kbd.c revision 1.4 1 1.4 gwr /* $NetBSD: kbd.c,v 1.4 1996/02/29 19:32:14 gwr Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1992, 1993
5 1.1 gwr * The Regents of the University of California. All rights reserved.
6 1.1 gwr *
7 1.1 gwr * This software was developed by the Computer Systems Engineering group
8 1.1 gwr * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 gwr * contributed to Berkeley.
10 1.1 gwr *
11 1.1 gwr * All advertising materials mentioning features or use of this software
12 1.1 gwr * must display the following acknowledgement:
13 1.1 gwr * This product includes software developed by the University of
14 1.1 gwr * California, Lawrence Berkeley Laboratory.
15 1.1 gwr *
16 1.1 gwr * Redistribution and use in source and binary forms, with or without
17 1.1 gwr * modification, are permitted provided that the following conditions
18 1.1 gwr * are met:
19 1.1 gwr * 1. Redistributions of source code must retain the above copyright
20 1.1 gwr * notice, this list of conditions and the following disclaimer.
21 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 gwr * notice, this list of conditions and the following disclaimer in the
23 1.1 gwr * documentation and/or other materials provided with the distribution.
24 1.1 gwr * 3. All advertising materials mentioning features or use of this software
25 1.1 gwr * must display the following acknowledgement:
26 1.1 gwr * This product includes software developed by the University of
27 1.1 gwr * California, Berkeley and its contributors.
28 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
29 1.1 gwr * may be used to endorse or promote products derived from this software
30 1.1 gwr * without specific prior written permission.
31 1.1 gwr *
32 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 gwr * SUCH DAMAGE.
43 1.1 gwr *
44 1.1 gwr * @(#)kbd.c 8.2 (Berkeley) 10/30/93
45 1.1 gwr */
46 1.1 gwr
47 1.1 gwr /*
48 1.1 gwr * Keyboard driver (/dev/kbd -- note that we do not have minor numbers
49 1.1 gwr * [yet?]). Translates incoming bytes to ASCII or to `firm_events' and
50 1.1 gwr * passes them up to the appropriate reader.
51 1.1 gwr */
52 1.1 gwr
53 1.1 gwr /*
54 1.1 gwr * Zilog Z8530 Dual UART driver (keyboard interface)
55 1.1 gwr *
56 1.1 gwr * This is the "slave" driver that will be attached to
57 1.1 gwr * the "zsc" driver for a Sun keyboard.
58 1.1 gwr */
59 1.1 gwr
60 1.1 gwr #include <sys/param.h>
61 1.1 gwr #include <sys/systm.h>
62 1.1 gwr #include <sys/proc.h>
63 1.1 gwr #include <sys/device.h>
64 1.1 gwr #include <sys/conf.h>
65 1.1 gwr #include <sys/file.h>
66 1.1 gwr #include <sys/ioctl.h>
67 1.1 gwr #include <sys/time.h>
68 1.1 gwr #include <sys/kernel.h>
69 1.1 gwr #include <sys/syslog.h>
70 1.1 gwr
71 1.1 gwr #include <dev/ic/z8530reg.h>
72 1.1 gwr #include <machine/z8530var.h>
73 1.1 gwr #include <machine/vuid_event.h>
74 1.1 gwr #include <machine/kbd.h>
75 1.1 gwr #include <machine/kbio.h>
76 1.1 gwr
77 1.1 gwr #include "event_var.h"
78 1.1 gwr #include "kbd_xlate.h"
79 1.1 gwr
80 1.1 gwr /*
81 1.1 gwr * Ideas:
82 1.1 gwr * /dev/kbd is not a tty (plain device)
83 1.1 gwr */
84 1.1 gwr
85 1.1 gwr /*
86 1.1 gwr * How many input characters we can buffer.
87 1.1 gwr * The port-specific var.h may override this.
88 1.1 gwr * Note: must be a power of two!
89 1.1 gwr */
90 1.1 gwr #define KBD_RX_RING_SIZE 256
91 1.1 gwr #define KBD_RX_RING_MASK (KBD_RX_RING_SIZE-1)
92 1.1 gwr /*
93 1.1 gwr * Output buffer. Only need a few chars.
94 1.1 gwr */
95 1.1 gwr #define KBD_TX_RING_SIZE 16
96 1.1 gwr #define KBD_TX_RING_MASK (KBD_TX_RING_SIZE-1)
97 1.1 gwr /*
98 1.1 gwr * Keyboard serial line speed is fixed at 1200 bps.
99 1.1 gwr */
100 1.1 gwr #define KBD_BPS 1200
101 1.1 gwr #define KBD_RESET_TIMO 1000 /* mS. */
102 1.1 gwr
103 1.1 gwr /*
104 1.1 gwr * XXX - Historical comment - no longer quite right...
105 1.1 gwr * Keyboard driver state. The ascii and kbd links go up and down and
106 1.1 gwr * we just sit in the middle doing translation. Note that it is possible
107 1.1 gwr * to get just one of the two links, in which case /dev/kbd is unavailable.
108 1.1 gwr * The downlink supplies us with `internal' open and close routines which
109 1.1 gwr * will enable dataflow across the downlink. We promise to call open when
110 1.1 gwr * we are willing to take keystrokes, and to call close when we are not.
111 1.1 gwr * If /dev/kbd is not the console tty input source, we do this whenever
112 1.1 gwr * /dev/kbd is in use; otherwise we just leave it open forever.
113 1.1 gwr */
114 1.1 gwr struct kbd_softc {
115 1.1 gwr struct device k_dev; /* required first: base device */
116 1.1 gwr struct zs_chanstate *k_cs;
117 1.1 gwr
118 1.1 gwr /* Flags to communicate with kbd_softint() */
119 1.1 gwr volatile int k_intr_flags;
120 1.1 gwr #define INTR_RX_OVERRUN 1
121 1.1 gwr #define INTR_TX_EMPTY 2
122 1.1 gwr #define INTR_ST_CHECK 4
123 1.1 gwr
124 1.1 gwr /* Transmit state */
125 1.1 gwr volatile int k_txflags;
126 1.1 gwr #define K_TXBUSY 1
127 1.1 gwr #define K_TXWANT 2
128 1.1 gwr
129 1.1 gwr /*
130 1.1 gwr * State of upper interface.
131 1.1 gwr */
132 1.1 gwr int k_isopen; /* set if open has been done */
133 1.1 gwr int k_evmode; /* set if we should produce events */
134 1.1 gwr struct evvar k_events; /* event queue state */
135 1.1 gwr
136 1.1 gwr /*
137 1.1 gwr * ACSI translation state
138 1.1 gwr */
139 1.1 gwr int k_repeat_start; /* initial delay */
140 1.1 gwr int k_repeat_step; /* inter-char delay */
141 1.1 gwr int k_repeatsym; /* repeating symbol */
142 1.1 gwr int k_repeating; /* we've called timeout() */
143 1.1 gwr struct kbd_state k_state; /* ASCII translation state */
144 1.1 gwr
145 1.1 gwr /*
146 1.1 gwr * Magic sequence stuff (L1-A)
147 1.1 gwr */
148 1.1 gwr char k_isconsole;
149 1.1 gwr char k_magic1_down;
150 1.1 gwr u_char k_magic1; /* L1 */
151 1.1 gwr u_char k_magic2; /* A */
152 1.1 gwr
153 1.1 gwr /*
154 1.1 gwr * The transmit ring buffer.
155 1.1 gwr */
156 1.1 gwr volatile u_int k_tbget; /* transmit buffer `get' index */
157 1.1 gwr volatile u_int k_tbput; /* transmit buffer `put' index */
158 1.1 gwr u_char k_tbuf[KBD_TX_RING_SIZE]; /* data */
159 1.1 gwr
160 1.1 gwr /*
161 1.1 gwr * The receive ring buffer.
