sysmon_envsys.c revision 1.117.2.2 1 /* $NetBSD: sysmon_envsys.c,v 1.117.2.2 2012/10/30 17:22:03 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.117.2.2 2012/10/30 17:22:03 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rnd.h>
80
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84
85 kmutex_t sme_global_mtx;
86
87 prop_dictionary_t sme_propd;
88
89 struct sysmon_envsys_lh sysmon_envsys_list;
90
91 static uint32_t sysmon_envsys_next_sensor_index;
92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
93
94 static void sysmon_envsys_destroy_plist(prop_array_t);
95 static void sme_remove_userprops(void);
96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
97 prop_dictionary_t);
98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
99 prop_array_t, prop_dictionary_t, envsys_data_t *);
100 static void sme_initial_refresh(void *);
101 static uint32_t sme_get_max_value(struct sysmon_envsys *,
102 bool (*)(const envsys_data_t*), bool);
103
104 /*
105 * sysmon_envsys_init:
106 *
107 * + Initialize global mutex, dictionary and the linked list.
108 */
109 void
110 sysmon_envsys_init(void)
111 {
112 LIST_INIT(&sysmon_envsys_list);
113 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
114 sme_propd = prop_dictionary_create();
115 }
116
117 /*
118 * sysmonopen_envsys:
119 *
120 * + Open the system monitor device.
121 */
122 int
123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
124 {
125 return 0;
126 }
127
128 /*
129 * sysmonclose_envsys:
130 *
131 * + Close the system monitor device.
132 */
133 int
134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
135 {
136 return 0;
137 }
138
139 /*
140 * sysmonioctl_envsys:
141 *
142 * + Perform a sysmon envsys control request.
143 */
144 int
145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
146 {
147 struct sysmon_envsys *sme = NULL;
148 int error = 0;
149 u_int oidx;
150
151 switch (cmd) {
152 /*
153 * To update the global dictionary with latest data from devices.
154 */
155 case ENVSYS_GETDICTIONARY:
156 {
157 struct plistref *plist = (struct plistref *)data;
158
159 /*
160 * Update dictionaries on all sysmon envsys devices
161 * registered.
162 */
163 mutex_enter(&sme_global_mtx);
164 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
165 sysmon_envsys_acquire(sme, false);
166 error = sme_update_dictionary(sme);
167 if (error) {
168 DPRINTF(("%s: sme_update_dictionary, "
169 "error=%d\n", __func__, error));
170 sysmon_envsys_release(sme, false);
171 mutex_exit(&sme_global_mtx);
172 return error;
173 }
174 sysmon_envsys_release(sme, false);
175 }
176 mutex_exit(&sme_global_mtx);
177 /*
178 * Copy global dictionary to userland.
179 */
180 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
181 break;
182 }
183 /*
184 * To set properties on multiple devices.
185 */
186 case ENVSYS_SETDICTIONARY:
187 {
188 const struct plistref *plist = (const struct plistref *)data;
189 prop_dictionary_t udict;
190 prop_object_iterator_t iter, iter2;
191 prop_object_t obj, obj2;
192 prop_array_t array_u, array_k;
193 const char *devname = NULL;
194
195 if ((flag & FWRITE) == 0)
196 return EPERM;
197
198 /*
199 * Get dictionary from userland.
200 */
201 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
202 if (error) {
203 DPRINTF(("%s: copyin_ioctl error=%d\n",
204 __func__, error));
205 break;
206 }
207
208 iter = prop_dictionary_iterator(udict);
209 if (!iter) {
210 prop_object_release(udict);
211 return ENOMEM;
212 }
213
214 /*
215 * Iterate over the userland dictionary and process
216 * the list of devices.
217 */
218 while ((obj = prop_object_iterator_next(iter))) {
219 array_u = prop_dictionary_get_keysym(udict, obj);
220 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
221 prop_object_iterator_release(iter);
222 prop_object_release(udict);
223 return EINVAL;
224 }
225
226 devname = prop_dictionary_keysym_cstring_nocopy(obj);
227 DPRINTF(("%s: processing the '%s' array requests\n",
228 __func__, devname));
229
230 /*
231 * find the correct sme device.
232 */
233 sme = sysmon_envsys_find(devname);
234 if (!sme) {
235 DPRINTF(("%s: NULL sme\n", __func__));
236 prop_object_iterator_release(iter);
237 prop_object_release(udict);
238 return EINVAL;
239 }
240
241 /*
242 * Find the correct array object with the string
243 * supplied by the userland dictionary.
244 */
245 array_k = prop_dictionary_get(sme_propd, devname);
246 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
247 DPRINTF(("%s: array device failed\n",
248 __func__));
249 sysmon_envsys_release(sme, false);
250 prop_object_iterator_release(iter);
251 prop_object_release(udict);
252 return EINVAL;
253 }
254
255 iter2 = prop_array_iterator(array_u);
256 if (!iter2) {
257 sysmon_envsys_release(sme, false);
258 prop_object_iterator_release(iter);
259 prop_object_release(udict);
260 return ENOMEM;
261 }
262
263 /*
264 * Iterate over the array of dictionaries to
265 * process the list of sensors and properties.
266 */
267 while ((obj2 = prop_object_iterator_next(iter2))) {
268 /*
269 * do the real work now.
270 */
271 error = sme_userset_dictionary(sme,
272 obj2,
273 array_k);
274 if (error) {
275 sysmon_envsys_release(sme, false);
276 prop_object_iterator_release(iter2);
277 prop_object_iterator_release(iter);
278 prop_object_release(udict);
279 return error;
280 }
281 }
282
283 sysmon_envsys_release(sme, false);
284 prop_object_iterator_release(iter2);
285 }
286
287 prop_object_iterator_release(iter);
288 prop_object_release(udict);
289 break;
290 }
291 /*
292 * To remove all properties from all devices registered.
293 */
294 case ENVSYS_REMOVEPROPS:
295 {
296 const struct plistref *plist = (const struct plistref *)data;
297 prop_dictionary_t udict;
298 prop_object_t obj;
299
300 if ((flag & FWRITE) == 0)
301 return EPERM;
302
303 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
304 if (error) {
305 DPRINTF(("%s: copyin_ioctl error=%d\n",
306 __func__, error));
307 break;
308 }
309
310 obj = prop_dictionary_get(udict, "envsys-remove-props");
311 if (!obj || !prop_bool_true(obj)) {
312 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
313 __func__));
314 return EINVAL;
315 }
316
317 prop_object_release(udict);
318 sme_remove_userprops();
319
320 break;
321 }
322 /*
323 * Compatibility ioctls with the old interface, only implemented
324 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
325 * applications work.
