sysmon_envsys.c revision 1.108 1 /* $NetBSD: sysmon_envsys.c,v 1.108 2010/12/08 00:09:14 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.108 2010/12/08 00:09:14 pgoyette Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79
80 /* #define ENVSYS_DEBUG */
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84
85 kmutex_t sme_global_mtx;
86
87 prop_dictionary_t sme_propd;
88
89 static uint32_t sysmon_envsys_next_sensor_index;
90 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
91
92 static void sysmon_envsys_destroy_plist(prop_array_t);
93 static void sme_remove_userprops(void);
94 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
95 prop_dictionary_t);
96 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
97 prop_array_t, prop_dictionary_t, envsys_data_t *);
98 static void sme_initial_refresh(void *);
99 static uint32_t sme_get_max_value(struct sysmon_envsys *,
100 bool (*)(const envsys_data_t*), bool);
101
102 /*
103 * sysmon_envsys_init:
104 *
105 * + Initialize global mutex, dictionary and the linked list.
106 */
107 void
108 sysmon_envsys_init(void)
109 {
110 LIST_INIT(&sysmon_envsys_list);
111 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
112 sme_propd = prop_dictionary_create();
113 }
114
115 /*
116 * sysmonopen_envsys:
117 *
118 * + Open the system monitor device.
119 */
120 int
121 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
122 {
123 return 0;
124 }
125
126 /*
127 * sysmonclose_envsys:
128 *
129 * + Close the system monitor device.
130 */
131 int
132 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
133 {
134 return 0;
135 }
136
137 /*
138 * sysmonioctl_envsys:
139 *
140 * + Perform a sysmon envsys control request.
141 */
142 int
143 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
144 {
145 struct sysmon_envsys *sme = NULL;
146 int error = 0;
147 u_int oidx;
148
149 switch (cmd) {
150 /*
151 * To update the global dictionary with latest data from devices.
152 */
153 case ENVSYS_GETDICTIONARY:
154 {
155 struct plistref *plist = (struct plistref *)data;
156
157 /*
158 * Update dictionaries on all sysmon envsys devices
159 * registered.
160 */
161 mutex_enter(&sme_global_mtx);
162 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
163 sysmon_envsys_acquire(sme, false);
164 error = sme_update_dictionary(sme);
165 if (error) {
166 DPRINTF(("%s: sme_update_dictionary, "
167 "error=%d\n", __func__, error));
168 sysmon_envsys_release(sme, false);
169 mutex_exit(&sme_global_mtx);
170 return error;
171 }
172 sysmon_envsys_release(sme, false);
173 }
174 mutex_exit(&sme_global_mtx);
175 /*
176 * Copy global dictionary to userland.
177 */
178 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
179 break;
180 }
181 /*
182 * To set properties on multiple devices.
183 */
184 case ENVSYS_SETDICTIONARY:
185 {
186 const struct plistref *plist = (const struct plistref *)data;
187 prop_dictionary_t udict;
188 prop_object_iterator_t iter, iter2;
189 prop_object_t obj, obj2;
190 prop_array_t array_u, array_k;
191 const char *devname = NULL;
192
193 if ((flag & FWRITE) == 0)
194 return EPERM;
195
196 /*
197 * Get dictionary from userland.
198 */
199 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
200 if (error) {
201 DPRINTF(("%s: copyin_ioctl error=%d\n",
202 __func__, error));
203 break;
204 }
205
206 iter = prop_dictionary_iterator(udict);
207 if (!iter) {
208 prop_object_release(udict);
209 return ENOMEM;
210 }
211
212 /*
213 * Iterate over the userland dictionary and process
214 * the list of devices.
215 */
216 while ((obj = prop_object_iterator_next(iter))) {
217 array_u = prop_dictionary_get_keysym(udict, obj);
218 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
219 prop_object_iterator_release(iter);
220 prop_object_release(udict);
221 return EINVAL;
222 }
223
224 devname = prop_dictionary_keysym_cstring_nocopy(obj);
225 DPRINTF(("%s: processing the '%s' array requests\n",
226 __func__, devname));
227
228 /*
229 * find the correct sme device.
230 */
231 sme = sysmon_envsys_find(devname);
232 if (!sme) {
233 DPRINTF(("%s: NULL sme\n", __func__));
234 prop_object_iterator_release(iter);
235 prop_object_release(udict);
236 return EINVAL;
237 }
238
239 /*
240 * Find the correct array object with the string
241 * supplied by the userland dictionary.
242 */
243 array_k = prop_dictionary_get(sme_propd, devname);
244 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
245 DPRINTF(("%s: array device failed\n",
246 __func__));
247 sysmon_envsys_release(sme, false);
248 prop_object_iterator_release(iter);
249 prop_object_release(udict);
250 return EINVAL;
251 }
252
253 iter2 = prop_array_iterator(array_u);
254 if (!iter2) {
255 sysmon_envsys_release(sme, false);
256 prop_object_iterator_release(iter);
257 prop_object_release(udict);
258 return ENOMEM;
259 }
260
261 /*
262 * Iterate over the array of dictionaries to
263 * process the list of sensors and properties.
264 */
265 while ((obj2 = prop_object_iterator_next(iter2))) {
266 /*
267 * do the real work now.
268 */
269 error = sme_userset_dictionary(sme,
270 obj2,
271 array_k);
272 if (error) {
273 sysmon_envsys_release(sme, false);
274 prop_object_iterator_release(iter2);
275 prop_object_iterator_release(iter);
276 prop_object_release(udict);
277 return error;
278 }
279 }
280
281 sysmon_envsys_release(sme, false);
282 prop_object_iterator_release(iter2);
283 }
284
285 prop_object_iterator_release(iter);
286 prop_object_release(udict);
287 break;
288 }
289 /*
290 * To remove all properties from all devices registered.
291 */
292 case ENVSYS_REMOVEPROPS:
293 {
294 const struct plistref *plist = (const struct plistref *)data;
295 prop_dictionary_t udict;
296 prop_object_t obj;
297
298 if ((flag & FWRITE) == 0)
299 return EPERM;
300
301 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
302 if (error) {
303 DPRINTF(("%s: copyin_ioctl error=%d\n",
304 __func__, error));
305 break;
306 }
307
308 obj = prop_dictionary_get(udict, "envsys-remove-props");
309 if (!obj || !prop_bool_true(obj)) {
310 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
311 __func__));
312 return EINVAL;
313 }
314
315 prop_object_release(udict);
316 sme_remove_userprops();
317
318 break;
319 }
320 /*
321 * Compatibility ioctls with the old interface, only implemented
322 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
323 * applications work.
324 */
325 case ENVSYS_GTREDATA:
326 {
327 struct envsys_tre_data *tred = (void *)data;
328 envsys_data_t *edata = NULL;
329 bool found = false;
330
331 tred->validflags = 0;
332
333 sme = sysmon_envsys_find_40(tred->sensor);
334 if (!sme)
335 break;
336
337 oidx = tred->sensor;
338 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
339
340 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
341 __func__, tred->sensor, oidx, sme->sme_name,
342 sme->sme_nsensors));
343
344 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
345 if (edata->sensor == tred->sensor) {
346 found = true;
347 break;
348 }
349 }
350
351 if (!found) {
352 sysmon_envsys_release(sme, false);
353 error = ENODEV;
354 break;
355 }
356
357 if (tred->sensor < sme->sme_nsensors) {
358 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0 &&
359 (sme->sme_flags & SME_POLL_ONLY) == 0) {
360 mutex_enter(&sme->sme_mtx);
361 (*sme->sme_refresh)(sme, edata);
362 mutex_exit(&sme->sme_mtx);
363 }
364
365 /*
366 * copy required values to the old interface.