162 1.1 gwr */
163 1.1 gwr u_int k_rbget; /* ring buffer `get' index */
164 1.1 gwr volatile u_int k_rbput; /* ring buffer `put' index */
165 1.1 gwr u_short k_rbuf[KBD_RX_RING_SIZE]; /* rr1, data pairs */
166 1.1 gwr
167 1.1 gwr };
168 1.1 gwr
169 1.1 gwr /* Prototypes */
170 1.4 gwr int kbd_docmd(struct kbd_softc *k, int cmd);
171 1.1 gwr int kbd_iopen(int unit);
172 1.4 gwr void kbd_new_layout(struct kbd_softc *k);
173 1.1 gwr void kbd_output(struct kbd_softc *k, int c);
174 1.4 gwr void kbd_repeat(void *arg);
175 1.4 gwr void kbd_set_leds(struct kbd_softc *k, int leds);
176 1.1 gwr void kbd_start_tx(struct kbd_softc *k);
177 1.4 gwr void kbd_update_leds(struct kbd_softc *k);
178 1.4 gwr void kbd_was_reset(struct kbd_softc *k);
179 1.1 gwr
180 1.1 gwr extern void kd_input(int ascii);
181 1.1 gwr
182 1.1 gwr cdev_decl(kbd); /* open, close, read, write, ioctl, stop, ... */
183 1.1 gwr
184 1.1 gwr struct zsops zsops_kbd;
185 1.1 gwr
186 1.1 gwr /****************************************************************
187 1.1 gwr * Definition of the driver for autoconfig.
188 1.1 gwr ****************************************************************/
189 1.1 gwr
190 1.1 gwr static int kbd_match(struct device *, void *, void *);
191 1.1 gwr static void kbd_attach(struct device *, struct device *, void *);
192 1.1 gwr
193 1.1 gwr struct cfdriver kbdcd = {
194 1.1 gwr NULL, "kbd", kbd_match, kbd_attach,
195 1.1 gwr DV_DULL, sizeof(struct kbd_softc), NULL,
196 1.1 gwr };
197 1.1 gwr
198 1.1 gwr
199 1.1 gwr /*
200 1.1 gwr * kbd_match: how is this zs channel configured?
201 1.1 gwr */
202 1.1 gwr int
203 1.1 gwr kbd_match(parent, match, aux)
204 1.1 gwr struct device *parent;
205 1.1 gwr void *match, *aux;
206 1.1 gwr {
207 1.1 gwr struct cfdata *cf = match;
208 1.1 gwr struct zsc_attach_args *args = aux;
209 1.1 gwr
210 1.1 gwr /* Exact match required for keyboard. */
211 1.1 gwr if (cf->cf_loc[0] == args->channel)
212 1.1 gwr return 2;
213 1.1 gwr
214 1.1 gwr return 0;
215 1.1 gwr }
216 1.1 gwr
217 1.1 gwr void
218 1.1 gwr kbd_attach(parent, self, aux)
219 1.1 gwr struct device *parent, *self;
220 1.1 gwr void *aux;
221 1.1 gwr
222 1.1 gwr {
223 1.1 gwr struct zsc_softc *zsc = (void *) parent;
224 1.1 gwr struct kbd_softc *k = (void *) self;
225 1.1 gwr struct zsc_attach_args *args = aux;
226 1.1 gwr struct zs_chanstate *cs;
227 1.1 gwr struct cfdata *cf;
228 1.1 gwr int channel, kbd_unit;
229 1.1 gwr int reset, s, tconst;
230 1.1 gwr
231 1.1 gwr cf = k->k_dev.dv_cfdata;
232 1.3 gwr kbd_unit = k->k_dev.dv_unit;
233 1.1 gwr channel = args->channel;
234 1.1 gwr cs = &zsc->zsc_cs[channel];
235 1.1 gwr cs->cs_private = k;
236 1.1 gwr cs->cs_ops = &zsops_kbd;
237 1.1 gwr k->k_cs = cs;
238 1.1 gwr
239 1.1 gwr if (args->hwflags & ZS_HWFLAG_CONSOLE) {
240 1.1 gwr k->k_isconsole = 1;
241 1.1 gwr printf(" (console)");
242 1.1 gwr }
243 1.1 gwr printf("\n");
244 1.1 gwr
245 1.1 gwr /* Initialize the speed, etc. */
246 1.1 gwr tconst = BPS_TO_TCONST(cs->cs_pclk_div16, KBD_BPS);
247 1.1 gwr s = splzs();
248 1.1 gwr if (k->k_isconsole == 0) {
249 1.1 gwr /* Not the console; may need reset. */
250 1.1 gwr reset = (channel == 0) ?
251 1.1 gwr ZSWR9_A_RESET : ZSWR9_B_RESET;
252 1.2 gwr zs_write_reg(cs, 9, reset);
253 1.1 gwr }
254 1.1 gwr /* These are OK as set by zscc: WR3, WR4, WR5 */
255 1.1 gwr cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
256 1.1 gwr cs->cs_preg[12] = tconst;
257 1.1 gwr cs->cs_preg[13] = tconst >> 8;
258 1.1 gwr zs_loadchannelregs(cs);
259 1.1 gwr splx(s);
260 1.1 gwr
261 1.1 gwr /* Do this before any calls to kbd_rint(). */
262 1.1 gwr kbd_xlate_init(&k->k_state);
263 1.1 gwr
264 1.1 gwr /* XXX - Do this in open? */
265 1.1 gwr k->k_repeat_start = hz/2;
266 1.1 gwr k->k_repeat_step = hz/20;
267 1.1 gwr
268 1.1 gwr /* Magic sequence. */
269 1.1 gwr k->k_magic1 = KBD_L1;
270 1.1 gwr k->k_magic2 = KBD_A;
271 1.1 gwr
272 1.1 gwr /* Now attach the (kd) pseudo-driver. */
273 1.1 gwr kd_init(kbd_unit);
274 1.1 gwr }
275 1.1 gwr
276 1.1 gwr
277 1.1 gwr /****************************************************************
278 1.1 gwr * Entry points for /dev/kbd
279 1.1 gwr * (open,close,read,write,...)
280 1.1 gwr ****************************************************************/
281 1.1 gwr
282 1.1 gwr /*
283 1.1 gwr * Open:
284 1.1 gwr * Check exclusion, open actual device (_iopen),
285 1.1 gwr * setup event channel, clear ASCII repeat stuff.
286 1.1 gwr */
287 1.1 gwr int
288 1.1 gwr kbdopen(dev, flags, mode, p)
289 1.1 gwr dev_t dev;
290 1.1 gwr int flags, mode;
291 1.1 gwr struct proc *p;
292 1.1 gwr {
293 1.1 gwr struct kbd_softc *k;
294 1.1 gwr int error, s, unit;
295 1.1 gwr
296 1.1 gwr unit = minor(dev);
297 1.1 gwr if (unit >= kbdcd.cd_ndevs)
298 1.1 gwr return (ENXIO);
299 1.1 gwr k = kbdcd.cd_devs[unit];
300 1.1 gwr if (k == NULL)
301 1.1 gwr return (ENXIO);
302 1.1 gwr
303 1.1 gwr /* Exclusive open required for /dev/kbd */
304 1.1 gwr if (k->k_events.ev_io)
305 1.1 gwr return (EBUSY);
306 1.1 gwr k->k_events.ev_io = p;
307 1.1 gwr
308 1.1 gwr if ((error = kbd_iopen(unit)) != 0) {
309 1.1 gwr k->k_events.ev_io = NULL;
310 1.1 gwr return (error);
311 1.1 gwr }
312 1.1 gwr ev_init(&k->k_events);
313 1.1 gwr k->k_evmode = 1; /* XXX: OK? */
314 1.1 gwr
315 1.1 gwr if (k->k_repeating) {
316 1.1 gwr k->k_repeating = 0;
317 1.1 gwr untimeout(kbd_repeat, k);
318 1.1 gwr }
319 1.1 gwr
320 1.1 gwr return (0);
321 1.1 gwr }
322 1.1 gwr
323 1.1 gwr /*
324 1.1 gwr * Close:
325 1.1 gwr * Turn off event mode, dump the queue, and close the keyboard
326 1.1 gwr * unless it is supplying console input.
