sysmon_envsys.c revision 1.117.2.3 1 /* $NetBSD: sysmon_envsys.c,v 1.117.2.3 2013/01/16 05:33:33 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.117.2.3 2013/01/16 05:33:33 yamt Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rnd.h>
80
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84
85 kmutex_t sme_global_mtx;
86
87 prop_dictionary_t sme_propd;
88
89 struct sysmon_envsys_lh sysmon_envsys_list;
90
91 static uint32_t sysmon_envsys_next_sensor_index;
92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
93
94 static void sysmon_envsys_destroy_plist(prop_array_t);
95 static void sme_remove_userprops(void);
96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
97 prop_dictionary_t);
98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
99 prop_array_t, prop_dictionary_t, envsys_data_t *);
100 static void sme_initial_refresh(void *);
101 static uint32_t sme_get_max_value(struct sysmon_envsys *,
102 bool (*)(const envsys_data_t*), bool);
103
104 /*
105 * sysmon_envsys_init:
106 *
107 * + Initialize global mutex, dictionary and the linked list.
108 */
109 void
110 sysmon_envsys_init(void)
111 {
112 LIST_INIT(&sysmon_envsys_list);
113 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
114 sme_propd = prop_dictionary_create();
115 }
116
117 /*
118 * sysmonopen_envsys:
119 *
120 * + Open the system monitor device.
121 */
122 int
123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
124 {
125 return 0;
126 }
127
128 /*
129 * sysmonclose_envsys:
130 *
131 * + Close the system monitor device.
132 */
133 int
134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
135 {
136 return 0;
137 }
138
139 /*
140 * sysmonioctl_envsys:
141 *
142 * + Perform a sysmon envsys control request.
143 */
144 int
145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
146 {
147 struct sysmon_envsys *sme = NULL;
148 int error = 0;
149 u_int oidx;
150
151 switch (cmd) {
152 /*
153 * To update the global dictionary with latest data from devices.
154 */
155 case ENVSYS_GETDICTIONARY:
156 {
157 struct plistref *plist = (struct plistref *)data;
158
159 /*
160 * Update dictionaries on all sysmon envsys devices
161 * registered.
162 */
163 mutex_enter(&sme_global_mtx);
164 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
165 sysmon_envsys_acquire(sme, false);
166 error = sme_update_dictionary(sme);
167 if (error) {
168 DPRINTF(("%s: sme_update_dictionary, "
169 "error=%d\n", __func__, error));
170 sysmon_envsys_release(sme, false);
171 mutex_exit(&sme_global_mtx);
172 return error;
173 }
174 sysmon_envsys_release(sme, false);
175 }
176 mutex_exit(&sme_global_mtx);
177 /*
178 * Copy global dictionary to userland.
179 */
180 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
181 break;
182 }
183 /*
184 * To set properties on multiple devices.
185 */
186 case ENVSYS_SETDICTIONARY:
187 {
188 const struct plistref *plist = (const struct plistref *)data;
189 prop_dictionary_t udict;
190 prop_object_iterator_t iter, iter2;
191 prop_object_t obj, obj2;
192 prop_array_t array_u, array_k;
193 const char *devname = NULL;
194
195 if ((flag & FWRITE) == 0)
196 return EPERM;
197
198 /*
199 * Get dictionary from userland.
200 */
201 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
202 if (error) {
203 DPRINTF(("%s: copyin_ioctl error=%d\n",
204 __func__, error));
205 break;
206 }
207
208 iter = prop_dictionary_iterator(udict);
209 if (!iter) {
210 prop_object_release(udict);
211 return ENOMEM;
212 }
213
214 /*
215 * Iterate over the userland dictionary and process
216 * the list of devices.
217 */
218 while ((obj = prop_object_iterator_next(iter))) {
219 array_u = prop_dictionary_get_keysym(udict, obj);
220 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
221 prop_object_iterator_release(iter);
222 prop_object_release(udict);
223 return EINVAL;
224 }
225
226 devname = prop_dictionary_keysym_cstring_nocopy(obj);
227 DPRINTF(("%s: processing the '%s' array requests\n",
228 __func__, devname));
229
230 /*
231 * find the correct sme device.
232 */
233 sme = sysmon_envsys_find(devname);
234 if (!sme) {
235 DPRINTF(("%s: NULL sme\n", __func__));
236 prop_object_iterator_release(iter);
237 prop_object_release(udict);
238 return EINVAL;
239 }
240
241 /*
242 * Find the correct array object with the string
243 * supplied by the userland dictionary.
