sysmon_envsys.c revision 1.104 1 /* $NetBSD: sysmon_envsys.c,v 1.104 2010/04/01 12:16:14 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.104 2010/04/01 12:16:14 pgoyette Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79
80 /* #define ENVSYS_DEBUG */
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84
85 kmutex_t sme_global_mtx;
86
87 prop_dictionary_t sme_propd;
88
89 static uint32_t sysmon_envsys_next_sensor_index;
90 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
91
92 static void sysmon_envsys_destroy_plist(prop_array_t);
93 static void sme_remove_userprops(void);
94 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
95 prop_dictionary_t);
96 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
97 prop_array_t, prop_dictionary_t, envsys_data_t *);
98 static void sme_initial_refresh(void *);
99 static uint32_t sme_get_max_value(struct sysmon_envsys *,
100 bool (*)(const envsys_data_t*), bool);
101
102 /*
103 * sysmon_envsys_init:
104 *
105 * + Initialize global mutex, dictionary and the linked list.
106 */
107 void
108 sysmon_envsys_init(void)
109 {
110 LIST_INIT(&sysmon_envsys_list);
111 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
112 sme_propd = prop_dictionary_create();
113 }
114
115 /*
116 * sysmonopen_envsys:
117 *
118 * + Open the system monitor device.
119 */
120 int
121 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
122 {
123 return 0;
124 }
125
126 /*
127 * sysmonclose_envsys:
128 *
129 * + Close the system monitor device.
130 */
131 int
132 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
133 {
134 return 0;
135 }
136
137 /*
138 * sysmonioctl_envsys:
139 *
140 * + Perform a sysmon envsys control request.
141 */
142 int
143 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
144 {
145 struct sysmon_envsys *sme = NULL;
146 int error = 0;
147 u_int oidx;
148
149 switch (cmd) {
150 /*
151 * To update the global dictionary with latest data from devices.
152 */
153 case ENVSYS_GETDICTIONARY:
154 {
155 struct plistref *plist = (struct plistref *)data;
156
157 /*
158 * Update dictionaries on all sysmon envsys devices
159 * registered.
160 */
161 mutex_enter(&sme_global_mtx);
162 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
163 sysmon_envsys_acquire(sme, false);
164 error = sme_update_dictionary(sme);
165 if (error) {
166 DPRINTF(("%s: sme_update_dictionary, "
167 "error=%d\n", __func__, error));
168 sysmon_envsys_release(sme, false);
169 mutex_exit(&sme_global_mtx);
170 return error;
171 }
172 sysmon_envsys_release(sme, false);
173 }
174 mutex_exit(&sme_global_mtx);
175 /*
176 * Copy global dictionary to userland.
177 */
178 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
179 break;
180 }
181 /*
182 * To set properties on multiple devices.
183 */
184 case ENVSYS_SETDICTIONARY:
185 {
186 const struct plistref *plist = (const struct plistref *)data;
187 prop_dictionary_t udict;
188 prop_object_iterator_t iter, iter2;
189 prop_object_t obj, obj2;
190 prop_array_t array_u, array_k;
191 const char *devname = NULL;
192
193 if ((flag & FWRITE) == 0)
194 return EPERM;
195
196 /*
197 * Get dictionary from userland.
198 */
199 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
200 if (error) {
201 DPRINTF(("%s: copyin_ioctl error=%d\n",
202 __func__, error));
203 break;
204 }
205
206 iter = prop_dictionary_iterator(udict);
207 if (!iter) {
208 prop_object_release(udict);
209 return ENOMEM;
210 }
211
212 /*
213 * Iterate over the userland dictionary and process
214 * the list of devices.
215 */
216 while ((obj = prop_object_iterator_next(iter))) {
217 array_u = prop_dictionary_get_keysym(udict, obj);
218 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
219 prop_object_iterator_release(iter);
220 prop_object_release(udict);
221 return EINVAL;
222 }
223
224 devname = prop_dictionary_keysym_cstring_nocopy(obj);
225 DPRINTF(("%s: processing the '%s' array requests\n",
226 __func__, devname));
227
228 /*
229 * find the correct sme device.
230 */
231 sme = sysmon_envsys_find(devname);
232 if (!sme) {
233 DPRINTF(("%s: NULL sme\n", __func__));
234 prop_object_iterator_release(iter);
235 prop_object_release(udict);
236 return EINVAL;
237 }
238
239 /*
240 * Find the correct array object with the string
241 * supplied by the userland dictionary.
242 */
243 array_k = prop_dictionary_get(sme_propd, devname);
244 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
245 DPRINTF(("%s: array device failed\n",
246 __func__));
247 sysmon_envsys_release(sme, false);
248 prop_object_iterator_release(iter);
249 prop_object_release(udict);
250 return EINVAL;
251 }
252
253 iter2 = prop_array_iterator(array_u);
254 if (!iter2) {
255 sysmon_envsys_release(sme, false);
256 prop_object_iterator_release(iter);
257 prop_object_release(udict);
258 return ENOMEM;
259 }
260
261 /*
262 * Iterate over the array of dictionaries to
263 * process the list of sensors and properties.
264 */
265 while ((obj2 = prop_object_iterator_next(iter2))) {
266 /*
267 * do the real work now.
268 */
269 error = sme_userset_dictionary(sme,
270 obj2,
271 array_k);
272 if (error) {
273 sysmon_envsys_release(sme, false);
274 prop_object_iterator_release(iter2);
275 prop_object_iterator_release(iter);
276 prop_object_release(udict);
277 return error;
278 }
279 }
280
281 sysmon_envsys_release(sme, false);
282 prop_object_iterator_release(iter2);
283 }
284
285 prop_object_iterator_release(iter);
286 prop_object_release(udict);
287 break;
288 }
289 /*
290 * To remove all properties from all devices registered.
291 */
292 case ENVSYS_REMOVEPROPS:
293 {
294 const struct plistref *plist = (const struct plistref *)data;
295 prop_dictionary_t udict;
296 prop_object_t obj;
297
298 if ((flag & FWRITE) == 0)
299 return EPERM;
300
301 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
302 if (error) {
303 DPRINTF(("%s: copyin_ioctl error=%d\n",
304 __func__, error));
305 break;
306 }
307
308 obj = prop_dictionary_get(udict, "envsys-remove-props");
309 if (!obj || !prop_bool_true(obj)) {
310 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
311 __func__));
312 return EINVAL;
313 }
314
315 prop_object_release(udict);
316 sme_remove_userprops();
317
318 break;
319 }
320 /*
321 * Compatibility ioctls with the old interface, only implemented
322 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
323 * applications work.