367 */
368 tred->sensor = edata->sensor;
369 tred->cur.data_us = edata->value_cur;
370 tred->cur.data_s = edata->value_cur;
371 tred->max.data_us = edata->value_max;
372 tred->max.data_s = edata->value_max;
373 tred->min.data_us = edata->value_min;
374 tred->min.data_s = edata->value_min;
375 tred->avg.data_us = edata->value_avg;
376 tred->avg.data_s = edata->value_avg;
377 if (edata->units == ENVSYS_BATTERY_CHARGE)
378 tred->units = ENVSYS_INDICATOR;
379 else
380 tred->units = edata->units;
381
382 tred->validflags |= ENVSYS_FVALID;
383 tred->validflags |= ENVSYS_FCURVALID;
384
385 if (edata->flags & ENVSYS_FPERCENT) {
386 tred->validflags |= ENVSYS_FMAXVALID;
387 tred->validflags |= ENVSYS_FFRACVALID;
388 }
389
390 if (edata->state == ENVSYS_SINVALID) {
391 tred->validflags &= ~ENVSYS_FCURVALID;
392 tred->cur.data_us = tred->cur.data_s = 0;
393 }
394
395 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
396 __func__, edata->desc, tred->cur.data_s));
397 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
398 " tred->sensor=%d\n", __func__, tred->validflags,
399 tred->units, tred->sensor));
400 }
401 tred->sensor = oidx;
402 sysmon_envsys_release(sme, false);
403
404 break;
405 }
406 case ENVSYS_GTREINFO:
407 {
408 struct envsys_basic_info *binfo = (void *)data;
409 envsys_data_t *edata = NULL;
410 bool found = false;
411
412 binfo->validflags = 0;
413
414 sme = sysmon_envsys_find_40(binfo->sensor);
415 if (!sme)
416 break;
417
418 oidx = binfo->sensor;
419 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
420
421 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
422 if (edata->sensor == binfo->sensor) {
423 found = true;
424 break;
425 }
426 }
427
428 if (!found) {
429 sysmon_envsys_release(sme, false);
430 error = ENODEV;
431 break;
432 }
433
434 binfo->validflags |= ENVSYS_FVALID;
435
436 if (binfo->sensor < sme->sme_nsensors) {
437 if (edata->units == ENVSYS_BATTERY_CHARGE)
438 binfo->units = ENVSYS_INDICATOR;
439 else
440 binfo->units = edata->units;
441
442 /*
443 * previously, the ACPI sensor names included the
444 * device name. Include that in compatibility code.
445 */
446 if (strncmp(sme->sme_name, "acpi", 4) == 0)
447 (void)snprintf(binfo->desc, sizeof(binfo->desc),
448 "%s %s", sme->sme_name, edata->desc);
449 else
450 (void)strlcpy(binfo->desc, edata->desc,
451 sizeof(binfo->desc));
452 }
453
454 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
455 __func__, binfo->units, binfo->validflags));
456 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
457 __func__, binfo->desc, binfo->sensor));
458
459 binfo->sensor = oidx;
460 sysmon_envsys_release(sme, false);
461
462 break;
463 }
464 default:
465 error = ENOTTY;
466 break;
467 }
468
469 return error;
470 }
471
472 /*
473 * sysmon_envsys_create:
474 *
475 * + Allocates a new sysmon_envsys object and initializes the
476 * stuff for sensors and events.
477 */
478 struct sysmon_envsys *
479 sysmon_envsys_create(void)
480 {
481 struct sysmon_envsys *sme;
482
483 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
484 TAILQ_INIT(&sme->sme_sensors_list);
485 LIST_INIT(&sme->sme_events_list);
486 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
487 cv_init(&sme->sme_condvar, "sme_wait");
488
489 return sme;
490 }
491
492 /*
493 * sysmon_envsys_destroy:
494 *
495 * + Removes all sensors from the tail queue, destroys the callout
496 * and frees the sysmon_envsys object.
497 */
498 void
499 sysmon_envsys_destroy(struct sysmon_envsys *sme)
500 {
501 envsys_data_t *edata;
502
503 KASSERT(sme != NULL);
504
505 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
506 edata = TAILQ_FIRST(&sme->sme_sensors_list);
507 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
508 }
509 mutex_destroy(&sme->sme_mtx);
510 cv_destroy(&sme->sme_condvar);
511 kmem_free(sme, sizeof(*sme));
512 }
513
514 /*
515 * sysmon_envsys_sensor_attach:
516 *
517 * + Attachs a sensor into a sysmon_envsys device checking that units
518 * is set to a valid type and description is unique and not empty.
519 */
520 int
521 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
522 {
523 const struct sme_description_table *sdt_units;
524 envsys_data_t *oedata;
525 int i;
526
527 KASSERT(sme != NULL || edata != NULL);
528
529 /*
530 * Find the correct units for this sensor.
531 */
532 sdt_units = sme_get_description_table(SME_DESC_UNITS);
533 for (i = 0; sdt_units[i].type != -1; i++)
534 if (sdt_units[i].type == edata->units)
535 break;
536
537 if (strcmp(sdt_units[i].desc, "unknown") == 0)
538 return EINVAL;
539
540 /*
541 * Check that description is not empty or duplicate.
542 */
543 if (strlen(edata->desc) == 0)
544 return EINVAL;
545
546 mutex_enter(&sme->sme_mtx);
547 sysmon_envsys_acquire(sme, true);
548 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
549 if (strcmp(oedata->desc, edata->desc) == 0) {
550 sysmon_envsys_release(sme, true);
551 mutex_exit(&sme->sme_mtx);
552 return EEXIST;
553 }
554 }
555 /*
556 * Ok, the sensor has been added into the device queue.
557 */
558 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
559
560 /*
561 * Give the sensor a index position.
562 */
563 edata->sensor = sme->sme_nsensors;
564 sme->sme_nsensors++;
565 sysmon_envsys_release(sme, true);
566 mutex_exit(&sme->sme_mtx);
567
568 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
569 __func__, edata->sensor, edata->desc,
570 sdt_units[i].type, sdt_units[i].desc));
571
572 return 0;
573 }
574
575 /*
576 * sysmon_envsys_sensor_detach:
577 *
578 * + Detachs a sensor from a sysmon_envsys device and decrements the
579 * sensors count on success.
580 */
581 int
582 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
583 {
584 envsys_data_t *oedata;
585 bool found = false;
586
587 KASSERT(sme != NULL || edata != NULL);
588
589 /*
590 * Check the sensor is already on the list.
591 */
592 mutex_enter(&sme->sme_mtx);
593 sysmon_envsys_acquire(sme, true);
594 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
595 if (oedata->sensor == edata->sensor) {
596 found = true;
597 break;
598 }
599 }
600
601 if (!found) {
602 sysmon_envsys_release(sme, true);
603 mutex_exit(&sme->sme_mtx);
604 return EINVAL;
605 }
606
607 /*
608 * remove it and decrement the sensors count.