244 */
245 array_k = prop_dictionary_get(sme_propd, devname);
246 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
247 DPRINTF(("%s: array device failed\n",
248 __func__));
249 sysmon_envsys_release(sme, false);
250 prop_object_iterator_release(iter);
251 prop_object_release(udict);
252 return EINVAL;
253 }
254
255 iter2 = prop_array_iterator(array_u);
256 if (!iter2) {
257 sysmon_envsys_release(sme, false);
258 prop_object_iterator_release(iter);
259 prop_object_release(udict);
260 return ENOMEM;
261 }
262
263 /*
264 * Iterate over the array of dictionaries to
265 * process the list of sensors and properties.
266 */
267 while ((obj2 = prop_object_iterator_next(iter2))) {
268 /*
269 * do the real work now.
270 */
271 error = sme_userset_dictionary(sme,
272 obj2,
273 array_k);
274 if (error) {
275 sysmon_envsys_release(sme, false);
276 prop_object_iterator_release(iter2);
277 prop_object_iterator_release(iter);
278 prop_object_release(udict);
279 return error;
280 }
281 }
282
283 sysmon_envsys_release(sme, false);
284 prop_object_iterator_release(iter2);
285 }
286
287 prop_object_iterator_release(iter);
288 prop_object_release(udict);
289 break;
290 }
291 /*
292 * To remove all properties from all devices registered.
293 */
294 case ENVSYS_REMOVEPROPS:
295 {
296 const struct plistref *plist = (const struct plistref *)data;
297 prop_dictionary_t udict;
298 prop_object_t obj;
299
300 if ((flag & FWRITE) == 0)
301 return EPERM;
302
303 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
304 if (error) {
305 DPRINTF(("%s: copyin_ioctl error=%d\n",
306 __func__, error));
307 break;
308 }
309
310 obj = prop_dictionary_get(udict, "envsys-remove-props");
311 if (!obj || !prop_bool_true(obj)) {
312 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
313 __func__));
314 return EINVAL;
315 }
316
317 prop_object_release(udict);
318 sme_remove_userprops();
319
320 break;
321 }
322 /*
323 * Compatibility ioctls with the old interface, only implemented
324 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
325 * applications work.
326 */
327 case ENVSYS_GTREDATA:
328 {
329 struct envsys_tre_data *tred = (void *)data;
330 envsys_data_t *edata = NULL;
331 bool found = false;
332
333 tred->validflags = 0;
334
335 sme = sysmon_envsys_find_40(tred->sensor);
336 if (!sme)
337 break;
338
339 oidx = tred->sensor;
340 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
341
342 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
343 __func__, tred->sensor, oidx, sme->sme_name,
344 sme->sme_nsensors));
345
346 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
347 if (edata->sensor == tred->sensor) {
348 found = true;
349 break;
350 }
351 }
352
353 if (!found) {
354 sysmon_envsys_release(sme, false);
355 error = ENODEV;
356 break;
357 }
358
359 if (tred->sensor < sme->sme_nsensors) {
360 if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
361 mutex_enter(&sme->sme_mtx);
362 sysmon_envsys_refresh_sensor(sme, edata);
363 mutex_exit(&sme->sme_mtx);
364 }
365
366 /*
367 * copy required values to the old interface.
368 */
369 tred->sensor = edata->sensor;
370 tred->cur.data_us = edata->value_cur;
371 tred->cur.data_s = edata->value_cur;
372 tred->max.data_us = edata->value_max;
373 tred->max.data_s = edata->value_max;
374 tred->min.data_us = edata->value_min;
375 tred->min.data_s = edata->value_min;
376 tred->avg.data_us = 0;
377 tred->avg.data_s = 0;
378 if (edata->units == ENVSYS_BATTERY_CHARGE)
379 tred->units = ENVSYS_INDICATOR;
380 else
381 tred->units = edata->units;
382
383 tred->validflags |= ENVSYS_FVALID;
384 tred->validflags |= ENVSYS_FCURVALID;
385
386 if (edata->flags & ENVSYS_FPERCENT) {
387 tred->validflags |= ENVSYS_FMAXVALID;
388 tred->validflags |= ENVSYS_FFRACVALID;
389 }
390
391 if (edata->state == ENVSYS_SINVALID) {
392 tred->validflags &= ~ENVSYS_FCURVALID;
393 tred->cur.data_us = tred->cur.data_s = 0;
394 }
395
396 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
397 __func__, edata->desc, tred->cur.data_s));
398 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
399 " tred->sensor=%d\n", __func__, tred->validflags,
400 tred->units, tred->sensor));
401 }
402 tred->sensor = oidx;
403 sysmon_envsys_release(sme, false);
404
405 break;
406 }
407 case ENVSYS_GTREINFO:
408 {
409 struct envsys_basic_info *binfo = (void *)data;
410 envsys_data_t *edata = NULL;
411 bool found = false;
412
413 binfo->validflags = 0;
414
415 sme = sysmon_envsys_find_40(binfo->sensor);
416 if (!sme)
417 break;
418
419 oidx = binfo->sensor;
420 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
421
422 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
423 if (edata->sensor == binfo->sensor) {
424 found = true;
425 break;
426 }
427 }
428
429 if (!found) {
430 sysmon_envsys_release(sme, false);
431 error = ENODEV;
432 break;
433 }
434
435 binfo->validflags |= ENVSYS_FVALID;
436
437 if (binfo->sensor < sme->sme_nsensors) {
438 if (edata->units == ENVSYS_BATTERY_CHARGE)
439 binfo->units = ENVSYS_INDICATOR;
440 else
441 binfo->units = edata->units;
442
443 /*
444 * previously, the ACPI sensor names included the
445 * device name. Include that in compatibility code.