326 */
327 case ENVSYS_GTREDATA:
328 {
329 struct envsys_tre_data *tred = (void *)data;
330 envsys_data_t *edata = NULL;
331 bool found = false;
332
333 tred->validflags = 0;
334
335 sme = sysmon_envsys_find_40(tred->sensor);
336 if (!sme)
337 break;
338
339 oidx = tred->sensor;
340 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
341
342 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
343 __func__, tred->sensor, oidx, sme->sme_name,
344 sme->sme_nsensors));
345
346 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
347 if (edata->sensor == tred->sensor) {
348 found = true;
349 break;
350 }
351 }
352
353 if (!found) {
354 sysmon_envsys_release(sme, false);
355 error = ENODEV;
356 break;
357 }
358
359 if (tred->sensor < sme->sme_nsensors) {
360 if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
361 mutex_enter(&sme->sme_mtx);
362 sysmon_envsys_refresh_sensor(sme, edata);
363 mutex_exit(&sme->sme_mtx);
364 }
365
366 /*
367 * copy required values to the old interface.
368 */
369 tred->sensor = edata->sensor;
370 tred->cur.data_us = edata->value_cur;
371 tred->cur.data_s = edata->value_cur;
372 tred->max.data_us = edata->value_max;
373 tred->max.data_s = edata->value_max;
374 tred->min.data_us = edata->value_min;
375 tred->min.data_s = edata->value_min;
376 tred->avg.data_us = 0;
377 tred->avg.data_s = 0;
378 if (edata->units == ENVSYS_BATTERY_CHARGE)
379 tred->units = ENVSYS_INDICATOR;
380 else
381 tred->units = edata->units;
382
383 tred->validflags |= ENVSYS_FVALID;
384 tred->validflags |= ENVSYS_FCURVALID;
385
386 if (edata->flags & ENVSYS_FPERCENT) {
387 tred->validflags |= ENVSYS_FMAXVALID;
388 tred->validflags |= ENVSYS_FFRACVALID;
389 }
390
391 if (edata->state == ENVSYS_SINVALID) {
392 tred->validflags &= ~ENVSYS_FCURVALID;
393 tred->cur.data_us = tred->cur.data_s = 0;
394 }
395
396 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
397 __func__, edata->desc, tred->cur.data_s));
398 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
399 " tred->sensor=%d\n", __func__, tred->validflags,
400 tred->units, tred->sensor));
401 }
402 tred->sensor = oidx;
403 sysmon_envsys_release(sme, false);
404
405 break;
406 }
407 case ENVSYS_GTREINFO:
408 {
409 struct envsys_basic_info *binfo = (void *)data;
410 envsys_data_t *edata = NULL;
411 bool found = false;
412
413 binfo->validflags = 0;
414
415 sme = sysmon_envsys_find_40(binfo->sensor);
416 if (!sme)
417 break;
418
419 oidx = binfo->sensor;
420 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
421
422 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
423 if (edata->sensor == binfo->sensor) {
424 found = true;
425 break;
426 }
427 }
428
429 if (!found) {
430 sysmon_envsys_release(sme, false);
431 error = ENODEV;
432 break;
433 }
434
435 binfo->validflags |= ENVSYS_FVALID;
436
437 if (binfo->sensor < sme->sme_nsensors) {
438 if (edata->units == ENVSYS_BATTERY_CHARGE)
439 binfo->units = ENVSYS_INDICATOR;
440 else
441 binfo->units = edata->units;
442
443 /*
444 * previously, the ACPI sensor names included the
445 * device name. Include that in compatibility code.
446 */
447 if (strncmp(sme->sme_name, "acpi", 4) == 0)
448 (void)snprintf(binfo->desc, sizeof(binfo->desc),
449 "%s %s", sme->sme_name, edata->desc);
450 else
451 (void)strlcpy(binfo->desc, edata->desc,
452 sizeof(binfo->desc));
453 }
454
455 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
456 __func__, binfo->units, binfo->validflags));
457 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
458 __func__, binfo->desc, binfo->sensor));
459
460 binfo->sensor = oidx;
461 sysmon_envsys_release(sme, false);
462
463 break;
464 }
465 default:
466 error = ENOTTY;
467 break;
468 }
469
470 return error;
471 }
472
473 /*
474 * sysmon_envsys_create:
475 *
476 * + Allocates a new sysmon_envsys object and initializes the
477 * stuff for sensors and events.
478 */
479 struct sysmon_envsys *
480 sysmon_envsys_create(void)
481 {
482 struct sysmon_envsys *sme;
483
484 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
485 TAILQ_INIT(&sme->sme_sensors_list);
486 LIST_INIT(&sme->sme_events_list);
487 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
488 cv_init(&sme->sme_condvar, "sme_wait");
489
490 return sme;
491 }
492
493 /*
494 * sysmon_envsys_destroy:
495 *
496 * + Removes all sensors from the tail queue, destroys the callout
497 * and frees the sysmon_envsys object.
498 */
499 void
500 sysmon_envsys_destroy(struct sysmon_envsys *sme)
501 {
502 envsys_data_t *edata;
503
504 KASSERT(sme != NULL);
505
506 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
507 edata = TAILQ_FIRST(&sme->sme_sensors_list);
508 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
509 }
510 mutex_destroy(&sme->sme_mtx);
511 cv_destroy(&sme->sme_condvar);
512 kmem_free(sme, sizeof(*sme));
513 }
514
515 /*
516 * sysmon_envsys_sensor_attach:
517 *
518 * + Attaches a sensor into a sysmon_envsys device checking that units
519 * is set to a valid type and description is unique and not empty.
520 */
521 int
522 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
523 {
524 const struct sme_descr_entry *sdt_units;
525 envsys_data_t *oedata;
526
527 KASSERT(sme != NULL || edata != NULL);
528
529 /*
530 * Find the correct units for this sensor.
531 */
532 sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
533 if (sdt_units->type == -1)
534 return EINVAL;
535
536 /*
537 * Check that description is not empty or duplicate.
538 */
539 if (strlen(edata->desc) == 0)
540 return EINVAL;
541
542 mutex_enter(&sme->sme_mtx);
543 sysmon_envsys_acquire(sme, true);
544 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
545 if (strcmp(oedata->desc, edata->desc) == 0) {
546 sysmon_envsys_release(sme, true);
547 mutex_exit(&sme->sme_mtx);
548 return EEXIST;
549 }
550 }
551 /*
552 * Ok, the sensor has been added into the device queue.
553 */
554 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
555
556 /*
557 * Give the sensor an index position.
558 */
559 edata->sensor = sme->sme_nsensors;
560 sme->sme_nsensors++;
561 sysmon_envsys_release(sme, true);
562 mutex_exit(&sme->sme_mtx);
563
564 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
565 __func__, edata->sensor, edata->desc,
566 sdt_units->type, sdt_units->desc));
567
568 return 0;
569 }
570
571 /*
572 * sysmon_envsys_sensor_detach:
573 *
574 * + Detachs a sensor from a sysmon_envsys device and decrements the
575 * sensors count on success.