609 */
610 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
611 sme->sme_nsensors--;
612 sysmon_envsys_release(sme, true);
613 mutex_exit(&sme->sme_mtx);
614
615 return 0;
616 }
617
618
619 /*
620 * sysmon_envsys_register:
621 *
622 * + Register a sysmon envsys device.
623 * + Create array of dictionaries for a device.
624 */
625 int
626 sysmon_envsys_register(struct sysmon_envsys *sme)
627 {
628 struct sme_evdrv {
629 SLIST_ENTRY(sme_evdrv) evdrv_head;
630 sme_event_drv_t *evdrv;
631 };
632 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
633 struct sme_evdrv *evdv = NULL;
634 struct sysmon_envsys *lsme;
635 prop_array_t array = NULL;
636 prop_dictionary_t dict, dict2;
637 envsys_data_t *edata = NULL;
638 sme_event_drv_t *this_evdrv;
639 int nevent;
640 int error = 0;
641
642 KASSERT(sme != NULL);
643 KASSERT(sme->sme_name != NULL);
644
645 /*
646 * Check if requested sysmon_envsys device is valid
647 * and does not exist already in the list.
648 */
649 mutex_enter(&sme_global_mtx);
650 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
651 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
652 mutex_exit(&sme_global_mtx);
653 return EEXIST;
654 }
655 }
656 mutex_exit(&sme_global_mtx);
657
658 /*
659 * sanity check: if SME_DISABLE_REFRESH is not set,
660 * the sme_refresh function callback must be non NULL.
661 */
662 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
663 if (!sme->sme_refresh)
664 return EINVAL;
665
666 /*
667 * If the list of sensors is empty, there's no point to continue...
668 */
669 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
670 DPRINTF(("%s: sensors list empty for %s\n", __func__,
671 sme->sme_name));
672 return ENOTSUP;
673 }
674
675 /*
676 * Initialize the singly linked list for driver events.
677 */
678 SLIST_INIT(&sme_evdrv_list);
679
680 array = prop_array_create();
681 if (!array)
682 return ENOMEM;
683
684 /*
685 * Iterate over all sensors and create a dictionary per sensor.
686 * We must respect the order in which the sensors were added.
687 */
688 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
689 dict = prop_dictionary_create();
690 if (!dict) {
691 error = ENOMEM;
692 goto out2;
693 }
694
695 /*
696 * Create all objects in sensor's dictionary.
697 */
698 this_evdrv = sme_add_sensor_dictionary(sme, array,
699 dict, edata);
700 if (this_evdrv) {
701 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
702 evdv->evdrv = this_evdrv;
703 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
704 }
705 }
706
707 /*
708 * If the array does not contain any object (sensor), there's
709 * no need to attach the driver.
710 */
711 if (prop_array_count(array) == 0) {
712 error = EINVAL;
713 DPRINTF(("%s: empty array for '%s'\n", __func__,
714 sme->sme_name));
715 goto out;
716 }
717
718 /*
719 * Add the dictionary for the global properties of this device.
720 */
721 dict2 = prop_dictionary_create();
722 if (!dict2) {
723 error = ENOMEM;
724 goto out;
725 }
726
727 error = sme_add_property_dictionary(sme, array, dict2);
728 if (error) {
729 prop_object_release(dict2);
730 goto out;
731 }
732
733 /*
734 * Add the array into the global dictionary for the driver.
735 *
736 * <dict>
737 * <key>foo0</key>
738 * <array>
739 * ...
740 */
741 mutex_enter(&sme_global_mtx);
742 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
743 error = EINVAL;
744 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
745 sme->sme_name));
746 goto out;
747 }
748
749 /*
750 * Add the device into the list.
751 */
752 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
753 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
754 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
755 mutex_exit(&sme_global_mtx);
756
757 out:
758 /*
759 * No errors? Make an initial data refresh if was requested,
760 * then register the events that were set in the driver. Do
761 * the refresh first in case it is needed to establish the
762 * limits or max_value needed by some events.
763 */
764 if (error == 0) {
765 nevent = 0;
766 sysmon_task_queue_init();
767
768 if (sme->sme_flags & SME_INIT_REFRESH) {
769 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
770 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
771 __func__, sme->sme_name));
772 }
773 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
774 sysmon_task_queue_sched(0,
775 sme_event_drvadd, evdv->evdrv);
776 nevent++;
777 }
778 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
779 __func__, sme->sme_name, sme->sme_nsensors, nevent));
780 }
781
782 out2:
783 while (!SLIST_EMPTY(&sme_evdrv_list)) {
784 evdv = SLIST_FIRST(&sme_evdrv_list);
785 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
786 kmem_free(evdv, sizeof(*evdv));
787 }
788 if (!error)
789 return 0;
790
791 /*
792 * Ugh... something wasn't right; unregister all events and sensors
793 * previously assigned and destroy the array with all its objects.
794 */
795 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
796 sme->sme_name, error));
797
798 sme_event_unregister_all(sme);
799 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
800 edata = TAILQ_FIRST(&sme->sme_sensors_list);
801 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
802 }
803 sysmon_envsys_destroy_plist(array);
804 return error;
805 }
806
807 /*
808 * sysmon_envsys_destroy_plist:
809 *
810 * + Remove all objects from the array of dictionaries that is
811 * created in a sysmon envsys device.
812 */
813 static void
814 sysmon_envsys_destroy_plist(prop_array_t array)
815 {
816 prop_object_iterator_t iter, iter2;
817 prop_dictionary_t dict;
818 prop_object_t obj;
819
820 KASSERT(array != NULL);
821 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
822
823 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
824 prop_array_count(array)));
825
826 iter = prop_array_iterator(array);
827 if (!iter)
828 return;
829
830 while ((dict = prop_object_iterator_next(iter))) {
831 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
832 iter2 = prop_dictionary_iterator(dict);
833 if (!iter2)
834 goto out;
835 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
836 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
837 DPRINTFOBJ(("%s: obj=%s\n", __func__,
838 prop_dictionary_keysym_cstring_nocopy(obj)));
839 prop_dictionary_remove(dict,
840 prop_dictionary_keysym_cstring_nocopy(obj));
841 prop_object_iterator_reset(iter2);
842 }
843 prop_object_iterator_release(iter2);
844 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
845 __func__, prop_dictionary_count(dict)));
846 prop_object_release(dict);
847 }
848
849 out:
850 prop_object_iterator_release(iter);
851 prop_object_release(array);
852 }
853
854 /*
855 * sysmon_envsys_unregister:
856 *
857 * + Unregister a sysmon envsys device.
858 */
859 void
860 sysmon_envsys_unregister(struct sysmon_envsys *sme)
861 {
862 prop_array_t array;
863 struct sysmon_envsys *osme;
864
865 KASSERT(sme != NULL);
866
867 /*
868 * Unregister all events associated with device.
869 */
870 sme_event_unregister_all(sme);
871 /*
872 * Decrement global sensors counter and the first_sensor index
873 * for remaining devices in the list (only used for compatibility
874 * with previous API), and remove the device from the list.