327 1.1 gwr */
328 1.1 gwr int
329 1.1 gwr kbdclose(dev, flags, mode, p)
330 1.1 gwr dev_t dev;
331 1.1 gwr int flags, mode;
332 1.1 gwr struct proc *p;
333 1.1 gwr {
334 1.1 gwr struct kbd_softc *k;
335 1.1 gwr
336 1.1 gwr k = kbdcd.cd_devs[minor(dev)];
337 1.1 gwr k->k_evmode = 0;
338 1.1 gwr ev_fini(&k->k_events);
339 1.1 gwr k->k_events.ev_io = NULL;
340 1.1 gwr return (0);
341 1.1 gwr }
342 1.1 gwr
343 1.1 gwr int
344 1.1 gwr kbdread(dev, uio, flags)
345 1.1 gwr dev_t dev;
346 1.1 gwr struct uio *uio;
347 1.1 gwr int flags;
348 1.1 gwr {
349 1.1 gwr struct kbd_softc *k;
350 1.1 gwr
351 1.1 gwr k = kbdcd.cd_devs[minor(dev)];
352 1.1 gwr return (ev_read(&k->k_events, uio, flags));
353 1.1 gwr }
354 1.1 gwr
355 1.1 gwr /* this routine should not exist, but is convenient to write here for now */
356 1.1 gwr int
357 1.1 gwr kbdwrite(dev, uio, flags)
358 1.1 gwr dev_t dev;
359 1.1 gwr struct uio *uio;
360 1.1 gwr int flags;
361 1.1 gwr {
362 1.1 gwr
363 1.1 gwr return (EOPNOTSUPP);
364 1.1 gwr }
365 1.1 gwr
366 1.1 gwr int
367 1.1 gwr kbdselect(dev, rw, p)
368 1.1 gwr dev_t dev;
369 1.1 gwr int rw;
370 1.1 gwr struct proc *p;
371 1.1 gwr {
372 1.1 gwr struct kbd_softc *k;
373 1.1 gwr
374 1.1 gwr k = kbdcd.cd_devs[minor(dev)];
375 1.1 gwr return (ev_select(&k->k_events, rw, p));
376 1.1 gwr }
377 1.1 gwr
378 1.1 gwr static int kbd_oldkeymap __P((struct kbd_state *ks,
379 1.1 gwr u_long cmd, struct okiockey *okio));
380 1.1 gwr
381 1.1 gwr static int kbd_iockeymap __P((struct kbd_state *ks,
382 1.1 gwr u_long cmd, struct kiockeymap *kio));
383 1.1 gwr
384 1.1 gwr int
385 1.1 gwr kbdioctl(dev, cmd, data, flag, p)
386 1.1 gwr dev_t dev;
387 1.1 gwr u_long cmd;
388 1.1 gwr register caddr_t data;
389 1.1 gwr int flag;
390 1.1 gwr struct proc *p;
391 1.1 gwr {
392 1.1 gwr struct kbd_softc *k;
393 1.1 gwr struct kbd_state *ks;
394 1.1 gwr int *ip;
395 1.1 gwr int error = 0;
396 1.1 gwr
397 1.1 gwr k = kbdcd.cd_devs[minor(dev)];
398 1.1 gwr ks = &k->k_state;
399 1.1 gwr
400 1.1 gwr switch (cmd) {
401 1.1 gwr
402 1.1 gwr case KIOCTRANS: /* Set translation mode */
403 1.1 gwr ip = (int *)data;
404 1.1 gwr /* We only support "raw" mode on /dev/kbd */
405 1.1 gwr if (*ip != TR_UNTRANS_EVENT)
406 1.1 gwr error = EINVAL;
407 1.1 gwr break;
408 1.1 gwr
409 1.1 gwr case KIOCGTRANS: /* Get translation mode */
410 1.1 gwr ip = (int *)data;
411 1.1 gwr /* We only support "raw" mode on /dev/kbd */
412 1.1 gwr *ip = TR_UNTRANS_EVENT;
413 1.1 gwr break;
414 1.1 gwr
415 1.1 gwr #ifdef KIOCGETKEY
416 1.1 gwr case KIOCGETKEY: /* Get keymap entry (old format) */
417 1.1 gwr error = kbd_oldkeymap(ks, cmd, (struct okiockey *)data);
418 1.1 gwr break;
419 1.1 gwr #endif KIOCGETKEY */
420 1.1 gwr
421 1.1 gwr case KIOCSKEY: /* Set keymap entry */
422 1.1 gwr /* Don't let just anyone hose the keyboard. */
423 1.1 gwr if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
424 1.1 gwr return (error);
425 1.1 gwr /* fallthrough */
426 1.1 gwr case KIOCGKEY: /* Get keymap entry */
427 1.1 gwr error = kbd_iockeymap(ks, cmd, (struct kiockeymap *)data);
428 1.1 gwr break;
429 1.1 gwr
430 1.1 gwr case KIOCCMD: /* Send a command to the keyboard */
431 1.1 gwr /*
432 1.1 gwr * ``unimplemented commands are ignored'' (blech)
433 1.1 gwr * so cannot check return value from kbd_docmd
434 1.1 gwr */
435 1.1 gwr error = kbd_drain_tx(k);
436 1.1 gwr if (error == 0) {
437 1.1 gwr (void) kbd_docmd(k, *(int *)data);
438 1.1 gwr }
439 1.1 gwr break;
440 1.1 gwr
441 1.1 gwr case KIOCTYPE: /* Get keyboard type */
442 1.1 gwr ip = (int *)data;
443 1.1 gwr *ip = ks->kbd_id;
444 1.1 gwr break;
445 1.1 gwr
446 1.1 gwr case KIOCSDIRECT: /* where to send input */
447 1.1 gwr ip = (int *)data;
448 1.1 gwr k->k_evmode = *ip;
449 1.1 gwr break;
450 1.1 gwr
451 1.1 gwr case KIOCLAYOUT: /* Get keyboard layout */
452 1.1 gwr *data = ks->kbd_layout;
453 1.1 gwr break;
454 1.1 gwr
455 1.1 gwr case KIOCSLED:
456 1.4 gwr error = kbd_drain_tx(k);
457 1.4 gwr kbd_set_leds(k, *(int *)data);
458 1.1 gwr break;
459 1.1 gwr
460 1.1 gwr case KIOCGLED:
461 1.1 gwr *(char *)data = ks->kbd_leds;
462 1.1 gwr break;
463 1.1 gwr
464 1.1 gwr case FIONBIO: /* we will remove this someday (soon???) */
465 1.1 gwr break;
466 1.1 gwr
467 1.1 gwr case FIOASYNC:
468 1.1 gwr k->k_events.ev_async = *(int *)data != 0;
469 1.1 gwr break;
470 1.1 gwr
471 1.1 gwr case TIOCSPGRP:
472 1.1 gwr ip = (int *)data;
473 1.1 gwr if (*ip != k->k_events.ev_io->p_pgid)
474 1.1 gwr error = EPERM;
475 1.1 gwr break;
476 1.1 gwr
477 1.1 gwr }
478 1.1 gwr
479 1.1 gwr return (error);
480 1.1 gwr }
481 1.1 gwr
482 1.1 gwr /****************************************************************
483 1.1 gwr * ioctl helpers
484 1.1 gwr ****************************************************************/
485 1.1 gwr
486 1.1 gwr /*
487 1.1 gwr * Get/Set keymap entry
488 1.1 gwr */
489 1.1 gwr int
490 1.1 gwr kbd_iockeymap(ks, cmd, kio)
491 1.1 gwr struct kbd_state *ks;
492 1.1 gwr u_long cmd;
493 1.1 gwr struct kiockeymap *kio;
494 1.1 gwr {
495 1.1 gwr struct keymap *km;
496 1.1 gwr u_int station;
497 1.1 gwr
498 1.1 gwr switch (kio->kio_tablemask) {
499 1.1 gwr case KIOC_NOMASK:
500 1.1 gwr km = ks->kbd_k.k_normal;
501 1.1 gwr break;
502 1.1 gwr case KIOC_SHIFTMASK:
503 1.1 gwr km = ks->kbd_k.k_shifted;
504 1.1 gwr break;
505 1.1 gwr case KIOC_CTRLMASK:
506 1.1 gwr km = ks->kbd_k.k_control;
507 1.1 gwr break;
508 1.1 gwr case KIOC_UPMASK:
509 1.1 gwr km = ks->kbd_k.k_release;
510 1.1 gwr break;
511 1.1 gwr default:
512 1.1 gwr /* Silently ignore unsupported masks */
513 1.1 gwr return (0);
514 1.1 gwr }
515 1.1 gwr
516 1.1 gwr /* Range-check the table position. */
517 1.1 gwr station = kio->kio_station;
518 1.1 gwr if (station >= KEYMAP_SIZE)
519 1.1 gwr return (EINVAL);
520 1.1 gwr
521 1.1 gwr switch (cmd) {
522 1.1 gwr
523 1.1 gwr case KIOCGKEY: /* Get keymap entry */
524 1.1 gwr kio->kio_entry = km->keymap[station];
525 1.1 gwr break;
526 1.1 gwr
527 1.1 gwr case KIOCSKEY: /* Set keymap entry */
528 1.1 gwr km->keymap[station] = kio->kio_entry;
529 1.1 gwr break;
530 1.1 gwr
531 1.1 gwr default:
532 1.1 gwr return(ENOTTY);
533 1.1 gwr }
534 1.1 gwr return (0);
535 1.1 gwr }
536 1.1 gwr
537 1.1 gwr #ifdef KIOCGETKEY
538 1.1 gwr /*
539 1.1 gwr * Get/Set keymap entry,
540 1.1 gwr * old format (compatibility)
541 1.1 gwr */
542 1.1 gwr int
543 1.1 gwr kbd_oldkeymap(ks, cmd, kio)
544 1.1 gwr struct kbd_state *ks;
545 1.1 gwr u_long cmd;
546 1.1 gwr struct okiockey *kio;
547 1.1 gwr {
548 1.1 gwr int error = 0;
549 1.1 gwr
550 1.1 gwr switch (cmd) {
551 1.1 gwr
552 1.1 gwr case KIOCGETKEY:
553 1.1 gwr if (kio->kio_station == 118) {
554 1.1 gwr /*
555 1.1 gwr * This is X11 asking if a type 3 keyboard is
556 1.1 gwr * really a type 3 keyboard. Say yes, it is,
557 1.1 gwr * by reporting key station 118 as a "hole".