446 */
447 if (strncmp(sme->sme_name, "acpi", 4) == 0)
448 (void)snprintf(binfo->desc, sizeof(binfo->desc),
449 "%s %s", sme->sme_name, edata->desc);
450 else
451 (void)strlcpy(binfo->desc, edata->desc,
452 sizeof(binfo->desc));
453 }
454
455 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
456 __func__, binfo->units, binfo->validflags));
457 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
458 __func__, binfo->desc, binfo->sensor));
459
460 binfo->sensor = oidx;
461 sysmon_envsys_release(sme, false);
462
463 break;
464 }
465 default:
466 error = ENOTTY;
467 break;
468 }
469
470 return error;
471 }
472
473 /*
474 * sysmon_envsys_create:
475 *
476 * + Allocates a new sysmon_envsys object and initializes the
477 * stuff for sensors and events.
478 */
479 struct sysmon_envsys *
480 sysmon_envsys_create(void)
481 {
482 struct sysmon_envsys *sme;
483
484 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
485 TAILQ_INIT(&sme->sme_sensors_list);
486 LIST_INIT(&sme->sme_events_list);
487 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
488 cv_init(&sme->sme_condvar, "sme_wait");
489
490 return sme;
491 }
492
493 /*
494 * sysmon_envsys_destroy:
495 *
496 * + Removes all sensors from the tail queue, destroys the callout
497 * and frees the sysmon_envsys object.
498 */
499 void
500 sysmon_envsys_destroy(struct sysmon_envsys *sme)
501 {
502 envsys_data_t *edata;
503
504 KASSERT(sme != NULL);
505
506 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
507 edata = TAILQ_FIRST(&sme->sme_sensors_list);
508 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
509 }
510 mutex_destroy(&sme->sme_mtx);
511 cv_destroy(&sme->sme_condvar);
512 kmem_free(sme, sizeof(*sme));
513 }
514
515 /*
516 * sysmon_envsys_sensor_attach:
517 *
518 * + Attaches a sensor into a sysmon_envsys device checking that units
519 * is set to a valid type and description is unique and not empty.
520 */
521 int
522 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
523 {
524 const struct sme_descr_entry *sdt_units;
525 envsys_data_t *oedata;
526
527 KASSERT(sme != NULL || edata != NULL);
528
529 /*
530 * Find the correct units for this sensor.
531 */
532 sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
533 if (sdt_units->type == -1)
534 return EINVAL;
535
536 /*
537 * Check that description is not empty or duplicate.
538 */
539 if (strlen(edata->desc) == 0)
540 return EINVAL;
541
542 mutex_enter(&sme->sme_mtx);
543 sysmon_envsys_acquire(sme, true);
544 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
545 if (strcmp(oedata->desc, edata->desc) == 0) {
546 sysmon_envsys_release(sme, true);
547 mutex_exit(&sme->sme_mtx);
548 return EEXIST;
549 }
550 }
551 /*
552 * Ok, the sensor has been added into the device queue.
553 */
554 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
555
556 /*
557 * Give the sensor an index position.
558 */
559 edata->sensor = sme->sme_nsensors;
560 sme->sme_nsensors++;
561 sysmon_envsys_release(sme, true);
562 mutex_exit(&sme->sme_mtx);
563
564 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
565 __func__, edata->sensor, edata->desc,
566 sdt_units->type, sdt_units->desc));
567
568 return 0;
569 }
570
571 /*
572 * sysmon_envsys_sensor_detach:
573 *
574 * + Detachs a sensor from a sysmon_envsys device and decrements the
575 * sensors count on success.
576 */
577 int
578 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
579 {
580 envsys_data_t *oedata;
581 bool found = false;
582
583 KASSERT(sme != NULL || edata != NULL);
584
585 /*
586 * Check the sensor is already on the list.
587 */
588 mutex_enter(&sme->sme_mtx);
589 sysmon_envsys_acquire(sme, true);
590 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
591 if (oedata->sensor == edata->sensor) {
592 found = true;
593 break;
594 }
595 }
596
597 if (!found) {
598 sysmon_envsys_release(sme, true);
599 mutex_exit(&sme->sme_mtx);
600 return EINVAL;
601 }
602
603 /*
604 * remove it, unhook from rnd(4), and decrement the sensors count.