324 */
325 case ENVSYS_GTREDATA:
326 {
327 struct envsys_tre_data *tred = (void *)data;
328 envsys_data_t *edata = NULL;
329 bool found = false;
330
331 tred->validflags = 0;
332
333 sme = sysmon_envsys_find_40(tred->sensor);
334 if (!sme)
335 break;
336
337 oidx = tred->sensor;
338 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
339
340 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
341 __func__, tred->sensor, oidx, sme->sme_name,
342 sme->sme_nsensors));
343
344 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
345 if (edata->sensor == tred->sensor) {
346 found = true;
347 break;
348 }
349 }
350
351 if (!found) {
352 sysmon_envsys_release(sme, false);
353 error = ENODEV;
354 break;
355 }
356
357 if (tred->sensor < sme->sme_nsensors) {
358 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0 &&
359 (sme->sme_flags & SME_POLL_ONLY) == 0) {
360 mutex_enter(&sme->sme_mtx);
361 (*sme->sme_refresh)(sme, edata);
362 mutex_exit(&sme->sme_mtx);
363 }
364
365 /*
366 * copy required values to the old interface.
367 */
368 tred->sensor = edata->sensor;
369 tred->cur.data_us = edata->value_cur;
370 tred->cur.data_s = edata->value_cur;
371 tred->max.data_us = edata->value_max;
372 tred->max.data_s = edata->value_max;
373 tred->min.data_us = edata->value_min;
374 tred->min.data_s = edata->value_min;
375 tred->avg.data_us = edata->value_avg;
376 tred->avg.data_s = edata->value_avg;
377 if (edata->units == ENVSYS_BATTERY_CHARGE)
378 tred->units = ENVSYS_INDICATOR;
379 else
380 tred->units = edata->units;
381
382 tred->validflags |= ENVSYS_FVALID;
383 tred->validflags |= ENVSYS_FCURVALID;
384
385 if (edata->flags & ENVSYS_FPERCENT) {
386 tred->validflags |= ENVSYS_FMAXVALID;
387 tred->validflags |= ENVSYS_FFRACVALID;
388 }
389
390 if (edata->state == ENVSYS_SINVALID) {
391 tred->validflags &= ~ENVSYS_FCURVALID;
392 tred->cur.data_us = tred->cur.data_s = 0;
393 }
394
395 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
396 __func__, edata->desc, tred->cur.data_s));
397 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
398 " tred->sensor=%d\n", __func__, tred->validflags,
399 tred->units, tred->sensor));
400 }
401 tred->sensor = oidx;
402 sysmon_envsys_release(sme, false);
403
404 break;
405 }
406 case ENVSYS_GTREINFO:
407 {
408 struct envsys_basic_info *binfo = (void *)data;
409 envsys_data_t *edata = NULL;
410 bool found = false;
411
412 binfo->validflags = 0;
413
414 sme = sysmon_envsys_find_40(binfo->sensor);
415 if (!sme)
416 break;
417
418 oidx = binfo->sensor;
419 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
420
421 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
422 if (edata->sensor == binfo->sensor) {
423 found = true;
424 break;
425 }
426 }
427
428 if (!found) {
429 sysmon_envsys_release(sme, false);
430 error = ENODEV;
431 break;
432 }
433
434 binfo->validflags |= ENVSYS_FVALID;
435
436 if (binfo->sensor < sme->sme_nsensors) {
437 if (edata->units == ENVSYS_BATTERY_CHARGE)
438 binfo->units = ENVSYS_INDICATOR;
439 else
440 binfo->units = edata->units;
441
442 /*
443 * previously, the ACPI sensor names included the
444 * device name. Include that in compatibility code.
445 */
446 if (strncmp(sme->sme_name, "acpi", 4) == 0)
447 (void)snprintf(binfo->desc, sizeof(binfo->desc),
448 "%s %s", sme->sme_name, edata->desc);
449 else
450 (void)strlcpy(binfo->desc, edata->desc,
451 sizeof(binfo->desc));
452 }
453
454 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
455 __func__, binfo->units, binfo->validflags));
456 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
457 __func__, binfo->desc, binfo->sensor));
458
459 binfo->sensor = oidx;
460 sysmon_envsys_release(sme, false);
461
462 break;
463 }
464 default:
465 error = ENOTTY;
466 break;
467 }
468
469 return error;
470 }
471
472 /*
473 * sysmon_envsys_create:
474 *
475 * + Allocates a new sysmon_envsys object and initializes the
476 * stuff for sensors and events.
477 */
478 struct sysmon_envsys *
479 sysmon_envsys_create(void)
480 {
481 struct sysmon_envsys *sme;
482
483 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
484 TAILQ_INIT(&sme->sme_sensors_list);
485 LIST_INIT(&sme->sme_events_list);
486 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
487 cv_init(&sme->sme_condvar, "sme_wait");
488
489 return sme;
490 }
491
492 /*
493 * sysmon_envsys_destroy:
494 *
495 * + Removes all sensors from the tail queue, destroys the callout
496 * and frees the sysmon_envsys object.
497 */
498 void
499 sysmon_envsys_destroy(struct sysmon_envsys *sme)
500 {
501 envsys_data_t *edata;
502
503 KASSERT(sme != NULL);
504
505 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
506 edata = TAILQ_FIRST(&sme->sme_sensors_list);
507 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
508 }
509 mutex_destroy(&sme->sme_mtx);
510 cv_destroy(&sme->sme_condvar);
511 kmem_free(sme, sizeof(*sme));
512 }
513
514 /*
515 * sysmon_envsys_sensor_attach:
516 *
517 * + Attachs a sensor into a sysmon_envsys device checking that units
518 * is set to a valid type and description is unique and not empty.
519 */
520 int
521 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
522 {
523 const struct sme_description_table *sdt_units;
524 envsys_data_t *oedata;
525 int i;
526
527 KASSERT(sme != NULL || edata != NULL);
528
529 /*
530 * Find the correct units for this sensor.
531 */
532 sdt_units = sme_get_description_table(SME_DESC_UNITS);
533 for (i = 0; sdt_units[i].type != -1; i++)
534 if (sdt_units[i].type == edata->units)
535 break;
536
537 if (strcmp(sdt_units[i].desc, "unknown") == 0)
538 return EINVAL;
539
540 /*
541 * Check that description is not empty or duplicate.
542 */
543 if (strlen(edata->desc) == 0)
544 return EINVAL;
545
546 mutex_enter(&sme->sme_mtx);
547 sysmon_envsys_acquire(sme, true);
548 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
549 if (strcmp(oedata->desc, edata->desc) == 0) {
550 sysmon_envsys_release(sme, true);
551 mutex_exit(&sme->sme_mtx);
552 return EEXIST;
553 }
554 }
555 /*
556 * Ok, the sensor has been added into the device queue.
557 */
558 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
559
560 /*
561 * Give the sensor a index position.
562 */
563 edata->sensor = sme->sme_nsensors;
564 sme->sme_nsensors++;
565 sysmon_envsys_release(sme, true);
566 mutex_exit(&sme->sme_mtx);
567
568 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
569 __func__, edata->sensor, edata->desc,
570 sdt_units[i].type, sdt_units[i].desc));
571
572 return 0;
573 }
574
575 /*
576 * sysmon_envsys_sensor_detach:
577 *
578 * + Detachs a sensor from a sysmon_envsys device and decrements the
579 * sensors count on success.
580 */
581 int
582 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
583 {
584 envsys_data_t *oedata;
585 bool found = false;
586
587 KASSERT(sme != NULL || edata != NULL);
588
589 /*
590 * Check the sensor is already on the list.