576 */
577 int
578 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
579 {
580 envsys_data_t *oedata;
581 bool found = false;
582
583 KASSERT(sme != NULL || edata != NULL);
584
585 /*
586 * Check the sensor is already on the list.
587 */
588 mutex_enter(&sme->sme_mtx);
589 sysmon_envsys_acquire(sme, true);
590 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
591 if (oedata->sensor == edata->sensor) {
592 found = true;
593 break;
594 }
595 }
596
597 if (!found) {
598 sysmon_envsys_release(sme, true);
599 mutex_exit(&sme->sme_mtx);
600 return EINVAL;
601 }
602
603 /*
604 * remove it, unhook from rnd(4), and decrement the sensors count.
605 */
606 sme_event_unregister_sensor(sme, edata);
607 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
608 sme->sme_nsensors--;
609 sysmon_envsys_release(sme, true);
610 mutex_exit(&sme->sme_mtx);
611
612 return 0;
613 }
614
615
616 /*
617 * sysmon_envsys_register:
618 *
619 * + Register a sysmon envsys device.
620 * + Create array of dictionaries for a device.
621 */
622 int
623 sysmon_envsys_register(struct sysmon_envsys *sme)
624 {
625 struct sme_evdrv {
626 SLIST_ENTRY(sme_evdrv) evdrv_head;
627 sme_event_drv_t *evdrv;
628 };
629 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
630 struct sme_evdrv *evdv = NULL;
631 struct sysmon_envsys *lsme;
632 prop_array_t array = NULL;
633 prop_dictionary_t dict, dict2;
634 envsys_data_t *edata = NULL;
635 sme_event_drv_t *this_evdrv;
636 int nevent;
637 int error = 0;
638 char rnd_name[sizeof(edata->rnd_src.name)];
639
640 KASSERT(sme != NULL);
641 KASSERT(sme->sme_name != NULL);
642
643 /*
644 * Check if requested sysmon_envsys device is valid
645 * and does not exist already in the list.
646 */
647 mutex_enter(&sme_global_mtx);
648 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
649 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
650 mutex_exit(&sme_global_mtx);
651 return EEXIST;
652 }
653 }
654 mutex_exit(&sme_global_mtx);
655
656 /*
657 * sanity check: if SME_DISABLE_REFRESH is not set,
658 * the sme_refresh function callback must be non NULL.
659 */
660 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
661 if (!sme->sme_refresh)
662 return EINVAL;
663
664 /*
665 * If the list of sensors is empty, there's no point to continue...
666 */
667 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
668 DPRINTF(("%s: sensors list empty for %s\n", __func__,
669 sme->sme_name));
670 return ENOTSUP;
671 }
672
673 /*
674 * Initialize the singly linked list for driver events.
675 */
676 SLIST_INIT(&sme_evdrv_list);
677
678 array = prop_array_create();
679 if (!array)
680 return ENOMEM;
681
682 /*
683 * Iterate over all sensors and create a dictionary per sensor.
684 * We must respect the order in which the sensors were added.
685 */
686 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
687 dict = prop_dictionary_create();
688 if (!dict) {
689 error = ENOMEM;
690 goto out2;
691 }
692
693 /*
694 * Create all objects in sensor's dictionary.
695 */
696 this_evdrv = sme_add_sensor_dictionary(sme, array,
697 dict, edata);
698 if (this_evdrv) {
699 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
700 evdv->evdrv = this_evdrv;
701 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
702 }
703 }
704
705 /*
706 * If the array does not contain any object (sensor), there's
707 * no need to attach the driver.
708 */
709 if (prop_array_count(array) == 0) {
710 error = EINVAL;
711 DPRINTF(("%s: empty array for '%s'\n", __func__,
712 sme->sme_name));
713 goto out;
714 }
715
716 /*
717 * Add the dictionary for the global properties of this device.
718 */
719 dict2 = prop_dictionary_create();
720 if (!dict2) {
721 error = ENOMEM;
722 goto out;
723 }
724
725 error = sme_add_property_dictionary(sme, array, dict2);
726 if (error) {
727 prop_object_release(dict2);
728 goto out;
729 }
730
731 /*
732 * Add the array into the global dictionary for the driver.
733 *
734 * <dict>
735 * <key>foo0</key>
736 * <array>
737 * ...
738 */
739 mutex_enter(&sme_global_mtx);
740 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
741 error = EINVAL;
742 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
743 sme->sme_name));
744 goto out;
745 }
746
747 /*
748 * Add the device into the list.
749 */
750 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
751 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
752 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
753 mutex_exit(&sme_global_mtx);
754
755 out:
756 /*
757 * No errors? Make an initial data refresh if was requested,
758 * then register the events that were set in the driver. Do
759 * the refresh first in case it is needed to establish the
760 * limits or max_value needed by some events.
761 */
762 if (error == 0) {
763 nevent = 0;
764 sysmon_task_queue_init();
765
766 if (sme->sme_flags & SME_INIT_REFRESH) {
767 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
768 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
769 __func__, sme->sme_name));
770 }
771 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
772 sysmon_task_queue_sched(0,
773 sme_event_drvadd, evdv->evdrv);
774 nevent++;
775 }
776 /*
777 * Hook the sensor into rnd(4) entropy pool if requested
778 */
779 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
780 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
781 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
782 sme->sme_name, edata->desc);
783 rnd_attach_source(&edata->rnd_src, rnd_name,
784 RND_TYPE_ENV, 0);
785 }
786 }
787 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
788 __func__, sme->sme_name, sme->sme_nsensors, nevent));
789 }
790
791 out2:
792 while (!SLIST_EMPTY(&sme_evdrv_list)) {
793 evdv = SLIST_FIRST(&sme_evdrv_list);
794 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
795 kmem_free(evdv, sizeof(*evdv));
796 }
797 if (!error)
798 return 0;
799
800 /*
801 * Ugh... something wasn't right; unregister all events and sensors
802 * previously assigned and destroy the array with all its objects.
803 */
804 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
805 sme->sme_name, error));
806
807 sme_event_unregister_all(sme);
808 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
809 edata = TAILQ_FIRST(&sme->sme_sensors_list);
810 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
811 }
812 sysmon_envsys_destroy_plist(array);
813 return error;
814 }
815
816 /*
817 * sysmon_envsys_destroy_plist:
818 *
819 * + Remove all objects from the array of dictionaries that is
820 * created in a sysmon envsys device.