558 1.1 gwr * Note old (SunOS 3.5) definition of HOLE!
559 1.1 gwr */
560 1.1 gwr kio->kio_entry = 0xA2;
561 1.1 gwr break;
562 1.1 gwr }
563 1.1 gwr /* fall through */
564 1.1 gwr
565 1.1 gwr default:
566 1.1 gwr error = ENOTTY;
567 1.1 gwr break;
568 1.1 gwr }
569 1.1 gwr
570 1.1 gwr return (error);
571 1.1 gwr }
572 1.1 gwr #endif /* KIOCGETKEY */
573 1.1 gwr
574 1.1 gwr /****************************************************************
575 1.1 gwr * middle layers:
576 1.1 gwr * - keysym to ASCII sequence
577 1.1 gwr * - raw key codes to keysym
578 1.1 gwr ****************************************************************/
579 1.1 gwr
580 1.1 gwr
581 1.1 gwr /*
582 1.1 gwr * Initialization done by either kdcninit or kbd_iopen
583 1.1 gwr */
584 1.1 gwr void
585 1.1 gwr kbd_xlate_init(ks)
586 1.1 gwr struct kbd_state *ks;
587 1.1 gwr {
588 1.1 gwr struct keyboard *ktbls;
589 1.1 gwr int id;
590 1.1 gwr
591 1.1 gwr id = ks->kbd_id;
592 1.1 gwr if (id < KBD_MIN_TYPE)
593 1.1 gwr id = KBD_MIN_TYPE;
594 1.1 gwr if (id > kbd_max_type)
595 1.1 gwr id = kbd_max_type;
596 1.1 gwr ktbls = keyboards[id];
597 1.1 gwr
598 1.1 gwr ks->kbd_k = *ktbls; /* struct assignment */
599 1.1 gwr ks->kbd_modbits = 0;
600 1.1 gwr }
601 1.1 gwr
602 1.1 gwr /*
603 1.1 gwr * Turn keyboard up/down codes into a KEYSYM.
604 1.1 gwr * Note that the "kd" driver uses this too!
605 1.1 gwr */
606 1.1 gwr int
607 1.1 gwr kbd_code_to_keysym(ks, c)
608 1.1 gwr register struct kbd_state *ks;
609 1.1 gwr register int c;
610 1.1 gwr {
611 1.1 gwr struct keymap *km;
612 1.1 gwr int keysym;
613 1.1 gwr
614 1.1 gwr /*
615 1.1 gwr * Get keymap pointer. One of these:
616 1.1 gwr * release, control, shifted, normal, ...
617 1.1 gwr */
618 1.1 gwr if (KEY_UP(c))
619 1.1 gwr km = ks->kbd_k.k_release;
620 1.4 gwr else if (ks->kbd_modbits & KBMOD_CTRL_MASK)
621 1.4 gwr km = ks->kbd_k.k_control;
622 1.4 gwr else if (ks->kbd_modbits & KBMOD_SHIFT_MASK)
623 1.4 gwr km = ks->kbd_k.k_shifted;
624 1.4 gwr else
625 1.4 gwr km = ks->kbd_k.k_normal;
626 1.4 gwr
627 1.1 gwr if (km == NULL) {
628 1.1 gwr /*
629 1.1 gwr * Do not know how to translate yet.
630 1.1 gwr * We will find out when a RESET comes along.
631 1.1 gwr */
632 1.4 gwr return (KEYSYM_NOP);
633 1.4 gwr }
634 1.4 gwr keysym = km->keymap[KEY_CODE(c)];
635 1.4 gwr
636 1.4 gwr /*
637 1.4 gwr * Post-processing for Caps-lock
638 1.4 gwr */
639 1.4 gwr if ((ks->kbd_modbits & (1 << KBMOD_CAPSLOCK)) &&
640 1.4 gwr (KEYSYM_CLASS(keysym) == KEYSYM_ASCII) )
641 1.4 gwr {
642 1.4 gwr if (('a' <= keysym) && (keysym <= 'z'))
643 1.4 gwr keysym -= ('a' - 'A');
644 1.4 gwr }
645 1.4 gwr
646 1.4 gwr /*
647 1.4 gwr * Post-processing for Num-lock
648 1.4 gwr */
649 1.4 gwr if ((ks->kbd_modbits & (1 << KBMOD_NUMLOCK)) &&
650 1.4 gwr (KEYSYM_CLASS(keysym) == KEYSYM_FUNC) )
651 1.4 gwr {
652 1.4 gwr keysym = kbd_numlock_map[keysym & 0x3F];
653 1.4 gwr }
654 1.1 gwr
655 1.1 gwr return (keysym);
656 1.1 gwr }
657 1.1 gwr
658 1.1 gwr void
659 1.1 gwr kbd_input_string(k, str)
660 1.1 gwr struct kbd_softc *k;
661 1.1 gwr char *str;
662 1.1 gwr {
663 1.1 gwr while (*str) {
664 1.1 gwr kd_input(*str);
665 1.1 gwr str++;
666 1.1 gwr }
667 1.1 gwr }
668 1.1 gwr
669 1.1 gwr void
670 1.1 gwr kbd_input_funckey(k, keysym)
671 1.1 gwr struct kbd_softc *k;
672 1.1 gwr register int keysym;
673 1.1 gwr {
674 1.1 gwr register int n;
675 1.1 gwr char str[12];
676 1.1 gwr
677 1.1 gwr /*
678 1.1 gwr * Format the F-key sequence and send as a string.
679 1.1 gwr * XXX: Ugly compatibility mappings.
680 1.1 gwr */
681 1.1 gwr n = 0xC0 + (keysym & 0x3F);
682 1.1 gwr sprintf(str, "\033[%dz", n);
683 1.1 gwr kbd_input_string(k, str);
684 1.1 gwr }
685 1.1 gwr
686 1.1 gwr /*
687 1.1 gwr * This is called by kbd_input_raw() or by kb_repeat()
688 1.1 gwr * to deliver ASCII input. Called at splsoftclock()
689 1.1 gwr * XXX: Raise to spltty before calling kd_input() ?