591 */
592 mutex_enter(&sme->sme_mtx);
593 sysmon_envsys_acquire(sme, true);
594 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
595 if (oedata->sensor == edata->sensor) {
596 found = true;
597 break;
598 }
599 }
600
601 if (!found) {
602 sysmon_envsys_release(sme, true);
603 mutex_exit(&sme->sme_mtx);
604 return EINVAL;
605 }
606
607 /*
608 * remove it and decrement the sensors count.
609 */
610 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
611 sme->sme_nsensors--;
612 sysmon_envsys_release(sme, true);
613 mutex_exit(&sme->sme_mtx);
614
615 return 0;
616 }
617
618
619 /*
620 * sysmon_envsys_register:
621 *
622 * + Register a sysmon envsys device.
623 * + Create array of dictionaries for a device.
624 */
625 int
626 sysmon_envsys_register(struct sysmon_envsys *sme)
627 {
628 struct sme_evdrv {
629 SLIST_ENTRY(sme_evdrv) evdrv_head;
630 sme_event_drv_t *evdrv;
631 };
632 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
633 struct sme_evdrv *evdv = NULL;
634 struct sysmon_envsys *lsme;
635 prop_array_t array = NULL;
636 prop_dictionary_t dict, dict2;
637 envsys_data_t *edata = NULL;
638 sme_event_drv_t *this_evdrv;
639 int nevent;
640 int error = 0;
641
642 KASSERT(sme != NULL);
643 KASSERT(sme->sme_name != NULL);
644
645 /*
646 * Check if requested sysmon_envsys device is valid
647 * and does not exist already in the list.
648 */
649 mutex_enter(&sme_global_mtx);
650 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
651 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
652 mutex_exit(&sme_global_mtx);
653 return EEXIST;
654 }
655 }
656 mutex_exit(&sme_global_mtx);
657
658 /*
659 * sanity check: if SME_DISABLE_REFRESH is not set,
660 * the sme_refresh function callback must be non NULL.
661 */
662 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
663 if (!sme->sme_refresh)
664 return EINVAL;
665
666 /*
667 * If the list of sensors is empty, there's no point to continue...
668 */
669 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
670 DPRINTF(("%s: sensors list empty for %s\n", __func__,
671 sme->sme_name));
672 return ENOTSUP;
673 }
674
675 /*
676 * Initialize the singly linked list for driver events.
677 */
678 SLIST_INIT(&sme_evdrv_list);
679
680 array = prop_array_create();
681 if (!array)
682 return ENOMEM;
683
684 /*
685 * Iterate over all sensors and create a dictionary per sensor.
686 * We must respect the order in which the sensors were added.
687 */
688 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
689 dict = prop_dictionary_create();
690 if (!dict) {
691 error = ENOMEM;
692 goto out2;
693 }
694
695 /*
696 * Create all objects in sensor's dictionary.
697 */
698 this_evdrv = sme_add_sensor_dictionary(sme, array,
699 dict, edata);
700 if (this_evdrv) {
701 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
702 evdv->evdrv = this_evdrv;
703 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
704 }
705 }
706
707 /*
708 * If the array does not contain any object (sensor), there's
709 * no need to attach the driver.
710 */
711 if (prop_array_count(array) == 0) {
712 error = EINVAL;
713 DPRINTF(("%s: empty array for '%s'\n", __func__,
714 sme->sme_name));
715 goto out;
716 }
717
718 /*
719 * Add the dictionary for the global properties of this device.
720 */
721 dict2 = prop_dictionary_create();
722 if (!dict2) {
723 error = ENOMEM;
724 goto out;
725 }
726
727 error = sme_add_property_dictionary(sme, array, dict2);
728 if (error) {
729 prop_object_release(dict2);
730 goto out;
731 }
732
733 /*
734 * Add the array into the global dictionary for the driver.
735 *
736 * <dict>
737 * <key>foo0</key>
738 * <array>
739 * ...
740 */
741 mutex_enter(&sme_global_mtx);
742 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
743 error = EINVAL;
744 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
745 sme->sme_name));
746 goto out;
747 }
748
749 /*
750 * Add the device into the list.
751 */
752 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
753 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
754 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
755 mutex_exit(&sme_global_mtx);
756
757 out:
758 /*
759 * No errors? Make an initial data refresh if was requested,
760 * then register the events that were set in the driver. Do
761 * the refresh first in case it is needed to establish the
762 * limits or max_value needed by some events.
763 */
764 if (error == 0) {
765 nevent = 0;
766 sysmon_task_queue_init();
767
768 if (sme->sme_flags & SME_INIT_REFRESH) {
769 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
770 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
771 __func__, sme->sme_name));
772 }
773 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
774 sysmon_task_queue_sched(0,
775 sme_event_drvadd, evdv->evdrv);
776 nevent++;
777 }
778 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
779 __func__, sme->sme_name, sme->sme_nsensors, nevent));
780 }
781
782 out2:
783 while (!SLIST_EMPTY(&sme_evdrv_list)) {
784 evdv = SLIST_FIRST(&sme_evdrv_list);
785 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
786 kmem_free(evdv, sizeof(*evdv));
787 }
788 if (!error)
789 return 0;
790
791 /*
792 * Ugh... something wasn't right; unregister all events and sensors
793 * previously assigned and destroy the array with all its objects.
794 */
795 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
796 sme->sme_name, error));
797
798 sme_event_unregister_all(sme);
799 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
800 edata = TAILQ_FIRST(&sme->sme_sensors_list);
801 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
802 }
803 sysmon_envsys_destroy_plist(array);
804 return error;
805 }
806
807 /*
808 * sysmon_envsys_destroy_plist:
809 *
810 * + Remove all objects from the array of dictionaries that is
811 * created in a sysmon envsys device.
812 */
813 static void
814 sysmon_envsys_destroy_plist(prop_array_t array)
815 {
816 prop_object_iterator_t iter, iter2;
817 prop_dictionary_t dict;
818 prop_object_t obj;
819
820 KASSERT(array != NULL);
821 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
822
823 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
824 prop_array_count(array)));
825
826 iter = prop_array_iterator(array);
827 if (!iter)
828 return;
829
830 while ((dict = prop_object_iterator_next(iter))) {
831 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
832 iter2 = prop_dictionary_iterator(dict);
833 if (!iter2)
834 goto out;
835 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
836 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
837 DPRINTFOBJ(("%s: obj=%s\n", __func__,
838 prop_dictionary_keysym_cstring_nocopy(obj)));
839 prop_dictionary_remove(dict,
840 prop_dictionary_keysym_cstring_nocopy(obj));
841 prop_object_iterator_reset(iter2);
842 }
843 prop_object_iterator_release(iter2);
844 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
845 __func__, prop_dictionary_count(dict)));
846 prop_object_release(dict);
847 }
848
849 out:
850 prop_object_iterator_release(iter);
851 prop_object_release(array);
852 }
853
854 /*
855 * sysmon_envsys_unregister:
856 *
857 * + Unregister a sysmon envsys device.