821 */
822 static void
823 sysmon_envsys_destroy_plist(prop_array_t array)
824 {
825 prop_object_iterator_t iter, iter2;
826 prop_dictionary_t dict;
827 prop_object_t obj;
828
829 KASSERT(array != NULL);
830 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
831
832 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
833 prop_array_count(array)));
834
835 iter = prop_array_iterator(array);
836 if (!iter)
837 return;
838
839 while ((dict = prop_object_iterator_next(iter))) {
840 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
841 iter2 = prop_dictionary_iterator(dict);
842 if (!iter2)
843 goto out;
844 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
845 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
846 DPRINTFOBJ(("%s: obj=%s\n", __func__,
847 prop_dictionary_keysym_cstring_nocopy(obj)));
848 prop_dictionary_remove(dict,
849 prop_dictionary_keysym_cstring_nocopy(obj));
850 prop_object_iterator_reset(iter2);
851 }
852 prop_object_iterator_release(iter2);
853 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
854 __func__, prop_dictionary_count(dict)));
855 prop_object_release(dict);
856 }
857
858 out:
859 prop_object_iterator_release(iter);
860 prop_object_release(array);
861 }
862
863 /*
864 * sysmon_envsys_unregister:
865 *
866 * + Unregister a sysmon envsys device.
867 */
868 void
869 sysmon_envsys_unregister(struct sysmon_envsys *sme)
870 {
871 prop_array_t array;
872 struct sysmon_envsys *osme;
873
874 KASSERT(sme != NULL);
875
876 /*
877 * Unregister all events associated with device.
878 */
879 sme_event_unregister_all(sme);
880 /*
881 * Decrement global sensors counter and the first_sensor index
882 * for remaining devices in the list (only used for compatibility
883 * with previous API), and remove the device from the list.
884 */
885 mutex_enter(&sme_global_mtx);
886 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
887 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
888 if (osme->sme_fsensor >= sme->sme_fsensor)
889 osme->sme_fsensor -= sme->sme_nsensors;
890 }
891 LIST_REMOVE(sme, sme_list);
892 mutex_exit(&sme_global_mtx);
893
894 /*
895 * Remove the device (and all its objects) from the global dictionary.
896 */
897 array = prop_dictionary_get(sme_propd, sme->sme_name);
898 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
899 mutex_enter(&sme_global_mtx);
900 prop_dictionary_remove(sme_propd, sme->sme_name);
901 mutex_exit(&sme_global_mtx);
902 sysmon_envsys_destroy_plist(array);
903 }
904 /*
905 * And finally destroy the sysmon_envsys object.
906 */
907 sysmon_envsys_destroy(sme);
908 }
909
910 /*
911 * sysmon_envsys_find:
912 *
913 * + Find a sysmon envsys device and mark it as busy
914 * once it's available.
915 */
916 struct sysmon_envsys *
917 sysmon_envsys_find(const char *name)
918 {
919 struct sysmon_envsys *sme;
920
921 mutex_enter(&sme_global_mtx);
922 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
923 if (strcmp(sme->sme_name, name) == 0) {
924 sysmon_envsys_acquire(sme, false);
925 break;
926 }
927 }
928 mutex_exit(&sme_global_mtx);
929
930 return sme;
931 }
932
933 /*
934 * Compatibility function with the old API.
935 */
936 struct sysmon_envsys *
937 sysmon_envsys_find_40(u_int idx)
938 {
939 struct sysmon_envsys *sme;
940
941 mutex_enter(&sme_global_mtx);
942 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
943 if (idx >= sme->sme_fsensor &&
944 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
945 sysmon_envsys_acquire(sme, false);
946 break;
947 }
948 }
949 mutex_exit(&sme_global_mtx);
950
951 return sme;
952 }
953
954 /*
955 * sysmon_envsys_acquire:
956 *
957 * + Wait until a sysmon envsys device is available and mark
958 * it as busy.
959 */
960 void
961 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
962 {
963 KASSERT(sme != NULL);
964
965 if (locked) {
966 while (sme->sme_flags & SME_FLAG_BUSY)
967 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
968 sme->sme_flags |= SME_FLAG_BUSY;
969 } else {
970 mutex_enter(&sme->sme_mtx);
971 while (sme->sme_flags & SME_FLAG_BUSY)
972 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
973 sme->sme_flags |= SME_FLAG_BUSY;
974 mutex_exit(&sme->sme_mtx);
975 }
976 }
977
978 /*
979 * sysmon_envsys_release:
980 *
981 * + Unmark a sysmon envsys device as busy, and notify
982 * waiters.
983 */
984 void
985 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
986 {
987 KASSERT(sme != NULL);
988
989 if (locked) {
990 sme->sme_flags &= ~SME_FLAG_BUSY;
991 cv_broadcast(&sme->sme_condvar);
992 } else {
993 mutex_enter(&sme->sme_mtx);
994 sme->sme_flags &= ~SME_FLAG_BUSY;
995 cv_broadcast(&sme->sme_condvar);
996 mutex_exit(&sme->sme_mtx);
997 }
998 }
999
1000 /*
1001 * sme_initial_refresh:
1002 *
1003 * + Do an initial refresh of the sensors in a device just after
1004 * interrupts are enabled in the autoconf(9) process.
1005 *
1006 */
1007 static void
1008 sme_initial_refresh(void *arg)
1009 {
1010 struct sysmon_envsys *sme = arg;
1011 envsys_data_t *edata;
1012
1013 mutex_enter(&sme->sme_mtx);
1014 sysmon_envsys_acquire(sme, true);
1015 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1016 sysmon_envsys_refresh_sensor(sme, edata);
1017 sysmon_envsys_release(sme, true);
1018 mutex_exit(&sme->sme_mtx);
1019 }
1020
1021 /*
1022 * sme_sensor_dictionary_get:
1023 *
1024 * + Returns a dictionary of a device specified by its index
1025 * position.
1026 */
1027 prop_dictionary_t
1028 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1029 {
1030 prop_object_iterator_t iter;
1031 prop_dictionary_t dict;
1032 prop_object_t obj;
1033
1034 KASSERT(array != NULL || index != NULL);
1035
1036 iter = prop_array_iterator(array);
1037 if (!iter)
1038 return NULL;
1039
1040 while ((dict = prop_object_iterator_next(iter))) {
1041 obj = prop_dictionary_get(dict, "index");
1042 if (prop_string_equals_cstring(obj, index))
1043 break;
1044 }
1045
1046 prop_object_iterator_release(iter);
1047 return dict;
1048 }
1049
1050 /*
1051 * sme_remove_userprops:
1052 *
1053 * + Remove all properties from all devices that were set by
1054 * the ENVSYS_SETDICTIONARY ioctl.