690 1.1 gwr */
691 1.1 gwr void
692 1.1 gwr kbd_input_keysym(k, keysym)
693 1.1 gwr struct kbd_softc *k;
694 1.1 gwr register int keysym;
695 1.1 gwr {
696 1.1 gwr struct kbd_state *ks = &k->k_state;
697 1.4 gwr register int data;
698 1.1 gwr
699 1.4 gwr switch (KEYSYM_CLASS(keysym)) {
700 1.1 gwr
701 1.1 gwr case KEYSYM_ASCII:
702 1.1 gwr data = KEYSYM_DATA(keysym);
703 1.1 gwr if (ks->kbd_modbits & KBMOD_META_MASK)
704 1.1 gwr data |= 0x80;
705 1.1 gwr kd_input(data);
706 1.1 gwr break;
707 1.1 gwr
708 1.1 gwr case KEYSYM_STRING:
709 1.1 gwr data = keysym & 0xF;
710 1.1 gwr kbd_input_string(k, kbd_stringtab[data]);
711 1.1 gwr break;
712 1.1 gwr
713 1.1 gwr case KEYSYM_FUNC:
714 1.1 gwr kbd_input_funckey(k, keysym);
715 1.1 gwr break;
716 1.1 gwr
717 1.1 gwr case KEYSYM_CLRMOD:
718 1.1 gwr data = 1 << (keysym & 0x1F);
719 1.1 gwr ks->kbd_modbits &= ~data;
720 1.1 gwr break;
721 1.1 gwr
722 1.1 gwr case KEYSYM_SETMOD:
723 1.1 gwr data = 1 << (keysym & 0x1F);
724 1.1 gwr ks->kbd_modbits |= data;
725 1.1 gwr break;
726 1.1 gwr
727 1.1 gwr case KEYSYM_INVMOD:
728 1.1 gwr data = 1 << (keysym & 0x1F);
729 1.1 gwr ks->kbd_modbits ^= data;
730 1.4 gwr kbd_update_leds(k);
731 1.1 gwr break;
732 1.1 gwr
733 1.1 gwr case KEYSYM_ALL_UP:
734 1.1 gwr ks->kbd_modbits &= ~0xFFFF;
735 1.1 gwr break;
736 1.1 gwr
737 1.1 gwr case KEYSYM_SPECIAL:
738 1.1 gwr if (keysym == KEYSYM_NOP)
739 1.1 gwr break;
740 1.1 gwr /* fall through */
741 1.1 gwr default:
742 1.1 gwr log(LOG_WARNING, "%s: unexpected keysym 0x%x\n",
743 1.1 gwr k->k_dev.dv_xname, keysym);
744 1.1 gwr break;
745 1.1 gwr }
746 1.1 gwr }
747 1.1 gwr
748 1.1 gwr /*
749 1.1 gwr * This is the autorepeat timeout function.
750 1.1 gwr * (called at splsoftclock)
751 1.1 gwr */
752 1.1 gwr void
753 1.1 gwr kbd_repeat(void *arg)
754 1.1 gwr {
755 1.1 gwr struct kbd_softc *k = (struct kbd_softc *)arg;
756 1.1 gwr
757 1.1 gwr if (k->k_repeating && k->k_repeatsym >= 0) {
758 1.1 gwr kbd_input_keysym(k, k->k_repeatsym);
759 1.1 gwr timeout(kbd_repeat, k, k->k_repeat_step);
760 1.1 gwr }
761 1.1 gwr }
762 1.1 gwr
763 1.1 gwr /*
764 1.1 gwr * Called by our kbd_softint() routine on input,
765 1.1 gwr * which passes the raw hardware scan codes.
766 1.1 gwr * Note: this is called at splsoftclock()
767 1.1 gwr */
768 1.1 gwr void
769 1.1 gwr kbd_input_raw(k, c)
770 1.1 gwr struct kbd_softc *k;
771 1.1 gwr register int c;
772 1.1 gwr {
773 1.1 gwr struct kbd_state *ks = &k->k_state;
774 1.1 gwr struct firm_event *fe;
775 1.1 gwr int put, keysym;
776 1.1 gwr
777 1.1 gwr /* XXX - Input errors already handled. */
778 1.1 gwr
779 1.1 gwr /* Are we expecting special input? */
780 1.1 gwr if (ks->kbd_expect) {
781 1.1 gwr if (ks->kbd_expect & KBD_EXPECT_IDCODE) {
782 1.1 gwr /* We read a KBD_RESET last time. */
783 1.1 gwr ks->kbd_id = c;
784 1.1 gwr kbd_was_reset(k);
785 1.1 gwr }
786 1.1 gwr if (ks->kbd_expect & KBD_EXPECT_LAYOUT) {
787 1.1 gwr /* We read a KBD_LAYOUT last time. */
788 1.1 gwr ks->kbd_layout = c;
789 1.1 gwr kbd_new_layout(k);
790 1.1 gwr }
791 1.1 gwr ks->kbd_expect = 0;
792 1.1 gwr return;
793 1.1 gwr }
794 1.1 gwr
795 1.1 gwr /* Is this one of the "special" input codes? */
796 1.1 gwr if (KBD_SPECIAL(c)) {
797 1.1 gwr switch (c) {
798 1.1 gwr case KBD_RESET:
799 1.1 gwr ks->kbd_expect |= KBD_EXPECT_IDCODE;
800 1.1 gwr /* Fake an "all-up" to resync. translation. */
801 1.1 gwr c = KBD_IDLE;
802 1.1 gwr break;
803 1.1 gwr
804 1.1 gwr case KBD_LAYOUT:
805 1.1 gwr ks->kbd_expect |= KBD_EXPECT_LAYOUT;
806 1.1 gwr return;
807 1.1 gwr
808 1.1 gwr case KBD_ERROR:
809 1.1 gwr log(LOG_WARNING, "%s: received error indicator\n",
810 1.1 gwr k->k_dev.dv_xname);
811 1.1 gwr return;
812 1.1 gwr
813 1.1 gwr case KBD_IDLE:
814 1.1 gwr /* Let this go to the translator. */
815 1.1 gwr break;
816 1.1 gwr }
817 1.1 gwr }
818 1.1 gwr
819 1.1 gwr /*
820 1.1 gwr * If /dev/kbd is not connected in event mode,
821 1.1 gwr * translate and send upstream (to console).
822 1.1 gwr */
823 1.1 gwr if (!k->k_evmode) {
824 1.1 gwr
825 1.1 gwr /* Any input stops auto-repeat (i.e. key release). */
826 1.1 gwr if (k->k_repeating) {
827 1.1 gwr k->k_repeating = 0;
828 1.1 gwr untimeout(kbd_repeat, k);
829 1.1 gwr }
830 1.1 gwr
831 1.1 gwr /* Translate this code to a keysym */
832 1.1 gwr keysym = kbd_code_to_keysym(ks, c);
833 1.1 gwr
834 1.1 gwr /* Pass up to the next layer. */
835 1.1 gwr kbd_input_keysym(k, keysym);
836 1.1 gwr
837 1.1 gwr /* Does this symbol get auto-repeat? */
838 1.1 gwr if (KEYSYM_NOREPEAT(keysym))
839 1.1 gwr return;
840 1.1 gwr
841 1.1 gwr /* Setup for auto-repeat after initial delay. */
842 1.1 gwr k->k_repeating = 1;
843 1.1 gwr k->k_repeatsym = keysym;
844 1.1 gwr timeout(kbd_repeat, k, k->k_repeat_start);
845 1.1 gwr return;
846 1.1 gwr }
847 1.1 gwr
848 1.1 gwr /*
849 1.1 gwr * IDLEs confuse the MIT X11R4 server badly, so we must drop them.
850 1.1 gwr * This is bad as it means the server will not automatically resync
851 1.1 gwr * on all-up IDLEs, but I did not drop them before, and the server
852 1.1 gwr * goes crazy when it comes time to blank the screen....
853 1.1 gwr */
854 1.1 gwr if (c == KBD_IDLE)
855 1.1 gwr return;
856 1.1 gwr
857 1.1 gwr /*
858 1.1 gwr * Keyboard is generating events. Turn this keystroke into an
859 1.1 gwr * event and put it in the queue. If the queue is full, the
860 1.1 gwr * keystroke is lost (sorry!).
