {
4715 1.1 jmcneill output[0] = input[0] * f1;
4716 1.1 jmcneill output[1] = input[1] * f1;
4717 1.1 jmcneill output[2] = input[2] * f1;
4718 1.1 jmcneill }
4719 1.1 jmcneill if (req_comp == 2) output[1] = 1;
4720 1.1 jmcneill if (req_comp == 4) output[3] = 1;
4721 1.1 jmcneill } else {
4722 1.1 jmcneill switch (req_comp) {
4723 1.1 jmcneill case 4: output[3] = 1; /* fallthrough */
4724 1.1 jmcneill case 3: output[0] = output[1] = output[2] = 0;
4725 1.1 jmcneill break;
4726 1.1 jmcneill case 2: output[1] = 1; /* fallthrough */
4727 1.1 jmcneill case 1: output[0] = 0;
4728 1.1 jmcneill break;
4729 1.1 jmcneill }
4730 1.1 jmcneill }
4731 1.1 jmcneill }
4732 1.1 jmcneill
4733 1.1 jmcneill
4734 1.1 jmcneill static float *hdr_load(stbi *s, int *x, int *y, int *comp, int req_comp)
4735 1.1 jmcneill {
4736 1.1 jmcneill char buffer[HDR_BUFLEN];
4737 1.1 jmcneill char *token;
4738 1.1 jmcneill int valid = 0;
4739 1.1 jmcneill int width, height;
4740 1.1 jmcneill stbi_uc *scanline;
4741 1.1 jmcneill float *hdr_data;
4742 1.1 jmcneill int len;
4743 1.1 jmcneill unsigned char count, value;
4744 1.1 jmcneill int i, j, k, c1,c2, z;
4745 1.1 jmcneill
4746 1.1 jmcneill
4747 1.1 jmcneill // Check identifier
4748 1.1 jmcneill if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0)
4749 1.1 jmcneill return epf("not HDR", "Corrupt HDR image");
4750 1.1 jmcneill
4751 1.1 jmcneill // Parse header
4752 1.1 jmcneill for(;;) {
4753 1.1 jmcneill token = hdr_gettoken(s,buffer);
4754 1.1 jmcneill if (token[0] == 0) break;
4755 1.1 jmcneill if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
4756 1.1 jmcneill }
4757 1.1 jmcneill
4758 1.1 jmcneill if (!valid) return epf("unsupported format", "Unsupported HDR format");
4759 1.1 jmcneill
4760 1.1 jmcneill // Parse width and height
4761 1.1 jmcneill // can't use sscanf() if we're not using stdio!
4762 1.1 jmcneill token = hdr_gettoken(s,buffer);
4763 1.1 jmcneill if (strncmp(token, "-Y ", 3)) return epf("unsupported data layout", "Unsupported HDR format");
4764 1.1 jmcneill token += 3;
4765 1.1 jmcneill height = strtol(token, &token, 10);
4766 1.1 jmcneill while (*token == ' ') ++token;
4767 1.1 jmcneill if (strncmp(token, "+X ", 3)) return epf("unsupported data layout", "Unsupported HDR format");
4768 1.1 jmcneill token += 3;
4769 1.1 jmcneill width = strtol(token, NULL, 10);
4770 1.1 jmcneill
4771 1.1 jmcneill *x = width;
4772 1.1 jmcneill *y = height;
4773 1.1 jmcneill
4774 1.1 jmcneill *comp = 3;
4775 1.1 jmcneill if (req_comp == 0) req_comp = 3;
4776 1.1 jmcneill
4777 1.1 jmcneill // Read data
4778 1.1 jmcneill hdr_data = (float *) MALLOC(height * width * req_comp * sizeof(float));
4779 1.1 jmcneill
4780 1.1 jmcneill // Load image data
4781 1.1 jmcneill // image data is stored as some number of sca
4782 1.1 jmcneill if ( width < 8 || width >= 32768) {
4783 1.1 jmcneill // Read flat data
4784 1.1 jmcneill for (j=0; j < height; ++j) {
4785 1.1 jmcneill for (i=0; i < width; ++i) {
4786 1.1 jmcneill stbi_uc rgbe[4];
4787 1.1 jmcneill main_decode_loop:
4788 1.1 jmcneill getn(s, rgbe, 4);
4789 1.1 jmcneill hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp);
4790 1.1 jmcneill }
4791 1.1 jmcneill }
4792 1.1 jmcneill } else {
4793 1.1 jmcneill // Read RLE-encoded data