1055 */
1056 static void
1057 sme_remove_userprops(void)
1058 {
1059 struct sysmon_envsys *sme;
1060 prop_array_t array;
1061 prop_dictionary_t sdict;
1062 envsys_data_t *edata = NULL;
1063 char tmp[ENVSYS_DESCLEN];
1064 char rnd_name[sizeof(edata->rnd_src.name)];
1065 sysmon_envsys_lim_t lims;
1066 const struct sme_descr_entry *sdt_units;
1067 uint32_t props;
1068 int ptype;
1069
1070 mutex_enter(&sme_global_mtx);
1071 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1072 sysmon_envsys_acquire(sme, false);
1073 array = prop_dictionary_get(sme_propd, sme->sme_name);
1074
1075 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1076 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1077 edata->sensor);
1078 sdict = sme_sensor_dictionary_get(array, tmp);
1079 KASSERT(sdict != NULL);
1080
1081 ptype = 0;
1082 if (edata->upropset & PROP_BATTCAP) {
1083 prop_dictionary_remove(sdict,
1084 "critical-capacity");
1085 ptype = PENVSYS_EVENT_CAPACITY;
1086 }
1087
1088 if (edata->upropset & PROP_BATTWARN) {
1089 prop_dictionary_remove(sdict,
1090 "warning-capacity");
1091 ptype = PENVSYS_EVENT_CAPACITY;
1092 }
1093
1094 if (edata->upropset & PROP_BATTHIGH) {
1095 prop_dictionary_remove(sdict,
1096 "high-capacity");
1097 ptype = PENVSYS_EVENT_CAPACITY;
1098 }
1099
1100 if (edata->upropset & PROP_BATTMAX) {
1101 prop_dictionary_remove(sdict,
1102 "maximum-capacity");
1103 ptype = PENVSYS_EVENT_CAPACITY;
1104 }
1105 if (edata->upropset & PROP_WARNMAX) {
1106 prop_dictionary_remove(sdict, "warning-max");
1107 ptype = PENVSYS_EVENT_LIMITS;
1108 }
1109
1110 if (edata->upropset & PROP_WARNMIN) {
1111 prop_dictionary_remove(sdict, "warning-min");
1112 ptype = PENVSYS_EVENT_LIMITS;
1113 }
1114
1115 if (edata->upropset & PROP_CRITMAX) {
1116 prop_dictionary_remove(sdict, "critical-max");
1117 ptype = PENVSYS_EVENT_LIMITS;
1118 }
1119
1120 if (edata->upropset & PROP_CRITMIN) {
1121 prop_dictionary_remove(sdict, "critical-min");
1122 ptype = PENVSYS_EVENT_LIMITS;
1123 }
1124 if (edata->upropset & PROP_RFACT) {
1125 (void)sme_sensor_upint32(sdict, "rfact", 0);
1126 edata->rfact = 0;
1127 }
1128
1129 if (edata->upropset & PROP_DESC)
1130 (void)sme_sensor_upstring(sdict,
1131 "description", edata->desc);
1132
1133 if (ptype == 0)
1134 continue;
1135
1136 /*
1137 * If there were any limit values removed, we
1138 * need to revert to initial limits.
1139 *
1140 * First, tell the driver that we need it to
1141 * restore any h/w limits which may have been
1142 * changed to stored, boot-time values.
1143 */
1144 if (sme->sme_set_limits) {
1145 DPRINTF(("%s: reset limits for %s %s\n",
1146 __func__, sme->sme_name, edata->desc));
1147 (*sme->sme_set_limits)(sme, edata, NULL, NULL);
1148 }
1149
1150 /*
1151 * Next, we need to retrieve those initial limits.
1152 */
1153 props = 0;
1154 edata->upropset &= ~PROP_LIMITS;
1155 if (sme->sme_get_limits) {
1156 DPRINTF(("%s: retrieve limits for %s %s\n",
1157 __func__, sme->sme_name, edata->desc));
1158 lims = edata->limits;
1159 (*sme->sme_get_limits)(sme, edata, &lims,
1160 &props);
1161 }
1162
1163 /*
1164 * Finally, remove any old limits event, then
1165 * install a new event (which will update the
1166 * dictionary)
1167 */
1168 sme_event_unregister(sme, edata->desc,
1169 PENVSYS_EVENT_LIMITS);
1170
1171 /*
1172 * Find the correct units for this sensor.
1173 */
1174 sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1175 edata->units);
1176
1177 if (props & PROP_LIMITS) {
1178 DPRINTF(("%s: install limits for %s %s\n",
1179 __func__, sme->sme_name, edata->desc));
1180
1181 sme_event_register(sdict, edata, sme,
1182 &lims, props, PENVSYS_EVENT_LIMITS,
1183 sdt_units->crittype);
1184 }
1185 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1186 sme_event_register(sdict, edata, sme,
1187 &lims, props, PENVSYS_EVENT_NULL,
1188 sdt_units->crittype);
1189 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1190 sme->sme_name, edata->desc);
1191 rnd_attach_source(&edata->rnd_src, rnd_name,
1192 RND_TYPE_ENV, 0);
1193 }
1194 }
1195
1196 /*
1197 * Restore default timeout value.
1198 */
1199 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1200 sme_schedule_callout(sme);
1201 sysmon_envsys_release(sme, false);
1202 }
1203 mutex_exit(&sme_global_mtx);
1204 }
1205
1206 /*
1207 * sme_add_property_dictionary:
1208 *
1209 * + Add global properties into a device.
1210 */
1211 static int
1212 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1213 prop_dictionary_t dict)
1214 {
1215 prop_dictionary_t pdict;
1216 const char *class;
1217 int error = 0;
1218
1219 pdict = prop_dictionary_create();
1220 if (!pdict)
1221 return EINVAL;
1222
1223 /*
1224 * Add the 'refresh-timeout' and 'dev-class' objects into the
1225 * 'device-properties' dictionary.
1226 *
1227 * ...
1228 * <dict>
1229 * <key>device-properties</key>
1230 * <dict>
1231 * <key>refresh-timeout</key>
1232 * <integer>120</integer<
1233 * <key>device-class</key>
1234 * <string>class_name</string>
1235 * </dict>
1236 * </dict>
1237 * ...
1238 *
1239 */
1240 if (sme->sme_events_timeout == 0) {
1241 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1242 sme_schedule_callout(sme);
1243 }
1244
1245 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1246 sme->sme_events_timeout)) {
1247 error = EINVAL;
1248 goto out;
1249 }
1250 if (sme->sme_class == SME_CLASS_BATTERY)
1251 class = "battery";
1252 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1253 class = "ac-adapter";
1254 else
1255 class = "other";
1256 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1257 error = EINVAL;
1258 goto out;
1259 }
1260
1261 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1262 error = EINVAL;
1263 goto out;
1264 }
1265
1266 /*
1267 * Add the device dictionary into the sysmon envsys array.