605 */
606 sme_event_unregister_sensor(sme, edata);
607 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
608 sme->sme_nsensors--;
609 sysmon_envsys_release(sme, true);
610 mutex_exit(&sme->sme_mtx);
611
612 return 0;
613 }
614
615
616 /*
617 * sysmon_envsys_register:
618 *
619 * + Register a sysmon envsys device.
620 * + Create array of dictionaries for a device.
621 */
622 int
623 sysmon_envsys_register(struct sysmon_envsys *sme)
624 {
625 struct sme_evdrv {
626 SLIST_ENTRY(sme_evdrv) evdrv_head;
627 sme_event_drv_t *evdrv;
628 };
629 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
630 struct sme_evdrv *evdv = NULL;
631 struct sysmon_envsys *lsme;
632 prop_array_t array = NULL;
633 prop_dictionary_t dict, dict2;
634 envsys_data_t *edata = NULL;
635 sme_event_drv_t *this_evdrv;
636 int nevent;
637 int error = 0;
638 char rnd_name[sizeof(edata->rnd_src.name)];
639
640 KASSERT(sme != NULL);
641 KASSERT(sme->sme_name != NULL);
642
643 /*
644 * Check if requested sysmon_envsys device is valid
645 * and does not exist already in the list.
646 */
647 mutex_enter(&sme_global_mtx);
648 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
649 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
650 mutex_exit(&sme_global_mtx);
651 return EEXIST;
652 }
653 }
654 mutex_exit(&sme_global_mtx);
655
656 /*
657 * sanity check: if SME_DISABLE_REFRESH is not set,
658 * the sme_refresh function callback must be non NULL.
659 */
660 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
661 if (!sme->sme_refresh)
662 return EINVAL;
663
664 /*
665 * If the list of sensors is empty, there's no point to continue...
666 */
667 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
668 DPRINTF(("%s: sensors list empty for %s\n", __func__,
669 sme->sme_name));
670 return ENOTSUP;
671 }
672
673 /*
674 * Initialize the singly linked list for driver events.
675 */
676 SLIST_INIT(&sme_evdrv_list);
677
678 array = prop_array_create();
679 if (!array)
680 return ENOMEM;
681
682 /*
683 * Iterate over all sensors and create a dictionary per sensor.
684 * We must respect the order in which the sensors were added.
685 */
686 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
687 dict = prop_dictionary_create();
688 if (!dict) {
689 error = ENOMEM;
690 goto out2;
691 }
692
693 /*
694 * Create all objects in sensor's dictionary.
695 */
696 this_evdrv = sme_add_sensor_dictionary(sme, array,
697 dict, edata);
698 if (this_evdrv) {
699 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
700 evdv->evdrv = this_evdrv;
701 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
702 }
703 }
704
705 /*
706 * If the array does not contain any object (sensor), there's
707 * no need to attach the driver.
708 */
709 if (prop_array_count(array) == 0) {
710 error = EINVAL;
711 DPRINTF(("%s: empty array for '%s'\n", __func__,
712 sme->sme_name));
713 goto out;
714 }
715
716 /*
717 * Add the dictionary for the global properties of this device.
718 */
719 dict2 = prop_dictionary_create();
720 if (!dict2) {
721 error = ENOMEM;
722 goto out;
723 }
724
725 error = sme_add_property_dictionary(sme, array, dict2);
726 if (error) {
727 prop_object_release(dict2);
728 goto out;
729 }
730
731 /*
732 * Add the array into the global dictionary for the driver.
733 *
734 * <dict>
735 * <key>foo0</key>
736 * <array>
737 * ...
738 */
739 mutex_enter(&sme_global_mtx);
740 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
741 error = EINVAL;
742 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
743 sme->sme_name));
744 goto out;
745 }
746
747 /*
748 * Add the device into the list.
749 */
750 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
751 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
752 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
753 mutex_exit(&sme_global_mtx);
754
755 out:
756 /*
757 * No errors? Make an initial data refresh if was requested,
758 * then register the events that were set in the driver. Do
759 * the refresh first in case it is needed to establish the
760 * limits or max_value needed by some events.
761 */
762 if (error == 0) {
763 nevent = 0;
764 sysmon_task_queue_init();
765
766 if (sme->sme_flags & SME_INIT_REFRESH) {
767 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
768 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
769 __func__, sme->sme_name));
770 }
771 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
772 sysmon_task_queue_sched(0,
773 sme_event_drvadd, evdv->evdrv);
774 nevent++;
775 }
776 /*
777 * Hook the sensor into rnd(4) entropy pool if requested
778 */
779 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
780 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
781 size_t n;
782 int tail = 1;
783
784 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
785 sme->sme_name, edata->desc);
786 n = strlen(rnd_name);
787 /*
788 * 1) Remove trailing white space(s).