858 */
859 void
860 sysmon_envsys_unregister(struct sysmon_envsys *sme)
861 {
862 prop_array_t array;
863
864 KASSERT(sme != NULL);
865
866 /*
867 * Unregister all events associated with device.
868 */
869 sme_event_unregister_all(sme);
870 /*
871 * Decrement global sensors counter (only used for compatibility
872 * with previous API) and remove the device from the list.
873 */
874 mutex_enter(&sme_global_mtx);
875 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
876 LIST_REMOVE(sme, sme_list);
877 mutex_exit(&sme_global_mtx);
878
879 /*
880 * Remove the device (and all its objects) from the global dictionary.
881 */
882 array = prop_dictionary_get(sme_propd, sme->sme_name);
883 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
884 mutex_enter(&sme_global_mtx);
885 prop_dictionary_remove(sme_propd, sme->sme_name);
886 mutex_exit(&sme_global_mtx);
887 sysmon_envsys_destroy_plist(array);
888 }
889 /*
890 * And finally destroy the sysmon_envsys object.
891 */
892 sysmon_envsys_destroy(sme);
893 }
894
895 /*
896 * sysmon_envsys_find:
897 *
898 * + Find a sysmon envsys device and mark it as busy
899 * once it's available.
900 */
901 struct sysmon_envsys *
902 sysmon_envsys_find(const char *name)
903 {
904 struct sysmon_envsys *sme;
905
906 mutex_enter(&sme_global_mtx);
907 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
908 if (strcmp(sme->sme_name, name) == 0) {
909 sysmon_envsys_acquire(sme, false);
910 break;
911 }
912 }
913 mutex_exit(&sme_global_mtx);
914
915 return sme;
916 }
917
918 /*
919 * Compatibility function with the old API.
920 */
921 struct sysmon_envsys *
922 sysmon_envsys_find_40(u_int idx)
923 {
924 struct sysmon_envsys *sme;
925
926 mutex_enter(&sme_global_mtx);
927 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
928 if (idx >= sme->sme_fsensor &&
929 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
930 sysmon_envsys_acquire(sme, false);
931 break;
932 }
933 }
934 mutex_exit(&sme_global_mtx);
935
936 return sme;
937 }
938
939 /*
940 * sysmon_envsys_acquire:
941 *
942 * + Wait until a sysmon envsys device is available and mark
943 * it as busy.
944 */
945 void
946 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
947 {
948 KASSERT(sme != NULL);
949
950 if (locked) {
951 while (sme->sme_flags & SME_FLAG_BUSY)
952 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
953 sme->sme_flags |= SME_FLAG_BUSY;
954 } else {
955 mutex_enter(&sme->sme_mtx);
956 while (sme->sme_flags & SME_FLAG_BUSY)
957 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
958 sme->sme_flags |= SME_FLAG_BUSY;
959 mutex_exit(&sme->sme_mtx);
960 }
961 }
962
963 /*
964 * sysmon_envsys_release:
965 *
966 * + Unmark a sysmon envsys device as busy, and notify
967 * waiters.
968 */
969 void
970 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
971 {
972 KASSERT(sme != NULL);
973
974 if (locked) {
975 sme->sme_flags &= ~SME_FLAG_BUSY;
976 cv_broadcast(&sme->sme_condvar);
977 } else {
978 mutex_enter(&sme->sme_mtx);
979 sme->sme_flags &= ~SME_FLAG_BUSY;
980 cv_broadcast(&sme->sme_condvar);
981 mutex_exit(&sme->sme_mtx);
982 }
983 }
984
985 /*
986 * sme_initial_refresh:
987 *
988 * + Do an initial refresh of the sensors in a device just after
989 * interrupts are enabled in the autoconf(9) process.
990 *
991 */
992 static void
993 sme_initial_refresh(void *arg)
994 {
995 struct sysmon_envsys *sme = arg;
996 envsys_data_t *edata;
997
998 mutex_enter(&sme->sme_mtx);
999 sysmon_envsys_acquire(sme, true);
1000 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1001 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
1002 (*sme->sme_refresh)(sme, edata);
1003 sysmon_envsys_release(sme, true);
1004 mutex_exit(&sme->sme_mtx);
1005 }
1006
1007 /*
1008 * sme_sensor_dictionary_get:
1009 *
1010 * + Returns a dictionary of a device specified by its index
1011 * position.
1012 */
1013 prop_dictionary_t
1014 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1015 {
1016 prop_object_iterator_t iter;
1017 prop_dictionary_t dict;
1018 prop_object_t obj;
1019
1020 KASSERT(array != NULL || index != NULL);
1021
1022 iter = prop_array_iterator(array);
1023 if (!iter)
1024 return NULL;
1025
1026 while ((dict = prop_object_iterator_next(iter))) {
1027 obj = prop_dictionary_get(dict, "index");
1028 if (prop_string_equals_cstring(obj, index))
1029 break;
1030 }
1031
1032 prop_object_iterator_release(iter);
1033 return dict;
1034 }
1035
1036 /*
1037 * sme_remove_userprops:
1038 *
1039 * + Remove all properties from all devices that were set by
1040 * the ENVSYS_SETDICTIONARY ioctl.
1041 */
1042 static void
1043 sme_remove_userprops(void)
1044 {
1045 struct sysmon_envsys *sme;
1046 prop_array_t array;
1047 prop_dictionary_t sdict;
1048 envsys_data_t *edata = NULL;
1049 char tmp[ENVSYS_DESCLEN];
1050 int ptype;
1051
1052 mutex_enter(&sme_global_mtx);
1053 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1054 sysmon_envsys_acquire(sme, false);
1055 array = prop_dictionary_get(sme_propd, sme->sme_name);
1056
1057 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1058 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1059 edata->sensor);
1060 sdict = sme_sensor_dictionary_get(array, tmp);
1061 KASSERT(sdict != NULL);
1062
1063 ptype = 0;
1064 if (edata->upropset & PROP_BATTCAP) {
1065 prop_dictionary_remove(sdict,
1066 "critical-capacity");
1067 ptype = PENVSYS_EVENT_CAPACITY;
1068 }
1069
1070 if (edata->upropset & PROP_BATTWARN) {
1071 prop_dictionary_remove(sdict,
1072 "warning-capacity");
1073 ptype = PENVSYS_EVENT_CAPACITY;
1074 }
1075
1076 if (edata->upropset & PROP_BATTHIGH) {
1077 prop_dictionary_remove(sdict,
1078 "high-capacity");
1079 ptype = PENVSYS_EVENT_CAPACITY;
1080 }
1081
1082 if (edata->upropset & PROP_BATTMAX) {
1083 prop_dictionary_remove(sdict,
1084 "maximum-capacity");
1085 ptype = PENVSYS_EVENT_CAPACITY;
1086 }
1087 if (ptype != 0)
1088 sme_event_unregister(sme, edata->desc, ptype);
1089
1090 ptype = 0;
1091 if (edata->upropset & PROP_WARNMAX) {
1092 prop_dictionary_remove(sdict, "warning-max");
1093 ptype = PENVSYS_EVENT_LIMITS;
1094 }
1095
1096 if (edata->upropset & PROP_WARNMIN) {
1097 prop_dictionary_remove(sdict, "warning-min");
1098 ptype = PENVSYS_EVENT_LIMITS;
1099 }
1100
1101 if (edata->upropset & PROP_CRITMAX) {
1102 prop_dictionary_remove(sdict, "critical-max");
1103 ptype = PENVSYS_EVENT_LIMITS;
1104 }
1105
1106 if (edata->upropset & PROP_CRITMIN) {
1107 prop_dictionary_remove(sdict, "critical-min");
1108 ptype = PENVSYS_EVENT_LIMITS;
1109 }
1110 if (ptype != 0)
1111 sme_event_unregister(sme, edata->desc, ptype);
1112
1113 if (edata->upropset & PROP_RFACT) {
1114 (void)sme_sensor_upint32(sdict, "rfact", 0);
1115 edata->rfact = 0;
1116 }
1117
1118 if (edata->upropset & PROP_DESC)
1119 (void)sme_sensor_upstring(sdict,
1120 "description", edata->desc);
1121
1122 if (edata->upropset)
1123 edata->upropset = 0;
1124 }
1125
1126 /*
1127 * Restore default timeout value.