1268 */
1269 if (!prop_array_add(array, dict))
1270 error = EINVAL;
1271
1272 out:
1273 prop_object_release(pdict);
1274 return error;
1275 }
1276
1277 /*
1278 * sme_add_sensor_dictionary:
1279 *
1280 * + Adds the sensor objects into the dictionary and returns a pointer
1281 * to a sme_event_drv_t object if a monitoring flag was set
1282 * (or NULL otherwise).
1283 */
1284 static sme_event_drv_t *
1285 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1286 prop_dictionary_t dict, envsys_data_t *edata)
1287 {
1288 const struct sme_descr_entry *sdt;
1289 int error;
1290 sme_event_drv_t *sme_evdrv_t = NULL;
1291 char indexstr[ENVSYS_DESCLEN];
1292 bool mon_supported, allow_rfact;
1293
1294 /*
1295 * Add the index sensor string.
1296 *
1297 * ...
1298 * <key>index</eyr
1299 * <string>sensor0</string>
1300 * ...
1301 */
1302 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1303 if (sme_sensor_upstring(dict, "index", indexstr))
1304 goto bad;
1305
1306 /*
1307 * ...
1308 * <key>description</key>
1309 * <string>blah blah</string>
1310 * ...
1311 */
1312 if (sme_sensor_upstring(dict, "description", edata->desc))
1313 goto bad;
1314
1315 /*
1316 * Add the monitoring boolean object:
1317 *
1318 * ...
1319 * <key>monitoring-supported</key>
1320 * <true/>
1321 * ...
1322 *
1323 * always false on Battery {capacity,charge}, Drive and Indicator types.
1324 * They cannot be monitored.
1325 *
1326 */
1327 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1328 (edata->units == ENVSYS_INDICATOR) ||
1329 (edata->units == ENVSYS_DRIVE) ||
1330 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1331 (edata->units == ENVSYS_BATTERY_CHARGE))
1332 mon_supported = false;
1333 else
1334 mon_supported = true;
1335 if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1336 goto out;
1337
1338 /*
1339 * Add the allow-rfact boolean object, true if
1340 * ENVSYS_FCHANGERFACT is set, false otherwise.
1341 *
1342 * ...
1343 * <key>allow-rfact</key>
1344 * <true/>
1345 * ...
1346 */
1347 if (edata->units == ENVSYS_SVOLTS_DC ||
1348 edata->units == ENVSYS_SVOLTS_AC) {
1349 if (edata->flags & ENVSYS_FCHANGERFACT)
1350 allow_rfact = true;
1351 else
1352 allow_rfact = false;
1353 if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1354 goto out;
1355 }
1356
1357 error = sme_update_sensor_dictionary(dict, edata,
1358 (edata->state == ENVSYS_SVALID));
1359 if (error < 0)
1360 goto bad;
1361 else if (error)
1362 goto out;
1363
1364 /*
1365 * ...
1366 * </dict>
1367 *
1368 * Add the dictionary into the array.
1369 *
1370 */
1371 if (!prop_array_add(array, dict)) {
1372 DPRINTF(("%s: prop_array_add\n", __func__));
1373 goto bad;
1374 }
1375
1376 /*
1377 * Register new event(s) if any monitoring flag was set or if
1378 * the sensor provides entropy for rnd(4).
1379 */
1380 if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1381 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1382 sme_evdrv_t->sed_sdict = dict;
1383 sme_evdrv_t->sed_edata = edata;
1384 sme_evdrv_t->sed_sme = sme;
1385 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1386 sme_evdrv_t->sed_powertype = sdt->crittype;
1387 }
1388
1389 out:
1390 return sme_evdrv_t;
1391
1392 bad:
1393 prop_object_release(dict);
1394 return NULL;
1395 }
1396
1397 /*
1398 * Find the maximum of all currently reported values.
1399 * The provided callback decides whether a sensor is part of the
1400 * maximum calculation (by returning true) or ignored (callback
1401 * returns false). Example usage: callback selects temperature
1402 * sensors in a given thermal zone, the function calculates the
1403 * maximum currently reported temperature in this zone.
1404 * If the parameter "refresh" is true, new values will be aquired
1405 * from the hardware, if not, the last reported value will be used.
1406 */
1407 uint32_t
1408 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1409 bool refresh)
1410 {
1411 struct sysmon_envsys *sme;
1412 uint32_t maxv, v;
1413
1414 maxv = 0;
1415 mutex_enter(&sme_global_mtx);
1416 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1417 sysmon_envsys_acquire(sme, false);
1418 v = sme_get_max_value(sme, predicate, refresh);
1419 sysmon_envsys_release(sme, false);
1420 if (v > maxv)
1421 maxv = v;
1422 }
1423 mutex_exit(&sme_global_mtx);
1424 return maxv;
1425 }
1426
1427 static uint32_t
1428 sme_get_max_value(struct sysmon_envsys *sme,
1429 bool (*predicate)(const envsys_data_t*),
1430 bool refresh)
1431 {
1432 envsys_data_t *edata;
1433 uint32_t maxv, v;
1434
1435 /*
1436 * Iterate over all sensors that match the predicate
1437 */
1438 maxv = 0;
1439 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1440 if (!(*predicate)(edata))
1441 continue;
1442
1443 /*
1444 * refresh sensor data
1445 */
1446 mutex_enter(&sme->sme_mtx);
1447 sysmon_envsys_refresh_sensor(sme, edata);
1448 mutex_exit(&sme->sme_mtx);
1449
1450 v = edata->value_cur;
1451 if (v > maxv)
1452 maxv = v;
1453
1454 }
1455
1456 return maxv;
1457 }
1458
1459 /*
1460 * sme_update_dictionary:
1461 *
1462 * + Update per-sensor dictionaries with new values if there were
1463 * changes, otherwise the object in dictionary is untouched.
1464 */
1465 int
1466 sme_update_dictionary(struct sysmon_envsys *sme)
1467 {
1468 envsys_data_t *edata;
1469 prop_object_t array, dict, obj, obj2;
1470 int error = 0;
1471
1472 /*
1473 * Retrieve the array of dictionaries in device.
1474 */
1475 array = prop_dictionary_get(sme_propd, sme->sme_name);
1476 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1477 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1478 return EINVAL;
1479 }
1480
1481 /*
1482 * Get the last dictionary on the array, this contains the
1483 * 'device-properties' sub-dictionary.
1484 */
1485 obj = prop_array_get(array, prop_array_count(array) - 1);
1486 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1487 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1488 return EINVAL;
1489 }
1490
1491 obj2 = prop_dictionary_get(obj, "device-properties");
1492 if (!obj2)
1493 return EINVAL;
1494
1495 /*
1496 * Update the 'refresh-timeout' property.