875 */
876 mutex_enter(&sme_global_mtx);
877 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
878 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
879 if (osme->sme_fsensor >= sme->sme_fsensor)
880 osme->sme_fsensor -= sme->sme_nsensors;
881 }
882 LIST_REMOVE(sme, sme_list);
883 mutex_exit(&sme_global_mtx);
884
885 /*
886 * Remove the device (and all its objects) from the global dictionary.
887 */
888 array = prop_dictionary_get(sme_propd, sme->sme_name);
889 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
890 mutex_enter(&sme_global_mtx);
891 prop_dictionary_remove(sme_propd, sme->sme_name);
892 mutex_exit(&sme_global_mtx);
893 sysmon_envsys_destroy_plist(array);
894 }
895 /*
896 * And finally destroy the sysmon_envsys object.
897 */
898 sysmon_envsys_destroy(sme);
899 }
900
901 /*
902 * sysmon_envsys_find:
903 *
904 * + Find a sysmon envsys device and mark it as busy
905 * once it's available.
906 */
907 struct sysmon_envsys *
908 sysmon_envsys_find(const char *name)
909 {
910 struct sysmon_envsys *sme;
911
912 mutex_enter(&sme_global_mtx);
913 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
914 if (strcmp(sme->sme_name, name) == 0) {
915 sysmon_envsys_acquire(sme, false);
916 break;
917 }
918 }
919 mutex_exit(&sme_global_mtx);
920
921 return sme;
922 }
923
924 /*
925 * Compatibility function with the old API.
926 */
927 struct sysmon_envsys *
928 sysmon_envsys_find_40(u_int idx)
929 {
930 struct sysmon_envsys *sme;
931
932 mutex_enter(&sme_global_mtx);
933 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
934 if (idx >= sme->sme_fsensor &&
935 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
936 sysmon_envsys_acquire(sme, false);
937 break;
938 }
939 }
940 mutex_exit(&sme_global_mtx);
941
942 return sme;
943 }
944
945 /*
946 * sysmon_envsys_acquire:
947 *
948 * + Wait until a sysmon envsys device is available and mark
949 * it as busy.
950 */
951 void
952 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
953 {
954 KASSERT(sme != NULL);
955
956 if (locked) {
957 while (sme->sme_flags & SME_FLAG_BUSY)
958 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
959 sme->sme_flags |= SME_FLAG_BUSY;
960 } else {
961 mutex_enter(&sme->sme_mtx);
962 while (sme->sme_flags & SME_FLAG_BUSY)
963 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
964 sme->sme_flags |= SME_FLAG_BUSY;
965 mutex_exit(&sme->sme_mtx);
966 }
967 }
968
969 /*
970 * sysmon_envsys_release:
971 *
972 * + Unmark a sysmon envsys device as busy, and notify
973 * waiters.
974 */
975 void
976 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
977 {
978 KASSERT(sme != NULL);
979
980 if (locked) {
981 sme->sme_flags &= ~SME_FLAG_BUSY;
982 cv_broadcast(&sme->sme_condvar);
983 } else {
984 mutex_enter(&sme->sme_mtx);
985 sme->sme_flags &= ~SME_FLAG_BUSY;
986 cv_broadcast(&sme->sme_condvar);
987 mutex_exit(&sme->sme_mtx);
988 }
989 }
990
991 /*
992 * sme_initial_refresh:
993 *
994 * + Do an initial refresh of the sensors in a device just after
995 * interrupts are enabled in the autoconf(9) process.
996 *
997 */
998 static void
999 sme_initial_refresh(void *arg)
1000 {
1001 struct sysmon_envsys *sme = arg;
1002 envsys_data_t *edata;
1003
1004 mutex_enter(&sme->sme_mtx);
1005 sysmon_envsys_acquire(sme, true);
1006 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1007 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
1008 (*sme->sme_refresh)(sme, edata);
1009 sysmon_envsys_release(sme, true);
1010 mutex_exit(&sme->sme_mtx);
1011 }
1012
1013 /*
1014 * sme_sensor_dictionary_get:
1015 *
1016 * + Returns a dictionary of a device specified by its index
1017 * position.
1018 */
1019 prop_dictionary_t
1020 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1021 {
1022 prop_object_iterator_t iter;
1023 prop_dictionary_t dict;
1024 prop_object_t obj;
1025
1026 KASSERT(array != NULL || index != NULL);
1027
1028 iter = prop_array_iterator(array);
1029 if (!iter)
1030 return NULL;
1031
1032 while ((dict = prop_object_iterator_next(iter))) {
1033 obj = prop_dictionary_get(dict, "index");
1034 if (prop_string_equals_cstring(obj, index))
1035 break;
1036 }
1037
1038 prop_object_iterator_release(iter);
1039 return dict;
1040 }
1041
1042 /*
1043 * sme_remove_userprops:
1044 *
1045 * + Remove all properties from all devices that were set by
1046 * the ENVSYS_SETDICTIONARY ioctl.
1047 */
1048 static void
1049 sme_remove_userprops(void)
1050 {
1051 struct sysmon_envsys *sme;
1052 prop_array_t array;
1053 prop_dictionary_t sdict;
1054 envsys_data_t *edata = NULL;
1055 char tmp[ENVSYS_DESCLEN];
1056 sysmon_envsys_lim_t lims;
1057 int ptype;
1058
1059 mutex_enter(&sme_global_mtx);
1060 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1061 sysmon_envsys_acquire(sme, false);
1062 array = prop_dictionary_get(sme_propd, sme->sme_name);
1063
1064 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1065 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1066 edata->sensor);
1067 sdict = sme_sensor_dictionary_get(array, tmp);
1068 KASSERT(sdict != NULL);
1069
1070 ptype = 0;
1071 if (edata->upropset & PROP_BATTCAP) {
1072 prop_dictionary_remove(sdict,
1073 "critical-capacity");
1074 ptype = PENVSYS_EVENT_CAPACITY;
1075 }
1076
1077 if (edata->upropset & PROP_BATTWARN) {
1078 prop_dictionary_remove(sdict,
1079 "warning-capacity");
1080 ptype = PENVSYS_EVENT_CAPACITY;
1081 }
1082
1083 if (edata->upropset & PROP_BATTHIGH) {
1084 prop_dictionary_remove(sdict,
1085 "high-capacity");
1086 ptype = PENVSYS_EVENT_CAPACITY;
1087 }
1088
1089 if (edata->upropset & PROP_BATTMAX) {
1090 prop_dictionary_remove(sdict,
1091 "maximum-capacity");
1092 ptype = PENVSYS_EVENT_CAPACITY;
1093 }
1094 if (edata->upropset & PROP_WARNMAX) {
1095 prop_dictionary_remove(sdict, "warning-max");
1096 ptype = PENVSYS_EVENT_LIMITS;
1097 }
1098
1099 if (edata->upropset & PROP_WARNMIN) {
1100 prop_dictionary_remove(sdict, "warning-min");
1101 ptype = PENVSYS_EVENT_LIMITS;
1102 }
1103
1104 if (edata->upropset & PROP_CRITMAX) {
1105 prop_dictionary_remove(sdict, "critical-max");
1106 ptype = PENVSYS_EVENT_LIMITS;
1107 }
1108
1109 if (edata->upropset & PROP_CRITMIN) {
1110 prop_dictionary_remove(sdict, "critical-min");
1111 ptype = PENVSYS_EVENT_LIMITS;
1112 }
1113 if (edata->upropset & PROP_RFACT) {
1114 (void)sme_sensor_upint32(sdict, "rfact", 0);
1115 edata->rfact = 0;
1116 }
1117
1118 if (edata->upropset & PROP_DESC)
1119 (void)sme_sensor_upstring(sdict,
1120 "description", edata->desc);
1121
1122 if (ptype == 0)
1123 continue;
1124
1125 /*
1126 * If there were any limit values removed, we
1127 * need to revert to initial limits.