789 * 2) If space exist, replace it with '-'
790 */
791 while (--n) {
792 if (rnd_name[n] == ' ') {
793 if (tail != 0)
794 rnd_name[n] = '\0';
795 else
796 rnd_name[n] = '-';
797 } else
798 tail = 0;
799 }
800 rnd_attach_source(&edata->rnd_src, rnd_name,
801 RND_TYPE_ENV, 0);
802 }
803 }
804 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
805 __func__, sme->sme_name, sme->sme_nsensors, nevent));
806 }
807
808 out2:
809 while (!SLIST_EMPTY(&sme_evdrv_list)) {
810 evdv = SLIST_FIRST(&sme_evdrv_list);
811 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
812 kmem_free(evdv, sizeof(*evdv));
813 }
814 if (!error)
815 return 0;
816
817 /*
818 * Ugh... something wasn't right; unregister all events and sensors
819 * previously assigned and destroy the array with all its objects.
820 */
821 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
822 sme->sme_name, error));
823
824 sme_event_unregister_all(sme);
825 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
826 edata = TAILQ_FIRST(&sme->sme_sensors_list);
827 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
828 }
829 sysmon_envsys_destroy_plist(array);
830 return error;
831 }
832
833 /*
834 * sysmon_envsys_destroy_plist:
835 *
836 * + Remove all objects from the array of dictionaries that is
837 * created in a sysmon envsys device.
838 */
839 static void
840 sysmon_envsys_destroy_plist(prop_array_t array)
841 {
842 prop_object_iterator_t iter, iter2;
843 prop_dictionary_t dict;
844 prop_object_t obj;
845
846 KASSERT(array != NULL);
847 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
848
849 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
850 prop_array_count(array)));
851
852 iter = prop_array_iterator(array);
853 if (!iter)
854 return;
855
856 while ((dict = prop_object_iterator_next(iter))) {
857 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
858 iter2 = prop_dictionary_iterator(dict);
859 if (!iter2)
860 goto out;
861 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
862 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
863 DPRINTFOBJ(("%s: obj=%s\n", __func__,
864 prop_dictionary_keysym_cstring_nocopy(obj)));
865 prop_dictionary_remove(dict,
866 prop_dictionary_keysym_cstring_nocopy(obj));
867 prop_object_iterator_reset(iter2);
868 }
869 prop_object_iterator_release(iter2);
870 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
871 __func__, prop_dictionary_count(dict)));
872 prop_object_release(dict);
873 }
874
875 out:
876 prop_object_iterator_release(iter);
877 prop_object_release(array);
878 }
879
880 /*
881 * sysmon_envsys_unregister:
882 *
883 * + Unregister a sysmon envsys device.
884 */
885 void
886 sysmon_envsys_unregister(struct sysmon_envsys *sme)
887 {
888 prop_array_t array;
889 struct sysmon_envsys *osme;
890
891 KASSERT(sme != NULL);
892
893 /*
894 * Unregister all events associated with device.
895 */
896 sme_event_unregister_all(sme);
897 /*
898 * Decrement global sensors counter and the first_sensor index
899 * for remaining devices in the list (only used for compatibility
900 * with previous API), and remove the device from the list.
901 */
902 mutex_enter(&sme_global_mtx);
903 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
904 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
905 if (osme->sme_fsensor >= sme->sme_fsensor)
906 osme->sme_fsensor -= sme->sme_nsensors;
907 }
908 LIST_REMOVE(sme, sme_list);
909 mutex_exit(&sme_global_mtx);
910
911 /*
912 * Remove the device (and all its objects) from the global dictionary.
913 */
914 array = prop_dictionary_get(sme_propd, sme->sme_name);
915 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
916 mutex_enter(&sme_global_mtx);
917 prop_dictionary_remove(sme_propd, sme->sme_name);
918 mutex_exit(&sme_global_mtx);
919 sysmon_envsys_destroy_plist(array);
920 }
921 /*
922 * And finally destroy the sysmon_envsys object.
923 */
924 sysmon_envsys_destroy(sme);
925 }
926
927 /*
928 * sysmon_envsys_find:
929 *
930 * + Find a sysmon envsys device and mark it as busy
931 * once it's available.
932 */
933 struct sysmon_envsys *
934 sysmon_envsys_find(const char *name)
935 {
936 struct sysmon_envsys *sme;
937
938 mutex_enter(&sme_global_mtx);
939 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
940 if (strcmp(sme->sme_name, name) == 0) {
941 sysmon_envsys_acquire(sme, false);
942 break;
943 }
944 }
945 mutex_exit(&sme_global_mtx);
946
947 return sme;
948 }
949
950 /*
951 * Compatibility function with the old API.