4794 1.1 jmcneill scanline = NULL;
4795 1.1 jmcneill
4796 1.1 jmcneill for (j = 0; j < height; ++j) {
4797 1.1 jmcneill c1 = get8(s);
4798 1.1 jmcneill c2 = get8(s);
4799 1.1 jmcneill len = get8(s);
4800 1.1 jmcneill if (c1 != 2 || c2 != 2 || (len & 0x80)) {
4801 1.1 jmcneill // not run-length encoded, so we have to actually use THIS data as a decoded
4802 1.1 jmcneill // pixel (note this can't be a valid pixel--one of RGB must be >= 128)
4803 1.1 jmcneill uint8 rgbe[4];
4804 1.1 jmcneill rgbe[0] = (uint8) c1;
4805 1.1 jmcneill rgbe[1] = (uint8) c2;
4806 1.1 jmcneill rgbe[2] = (uint8) len;
4807 1.1 jmcneill rgbe[3] = (uint8) get8u(s);
4808 1.1 jmcneill hdr_convert(hdr_data, rgbe, req_comp);
4809 1.1 jmcneill i = 1;
4810 1.1 jmcneill j = 0;
4811 1.1 jmcneill FREE(scanline);
4812 1.1 jmcneill goto main_decode_loop; // yes, this makes no sense
4813 1.1 jmcneill }
4814 1.1 jmcneill len <<= 8;
4815 1.1 jmcneill len |= get8(s);
4816 1.1 jmcneill if (len != width) { FREE(hdr_data); FREE(scanline); return epf("invalid decoded scanline length", "corrupt HDR"); }
4817 1.1 jmcneill if (scanline == NULL) scanline = (stbi_uc *) MALLOC(width * 4);
4818 1.1 jmcneill
4819 1.1 jmcneill for (k = 0; k < 4; ++k) {
4820 1.1 jmcneill i = 0;
4821 1.1 jmcneill while (i < width) {
4822 1.1 jmcneill count = get8u(s);
4823 1.1 jmcneill if (count > 128) {
4824 1.1 jmcneill // Run
4825 1.1 jmcneill value = get8u(s);
4826 1.1 jmcneill count -= 128;
4827 1.1 jmcneill for (z = 0; z < count; ++z)
4828 1.1 jmcneill scanline[i++ * 4 + k] = value;
4829 1.1 jmcneill } else {
4830 1.1 jmcneill // Dump
4831 1.1 jmcneill for (z = 0; z < count; ++z)
4832 1.1 jmcneill scanline[i++ * 4 + k] = get8u(s);
4833 1.1 jmcneill }
4834 1.1 jmcneill }
4835 1.1 jmcneill }
4836 1.1 jmcneill for (i=0; i < width; ++i)
4837 1.1 jmcneill hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp);
4838 1.1 jmcneill }
4839 1.1 jmcneill FREE(scanline);
4840 1.1 jmcneill }
4841 1.1 jmcneill
4842 1.1 jmcneill return hdr_data;
4843 1.1 jmcneill }
4844 1.1 jmcneill
4845 1.1 jmcneill #ifndef STBI_NO_STDIO
4846 1.1 jmcneill float *stbi_hdr_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
4847 1.1 jmcneill {
4848 1.1 jmcneill stbi s;
4849 1.1 jmcneill start_file(&s,f);
4850 1.1 jmcneill return hdr_load(&s,x,y,comp,req_comp);
4851 1.1 jmcneill }
4852 1.1 jmcneill #endif
4853 1.1 jmcneill
4854 1.1 jmcneill float *stbi_hdr_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
4855 1.1 jmcneill {
4856 1.1 jmcneill stbi s;
4857 1.1 jmcneill start_mem(&s,buffer, len);
4858 1.1 jmcneill return hdr_load(&s,x,y,comp,req_comp);
4859 1.1 jmcneill }
4860 1.1 jmcneill
4861 1.1 jmcneill #endif // STBI_NO_HDR
4862 1.1 jmcneill
4863 1.1 jmcneill
4864 1.1 jmcneill #ifndef STBI_NO_STDIO
4865 1.1 jmcneill int stbi_info(char const *filename, int *x, int *y, int *comp)
4866 1.1 jmcneill {
4867 1.1 jmcneill FILE *f = fopen(filename, "rb");
4868 1.1 jmcneill int result;
4869 1.1 jmcneill if (!f) return e("can't fopen", "Unable to open file");
4870 1.1 jmcneill result = stbi_info_from_file(f, x, y, comp);
4871 1.1 jmcneill fclose(f);
4872 1.1 jmcneill return result;
4873 1.1 jmcneill }
4874 1.1 jmcneill
4875 1.1 jmcneill int stbi_info_from_file(FILE *f, int *x, int *y, int *comp)
4876 1.1 jmcneill {