1128 *
1129 * First, tell the driver that we need it to
1130 * restore any h/w limits which may have been
1131 * changed to stored, boot-time values. Then
1132 * we need to retrieve those limits and update
1133 * the event data in the dictionary.
1134 */
1135 if (sme->sme_set_limits) {
1136 DPRINTF(("%s: reset limits for %s %s\n",
1137 __func__, sme->sme_name, edata->desc));
1138 (*sme->sme_set_limits)(sme, edata, NULL, NULL);
1139 }
1140 if (sme->sme_get_limits) {
1141 DPRINTF(("%s: retrieve limits for %s %s\n",
1142 __func__, sme->sme_name, edata->desc));
1143 lims = edata->limits;
1144 (*sme->sme_get_limits)(sme, edata, &lims,
1145 &edata->upropset);
1146 } else
1147 edata->upropset &= ~PROP_LIMITS;
1148
1149 if (edata->upropset & PROP_LIMITS) {
1150 DPRINTF(("%s: install limits for %s %s\n",
1151 __func__, sme->sme_name, edata->desc));
1152 sme_update_limits(sme, edata);
1153 }
1154 }
1155
1156 /*
1157 * Restore default timeout value.
1158 */
1159 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1160 sysmon_envsys_release(sme, false);
1161 }
1162 mutex_exit(&sme_global_mtx);
1163 }
1164
1165 /*
1166 * sme_add_property_dictionary:
1167 *
1168 * + Add global properties into a device.
1169 */
1170 static int
1171 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1172 prop_dictionary_t dict)
1173 {
1174 prop_dictionary_t pdict;
1175 const char *class;
1176 int error = 0;
1177
1178 pdict = prop_dictionary_create();
1179 if (!pdict)
1180 return EINVAL;
1181
1182 /*
1183 * Add the 'refresh-timeout' and 'dev-class' objects into the
1184 * 'device-properties' dictionary.
1185 *
1186 * ...
1187 * <dict>
1188 * <key>device-properties</key>
1189 * <dict>
1190 * <key>refresh-timeout</key>
1191 * <integer>120</integer<
1192 * <key>device-class</key>
1193 * <string>class_name</string>
1194 * </dict>
1195 * </dict>
1196 * ...
1197 *
1198 */
1199 if (!sme->sme_events_timeout)
1200 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1201
1202 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1203 sme->sme_events_timeout)) {
1204 error = EINVAL;
1205 goto out;
1206 }
1207 if (sme->sme_class == SME_CLASS_BATTERY)
1208 class = "battery";
1209 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1210 class = "ac-adapter";
1211 else
1212 class = "other";
1213 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1214 error = EINVAL;
1215 goto out;
1216 }
1217
1218 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1219 error = EINVAL;
1220 goto out;
1221 }
1222
1223 /*
1224 * Add the device dictionary into the sysmon envsys array.
1225 */
1226 if (!prop_array_add(array, dict))
1227 error = EINVAL;
1228
1229 out:
1230 prop_object_release(pdict);
1231 return error;
1232 }
1233
1234 /*
1235 * sme_add_sensor_dictionary:
1236 *
1237 * + Adds the sensor objects into the dictionary and returns a pointer
1238 * to a sme_event_drv_t object if a monitoring flag was set
1239 * (or NULL otherwise).
1240 */
1241 static sme_event_drv_t *
1242 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1243 prop_dictionary_t dict, envsys_data_t *edata)
1244 {
1245 const struct sme_description_table *sdt, *sdt_units;
1246 sme_event_drv_t *sme_evdrv_t = NULL;
1247 int i, j;
1248 char indexstr[ENVSYS_DESCLEN];
1249
1250 /*
1251 * Find the correct units for this sensor.
1252 */
1253 sdt_units = sme_get_description_table(SME_DESC_UNITS);
1254 for (i = 0; sdt_units[i].type != -1; i++)
1255 if (sdt_units[i].type == edata->units)
1256 break;
1257
1258 /*
1259 * Add the index sensor string.
1260 *
1261 * ...
1262 * <key>index</eyr
1263 * <string>sensor0</string>
1264 * ...
1265 */
1266 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1267 if (sme_sensor_upstring(dict, "index", indexstr))
1268 goto bad;
1269
1270 /*
1271 * ...
1272 * <key>type</key>
1273 * <string>foo</string>
1274 * <key>description</key>
1275 * <string>blah blah</string>
1276 * ...
1277 */
1278 if (sme_sensor_upstring(dict, "type", sdt_units[i].desc))
1279 goto bad;
1280
1281 if (sme_sensor_upstring(dict, "description", edata->desc))
1282 goto bad;
1283
1284 /*
1285 * Add sensor's state description.
1286 *
1287 * ...
1288 * <key>state</key>
1289 * <string>valid</string>
1290 * ...
1291 */
1292 sdt = sme_get_description_table(SME_DESC_STATES);
1293 for (j = 0; sdt[j].type != -1; j++)
1294 if (sdt[j].type == edata->state)
1295 break;
1296
1297 DPRINTF(("%s: sensor desc=%s type=%d state=%d\n",
1298 __func__, edata->desc, edata->units, edata->state));
1299
1300 if (sme_sensor_upstring(dict, "state", sdt[j].desc))
1301 goto bad;
1302
1303 /*
1304 * Add the monitoring boolean object:
1305 *
1306 * ...
1307 * <key>monitoring-supported</key>
1308 * <true/>
1309 * ...
1310 *
1311 * always false on Battery {capacity,charge}, Drive and Indicator types.
1312 * They cannot be monitored.
1313 *
1314 */
1315 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1316 (edata->units == ENVSYS_INDICATOR) ||
1317 (edata->units == ENVSYS_DRIVE) ||
1318 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1319 (edata->units == ENVSYS_BATTERY_CHARGE)) {
1320 if (sme_sensor_upbool(dict, "monitoring-supported", false))
1321 goto out;
1322 } else {
1323 if (sme_sensor_upbool(dict, "monitoring-supported", true))
1324 goto out;
1325 }
1326
1327 /*
1328 * Add the percentage boolean object, true if ENVSYS_FPERCENT
1329 * is set or false otherwise.
1330 *
1331 * ...
1332 * <key>want-percentage</key>
1333 * <true/>
1334 * ...
1335 */
1336 if (edata->flags & ENVSYS_FPERCENT)
1337 if (sme_sensor_upbool(dict, "want-percentage", true))
1338 goto out;
1339
1340 /*
1341 * Add the allow-rfact boolean object, true if
1342 * ENVSYS_FCHANGERFACT if set or false otherwise.
1343 *
1344 * ...