952 */
953 struct sysmon_envsys *
954 sysmon_envsys_find_40(u_int idx)
955 {
956 struct sysmon_envsys *sme;
957
958 mutex_enter(&sme_global_mtx);
959 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
960 if (idx >= sme->sme_fsensor &&
961 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
962 sysmon_envsys_acquire(sme, false);
963 break;
964 }
965 }
966 mutex_exit(&sme_global_mtx);
967
968 return sme;
969 }
970
971 /*
972 * sysmon_envsys_acquire:
973 *
974 * + Wait until a sysmon envsys device is available and mark
975 * it as busy.
976 */
977 void
978 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
979 {
980 KASSERT(sme != NULL);
981
982 if (locked) {
983 while (sme->sme_flags & SME_FLAG_BUSY)
984 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
985 sme->sme_flags |= SME_FLAG_BUSY;
986 } else {
987 mutex_enter(&sme->sme_mtx);
988 while (sme->sme_flags & SME_FLAG_BUSY)
989 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
990 sme->sme_flags |= SME_FLAG_BUSY;
991 mutex_exit(&sme->sme_mtx);
992 }
993 }
994
995 /*
996 * sysmon_envsys_release:
997 *
998 * + Unmark a sysmon envsys device as busy, and notify
999 * waiters.
1000 */
1001 void
1002 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
1003 {
1004 KASSERT(sme != NULL);
1005
1006 if (locked) {
1007 sme->sme_flags &= ~SME_FLAG_BUSY;
1008 cv_broadcast(&sme->sme_condvar);
1009 } else {
1010 mutex_enter(&sme->sme_mtx);
1011 sme->sme_flags &= ~SME_FLAG_BUSY;
1012 cv_broadcast(&sme->sme_condvar);
1013 mutex_exit(&sme->sme_mtx);
1014 }
1015 }
1016
1017 /*
1018 * sme_initial_refresh:
1019 *
1020 * + Do an initial refresh of the sensors in a device just after
1021 * interrupts are enabled in the autoconf(9) process.
1022 *
1023 */
1024 static void
1025 sme_initial_refresh(void *arg)
1026 {
1027 struct sysmon_envsys *sme = arg;
1028 envsys_data_t *edata;
1029
1030 mutex_enter(&sme->sme_mtx);
1031 sysmon_envsys_acquire(sme, true);
1032 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1033 sysmon_envsys_refresh_sensor(sme, edata);
1034 sysmon_envsys_release(sme, true);
1035 mutex_exit(&sme->sme_mtx);
1036 }
1037
1038 /*
1039 * sme_sensor_dictionary_get:
1040 *
1041 * + Returns a dictionary of a device specified by its index
1042 * position.
1043 */
1044 prop_dictionary_t
1045 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1046 {
1047 prop_object_iterator_t iter;
1048 prop_dictionary_t dict;
1049 prop_object_t obj;
1050
1051 KASSERT(array != NULL || index != NULL);
1052
1053 iter = prop_array_iterator(array);
1054 if (!iter)
1055 return NULL;
1056
1057 while ((dict = prop_object_iterator_next(iter))) {
1058 obj = prop_dictionary_get(dict, "index");
1059 if (prop_string_equals_cstring(obj, index))
1060 break;
1061 }
1062
1063 prop_object_iterator_release(iter);
1064 return dict;
1065 }
1066
1067 /*
1068 * sme_remove_userprops:
1069 *
1070 * + Remove all properties from all devices that were set by
1071 * the ENVSYS_SETDICTIONARY ioctl.
1072 */
1073 static void
1074 sme_remove_userprops(void)
1075 {
1076 struct sysmon_envsys *sme;
1077 prop_array_t array;
1078 prop_dictionary_t sdict;
1079 envsys_data_t *edata = NULL;
1080 char tmp[ENVSYS_DESCLEN];
1081 char rnd_name[sizeof(edata->rnd_src.name)];
1082 sysmon_envsys_lim_t lims;
1083 const struct sme_descr_entry *sdt_units;
1084 uint32_t props;
1085 int ptype;
1086
1087 mutex_enter(&sme_global_mtx);
1088 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1089 sysmon_envsys_acquire(sme, false);
1090 array = prop_dictionary_get(sme_propd, sme->sme_name);
1091
1092 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1093 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1094 edata->sensor);
1095 sdict = sme_sensor_dictionary_get(array, tmp);
1096 KASSERT(sdict != NULL);
1097
1098 ptype = 0;
1099 if (edata->upropset & PROP_BATTCAP) {
1100 prop_dictionary_remove(sdict,
1101 "critical-capacity");
1102 ptype = PENVSYS_EVENT_CAPACITY;
1103 }
1104
1105 if (edata->upropset & PROP_BATTWARN) {