1128 */
1129 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1130 sysmon_envsys_release(sme, false);
1131 }
1132 mutex_exit(&sme_global_mtx);
1133 }
1134
1135 /*
1136 * sme_add_property_dictionary:
1137 *
1138 * + Add global properties into a device.
1139 */
1140 static int
1141 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1142 prop_dictionary_t dict)
1143 {
1144 prop_dictionary_t pdict;
1145 const char *class;
1146 int error = 0;
1147
1148 pdict = prop_dictionary_create();
1149 if (!pdict)
1150 return EINVAL;
1151
1152 /*
1153 * Add the 'refresh-timeout' and 'dev-class' objects into the
1154 * 'device-properties' dictionary.
1155 *
1156 * ...
1157 * <dict>
1158 * <key>device-properties</key>
1159 * <dict>
1160 * <key>refresh-timeout</key>
1161 * <integer>120</integer<
1162 * <key>device-class</key>
1163 * <string>class_name</string>
1164 * </dict>
1165 * </dict>
1166 * ...
1167 *
1168 */
1169 if (!sme->sme_events_timeout)
1170 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1171
1172 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1173 sme->sme_events_timeout)) {
1174 error = EINVAL;
1175 goto out;
1176 }
1177 if (sme->sme_class == SME_CLASS_BATTERY)
1178 class = "battery";
1179 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1180 class = "ac-adapter";
1181 else
1182 class = "other";
1183 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1184 error = EINVAL;
1185 goto out;
1186 }
1187
1188 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1189 error = EINVAL;
1190 goto out;
1191 }
1192
1193 /*
1194 * Add the device dictionary into the sysmon envsys array.
1195 */
1196 if (!prop_array_add(array, dict))
1197 error = EINVAL;
1198
1199 out:
1200 prop_object_release(pdict);
1201 return error;
1202 }
1203
1204 /*
1205 * sme_add_sensor_dictionary:
1206 *
1207 * + Adds the sensor objects into the dictionary and returns a pointer
1208 * to a sme_event_drv_t object if a monitoring flag was set
1209 * (or NULL otherwise).
1210 */
1211 static sme_event_drv_t *
1212 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1213 prop_dictionary_t dict, envsys_data_t *edata)
1214 {
1215 const struct sme_description_table *sdt, *sdt_units;
1216 sme_event_drv_t *sme_evdrv_t = NULL;
1217 int i, j;
1218 char indexstr[ENVSYS_DESCLEN];
1219
1220 /*
1221 * Find the correct units for this sensor.
1222 */
1223 sdt_units = sme_get_description_table(SME_DESC_UNITS);
1224 for (i = 0; sdt_units[i].type != -1; i++)
1225 if (sdt_units[i].type == edata->units)
1226 break;
1227
1228 /*
1229 * Add the index sensor string.
1230 *
1231 * ...
1232 * <key>index</eyr
1233 * <string>sensor0</string>
1234 * ...
1235 */
1236 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1237 if (sme_sensor_upstring(dict, "index", indexstr))
1238 goto bad;
1239
1240 /*
1241 * ...
1242 * <key>type</key>
1243 * <string>foo</string>
1244 * <key>description</key>
1245 * <string>blah blah</string>
1246 * ...
1247 */
1248 if (sme_sensor_upstring(dict, "type", sdt_units[i].desc))
1249 goto bad;
1250
1251 if (sme_sensor_upstring(dict, "description", edata->desc))
1252 goto bad;
1253
1254 /*
1255 * Add sensor's state description.
1256 *
1257 * ...
1258 * <key>state</key>
1259 * <string>valid</string>
1260 * ...
1261 */
1262 sdt = sme_get_description_table(SME_DESC_STATES);
1263 for (j = 0; sdt[j].type != -1; j++)
1264 if (sdt[j].type == edata->state)
1265 break;
1266
1267 DPRINTF(("%s: sensor desc=%s type=%d state=%d\n",
1268 __func__, edata->desc, edata->units, edata->state));
1269
1270 if (sme_sensor_upstring(dict, "state", sdt[j].desc))
1271 goto bad;
1272
1273 /*
1274 * Add the monitoring boolean object:
1275 *
1276 * ...
1277 * <key>monitoring-supported</key>
1278 * <true/>
1279 * ...
1280 *
1281 * always false on Battery {capacity,charge}, Drive and Indicator types.
1282 * They cannot be monitored.
1283 *
1284 */
1285 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1286 (edata->units == ENVSYS_INDICATOR) ||
1287 (edata->units == ENVSYS_DRIVE) ||
1288 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1289 (edata->units == ENVSYS_BATTERY_CHARGE)) {
1290 if (sme_sensor_upbool(dict, "monitoring-supported", false))
1291 goto out;
1292 } else {
1293 if (sme_sensor_upbool(dict, "monitoring-supported", true))
1294 goto out;
1295 }
1296
1297 /*
1298 * Add the percentage boolean object, true if ENVSYS_FPERCENT
1299 * is set or false otherwise.
1300 *
1301 * ...
1302 * <key>want-percentage</key>
1303 * <true/>
1304 * ...
1305 */
1306 if (edata->flags & ENVSYS_FPERCENT)
1307 if (sme_sensor_upbool(dict, "want-percentage", true))
1308 goto out;
1309
1310 /*
1311 * Add the allow-rfact boolean object, true if
1312 * ENVSYS_FCHANGERFACT if set or false otherwise.
1313 *
1314 * ...
1315 * <key>allow-rfact</key>
1316 * <true/>
1317 * ...
1318 */
1319 if (edata->units == ENVSYS_SVOLTS_DC ||
1320 edata->units == ENVSYS_SVOLTS_AC) {
1321 if (edata->flags & ENVSYS_FCHANGERFACT) {
1322 if (sme_sensor_upbool(dict, "allow-rfact", true))
1323 goto out;
1324 } else {
1325 if (sme_sensor_upbool(dict, "allow-rfact", false))
1326 goto out;
1327 }
1328 }
1329
1330 /*
1331 * Add the object for battery capacity sensors:
1332 *
1333 * ...