1345 * <key>allow-rfact</key>
1346 * <true/>
1347 * ...
1348 */
1349 if (edata->units == ENVSYS_SVOLTS_DC ||
1350 edata->units == ENVSYS_SVOLTS_AC) {
1351 if (edata->flags & ENVSYS_FCHANGERFACT) {
1352 if (sme_sensor_upbool(dict, "allow-rfact", true))
1353 goto out;
1354 } else {
1355 if (sme_sensor_upbool(dict, "allow-rfact", false))
1356 goto out;
1357 }
1358 }
1359
1360 /*
1361 * Add the object for battery capacity sensors:
1362 *
1363 * ...
1364 * <key>battery-capacity</key>
1365 * <string>NORMAL</string>
1366 * ...
1367 */
1368 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1369 sdt = sme_get_description_table(SME_DESC_BATTERY_CAPACITY);
1370 for (j = 0; sdt[j].type != -1; j++)
1371 if (sdt[j].type == edata->value_cur)
1372 break;
1373
1374 if (sme_sensor_upstring(dict, "battery-capacity", sdt[j].desc))
1375 goto out;
1376 }
1377
1378 /*
1379 * Add the drive-state object for drive sensors:
1380 *
1381 * ...
1382 * <key>drive-state</key>
1383 * <string>drive is online</string>
1384 * ...
1385 */
1386 if (edata->units == ENVSYS_DRIVE) {
1387 sdt = sme_get_description_table(SME_DESC_DRIVE_STATES);
1388 for (j = 0; sdt[j].type != -1; j++)
1389 if (sdt[j].type == edata->value_cur)
1390 break;
1391
1392 if (sme_sensor_upstring(dict, "drive-state", sdt[j].desc))
1393 goto out;
1394 }
1395
1396 /*
1397 * Add the following objects if sensor is enabled...
1398 */
1399 if (edata->state == ENVSYS_SVALID) {
1400 /*
1401 * Add the following objects:
1402 *
1403 * ...
1404 * <key>rpms</key>
1405 * <integer>2500</integer>
1406 * <key>rfact</key>
1407 * <integer>10000</integer>
1408 * <key>cur-value</key>
1409 * <integer>1250</integer>
1410 * <key>min-value</key>
1411 * <integer>800</integer>
1412 * <key>max-value</integer>
1413 * <integer>3000</integer>
1414 * <key>avg-value</integer>
1415 * <integer>1400</integer>
1416 * ...
1417 */
1418 if (edata->units == ENVSYS_SFANRPM)
1419 if (sme_sensor_upuint32(dict, "rpms", edata->rpms))
1420 goto out;
1421
1422 if (edata->units == ENVSYS_SVOLTS_AC ||
1423 edata->units == ENVSYS_SVOLTS_DC)
1424 if (sme_sensor_upint32(dict, "rfact", edata->rfact))
1425 goto out;
1426
1427 if (sme_sensor_upint32(dict, "cur-value", edata->value_cur))
1428 goto out;
1429
1430 if (edata->flags & ENVSYS_FVALID_MIN) {
1431 if (sme_sensor_upint32(dict,
1432 "min-value",
1433 edata->value_min))
1434 goto out;
1435 }
1436
1437 if (edata->flags & ENVSYS_FVALID_MAX) {
1438 if (sme_sensor_upint32(dict,
1439 "max-value",
1440 edata->value_max))
1441 goto out;
1442 }
1443
1444 if (edata->flags & ENVSYS_FVALID_AVG) {
1445 if (sme_sensor_upint32(dict,
1446 "avg-value",
1447 edata->value_avg))
1448 goto out;
1449 }
1450 }
1451
1452 /*
1453 * ...
1454 * </dict>
1455 *
1456 * Add the dictionary into the array.
1457 *
1458 */
1459 if (!prop_array_add(array, dict)) {
1460 DPRINTF(("%s: prop_array_add\n", __func__));
1461 goto bad;
1462 }
1463
1464 /*
1465 * Register new event(s) if any monitoring flag was set.
1466 */
1467 if (edata->flags & ENVSYS_FMONANY) {
1468 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1469 sme_evdrv_t->sed_sdict = dict;
1470 sme_evdrv_t->sed_edata = edata;
1471 sme_evdrv_t->sed_sme = sme;
1472 sme_evdrv_t->sed_powertype = sdt_units[i].crittype;
1473 }
1474
1475 out:
1476 return sme_evdrv_t;
1477
1478 bad:
1479 prop_object_release(dict);
1480 return NULL;
1481 }
1482
1483 /*
1484 * Find the maximum of all currently reported values.
1485 * The provided callback decides wether a sensor is part of the
1486 * maximum calculation (by returning true) or ignored (callback
1487 * returns false). Example usage: callback selects temperature
1488 * sensors in a given thermal zone, the function calculates the
1489 * maximum currently reported temperature in this zone.
1490 * If the parameter "refresh" is true, new values will be aquired
1491 * from the hardware, if not, the last reported value will be used.
1492 */
1493 uint32_t
1494 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1495 bool refresh)
1496 {
1497 struct sysmon_envsys *sme;
1498 uint32_t maxv, v;
1499
1500 maxv = 0;
1501 mutex_enter(&sme_global_mtx);
1502 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1503 sysmon_envsys_acquire(sme, false);
1504 v = sme_get_max_value(sme, predicate, refresh);
1505 sysmon_envsys_release(sme, false);
1506 if (v > maxv)
1507 maxv = v;
1508 }
1509 mutex_exit(&sme_global_mtx);
1510 return maxv;
1511 }
1512
1513 static uint32_t
1514 sme_get_max_value(struct sysmon_envsys *sme,
1515 bool (*predicate)(const envsys_data_t*),
1516 bool refresh)
1517 {
1518 envsys_data_t *edata;
1519 uint32_t maxv, v;
1520
1521 /*
1522 * Iterate over all sensors that match the predicate
1523 */
1524 maxv = 0;
1525 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1526 if (!(*predicate)(edata))
1527 continue;
1528
1529 /*
1530 * refresh sensor data via sme_refresh only if the
1531 * flag is not set.
1532 */
1533 if (refresh && (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
1534 mutex_enter(&sme->sme_mtx);
1535 (*sme->sme_refresh)(sme, edata);
1536 mutex_exit(&sme->sme_mtx);
1537 }
1538
1539 v = edata->value_cur;
1540 if (v > maxv)
1541 maxv = v;
1542
1543 }
1544
1545 return maxv;
1546 }
1547
1548 /*
1549 * sme_update_dictionary:
1550 *
1551 * + Update per-sensor dictionaries with new values if there were
1552 * changes, otherwise the object in dictionary is untouched.
1553 */
1554 int
1555 sme_update_dictionary(struct sysmon_envsys *sme)
1556 {
1557 const struct sme_description_table *sdt;
1558 envsys_data_t *edata;
1559 prop_object_t array, dict, obj, obj2;
1560 int j, error = 0;
1561
1562 /*
1563 * Retrieve the array of dictionaries in device.
1564 */
1565 array = prop_dictionary_get(sme_propd, sme->sme_name);
1566 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1567 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1568 return EINVAL;
1569 }
1570
1571 /*
1572 * Get the last dictionary on the array, this contains the
1573 * 'device-properties' sub-dictionary.