861 1.1 gwr */
862 1.1 gwr put = k->k_events.ev_put;
863 1.1 gwr fe = &k->k_events.ev_q[put];
864 1.1 gwr put = (put + 1) % EV_QSIZE;
865 1.1 gwr if (put == k->k_events.ev_get) {
866 1.1 gwr log(LOG_WARNING, "%s: event queue overflow\n",
867 1.1 gwr k->k_dev.dv_xname); /* ??? */
868 1.1 gwr return;
869 1.1 gwr }
870 1.1 gwr fe->id = KEY_CODE(c);
871 1.1 gwr fe->value = KEY_UP(c) ? VKEY_UP : VKEY_DOWN;
872 1.1 gwr fe->time = time;
873 1.1 gwr k->k_events.ev_put = put;
874 1.1 gwr EV_WAKEUP(&k->k_events);
875 1.1 gwr }
876 1.1 gwr
877 1.1 gwr /****************************************************************
878 1.1 gwr * Interface to the lower layer (zscc)
879 1.1 gwr ****************************************************************/
880 1.1 gwr
881 1.1 gwr static int
882 1.1 gwr kbd_rxint(cs)
883 1.1 gwr register struct zs_chanstate *cs;
884 1.1 gwr {
885 1.1 gwr register struct kbd_softc *k;
886 1.1 gwr register int put, put_next;
887 1.1 gwr register u_char c, rr1;
888 1.1 gwr
889 1.1 gwr k = cs->cs_private;
890 1.1 gwr put = k->k_rbput;
891 1.1 gwr
892 1.1 gwr /* Read the input data ASAP. */
893 1.2 gwr c = zs_read_data(cs);
894 1.1 gwr
895 1.1 gwr /* Save the status register too. */
896 1.2 gwr rr1 = zs_read_reg(cs, 1);
897 1.1 gwr
898 1.1 gwr if (rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
899 1.1 gwr /* Clear the receive error. */
900 1.2 gwr zs_write_csr(cs, ZSWR0_RESET_ERRORS);
901 1.1 gwr }
902 1.1 gwr
903 1.1 gwr /*
904 1.1 gwr * Check NOW for a console abort sequence, so that we can
905 1.1 gwr * abort even when interrupts are locking up the machine.
906 1.1 gwr */
907 1.1 gwr if (k->k_magic1_down) {
908 1.1 gwr /* The last keycode was "MAGIC1" down. */
909 1.1 gwr k->k_magic1_down = 0;
910 1.1 gwr if ((c == k->k_magic2) && k->k_isconsole) {
911 1.1 gwr /* Magic "L1-A" sequence; enter debugger. */
912 1.1 gwr zs_abort();
913 1.1 gwr /* Debugger done. Fake L1-up to finish it. */
914 1.1 gwr c = k->k_magic1 | KBD_UP;
915 1.1 gwr }
916 1.1 gwr }
917 1.1 gwr if (c == k->k_magic1) {
918 1.1 gwr k->k_magic1_down = 1;
919 1.1 gwr }
920 1.1 gwr
921 1.1 gwr k->k_rbuf[put] = (c << 8) | rr1;
922 1.1 gwr put_next = (put + 1) & KBD_RX_RING_MASK;
923 1.1 gwr
924 1.1 gwr /* Would overrun if increment makes (put==get). */
925 1.1 gwr if (put_next == k->k_rbget) {
926 1.1 gwr k->k_intr_flags |= INTR_RX_OVERRUN;
927 1.1 gwr } else {
928 1.1 gwr /* OK, really increment. */
929 1.1 gwr put = put_next;
930 1.1 gwr }
931 1.1 gwr
932 1.1 gwr /* Done reading. */
933 1.1 gwr k->k_rbput = put;
934 1.1 gwr
935 1.1 gwr /* Ask for softint() call. */
936 1.1 gwr cs->cs_softreq = 1;
937 1.1 gwr return(1);
938 1.1 gwr }
939 1.1 gwr
940 1.1 gwr
941 1.1 gwr static int
942 1.1 gwr kbd_txint(cs)
943 1.1 gwr register struct zs_chanstate *cs;
944 1.1 gwr {
945 1.1 gwr register struct kbd_softc *k;
946 1.1 gwr register int count, rval;
947 1.1 gwr
948 1.1 gwr k = cs->cs_private;
949 1.1 gwr
950 1.2 gwr zs_write_csr(cs, ZSWR0_RESET_TXINT);
951 1.1 gwr
952 1.1 gwr k->k_intr_flags |= INTR_TX_EMPTY;
953 1.1 gwr /* Ask for softint() call. */
954 1.1 gwr cs->cs_softreq = 1;
955 1.1 gwr return (1);
956 1.1 gwr }
957 1.1 gwr
958 1.1 gwr
959 1.1 gwr static int
960 1.1 gwr kbd_stint(cs)
961 1.1 gwr register struct zs_chanstate *cs;
962 1.1 gwr {
963 1.1 gwr register struct kbd_softc *k;
964 1.1 gwr register int rr0;
965 1.1 gwr
966 1.1 gwr k = cs->cs_private;
967 1.1 gwr
968 1.2 gwr rr0 = zs_read_csr(cs);
969 1.2 gwr zs_write_csr(cs, ZSWR0_RESET_STATUS);
970 1.1 gwr
971 1.1 gwr #if 0
972 1.1 gwr if (rr0 & ZSRR0_BREAK) {
973 1.1 gwr /* Keyboard unplugged? */
974 1.1 gwr zs_abort();
975 1.1 gwr return (0);
976 1.1 gwr }
977 1.1 gwr #endif
978 1.1 gwr
979 1.1 gwr k->k_intr_flags |= INTR_ST_CHECK;
980 1.1 gwr /* Ask for softint() call. */
981 1.1 gwr cs->cs_softreq = 1;
982 1.1 gwr return (1);
983 1.1 gwr }
984 1.1 gwr
985 1.1 gwr /*
986 1.1 gwr * Get input from the recieve ring and pass it on.
987 1.1 gwr * Note: this is called at splsoftclock()
988 1.1 gwr */
989 1.1 gwr static int
990 1.1 gwr kbd_softint(cs)
991 1.1 gwr struct zs_chanstate *cs;
992 1.1 gwr {
993 1.1 gwr register struct kbd_softc *k;
994 1.1 gwr register int get, c, s;
995 1.1 gwr int intr_flags;
996 1.1 gwr register u_short ring_data;
997 1.1 gwr register u_char rr0, rr1;
998 1.1 gwr
999 1.1 gwr k = cs->cs_private;
1000 1.1 gwr
1001 1.1 gwr /* Atomically get and clear flags. */
1002 1.1 gwr s = splzs();
1003 1.1 gwr intr_flags = k->k_intr_flags;
1004 1.1 gwr k->k_intr_flags = 0;
1005 1.1 gwr splx(s);
1006 1.1 gwr
1007 1.1 gwr /*
1008 1.1 gwr * Copy data from the receive ring to the event layer.
1009 1.1 gwr */
1010 1.1 gwr get = k->k_rbget;
1011 1.1 gwr while (get != k->k_rbput) {
1012 1.1 gwr ring_data = k->k_rbuf[get];
1013 1.1 gwr get = (get + 1) & KBD_RX_RING_MASK;
1014 1.1 gwr
1015 1.1 gwr /* low byte of ring_data is rr1 */
1016 1.1 gwr c = (ring_data >> 8) & 0xff;
1017 1.1 gwr
1018 1.1 gwr if (ring_data & ZSRR1_DO)
1019 1.1 gwr intr_flags |= INTR_RX_OVERRUN;
1020 1.1 gwr if (ring_data & (ZSRR1_FE | ZSRR1_PE)) {
1021 1.1 gwr /*
1022 1.1 gwr * After garbage, flush pending input, and
1023 1.1 gwr * send a reset to resync key translation.
1024 1.1 gwr */
1025 1.1 gwr log(LOG_ERR, "%s: input error (0x%x)\n",
1026 1.1 gwr k->k_dev.dv_xname, ring_data);
1027 1.1 gwr get = k->k_rbput; /* flush */
1028 1.1 gwr goto send_reset;
1029 1.1 gwr }
1030 1.1 gwr
1031 1.1 gwr /* Pass this up to the "middle" layer. */
1032 1.1 gwr kbd_input_raw(k, c);
1033 1.1 gwr }
1034 1.1 gwr if (intr_flags & INTR_RX_OVERRUN) {
1035 1.1 gwr log(LOG_ERR, "%s: input overrun\n",
1036 1.1 gwr k->k_dev.dv_xname);
1037 1.1 gwr send_reset:
1038 1.1 gwr /* Send a reset to resync translation. */
1039 1.1 gwr kbd_output(k, KBD_CMD_RESET);
1040 1.1 gwr kbd_start_tx(k);
1041 1.1 gwr }
1042 1.1 gwr k->k_rbget = get;
1043 1.1 gwr
1044 1.1 gwr if (intr_flags & INTR_TX_EMPTY) {
1045 1.1 gwr /*
1046 1.1 gwr * Transmit done. Try to send more, or
1047 1.1 gwr * clear busy and wakeup drain waiters.