1334 * <key>battery-capacity</key>
1335 * <string>NORMAL</string>
1336 * ...
1337 */
1338 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1339 sdt = sme_get_description_table(SME_DESC_BATTERY_CAPACITY);
1340 for (j = 0; sdt[j].type != -1; j++)
1341 if (sdt[j].type == edata->value_cur)
1342 break;
1343
1344 if (sme_sensor_upstring(dict, "battery-capacity", sdt[j].desc))
1345 goto out;
1346 }
1347
1348 /*
1349 * Add the drive-state object for drive sensors:
1350 *
1351 * ...
1352 * <key>drive-state</key>
1353 * <string>drive is online</string>
1354 * ...
1355 */
1356 if (edata->units == ENVSYS_DRIVE) {
1357 sdt = sme_get_description_table(SME_DESC_DRIVE_STATES);
1358 for (j = 0; sdt[j].type != -1; j++)
1359 if (sdt[j].type == edata->value_cur)
1360 break;
1361
1362 if (sme_sensor_upstring(dict, "drive-state", sdt[j].desc))
1363 goto out;
1364 }
1365
1366 /*
1367 * Add the following objects if sensor is enabled...
1368 */
1369 if (edata->state == ENVSYS_SVALID) {
1370 /*
1371 * Add the following objects:
1372 *
1373 * ...
1374 * <key>rpms</key>
1375 * <integer>2500</integer>
1376 * <key>rfact</key>
1377 * <integer>10000</integer>
1378 * <key>cur-value</key>
1379 * <integer>1250</integer>
1380 * <key>min-value</key>
1381 * <integer>800</integer>
1382 * <key>max-value</integer>
1383 * <integer>3000</integer>
1384 * <key>avg-value</integer>
1385 * <integer>1400</integer>
1386 * ...
1387 */
1388 if (edata->units == ENVSYS_SFANRPM)
1389 if (sme_sensor_upuint32(dict, "rpms", edata->rpms))
1390 goto out;
1391
1392 if (edata->units == ENVSYS_SVOLTS_AC ||
1393 edata->units == ENVSYS_SVOLTS_DC)
1394 if (sme_sensor_upint32(dict, "rfact", edata->rfact))
1395 goto out;
1396
1397 if (sme_sensor_upint32(dict, "cur-value", edata->value_cur))
1398 goto out;
1399
1400 if (edata->flags & ENVSYS_FVALID_MIN) {
1401 if (sme_sensor_upint32(dict,
1402 "min-value",
1403 edata->value_min))
1404 goto out;
1405 }
1406
1407 if (edata->flags & ENVSYS_FVALID_MAX) {
1408 if (sme_sensor_upint32(dict,
1409 "max-value",
1410 edata->value_max))
1411 goto out;
1412 }
1413
1414 if (edata->flags & ENVSYS_FVALID_AVG) {
1415 if (sme_sensor_upint32(dict,
1416 "avg-value",
1417 edata->value_avg))
1418 goto out;
1419 }
1420 }
1421
1422 /*
1423 * ...
1424 * </dict>
1425 *
1426 * Add the dictionary into the array.
1427 *
1428 */
1429 if (!prop_array_add(array, dict)) {
1430 DPRINTF(("%s: prop_array_add\n", __func__));
1431 goto bad;
1432 }
1433
1434 /*
1435 * Register new event(s) if any monitoring flag was set.
1436 */
1437 if (edata->flags & ENVSYS_FMONANY) {
1438 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1439 sme_evdrv_t->sed_sdict = dict;
1440 sme_evdrv_t->sed_edata = edata;
1441 sme_evdrv_t->sed_sme = sme;
1442 sme_evdrv_t->sed_powertype = sdt_units[i].crittype;
1443 }
1444
1445 out:
1446 return sme_evdrv_t;
1447
1448 bad:
1449 prop_object_release(dict);
1450 return NULL;
1451 }
1452
1453 /*
1454 * Find the maximum of all currently reported values.
1455 * The provided callback decides wether a sensor is part of the
1456 * maximum calculation (by returning true) or ignored (callback
1457 * returns false). Example usage: callback selects temperature
1458 * sensors in a given thermal zone, the function calculates the
1459 * maximum currently reported temperature in this zone.
1460 * If the parameter "refresh" is true, new values will be aquired
1461 * from the hardware, if not, the last reported value will be used.
1462 */
1463 uint32_t
1464 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1465 bool refresh)
1466 {
1467 struct sysmon_envsys *sme;
1468 uint32_t maxv, v;
1469
1470 maxv = 0;
1471 mutex_enter(&sme_global_mtx);
1472 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1473 sysmon_envsys_acquire(sme, false);
1474 v = sme_get_max_value(sme, predicate, refresh);
1475 sysmon_envsys_release(sme, false);
1476 if (v > maxv)
1477 maxv = v;
1478 }
1479 mutex_exit(&sme_global_mtx);
1480 return maxv;
1481 }
1482
1483 static uint32_t
1484 sme_get_max_value(struct sysmon_envsys *sme,
1485 bool (*predicate)(const envsys_data_t*),
1486 bool refresh)
1487 {
1488 envsys_data_t *edata;
1489 uint32_t maxv, v;
1490
1491 /*
1492 * Iterate over all sensors that match the predicate
1493 */
1494 maxv = 0;
1495 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1496 if (!(*predicate)(edata))
1497 continue;
1498
1499 /*
1500 * refresh sensor data via sme_refresh only if the
1501 * flag is not set.
1502 */
1503 if (refresh && (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
1504 mutex_enter(&sme->sme_mtx);
1505 (*sme->sme_refresh)(sme, edata);
1506 mutex_exit(&sme->sme_mtx);
1507 }
1508
1509 v = edata->value_cur;
1510 if (v > maxv)
1511 maxv = v;
1512
1513 }
1514
1515 return maxv;
1516 }
1517
1518 /*
1519 * sme_update_dictionary:
1520 *
1521 * + Update per-sensor dictionaries with new values if there were
1522 * changes, otherwise the object in dictionary is untouched.
1523 */
1524 int
1525 sme_update_dictionary(struct sysmon_envsys *sme)
1526 {
1527 const struct sme_description_table *sdt;
1528 envsys_data_t *edata;
1529 prop_object_t array, dict, obj, obj2;
1530 int j, error = 0;
1531
1532 /*
1533 * Retrieve the array of dictionaries in device.
1534 */
1535 array = prop_dictionary_get(sme_propd, sme->sme_name);
1536 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1537 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1538 return EINVAL;
1539 }
1540
1541 /*
1542 * Get the last dictionary on the array, this contains the
1543 * 'device-properties' sub-dictionary.
1544 */
1545 obj = prop_array_get(array, prop_array_count(array) - 1);
1546 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1547 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1548 return EINVAL;
1549 }
1550
1551 obj2 = prop_dictionary_get(obj, "device-properties");
1552 if (!obj2)
1553 return EINVAL;
1554
1555 /*
1556 * Update the 'refresh-timeout' property.