1574 */
1575 obj = prop_array_get(array, prop_array_count(array) - 1);
1576 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1577 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1578 return EINVAL;
1579 }
1580
1581 obj2 = prop_dictionary_get(obj, "device-properties");
1582 if (!obj2)
1583 return EINVAL;
1584
1585 /*
1586 * Update the 'refresh-timeout' property.
1587 */
1588 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1589 sme->sme_events_timeout))
1590 return EINVAL;
1591
1592 /*
1593 * - iterate over all sensors.
1594 * - fetch new data.
1595 * - check if data in dictionary is different than new data.
1596 * - update dictionary if there were changes.
1597 */
1598 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1599 sme->sme_name, sme->sme_nsensors));
1600
1601 /*
1602 * Don't bother with locking when traversing the queue,
1603 * the device is already marked as busy; if a sensor
1604 * is going to be removed or added it will have to wait.
1605 */
1606 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1607 /*
1608 * refresh sensor data via sme_refresh only if the
1609 * flag is not set.
1610 */
1611 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
1612 mutex_enter(&sme->sme_mtx);
1613 (*sme->sme_refresh)(sme, edata);
1614 mutex_exit(&sme->sme_mtx);
1615 }
1616
1617 /*
1618 * retrieve sensor's dictionary.
1619 */
1620 dict = prop_array_get(array, edata->sensor);
1621 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1622 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1623 __func__, edata->sensor, sme->sme_name));
1624 return EINVAL;
1625 }
1626
1627 /*
1628 * update sensor's state.
1629 */
1630 sdt = sme_get_description_table(SME_DESC_STATES);
1631 for (j = 0; sdt[j].type != -1; j++)
1632 if (sdt[j].type == edata->state)
1633 break;
1634
1635 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n",
1636 __func__, edata->sensor, sdt[j].type, sdt[j].desc,
1637 edata->flags));
1638
1639 error = sme_sensor_upstring(dict, "state", sdt[j].desc);
1640 if (error)
1641 break;
1642
1643 /*
1644 * update sensor's type.
1645 */
1646 sdt = sme_get_description_table(SME_DESC_UNITS);
1647 for (j = 0; sdt[j].type != -1; j++)
1648 if (sdt[j].type == edata->units)
1649 break;
1650
1651 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n",
1652 __func__, edata->sensor, sdt[j].type, sdt[j].desc));
1653
1654 error = sme_sensor_upstring(dict, "type", sdt[j].desc);
1655 if (error)
1656 break;
1657
1658 /*
1659 * update sensor's current value.
1660 */
1661 error = sme_sensor_upint32(dict,
1662 "cur-value",
1663 edata->value_cur);
1664 if (error)
1665 break;
1666
1667 /*
1668 * Battery charge, Integer and Indicator types do not
1669 * need the following objects, so skip them.
1670 */
1671 if (edata->units == ENVSYS_INTEGER ||
1672 edata->units == ENVSYS_INDICATOR ||
1673 edata->units == ENVSYS_BATTERY_CHARGE)
1674 continue;
1675
1676 /*
1677 * update sensor flags.
1678 */
1679 if (edata->flags & ENVSYS_FPERCENT) {
1680 error = sme_sensor_upbool(dict,
1681 "want-percentage",
1682 true);
1683 if (error)
1684 break;
1685 }
1686
1687 /*
1688 * update sensor's {avg,max,min}-value.
1689 */
1690 if (edata->flags & ENVSYS_FVALID_MAX) {
1691 error = sme_sensor_upint32(dict,
1692 "max-value",
1693 edata->value_max);
1694 if (error)
1695 break;
1696 }
1697
1698 if (edata->flags & ENVSYS_FVALID_MIN) {
1699 error = sme_sensor_upint32(dict,
1700 "min-value",
1701 edata->value_min);
1702 if (error)
1703 break;
1704 }
1705
1706 if (edata->flags & ENVSYS_FVALID_AVG) {
1707 error = sme_sensor_upint32(dict,
1708 "avg-value",
1709 edata->value_avg);
1710 if (error)
1711 break;
1712 }
1713
1714 /*
1715 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1716 */
1717 if (edata->units == ENVSYS_SFANRPM) {
1718 error = sme_sensor_upuint32(dict,
1719 "rpms",
1720 edata->rpms);
1721 if (error)
1722 break;
1723 }
1724
1725 /*
1726 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1727 */
1728 if (edata->units == ENVSYS_SVOLTS_AC ||
1729 edata->units == ENVSYS_SVOLTS_DC) {
1730 error = sme_sensor_upint32(dict,
1731 "rfact",
1732 edata->rfact);
1733 if (error)
1734 break;
1735 }
1736
1737 /*
1738 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1739 */
1740 if (edata->units == ENVSYS_DRIVE) {
1741 sdt = sme_get_description_table(SME_DESC_DRIVE_STATES);
1742 for (j = 0; sdt[j].type != -1; j++)
1743 if (sdt[j].type == edata->value_cur)
1744 break;
1745
1746 error = sme_sensor_upstring(dict,
1747 "drive-state",
1748 sdt[j].desc);
1749 if (error)
1750 break;
1751 }
1752
1753 /*
1754 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1755 * sensors.
1756 */
1757 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1758 sdt =
1759 sme_get_description_table(SME_DESC_BATTERY_CAPACITY);
1760 for (j = 0; sdt[j].type != -1; j++)
1761 if (sdt[j].type == edata->value_cur)
1762 break;
1763
1764 error = sme_sensor_upstring(dict,
1765 "battery-capacity",
1766 sdt[j].desc);
1767 if (error)
1768 break;
1769 }
1770 }
1771
1772 return error;
1773 }
1774
1775 /*
1776 * sme_userset_dictionary:
1777 *
1778 * + Parse the userland dictionary and run the appropiate tasks
1779 * that were specified.
1780 */
1781 int
1782 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1783 prop_array_t array)
1784 {
1785 const struct sme_description_table *sdt;
1786 envsys_data_t *edata;
1787 prop_dictionary_t dict, tdict = NULL;
1788 prop_object_t obj, obj1, obj2, tobj = NULL;
1789 uint32_t props;
1790 uint64_t refresh_timo = 0;
1791 sysmon_envsys_lim_t lims;
1792 int i, error = 0;
1793 const char *blah;
1794 bool targetfound = false;
1795
1796 /*
1797 * The user wanted to change the refresh timeout value for this
1798 * device.
1799 *
1800 * Get the 'device-properties' object from the userland dictionary.
1801 */
1802 obj = prop_dictionary_get(udict, "device-properties");
1803 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1804 /*
1805 * Get the 'refresh-timeout' property for this device.
1806 */
1807 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1808 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1809 targetfound = true;
1810 refresh_timo =
1811 prop_number_unsigned_integer_value(obj1);
1812 if (refresh_timo < 1)
1813 error = EINVAL;
1814 else {
1815 mutex_enter(&sme->sme_mtx);
1816 sme->sme_events_timeout = refresh_timo;
1817 mutex_exit(&sme->sme_mtx);
1818 }
1819 }
1820 return error;
1821
1822 } else if (!obj) {
1823 /*
1824 * Get sensor's index from userland dictionary.