4877 1.1 jmcneill if (stbi_jpeg_info_from_file(f, x, y, comp))
4878 1.1 jmcneill return 1;
4879 1.1 jmcneill if (stbi_png_info_from_file(f, x, y, comp))
4880 1.1 jmcneill return 1;
4881 1.1 jmcneill if (stbi_gif_info_from_file(f, x, y, comp))
4882 1.1 jmcneill return 1;
4883 1.1 jmcneill // @TODO: stbi_bmp_info_from_file
4884 1.1 jmcneill // @TODO: stbi_psd_info_from_file
4885 1.1 jmcneill #ifndef STBI_NO_HDR
4886 1.1 jmcneill // @TODO: stbi_hdr_info_from_file
4887 1.1 jmcneill #endif
4888 1.1 jmcneill // test tga last because it's a crappy test!
4889 1.1 jmcneill if (stbi_tga_info_from_file(f, x, y, comp))
4890 1.1 jmcneill return 1;
4891 1.1 jmcneill return e("unknown image type", "Image not of any known type, or corrupt");
4892 1.1 jmcneill }
4893 1.1 jmcneill #endif // !STBI_NO_STDIO
4894 1.1 jmcneill
4895 1.1 jmcneill int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
4896 1.1 jmcneill {
4897 1.1 jmcneill if (stbi_jpeg_info_from_memory(buffer, len, x, y, comp))
4898 1.1 jmcneill return 1;
4899 1.1 jmcneill if (stbi_png_info_from_memory(buffer, len, x, y, comp))
4900 1.1 jmcneill return 1;
4901 1.1 jmcneill if (stbi_gif_info_from_memory(buffer, len, x, y, comp))
4902 1.1 jmcneill return 1;
4903 1.1 jmcneill // @TODO: stbi_bmp_info_from_memory
4904 1.1 jmcneill // @TODO: stbi_psd_info_from_memory
4905 1.1 jmcneill #ifndef STBI_NO_HDR
4906 1.1 jmcneill // @TODO: stbi_hdr_info_from_memory
4907 1.1 jmcneill #endif
4908 1.1 jmcneill // test tga last because it's a crappy test!
4909 1.1 jmcneill if (stbi_tga_info_from_memory(buffer, len, x, y, comp))
4910 1.1 jmcneill return 1;
4911 1.1 jmcneill return e("unknown image type", "Image not of any known type, or corrupt");
4912 1.1 jmcneill }
4913 1.1 jmcneill
4914 1.1 jmcneill #endif // STBI_HEADER_FILE_ONLY
4915 1.1 jmcneill
4916 1.1 jmcneill /*
4917 1.1 jmcneill revision history:
4918 1.1 jmcneill 1.29 (2010-08-16) various warning fixes from Aurelien Pocheville
4919 1.1 jmcneill 1.28 (2010-08-01) fix bug in GIF palette transparency (SpartanJ)
4920 1.1 jmcneill 1.27 (2010-08-01)
4921 1.1 jmcneill cast-to-uint8 to fix warnings
4922 1.1 jmcneill 1.26 (2010-07-24)
4923 1.1 jmcneill fix bug in file buffering for PNG reported by SpartanJ
4924 1.1 jmcneill 1.25 (2010-07-17)
4925 1.1 jmcneill refix trans_data warning (Won Chun)
4926 1.1 jmcneill 1.24 (2010-07-12)
4927 1.1 jmcneill perf improvements reading from files on platforms with lock-heavy fgetc()
4928 1.1 jmcneill minor perf improvements for jpeg
4929 1.1 jmcneill deprecated type-specific functions so we'll get feedback if they're needed
4930 1.1 jmcneill attempt to fix trans_data warning (Won Chun)
4931 1.1 jmcneill 1.23 fixed bug in iPhone support
4932 1.1 jmcneill 1.22 (2010-07-10)
4933 1.1 jmcneill removed image *writing* support
4934 1.1 jmcneill removed image *writing* support
4935 1.1 jmcneill stbi_info support from Jetro Lauha
4936 1.1 jmcneill GIF support from Jean-Marc Lienher
4937 1.1 jmcneill iPhone PNG-extensions from James Brown
4938 1.1 jmcneill warning-fixes from Nicolas Schulz and Janez Zemva (i.e. Janez (U+017D)emva)
4939 1.1 jmcneill 1.21 fix use of 'uint8' in header (reported by jon blow)
4940 1.1 jmcneill 1.20 added support for Softimage PIC, by Tom Seddon
4941 1.1 jmcneill 1.19 bug in interlaced PNG corruption check (found by ryg)