1106 prop_dictionary_remove(sdict,
1107 "warning-capacity");
1108 ptype = PENVSYS_EVENT_CAPACITY;
1109 }
1110
1111 if (edata->upropset & PROP_BATTHIGH) {
1112 prop_dictionary_remove(sdict,
1113 "high-capacity");
1114 ptype = PENVSYS_EVENT_CAPACITY;
1115 }
1116
1117 if (edata->upropset & PROP_BATTMAX) {
1118 prop_dictionary_remove(sdict,
1119 "maximum-capacity");
1120 ptype = PENVSYS_EVENT_CAPACITY;
1121 }
1122 if (edata->upropset & PROP_WARNMAX) {
1123 prop_dictionary_remove(sdict, "warning-max");
1124 ptype = PENVSYS_EVENT_LIMITS;
1125 }
1126
1127 if (edata->upropset & PROP_WARNMIN) {
1128 prop_dictionary_remove(sdict, "warning-min");
1129 ptype = PENVSYS_EVENT_LIMITS;
1130 }
1131
1132 if (edata->upropset & PROP_CRITMAX) {
1133 prop_dictionary_remove(sdict, "critical-max");
1134 ptype = PENVSYS_EVENT_LIMITS;
1135 }
1136
1137 if (edata->upropset & PROP_CRITMIN) {
1138 prop_dictionary_remove(sdict, "critical-min");
1139 ptype = PENVSYS_EVENT_LIMITS;
1140 }
1141 if (edata->upropset & PROP_RFACT) {
1142 (void)sme_sensor_upint32(sdict, "rfact", 0);
1143 edata->rfact = 0;
1144 }
1145
1146 if (edata->upropset & PROP_DESC)
1147 (void)sme_sensor_upstring(sdict,
1148 "description", edata->desc);
1149
1150 if (ptype == 0)
1151 continue;
1152
1153 /*
1154 * If there were any limit values removed, we
1155 * need to revert to initial limits.
1156 *
1157 * First, tell the driver that we need it to
1158 * restore any h/w limits which may have been
1159 * changed to stored, boot-time values.
1160 */
1161 if (sme->sme_set_limits) {
1162 DPRINTF(("%s: reset limits for %s %s\n",
1163 __func__, sme->sme_name, edata->desc));
1164 (*sme->sme_set_limits)(sme, edata, NULL, NULL);
1165 }
1166
1167 /*
1168 * Next, we need to retrieve those initial limits.
1169 */
1170 props = 0;
1171 edata->upropset &= ~PROP_LIMITS;
1172 if (sme->sme_get_limits) {
1173 DPRINTF(("%s: retrieve limits for %s %s\n",
1174 __func__, sme->sme_name, edata->desc));
1175 lims = edata->limits;
1176 (*sme->sme_get_limits)(sme, edata, &lims,
1177 &props);
1178 }
1179
1180 /*
1181 * Finally, remove any old limits event, then
1182 * install a new event (which will update the
1183 * dictionary)
1184 */
1185 sme_event_unregister(sme, edata->desc,
1186 PENVSYS_EVENT_LIMITS);
1187
1188 /*
1189 * Find the correct units for this sensor.
1190 */
1191 sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1192 edata->units);
1193
1194 if (props & PROP_LIMITS) {
1195 DPRINTF(("%s: install limits for %s %s\n",
1196 __func__, sme->sme_name, edata->desc));
1197
1198 sme_event_register(sdict, edata, sme,
1199 &lims, props, PENVSYS_EVENT_LIMITS,
1200 sdt_units->crittype);
1201 }
1202 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1203 sme_event_register(sdict, edata, sme,
1204 &lims, props, PENVSYS_EVENT_NULL,
1205 sdt_units->crittype);
1206 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1207 sme->sme_name, edata->desc);
1208 rnd_attach_source(&edata->rnd_src, rnd_name,
1209 RND_TYPE_ENV, 0);
1210 }
1211 }
1212
1213 /*
1214 * Restore default timeout value.
1215 */
1216 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1217 sme_schedule_callout(sme);
1218 sysmon_envsys_release(sme, false);
1219 }
1220 mutex_exit(&sme_global_mtx);
1221 }
1222
1223 /*
1224 * sme_add_property_dictionary:
1225 *
1226 * + Add global properties into a device.
1227 */
1228 static int
1229 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1230 prop_dictionary_t dict)
1231 {
1232 prop_dictionary_t pdict;
1233 const char *class;
1234 int error = 0;
1235
1236 pdict = prop_dictionary_create();
1237 if (!pdict)
1238 return EINVAL;
1239
1240 /*
1241 * Add the 'refresh-timeout' and 'dev-class' objects into the
1242 * 'device-properties' dictionary.
1243 *
1244 * ...
1245 * <dict>
1246 * <key>device-properties</key>
1247 * <dict>
1248 * <key>refresh-timeout</key>
1249 * <integer>120</integer<
1250 * <key>device-class</key>
1251 * <string>class_name</string>
1252 * </dict>
1253 * </dict>
1254 * ...