1825 */
1826 obj = prop_dictionary_get(udict, "index");
1827 if (!obj)
1828 return EINVAL;
1829 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1830 DPRINTF(("%s: 'index' not a string\n", __func__));
1831 return EINVAL;
1832 }
1833 } else
1834 return EINVAL;
1835
1836 /*
1837 * Don't bother with locking when traversing the queue,
1838 * the device is already marked as busy; if a sensor
1839 * is going to be removed or added it will have to wait.
1840 */
1841 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1842 /*
1843 * Get a dictionary and check if it's our sensor by checking
1844 * at its index position.
1845 */
1846 dict = prop_array_get(array, edata->sensor);
1847 obj1 = prop_dictionary_get(dict, "index");
1848
1849 /*
1850 * is it our sensor?
1851 */
1852 if (!prop_string_equals(obj1, obj))
1853 continue;
1854
1855 props = 0;
1856
1857 /*
1858 * Check if a new description operation was
1859 * requested by the user and set new description.
1860 */
1861 obj2 = prop_dictionary_get(udict, "description");
1862 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1863 targetfound = true;
1864 blah = prop_string_cstring_nocopy(obj2);
1865
1866 /*
1867 * Check for duplicate description.
1868 */
1869 for (i = 0; i < sme->sme_nsensors; i++) {
1870 if (i == edata->sensor)
1871 continue;
1872 tdict = prop_array_get(array, i);
1873 tobj =
1874 prop_dictionary_get(tdict, "description");
1875 if (prop_string_equals(obj2, tobj)) {
1876 error = EEXIST;
1877 goto out;
1878 }
1879 }
1880
1881 /*
1882 * Update the object in dictionary.
1883 */
1884 mutex_enter(&sme->sme_mtx);
1885 error = sme_sensor_upstring(dict,
1886 "description",
1887 blah);
1888 if (error) {
1889 mutex_exit(&sme->sme_mtx);
1890 goto out;
1891 }
1892
1893 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1894 __func__, edata->sensor, blah));
1895 edata->upropset |= PROP_DESC;
1896 mutex_exit(&sme->sme_mtx);
1897 }
1898
1899 /*
1900 * did the user want to change the rfact?
1901 */
1902 obj2 = prop_dictionary_get(udict, "rfact");
1903 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1904 targetfound = true;
1905 if (edata->flags & ENVSYS_FCHANGERFACT) {
1906 mutex_enter(&sme->sme_mtx);
1907 edata->rfact = prop_number_integer_value(obj2);
1908 edata->upropset |= PROP_RFACT;
1909 mutex_exit(&sme->sme_mtx);
1910 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1911 __func__, edata->sensor, edata->rfact));
1912 } else {
1913 error = ENOTSUP;
1914 goto out;
1915 }
1916 }
1917
1918 sdt = sme_get_description_table(SME_DESC_UNITS);
1919 for (i = 0; sdt[i].type != -1; i++)
1920 if (sdt[i].type == edata->units)
1921 break;
1922
1923 /*
1924 * did the user want to set a critical capacity event?
1925 */
1926 obj2 = prop_dictionary_get(udict, "critical-capacity");
1927 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1928 targetfound = true;
1929 lims.sel_critmin = prop_number_integer_value(obj2);
1930 props |= PROP_BATTCAP;
1931 }
1932
1933 /*
1934 * did the user want to set a warning capacity event?
1935 */
1936 obj2 = prop_dictionary_get(udict, "warning-capacity");
1937 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1938 targetfound = true;
1939 lims.sel_warnmin = prop_number_integer_value(obj2);
1940 props |= PROP_BATTWARN;
1941 }
1942
1943 /*
1944 * did the user want to set a high capacity event?
1945 */
1946 obj2 = prop_dictionary_get(udict, "high-capacity");
1947 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1948 targetfound = true;
1949 lims.sel_warnmin = prop_number_integer_value(obj2);
1950 props |= PROP_BATTHIGH;
1951 }
1952
1953 /*
1954 * did the user want to set a maximum capacity event?
1955 */
1956 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1957 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1958 targetfound = true;
1959 lims.sel_warnmin = prop_number_integer_value(obj2);
1960 props |= PROP_BATTMAX;
1961 }
1962
1963 /*
1964 * did the user want to set a critical max event?
1965 */
1966 obj2 = prop_dictionary_get(udict, "critical-max");
1967 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1968 targetfound = true;
1969 lims.sel_critmax = prop_number_integer_value(obj2);
1970 props |= PROP_CRITMAX;
1971 }
1972
1973 /*
1974 * did the user want to set a warning max event?
1975 */
1976 obj2 = prop_dictionary_get(udict, "warning-max");
1977 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1978 targetfound = true;
1979 lims.sel_warnmax = prop_number_integer_value(obj2);
1980 props |= PROP_WARNMAX;
1981 }
1982
1983 /*
1984 * did the user want to set a critical min event?
1985 */
1986 obj2 = prop_dictionary_get(udict, "critical-min");
1987 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1988 targetfound = true;
1989 lims.sel_critmin = prop_number_integer_value(obj2);
1990 props |= PROP_CRITMIN;
1991 }
1992
1993 /*
1994 * did the user want to set a warning min event?
1995 */
1996 obj2 = prop_dictionary_get(udict, "warning-min");
1997 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1998 targetfound = true;
1999 lims.sel_warnmin = prop_number_integer_value(obj2);
2000 props |= PROP_WARNMIN;
2001 }
2002
2003 if (props) {
2004 if (edata->flags & ENVSYS_FMONNOTSUPP) {
2005 error = ENOTSUP;
2006 goto out;
2007 }
2008 error = sme_event_register(dict, edata, sme, &lims,
2009 props,
2010 (edata->flags & ENVSYS_FPERCENT)?
2011 PENVSYS_EVENT_CAPACITY:
2012 PENVSYS_EVENT_LIMITS,
2013 sdt[i].crittype);
2014 if (error == EEXIST)
2015 error = 0;
2016 if (error)
2017 goto out;
2018 }
2019
2020 /*
2021 * All objects in dictionary were processed.
2022 */
2023 break;
2024 }
2025
2026 out:
2027 /*
2028 * invalid target? return the error.
2029 */
2030 if (!targetfound)
2031 error = EINVAL;
2032
2033 return error;
2034 }
2035
2036 /*
2037 * + sysmon_envsys_foreach_sensor
2038 *
2039 * Walk through the devices' sensor lists and execute the callback.
2040 * If the callback returns false, the remainder of the current
2041 * device's sensors are skipped.
2042 */
2043 void
2044 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
2045 bool refresh)
2046 {
2047 struct sysmon_envsys *sme;
2048 envsys_data_t *sensor;
2049
2050 mutex_enter(&sme_global_mtx);
2051 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
2052
2053 sysmon_envsys_acquire(sme, false);
2054 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
2055 if (refresh &&
2056 (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
2057 mutex_enter(&sme->sme_mtx);
2058 (*sme->sme_refresh)(sme, sensor);
2059 mutex_exit(&sme->sme_mtx);
2060 }
2061 if (!(*func)(sme, sensor, arg))
2062 break;
2063 }
2064 sysmon_envsys_release(sme, false);
2065 }
2066 mutex_exit(&sme_global_mtx);
2067 }
2068