1497 */
1498 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1499 sme->sme_events_timeout))
1500 return EINVAL;
1501
1502 /*
1503 * - iterate over all sensors.
1504 * - fetch new data.
1505 * - check if data in dictionary is different than new data.
1506 * - update dictionary if there were changes.
1507 */
1508 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1509 sme->sme_name, sme->sme_nsensors));
1510
1511 /*
1512 * Don't bother with locking when traversing the queue,
1513 * the device is already marked as busy; if a sensor
1514 * is going to be removed or added it will have to wait.
1515 */
1516 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1517 /*
1518 * refresh sensor data via sme_envsys_refresh_sensor
1519 */
1520 mutex_enter(&sme->sme_mtx);
1521 sysmon_envsys_refresh_sensor(sme, edata);
1522 mutex_exit(&sme->sme_mtx);
1523
1524 /*
1525 * retrieve sensor's dictionary.
1526 */
1527 dict = prop_array_get(array, edata->sensor);
1528 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1529 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1530 __func__, edata->sensor, sme->sme_name));
1531 return EINVAL;
1532 }
1533
1534 /*
1535 * update sensor's state.
1536 */
1537 error = sme_update_sensor_dictionary(dict, edata, true);
1538
1539 if (error)
1540 break;
1541 }
1542
1543 return error;
1544 }
1545
1546 int
1547 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1548 bool value_update)
1549 {
1550 const struct sme_descr_entry *sdt;
1551 int error = 0;
1552
1553 sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1554 if (sdt == NULL) {
1555 printf("sme_update_sensor_dictionary: can not update sensor "
1556 "state %d unknown\n", edata->state);
1557 return EINVAL;
1558 }
1559
1560 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1561 edata->sensor, sdt->type, sdt->desc, edata->flags));
1562
1563 error = sme_sensor_upstring(dict, "state", sdt->desc);
1564 if (error)
1565 return (-error);
1566
1567 /*
1568 * update sensor's type.
1569 */
1570 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1571
1572 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1573 sdt->type, sdt->desc));
1574
1575 error = sme_sensor_upstring(dict, "type", sdt->desc);
1576 if (error)
1577 return (-error);
1578
1579 if (value_update) {
1580 /*
1581 * update sensor's current value.
1582 */
1583 error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1584 if (error)
1585 return error;
1586 }
1587
1588 /*
1589 * Battery charge and Indicator types do not
1590 * need the remaining objects, so skip them.
1591 */
1592 if (edata->units == ENVSYS_INDICATOR ||
1593 edata->units == ENVSYS_BATTERY_CHARGE)
1594 return error;
1595
1596 /*
1597 * update sensor flags.
1598 */
1599 if (edata->flags & ENVSYS_FPERCENT) {
1600 error = sme_sensor_upbool(dict, "want-percentage", true);
1601 if (error)
1602 return error;
1603 }
1604
1605 if (value_update) {
1606 /*
1607 * update sensor's {max,min}-value.
1608 */
1609 if (edata->flags & ENVSYS_FVALID_MAX) {
1610 error = sme_sensor_upint32(dict, "max-value",
1611 edata->value_max);
1612 if (error)
1613 return error;
1614 }
1615
1616 if (edata->flags & ENVSYS_FVALID_MIN) {
1617 error = sme_sensor_upint32(dict, "min-value",
1618 edata->value_min);
1619 if (error)
1620 return error;
1621 }
1622
1623 /*
1624 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1625 */
1626 if (edata->units == ENVSYS_SFANRPM) {
1627 error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1628 if (error)
1629 return error;
1630 }
1631
1632 /*
1633 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1634 */
1635 if (edata->units == ENVSYS_SVOLTS_AC ||
1636 edata->units == ENVSYS_SVOLTS_DC) {
1637 error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1638 if (error)
1639 return error;
1640 }
1641 }
1642
1643 /*
1644 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1645 */
1646 if (edata->units == ENVSYS_DRIVE) {
1647 sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1648 edata->value_cur);
1649 error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1650 if (error)
1651 return error;
1652 }
1653
1654 /*
1655 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1656 * sensors.
1657 */
1658 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1659 sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1660 edata->value_cur);
1661 error = sme_sensor_upstring(dict, "battery-capacity",
1662 sdt->desc);
1663 if (error)
1664 return error;
1665 }
1666
1667 return error;
1668 }
1669
1670 /*
1671 * sme_userset_dictionary:
1672 *
1673 * + Parse the userland dictionary and run the appropiate tasks
1674 * that were specified.
1675 */
1676 int
1677 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1678 prop_array_t array)
1679 {
1680 const struct sme_descr_entry *sdt;
1681 envsys_data_t *edata;
1682 prop_dictionary_t dict, tdict = NULL;
1683 prop_object_t obj, obj1, obj2, tobj = NULL;
1684 uint32_t props;
1685 uint64_t refresh_timo = 0;
1686 sysmon_envsys_lim_t lims;
1687 int i, error = 0;
1688 const char *blah;
1689 bool targetfound = false;
1690
1691 /*
1692 * The user wanted to change the refresh timeout value for this
1693 * device.
1694 *
1695 * Get the 'device-properties' object from the userland dictionary.
1696 */
1697 obj = prop_dictionary_get(udict, "device-properties");
1698 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1699 /*
1700 * Get the 'refresh-timeout' property for this device.
1701 */
1702 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1703 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1704 targetfound = true;
1705 refresh_timo =
1706 prop_number_unsigned_integer_value(obj1);
1707 if (refresh_timo < 1)
1708 error = EINVAL;
1709 else {
1710 mutex_enter(&sme->sme_mtx);
1711 if (sme->sme_events_timeout != refresh_timo) {
1712 sme->sme_events_timeout = refresh_timo;
1713 sme_schedule_callout(sme);
1714 }
1715 mutex_exit(&sme->sme_mtx);
1716 }
1717 }
1718 return error;
1719
1720 } else if (!obj) {
1721 /*
1722 * Get sensor's index from userland dictionary.
1723 */
1724 obj = prop_dictionary_get(udict, "index");
1725 if (!obj)
1726 return EINVAL;
1727 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1728 DPRINTF(("%s: 'index' not a string\n", __func__));
1729 return EINVAL;
1730 }
1731 } else
1732 return EINVAL;
1733
1734 /*
1735 * Don't bother with locking when traversing the queue,
1736 * the device is already marked as busy; if a sensor
1737 * is going to be removed or added it will have to wait.
1738 */
1739 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1740 /*
1741 * Get a dictionary and check if it's our sensor by checking
1742 * at its index position.
1743 */
1744 dict = prop_array_get(array, edata->sensor);
1745 obj1 = prop_dictionary_get(dict, "index");
1746
1747 /*
1748 * is it our sensor?