1557 */
1558 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1559 sme->sme_events_timeout))
1560 return EINVAL;
1561
1562 /*
1563 * - iterate over all sensors.
1564 * - fetch new data.
1565 * - check if data in dictionary is different than new data.
1566 * - update dictionary if there were changes.
1567 */
1568 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1569 sme->sme_name, sme->sme_nsensors));
1570
1571 /*
1572 * Don't bother with locking when traversing the queue,
1573 * the device is already marked as busy; if a sensor
1574 * is going to be removed or added it will have to wait.
1575 */
1576 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1577 /*
1578 * refresh sensor data via sme_refresh only if the
1579 * flag is not set.
1580 */
1581 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
1582 mutex_enter(&sme->sme_mtx);
1583 (*sme->sme_refresh)(sme, edata);
1584 mutex_exit(&sme->sme_mtx);
1585 }
1586
1587 /*
1588 * retrieve sensor's dictionary.
1589 */
1590 dict = prop_array_get(array, edata->sensor);
1591 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1592 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1593 __func__, edata->sensor, sme->sme_name));
1594 return EINVAL;
1595 }
1596
1597 /*
1598 * update sensor's state.
1599 */
1600 sdt = sme_get_description_table(SME_DESC_STATES);
1601 for (j = 0; sdt[j].type != -1; j++)
1602 if (sdt[j].type == edata->state)
1603 break;
1604
1605 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n",
1606 __func__, edata->sensor, sdt[j].type, sdt[j].desc,
1607 edata->flags));
1608
1609 error = sme_sensor_upstring(dict, "state", sdt[j].desc);
1610 if (error)
1611 break;
1612
1613 /*
1614 * update sensor's type.
1615 */
1616 sdt = sme_get_description_table(SME_DESC_UNITS);
1617 for (j = 0; sdt[j].type != -1; j++)
1618 if (sdt[j].type == edata->units)
1619 break;
1620
1621 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n",
1622 __func__, edata->sensor, sdt[j].type, sdt[j].desc));
1623
1624 error = sme_sensor_upstring(dict, "type", sdt[j].desc);
1625 if (error)
1626 break;
1627
1628 /*
1629 * update sensor's current value.
1630 */
1631 error = sme_sensor_upint32(dict,
1632 "cur-value",
1633 edata->value_cur);
1634 if (error)
1635 break;
1636
1637 /*
1638 * Battery charge, Integer and Indicator types do not
1639 * need the following objects, so skip them.
1640 */
1641 if (edata->units == ENVSYS_INTEGER ||
1642 edata->units == ENVSYS_INDICATOR ||
1643 edata->units == ENVSYS_BATTERY_CHARGE)
1644 continue;
1645
1646 /*
1647 * update sensor flags.
1648 */
1649 if (edata->flags & ENVSYS_FPERCENT) {
1650 error = sme_sensor_upbool(dict,
1651 "want-percentage",
1652 true);
1653 if (error)
1654 break;
1655 }
1656
1657 /*
1658 * update sensor's {avg,max,min}-value.
1659 */
1660 if (edata->flags & ENVSYS_FVALID_MAX) {
1661 error = sme_sensor_upint32(dict,
1662 "max-value",
1663 edata->value_max);
1664 if (error)
1665 break;
1666 }
1667
1668 if (edata->flags & ENVSYS_FVALID_MIN) {
1669 error = sme_sensor_upint32(dict,
1670 "min-value",
1671 edata->value_min);
1672 if (error)
1673 break;
1674 }
1675
1676 if (edata->flags & ENVSYS_FVALID_AVG) {
1677 error = sme_sensor_upint32(dict,
1678 "avg-value",
1679 edata->value_avg);
1680 if (error)
1681 break;
1682 }
1683
1684 /*
1685 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1686 */
1687 if (edata->units == ENVSYS_SFANRPM) {
1688 error = sme_sensor_upuint32(dict,
1689 "rpms",
1690 edata->rpms);
1691 if (error)
1692 break;
1693 }
1694
1695 /*
1696 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1697 */
1698 if (edata->units == ENVSYS_SVOLTS_AC ||
1699 edata->units == ENVSYS_SVOLTS_DC) {
1700 error = sme_sensor_upint32(dict,
1701 "rfact",
1702 edata->rfact);
1703 if (error)
1704 break;
1705 }
1706
1707 /*
1708 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1709 */
1710 if (edata->units == ENVSYS_DRIVE) {
1711 sdt = sme_get_description_table(SME_DESC_DRIVE_STATES);
1712 for (j = 0; sdt[j].type != -1; j++)
1713 if (sdt[j].type == edata->value_cur)
1714 break;
1715
1716 error = sme_sensor_upstring(dict,
1717 "drive-state",
1718 sdt[j].desc);
1719 if (error)
1720 break;
1721 }
1722
1723 /*
1724 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1725 * sensors.
1726 */
1727 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1728 sdt =
1729 sme_get_description_table(SME_DESC_BATTERY_CAPACITY);
1730 for (j = 0; sdt[j].type != -1; j++)
1731 if (sdt[j].type == edata->value_cur)
1732 break;
1733
1734 error = sme_sensor_upstring(dict,
1735 "battery-capacity",
1736 sdt[j].desc);
1737 if (error)
1738 break;
1739 }
1740 }
1741
1742 return error;
1743 }
1744
1745 /*
1746 * sme_userset_dictionary:
1747 *
1748 * + Parse the userland dictionary and run the appropiate tasks
1749 * that were specified.
1750 */
1751 int
1752 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1753 prop_array_t array)
1754 {
1755 const struct sme_description_table *sdt;
1756 envsys_data_t *edata;
1757 prop_dictionary_t dict, tdict = NULL;
1758 prop_object_t obj, obj1, obj2, tobj = NULL;
1759 uint32_t props;
1760 uint64_t refresh_timo = 0;
1761 sysmon_envsys_lim_t lims;
1762 int i, error = 0;
1763 const char *blah;
1764 bool targetfound = false;
1765
1766 /*
1767 * The user wanted to change the refresh timeout value for this
1768 * device.
1769 *
1770 * Get the 'device-properties' object from the userland dictionary.
1771 */
1772 obj = prop_dictionary_get(udict, "device-properties");
1773 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1774 /*
1775 * Get the 'refresh-timeout' property for this device.
1776 */
1777 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1778 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1779 targetfound = true;
1780 refresh_timo =
1781 prop_number_unsigned_integer_value(obj1);
1782 if (refresh_timo < 1)
1783 error = EINVAL;
1784 else {
1785 mutex_enter(&sme->sme_mtx);
1786 sme->sme_events_timeout = refresh_timo;
1787 mutex_exit(&sme->sme_mtx);
1788 }
1789 }
1790 return error;
1791
1792 } else if (!obj) {
1793 /*
1794 * Get sensor's index from userland dictionary.
1795 */
1796 obj = prop_dictionary_get(udict, "index");
1797 if (!obj)
1798 return EINVAL;
1799 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1800 DPRINTF(("%s: 'index' not a string\n", __func__));
1801 return EINVAL;
1802 }
1803 } else
1804 return EINVAL;
1805
1806 /*
1807 * Don't bother with locking when traversing the queue,
1808 * the device is already marked as busy; if a sensor
1809 * is going to be removed or added it will have to wait.