1048 1.1 gwr */
1049 1.1 gwr k->k_txflags &= ~K_TXBUSY;
1050 1.1 gwr kbd_start_tx(k);
1051 1.1 gwr }
1052 1.1 gwr
1053 1.1 gwr if (intr_flags & INTR_ST_CHECK) {
1054 1.1 gwr /*
1055 1.1 gwr * Status line change. (Not expected.)
1056 1.1 gwr */
1057 1.1 gwr log(LOG_ERR, "%s: status interrupt?\n",
1058 1.1 gwr k->k_dev.dv_xname);
1059 1.1 gwr }
1060 1.1 gwr
1061 1.1 gwr return (1);
1062 1.1 gwr }
1063 1.1 gwr
1064 1.1 gwr struct zsops zsops_kbd = {
1065 1.1 gwr kbd_rxint, /* receive char available */
1066 1.1 gwr kbd_stint, /* external/status */
1067 1.1 gwr kbd_txint, /* xmit buffer empty */
1068 1.1 gwr kbd_softint, /* process software interrupt */
1069 1.1 gwr };
1070 1.1 gwr
1071 1.1 gwr /****************************************************************
1072 1.1 gwr * misc...
1073 1.1 gwr ****************************************************************/
1074 1.1 gwr
1075 1.1 gwr /*
1076 1.1 gwr * Initialization to be done at first open.
1077 1.1 gwr * This is called from kbdopen or kdopen (in kd.c)
1078 1.1 gwr */
1079 1.1 gwr int
1080 1.1 gwr kbd_iopen(unit)
1081 1.1 gwr int unit;
1082 1.1 gwr {
1083 1.1 gwr struct kbd_softc *k;
1084 1.1 gwr struct kbd_state *ks;
1085 1.1 gwr int error, s;
1086 1.1 gwr
1087 1.1 gwr if (unit >= kbdcd.cd_ndevs)
1088 1.1 gwr return (ENXIO);
1089 1.1 gwr k = kbdcd.cd_devs[unit];
1090 1.1 gwr if (k == NULL)
1091 1.1 gwr return (ENXIO);
1092 1.1 gwr ks = &k->k_state;
1093 1.1 gwr error = 0;
1094 1.1 gwr
1095 1.1 gwr /* Tolerate extra calls. */
1096 1.1 gwr if (k->k_isopen)
1097 1.1 gwr return (error);
1098 1.1 gwr
1099 1.1 gwr s = spltty();
1100 1.1 gwr
1101 1.1 gwr /* Reset the keyboard and find out its type. */
1102 1.1 gwr kbd_output(k, KBD_CMD_RESET);
1103 1.1 gwr kbd_start_tx(k);
1104 1.1 gwr kbd_drain_tx(k);
1105 1.1 gwr /* The wakeup for this is in kbd_was_reset(). */
1106 1.1 gwr error = tsleep((caddr_t)&ks->kbd_id,
1107 1.1 gwr PZERO | PCATCH, devopn, hz);
1108 1.1 gwr if (error == EWOULDBLOCK) { /* no response */
1109 1.1 gwr error = 0;
1110 1.1 gwr log(LOG_ERR, "%s: reset failed\n",
1111 1.1 gwr k->k_dev.dv_xname);
1112 1.1 gwr /*
1113 1.1 gwr * Allow the open anyway (to keep getty happy)
1114 1.1 gwr * but assume the "least common denominator".
1115 1.1 gwr */
1116 1.1 gwr ks->kbd_id = KB_SUN2;
1117 1.1 gwr }
1118 1.1 gwr
1119 1.1 gwr /* Earlier than type 4 does not know "layout". */
1120 1.1 gwr if (ks->kbd_id < KB_SUN4)
1121 1.1 gwr goto out;
1122 1.1 gwr
1123 1.1 gwr /* Ask for the layout. */
1124 1.1 gwr kbd_output(k, KBD_CMD_GETLAYOUT);
1125 1.1 gwr kbd_start_tx(k);
1126 1.1 gwr kbd_drain_tx(k);
1127 1.1 gwr /* The wakeup for this is in kbd_new_layout(). */
1128 1.1 gwr error = tsleep((caddr_t)&ks->kbd_layout,
1129 1.1 gwr PZERO | PCATCH, devopn, hz);
1130 1.1 gwr if (error == EWOULDBLOCK) { /* no response */
1131 1.1 gwr error = 0;
1132 1.1 gwr log(LOG_ERR, "%s: no response to get_layout\n",
1133 1.1 gwr k->k_dev.dv_xname);
1134 1.1 gwr ks->kbd_layout = 0;
1135 1.1 gwr }
1136 1.1 gwr
1137 1.1 gwr out:
1138 1.1 gwr splx(s);
1139 1.1 gwr
1140 1.1 gwr if (error == 0)
1141 1.1 gwr k->k_isopen = 1;
1142 1.1 gwr
1143 1.1 gwr return error;
1144 1.1 gwr }
1145 1.1 gwr
1146 1.1 gwr void
1147 1.1 gwr kbd_was_reset(k)
1148 1.1 gwr struct kbd_softc *k;
1149 1.1 gwr {
1150 1.1 gwr struct kbd_state *ks = &k->k_state;
1151 1.1 gwr
1152 1.1 gwr /*
1153 1.1 gwr * On first identification, wake up anyone waiting for type
1154 1.1 gwr * and set up the table pointers.
1155 1.1 gwr */
1156 1.1 gwr wakeup((caddr_t)&ks->kbd_id);
1157 1.1 gwr
1158 1.1 gwr /* Restore keyclick, if necessary */
1159 1.1 gwr switch (ks->kbd_id) {
1160 1.1 gwr
1161 1.1 gwr case KB_SUN2:
1162 1.1 gwr /* Type 2 keyboards don't support keyclick */
1163 1.1 gwr break;
1164 1.1 gwr
1165 1.1 gwr case KB_SUN3:
1166 1.1 gwr /* Type 3 keyboards come up with keyclick on */
1167 1.1 gwr if (!ks->kbd_click)
1168 1.1 gwr (void) kbd_docmd(k, KBD_CMD_NOCLICK);
1169 1.1 gwr break;
1170 1.1 gwr
1171 1.1 gwr case KB_SUN4:
1172 1.1 gwr /* Type 4 keyboards come up with keyclick off */
1173 1.1 gwr if (ks->kbd_click)
1174 1.1 gwr (void) kbd_docmd(k, KBD_CMD_CLICK);
1175 1.1 gwr break;
1176 1.1 gwr }
1177 1.1 gwr
1178 1.1 gwr /* LEDs are off after reset. */
1179 1.1 gwr ks->kbd_leds = 0;
1180 1.1 gwr }
1181 1.1 gwr
1182 1.1 gwr void
1183 1.1 gwr kbd_new_layout(k)
1184 1.1 gwr struct kbd_softc *k;
1185 1.1 gwr {
1186 1.1 gwr struct kbd_state *ks = &k->k_state;
1187 1.1 gwr
1188 1.1 gwr /*
1189 1.1 gwr * On first identification, wake up anyone waiting for type
1190 1.1 gwr * and set up the table pointers.
1191 1.1 gwr */
1192 1.1 gwr wakeup((caddr_t)&ks->kbd_layout);
1193 1.1 gwr
1194 1.1 gwr /* XXX: switch decoding tables? */
1195 1.1 gwr }
1196 1.1 gwr
1197 1.1 gwr
1198 1.1 gwr /*
1199 1.1 gwr * Wait for output to finish.
1200 1.1 gwr * Called with user context.