1749 */
1750 if (!prop_string_equals(obj1, obj))
1751 continue;
1752
1753 props = 0;
1754
1755 /*
1756 * Check if a new description operation was
1757 * requested by the user and set new description.
1758 */
1759 obj2 = prop_dictionary_get(udict, "description");
1760 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1761 targetfound = true;
1762 blah = prop_string_cstring_nocopy(obj2);
1763
1764 /*
1765 * Check for duplicate description.
1766 */
1767 for (i = 0; i < sme->sme_nsensors; i++) {
1768 if (i == edata->sensor)
1769 continue;
1770 tdict = prop_array_get(array, i);
1771 tobj =
1772 prop_dictionary_get(tdict, "description");
1773 if (prop_string_equals(obj2, tobj)) {
1774 error = EEXIST;
1775 goto out;
1776 }
1777 }
1778
1779 /*
1780 * Update the object in dictionary.
1781 */
1782 mutex_enter(&sme->sme_mtx);
1783 error = sme_sensor_upstring(dict,
1784 "description",
1785 blah);
1786 if (error) {
1787 mutex_exit(&sme->sme_mtx);
1788 goto out;
1789 }
1790
1791 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1792 __func__, edata->sensor, blah));
1793 edata->upropset |= PROP_DESC;
1794 mutex_exit(&sme->sme_mtx);
1795 }
1796
1797 /*
1798 * did the user want to change the rfact?
1799 */
1800 obj2 = prop_dictionary_get(udict, "rfact");
1801 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1802 targetfound = true;
1803 if (edata->flags & ENVSYS_FCHANGERFACT) {
1804 mutex_enter(&sme->sme_mtx);
1805 edata->rfact = prop_number_integer_value(obj2);
1806 edata->upropset |= PROP_RFACT;
1807 mutex_exit(&sme->sme_mtx);
1808 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1809 __func__, edata->sensor, edata->rfact));
1810 } else {
1811 error = ENOTSUP;
1812 goto out;
1813 }
1814 }
1815
1816 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1817
1818 /*
1819 * did the user want to set a critical capacity event?
1820 */
1821 obj2 = prop_dictionary_get(udict, "critical-capacity");
1822 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1823 targetfound = true;
1824 lims.sel_critmin = prop_number_integer_value(obj2);
1825 props |= PROP_BATTCAP;
1826 }
1827
1828 /*
1829 * did the user want to set a warning capacity event?
1830 */
1831 obj2 = prop_dictionary_get(udict, "warning-capacity");
1832 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1833 targetfound = true;
1834 lims.sel_warnmin = prop_number_integer_value(obj2);
1835 props |= PROP_BATTWARN;
1836 }
1837
1838 /*
1839 * did the user want to set a high capacity event?
1840 */
1841 obj2 = prop_dictionary_get(udict, "high-capacity");
1842 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1843 targetfound = true;
1844 lims.sel_warnmin = prop_number_integer_value(obj2);
1845 props |= PROP_BATTHIGH;
1846 }
1847
1848 /*
1849 * did the user want to set a maximum capacity event?
1850 */
1851 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1852 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1853 targetfound = true;
1854 lims.sel_warnmin = prop_number_integer_value(obj2);
1855 props |= PROP_BATTMAX;
1856 }
1857
1858 /*
1859 * did the user want to set a critical max event?
1860 */
1861 obj2 = prop_dictionary_get(udict, "critical-max");
1862 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1863 targetfound = true;
1864 lims.sel_critmax = prop_number_integer_value(obj2);
1865 props |= PROP_CRITMAX;
1866 }
1867
1868 /*
1869 * did the user want to set a warning max event?
1870 */
1871 obj2 = prop_dictionary_get(udict, "warning-max");
1872 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1873 targetfound = true;
1874 lims.sel_warnmax = prop_number_integer_value(obj2);
1875 props |= PROP_WARNMAX;
1876 }
1877
1878 /*
1879 * did the user want to set a critical min event?
1880 */
1881 obj2 = prop_dictionary_get(udict, "critical-min");
1882 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1883 targetfound = true;
1884 lims.sel_critmin = prop_number_integer_value(obj2);
1885 props |= PROP_CRITMIN;
1886 }
1887
1888 /*
1889 * did the user want to set a warning min event?
1890 */
1891 obj2 = prop_dictionary_get(udict, "warning-min");
1892 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1893 targetfound = true;
1894 lims.sel_warnmin = prop_number_integer_value(obj2);
1895 props |= PROP_WARNMIN;
1896 }
1897
1898 if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1899 error = ENOTSUP;
1900 goto out;
1901 }
1902 if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1903 error = sme_event_register(dict, edata, sme, &lims,
1904 props,
1905 (edata->flags & ENVSYS_FPERCENT)?
1906 PENVSYS_EVENT_CAPACITY:
1907 PENVSYS_EVENT_LIMITS,
1908 sdt->crittype);
1909 if (error == EEXIST)
1910 error = 0;
1911 if (error)
1912 goto out;
1913 }
1914
1915 /*
1916 * All objects in dictionary were processed.
1917 */
1918 break;
1919 }
1920
1921 out:
1922 /*
1923 * invalid target? return the error.
1924 */
1925 if (!targetfound)
1926 error = EINVAL;
1927
1928 return error;
1929 }
1930
1931 /*
1932 * + sysmon_envsys_foreach_sensor
1933 *
1934 * Walk through the devices' sensor lists and execute the callback.
1935 * If the callback returns false, the remainder of the current
1936 * device's sensors are skipped.
1937 */
1938 void
1939 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
1940 bool refresh)
1941 {
1942 struct sysmon_envsys *sme;
1943 envsys_data_t *sensor;
1944
1945 mutex_enter(&sme_global_mtx);
1946 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1947
1948 sysmon_envsys_acquire(sme, false);
1949 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
1950 if (refresh) {
1951 mutex_enter(&sme->sme_mtx);
1952 sysmon_envsys_refresh_sensor(sme, sensor);
1953 mutex_exit(&sme->sme_mtx);
1954 }
1955 if (!(*func)(sme, sensor, arg))
1956 break;
1957 }
1958 sysmon_envsys_release(sme, false);
1959 }
1960 mutex_exit(&sme_global_mtx);
1961 }
1962
1963 /*
1964 * Call the sensor's refresh function, and collect/stir entropy
1965 */
1966 void
1967 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
1968 {
1969
1970 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
1971 (*sme->sme_refresh)(sme, edata);
1972
1973 if (edata->flags & ENVSYS_FHAS_ENTROPY &&
1974 edata->state != ENVSYS_SINVALID &&
1975 edata->value_prev != edata->value_cur)
1976 rnd_add_uint32(&edata->rnd_src, edata->value_cur);
1977 edata->value_prev = edata->value_cur;
1978 }
1979