4942 1.1 jmcneill 1.18 2008-08-02
4943 1.1 jmcneill fix a threading bug (local mutable static)
4944 1.1 jmcneill 1.17 support interlaced PNG
4945 1.1 jmcneill 1.16 major bugfix - convert_format converted one too many pixels
4946 1.1 jmcneill 1.15 initialize some fields for thread safety
4947 1.1 jmcneill 1.14 fix threadsafe conversion bug
4948 1.1 jmcneill header-file-only version (#define STBI_HEADER_FILE_ONLY before including)
4949 1.1 jmcneill 1.13 threadsafe
4950 1.1 jmcneill 1.12 const qualifiers in the API
4951 1.1 jmcneill 1.11 Support installable IDCT, colorspace conversion routines
4952 1.1 jmcneill 1.10 Fixes for 64-bit (don't use "unsigned long")
4953 1.1 jmcneill optimized upsampling by Fabian "ryg" Giesen
4954 1.1 jmcneill 1.09 Fix format-conversion for PSD code (bad global variables!)
4955 1.1 jmcneill 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz
4956 1.1 jmcneill 1.07 attempt to fix C++ warning/errors again
4957 1.1 jmcneill 1.06 attempt to fix C++ warning/errors again
4958 1.1 jmcneill 1.05 fix TGA loading to return correct *comp and use good luminance calc
4959 1.1 jmcneill 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free
4960 1.1 jmcneill 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR
4961 1.1 jmcneill 1.02 support for (subset of) HDR files, float interface for preferred access to them
4962 1.1 jmcneill 1.01 fix bug: possible bug in handling right-side up bmps... not sure
4963 1.1 jmcneill fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all
4964 1.1 jmcneill 1.00 interface to zlib that skips zlib header
4965 1.1 jmcneill 0.99 correct handling of alpha in palette
4966 1.1 jmcneill 0.98 TGA loader by lonesock; dynamically add loaders (untested)
4967 1.1 jmcneill 0.97 jpeg errors on too large a file; also catch another malloc failure
4968 1.1 jmcneill 0.96 fix detection of invalid v value - particleman@mollyrocket forum
4969 1.1 jmcneill 0.95 during header scan, seek to markers in case of padding
4970 1.1 jmcneill 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same
4971 1.1 jmcneill 0.93 handle jpegtran output; verbose errors
4972 1.1 jmcneill 0.92 read 4,8,16,24,32-bit BMP files of several formats
4973 1.1 jmcneill 0.91 output 24-bit Windows 3.0 BMP files
4974 1.1 jmcneill 0.90 fix a few more warnings; bump version number to approach 1.0
4975 1.1 jmcneill 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd
4976 1.1 jmcneill 0.60 fix compiling as c++
4977 1.1 jmcneill 0.59 fix warnings: merge Dave Moore's -Wall fixes
4978 1.1 jmcneill 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian
4979 1.1 jmcneill 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less
4980 1.1 jmcneill than 16 available
4981 1.1 jmcneill 0.56 fix bug: zlib uncompressed mode len vs. nlen
4982 1.1 jmcneill 0.55 fix bug: restart_interval not initialized to 0
4983 1.1 jmcneill 0.54 allow NULL for 'int *comp'
4984 1.1 jmcneill 0.53 fix bug in png 3->4; speedup png decoding
4985 1.1 jmcneill 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments
4986 1.1 jmcneill 0.51 obey req_comp requests, 1-component jpegs return as 1-component,
4987 1.1 jmcneill on 'test' only check type, not whether we support this variant
4988 1.1 jmcneill */
4989