1810 */
1811 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1812 /*
1813 * Get a dictionary and check if it's our sensor by checking
1814 * at its index position.
1815 */
1816 dict = prop_array_get(array, edata->sensor);
1817 obj1 = prop_dictionary_get(dict, "index");
1818
1819 /*
1820 * is it our sensor?
1821 */
1822 if (!prop_string_equals(obj1, obj))
1823 continue;
1824
1825 props = 0;
1826
1827 /*
1828 * Check if a new description operation was
1829 * requested by the user and set new description.
1830 */
1831 obj2 = prop_dictionary_get(udict, "description");
1832 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1833 targetfound = true;
1834 blah = prop_string_cstring_nocopy(obj2);
1835
1836 /*
1837 * Check for duplicate description.
1838 */
1839 for (i = 0; i < sme->sme_nsensors; i++) {
1840 if (i == edata->sensor)
1841 continue;
1842 tdict = prop_array_get(array, i);
1843 tobj =
1844 prop_dictionary_get(tdict, "description");
1845 if (prop_string_equals(obj2, tobj)) {
1846 error = EEXIST;
1847 goto out;
1848 }
1849 }
1850
1851 /*
1852 * Update the object in dictionary.
1853 */
1854 mutex_enter(&sme->sme_mtx);
1855 error = sme_sensor_upstring(dict,
1856 "description",
1857 blah);
1858 if (error) {
1859 mutex_exit(&sme->sme_mtx);
1860 goto out;
1861 }
1862
1863 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1864 __func__, edata->sensor, blah));
1865 edata->upropset |= PROP_DESC;
1866 mutex_exit(&sme->sme_mtx);
1867 }
1868
1869 /*
1870 * did the user want to change the rfact?
1871 */
1872 obj2 = prop_dictionary_get(udict, "rfact");
1873 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1874 targetfound = true;
1875 if (edata->flags & ENVSYS_FCHANGERFACT) {
1876 mutex_enter(&sme->sme_mtx);
1877 edata->rfact = prop_number_integer_value(obj2);
1878 edata->upropset |= PROP_RFACT;
1879 mutex_exit(&sme->sme_mtx);
1880 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1881 __func__, edata->sensor, edata->rfact));
1882 } else {
1883 error = ENOTSUP;
1884 goto out;
1885 }
1886 }
1887
1888 sdt = sme_get_description_table(SME_DESC_UNITS);
1889 for (i = 0; sdt[i].type != -1; i++)
1890 if (sdt[i].type == edata->units)
1891 break;
1892
1893 /*
1894 * did the user want to set a critical capacity event?
1895 */
1896 obj2 = prop_dictionary_get(udict, "critical-capacity");
1897 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1898 targetfound = true;
1899 lims.sel_critmin = prop_number_integer_value(obj2);
1900 props |= PROP_BATTCAP;
1901 }
1902
1903 /*
1904 * did the user want to set a warning capacity event?
1905 */
1906 obj2 = prop_dictionary_get(udict, "warning-capacity");
1907 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1908 targetfound = true;
1909 lims.sel_warnmin = prop_number_integer_value(obj2);
1910 props |= PROP_BATTWARN;
1911 }
1912
1913 /*
1914 * did the user want to set a high capacity event?
1915 */
1916 obj2 = prop_dictionary_get(udict, "high-capacity");
1917 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1918 targetfound = true;
1919 lims.sel_warnmin = prop_number_integer_value(obj2);
1920 props |= PROP_BATTHIGH;
1921 }
1922
1923 /*
1924 * did the user want to set a maximum capacity event?
1925 */
1926 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1927 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1928 targetfound = true;
1929 lims.sel_warnmin = prop_number_integer_value(obj2);
1930 props |= PROP_BATTMAX;
1931 }
1932
1933 /*
1934 * did the user want to set a critical max event?
1935 */
1936 obj2 = prop_dictionary_get(udict, "critical-max");
1937 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1938 targetfound = true;
1939 lims.sel_critmax = prop_number_integer_value(obj2);
1940 props |= PROP_CRITMAX;
1941 }
1942
1943 /*
1944 * did the user want to set a warning max event?
1945 */
1946 obj2 = prop_dictionary_get(udict, "warning-max");
1947 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1948 targetfound = true;
1949 lims.sel_warnmax = prop_number_integer_value(obj2);
1950 props |= PROP_WARNMAX;
1951 }
1952
1953 /*
1954 * did the user want to set a critical min event?
1955 */
1956 obj2 = prop_dictionary_get(udict, "critical-min");
1957 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1958 targetfound = true;
1959 lims.sel_critmin = prop_number_integer_value(obj2);
1960 props |= PROP_CRITMIN;
1961 }
1962
1963 /*
1964 * did the user want to set a warning min event?
1965 */
1966 obj2 = prop_dictionary_get(udict, "warning-min");
1967 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1968 targetfound = true;
1969 lims.sel_warnmin = prop_number_integer_value(obj2);
1970 props |= PROP_WARNMIN;
1971 }
1972
1973 if (props) {
1974 if (edata->flags & ENVSYS_FMONNOTSUPP) {
1975 error = ENOTSUP;
1976 goto out;
1977 }
1978 error = sme_event_register(dict, edata, sme, &lims,
1979 props,
1980 (edata->flags & ENVSYS_FPERCENT)?
1981 PENVSYS_EVENT_CAPACITY:
1982 PENVSYS_EVENT_LIMITS,
1983 sdt[i].crittype);
1984 if (error == EEXIST)
1985 error = 0;
1986 if (error)
1987 goto out;
1988 }
1989
1990 /*
1991 * All objects in dictionary were processed.
1992 */
1993 break;
1994 }
1995
1996 out:
1997 /*
1998 * invalid target? return the error.
1999 */
2000 if (!targetfound)
2001 error = EINVAL;
2002
2003 return error;
2004 }
2005
2006 /*
2007 * + sysmon_envsys_foreach_sensor
2008 *
2009 * Walk through the devices' sensor lists and execute the callback.
2010 * If the callback returns false, the remainder of the current
2011 * device's sensors are skipped.
2012 */
2013 void
2014 sysmon_envsys_foreach_sensor(bool(*func)(const struct sysmon_envsys *,
2015 const envsys_data_t *, void*),
2016 void *arg, bool refresh)
2017 {
2018 struct sysmon_envsys *sme;
2019 envsys_data_t *sensor;
2020
2021 mutex_enter(&sme_global_mtx);
2022 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
2023
2024 sysmon_envsys_acquire(sme, false);
2025 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
2026 if (refresh &&
2027 (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
2028 mutex_enter(&sme->sme_mtx);
2029 (*sme->sme_refresh)(sme, sensor);
2030 mutex_exit(&sme->sme_mtx);
2031 }
2032 if (!(*func)(sme, sensor, arg))
2033 break;
2034 }
2035 sysmon_envsys_release(sme, false);
2036 }
2037 mutex_exit(&sme_global_mtx);
2038 }
2039