1201 1.1 gwr */
1202 1.1 gwr int
1203 1.1 gwr kbd_drain_tx(k)
1204 1.1 gwr struct kbd_softc *k;
1205 1.1 gwr {
1206 1.1 gwr int error, s;
1207 1.1 gwr
1208 1.1 gwr error = 0;
1209 1.1 gwr s = spltty();
1210 1.1 gwr while (k->k_txflags & K_TXBUSY) {
1211 1.1 gwr k->k_txflags |= K_TXWANT;
1212 1.1 gwr error = tsleep((caddr_t)&k->k_txflags,
1213 1.1 gwr PZERO | PCATCH, "kbdout", 0);
1214 1.1 gwr }
1215 1.1 gwr splx(s);
1216 1.1 gwr return (error);
1217 1.1 gwr }
1218 1.1 gwr
1219 1.1 gwr /*
1220 1.1 gwr * Send out a byte to the keyboard (i.e. reset)
1221 1.1 gwr * Called with user context.
1222 1.1 gwr */
1223 1.1 gwr void
1224 1.1 gwr kbd_output(k, c)
1225 1.1 gwr struct kbd_softc *k;
1226 1.1 gwr int c; /* the data */
1227 1.1 gwr {
1228 1.1 gwr struct zs_chanstate *cs = k->k_cs;
1229 1.1 gwr int put, s;
1230 1.1 gwr
1231 1.1 gwr s = spltty();
1232 1.1 gwr put = k->k_tbput;
1233 1.1 gwr k->k_tbuf[put] = (u_char)c;
1234 1.1 gwr put = (put + 1) & KBD_TX_RING_MASK;
1235 1.1 gwr
1236 1.1 gwr /* Would overrun if increment makes (put==get). */
1237 1.1 gwr if (put == k->k_tbget) {
1238 1.1 gwr log(LOG_WARNING, "%s: output overrun\n",
1239 1.1 gwr k->k_dev.dv_xname);
1240 1.1 gwr } else {
1241 1.1 gwr /* OK, really increment. */
1242 1.1 gwr k->k_tbput = put;
1243 1.1 gwr }
1244 1.1 gwr
1245 1.1 gwr splx(s);
1246 1.1 gwr }
1247 1.1 gwr
1248 1.1 gwr void
1249 1.1 gwr kbd_start_tx(k)
1250 1.1 gwr struct kbd_softc *k;
1251 1.1 gwr {
1252 1.1 gwr struct zs_chanstate *cs = k->k_cs;
1253 1.1 gwr int get, s;
1254 1.1 gwr u_char c;
1255 1.1 gwr
1256 1.1 gwr s = spltty();
1257 1.1 gwr if (k->k_txflags & K_TXBUSY)
1258 1.1 gwr goto out;
1259 1.1 gwr
1260 1.1 gwr /* Is there anything to send? */
1261 1.1 gwr get = k->k_tbget;
1262 1.1 gwr if (get == k->k_tbput) {
1263 1.1 gwr /* Nothing to send. Wake drain waiters. */
1264 1.1 gwr if (k->k_txflags & K_TXWANT) {
1265 1.1 gwr k->k_txflags &= ~K_TXWANT;
1266 1.1 gwr wakeup((caddr_t)&k->k_txflags);
1267 1.1 gwr }
1268 1.1 gwr goto out;
1269 1.1 gwr }
1270 1.1 gwr
1271 1.1 gwr /* Have something to send. */
1272 1.1 gwr c = k->k_tbuf[get];
1273 1.1 gwr get = (get + 1) & KBD_TX_RING_MASK;
1274 1.1 gwr k->k_tbget = get;
1275 1.1 gwr k->k_txflags |= K_TXBUSY;
1276 1.1 gwr
1277 1.1 gwr /* Need splzs to avoid interruption of the delay. */
1278 1.1 gwr (void) splzs();
1279 1.2 gwr zs_write_data(cs, c);
1280 1.1 gwr
1281 1.1 gwr out:
1282 1.1 gwr splx(s);
1283 1.1 gwr }
1284 1.1 gwr
1285 1.1 gwr
1286 1.4 gwr void
1287 1.4 gwr kbd_set_leds(k, new_leds)
1288 1.1 gwr struct kbd_softc *k;
1289 1.4 gwr int new_leds;
1290 1.1 gwr {
1291 1.1 gwr struct kbd_state *ks = &k->k_state;
1292 1.4 gwr int s;
1293 1.1 gwr
1294 1.1 gwr s = spltty();
1295 1.1 gwr
1296 1.1 gwr /* Don't send unless state changes. */
1297 1.1 gwr if (ks->kbd_leds == new_leds)
1298 1.1 gwr goto out;
1299 1.1 gwr ks->kbd_leds = new_leds;
1300 1.1 gwr
1301 1.1 gwr /* Only type 4 and later has LEDs anyway. */
1302 1.1 gwr if (ks->kbd_id < 4)
1303 1.1 gwr goto out;
1304 1.1 gwr
1305 1.1 gwr kbd_output(k, KBD_CMD_SETLED);
1306 1.1 gwr kbd_output(k, new_leds);
1307 1.1 gwr kbd_start_tx(k);
1308 1.1 gwr
1309 1.1 gwr out:
1310 1.1 gwr splx(s);
1311 1.4 gwr }
1312 1.4 gwr
1313 1.4 gwr void
1314 1.4 gwr kbd_update_leds(k)
1315 1.4 gwr struct kbd_softc *k;
1316 1.4 gwr {
1317 1.4 gwr struct kbd_state *ks = &k->k_state;
1318 1.4 gwr register char leds;
1319 1.4 gwr
1320 1.4 gwr leds = ks->kbd_leds;
1321 1.4 gwr leds &= ~(LED_CAPS_LOCK|LED_NUM_LOCK);
1322 1.4 gwr
1323 1.4 gwr if (ks->kbd_modbits & (1 << KBMOD_CAPSLOCK))
1324 1.4 gwr leds |= LED_CAPS_LOCK;
1325 1.4 gwr if (ks->kbd_modbits & (1 << KBMOD_NUMLOCK))
1326 1.4 gwr leds |= LED_NUM_LOCK;
1327 1.4 gwr
1328 1.4 gwr kbd_set_leds(k, leds);
1329 1.1 gwr }
1330 1.1 gwr
1331 1.1 gwr
1332 1.1 gwr /*
1333 1.1 gwr * Execute a keyboard command; return 0 on success.
1334 1.1 gwr */
1335 1.1 gwr int
1336 1.1 gwr kbd_docmd(k, cmd)
1337 1.1 gwr struct kbd_softc *k;
1338 1.1 gwr int cmd;
1339 1.1 gwr {
1340 1.1 gwr struct kbd_state *ks = &k->k_state;
1341 1.1 gwr int error, s;
1342 1.1 gwr
1343 1.1 gwr switch (cmd) {
1344 1.1 gwr
1345 1.1 gwr case KBD_CMD_BELL:
1346 1.1 gwr case KBD_CMD_NOBELL:
1347 1.1 gwr /* Supported by type 2, 3, and 4 keyboards */
1348 1.1 gwr break;
1349 1.1 gwr
1350 1.1 gwr case KBD_CMD_CLICK:
1351 1.1 gwr /* Unsupported by type 2 keyboards */
1352 1.1 gwr if (ks->kbd_id != KB_SUN2) {
1353 1.1 gwr ks->kbd_click = 1;
1354 1.1 gwr break;
1355 1.1 gwr }
1356 1.1 gwr return (EINVAL);
1357 1.1 gwr
1358 1.1 gwr case KBD_CMD_NOCLICK:
1359 1.1 gwr /* Unsupported by type 2 keyboards */
1360 1.1 gwr if (ks->kbd_id != KB_SUN2) {
1361 1.1 gwr ks->kbd_click = 0;
1362 1.1 gwr break;
1363 1.1 gwr }
1364 1.1 gwr return (EINVAL);
1365 1.1 gwr
1366 1.1 gwr default:
1367 1.1 gwr return (EINVAL); /* ENOTTY? EOPNOTSUPP? */
1368 1.1 gwr }
1369 1.1 gwr
1370 1.1 gwr kbd_output(k, cmd);
1371 1.1 gwr kbd_start_tx(k);
1372 1.1 gwr return (0);
1373 1.1 gwr }
1374 1.1 gwr
1375