1255 *
1256 */
1257 if (sme->sme_events_timeout == 0) {
1258 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1259 sme_schedule_callout(sme);
1260 }
1261
1262 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1263 sme->sme_events_timeout)) {
1264 error = EINVAL;
1265 goto out;
1266 }
1267 if (sme->sme_class == SME_CLASS_BATTERY)
1268 class = "battery";
1269 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1270 class = "ac-adapter";
1271 else
1272 class = "other";
1273 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1274 error = EINVAL;
1275 goto out;
1276 }
1277
1278 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1279 error = EINVAL;
1280 goto out;
1281 }
1282
1283 /*
1284 * Add the device dictionary into the sysmon envsys array.
1285 */
1286 if (!prop_array_add(array, dict))
1287 error = EINVAL;
1288
1289 out:
1290 prop_object_release(pdict);
1291 return error;
1292 }
1293
1294 /*
1295 * sme_add_sensor_dictionary:
1296 *
1297 * + Adds the sensor objects into the dictionary and returns a pointer
1298 * to a sme_event_drv_t object if a monitoring flag was set
1299 * (or NULL otherwise).
1300 */
1301 static sme_event_drv_t *
1302 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1303 prop_dictionary_t dict, envsys_data_t *edata)
1304 {
1305 const struct sme_descr_entry *sdt;
1306 int error;
1307 sme_event_drv_t *sme_evdrv_t = NULL;
1308 char indexstr[ENVSYS_DESCLEN];
1309 bool mon_supported, allow_rfact;
1310
1311 /*
1312 * Add the index sensor string.
1313 *
1314 * ...
1315 * <key>index</eyr
1316 * <string>sensor0</string>
1317 * ...
1318 */
1319 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1320 if (sme_sensor_upstring(dict, "index", indexstr))
1321 goto bad;
1322
1323 /*
1324 * ...
1325 * <key>description</key>
1326 * <string>blah blah</string>
1327 * ...
1328 */
1329 if (sme_sensor_upstring(dict, "description", edata->desc))
1330 goto bad;
1331
1332 /*
1333 * Add the monitoring boolean object:
1334 *
1335 * ...
1336 * <key>monitoring-supported</key>
1337 * <true/>
1338 * ...
1339 *
1340 * always false on Battery {capacity,charge}, Drive and Indicator types.
1341 * They cannot be monitored.
1342 *
1343 */
1344 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1345 (edata->units == ENVSYS_INDICATOR) ||
1346 (edata->units == ENVSYS_DRIVE) ||
1347 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1348 (edata->units == ENVSYS_BATTERY_CHARGE))
1349 mon_supported = false;
1350 else
1351 mon_supported = true;
1352 if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1353 goto out;
1354
1355 /*
1356 * Add the allow-rfact boolean object, true if
1357 * ENVSYS_FCHANGERFACT is set, false otherwise.
1358 *
1359 * ...
1360 * <key>allow-rfact</key>
1361 * <true/>
1362 * ...
1363 */
1364 if (edata->units == ENVSYS_SVOLTS_DC ||
1365 edata->units == ENVSYS_SVOLTS_AC) {
1366 if (edata->flags & ENVSYS_FCHANGERFACT)
1367 allow_rfact = true;
1368 else
1369 allow_rfact = false;
1370 if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1371 goto out;
1372 }
1373
1374 error = sme_update_sensor_dictionary(dict, edata,
1375 (edata->state == ENVSYS_SVALID));
1376 if (error < 0)
1377 goto bad;
1378 else if (error)
1379 goto out;
1380
1381 /*
1382 * ...
1383 * </dict>
1384 *
1385 * Add the dictionary into the array.
1386 *
1387 */
1388 if (!prop_array_add(array, dict)) {
1389 DPRINTF(("%s: prop_array_add\n", __func__));
1390 goto bad;
1391 }
1392
1393 /*
1394 * Register new event(s) if any monitoring flag was set or if
1395 * the sensor provides entropy for rnd(4).
1396 */
1397 if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1398 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1399 sme_evdrv_t->sed_sdict = dict;
1400 sme_evdrv_t->sed_edata = edata;
1401 sme_evdrv_t->sed_sme = sme;
1402 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1403 sme_evdrv_t->sed_powertype = sdt->crittype;
1404 }
1405
1406 out:
1407 return sme_evdrv_t;
1408
1409 bad:
1410 prop_object_release(dict);
1411 return NULL;
1412 }
1413
1414 /*
1415 * Find the maximum of all currently reported values.
1416 * The provided callback decides whether a sensor is part of the
1417 * maximum calculation (by returning true) or ignored (callback
1418 * returns false). Example usage: callback selects temperature
1419 * sensors in a given thermal zone, the function calculates the
1420 * maximum currently reported temperature in this zone.
1421 * If the parameter "refresh" is true, new values will be aquired
1422 * from the hardware, if not, the last reported value will be used.
1423 */
1424 uint32_t
1425 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1426 bool refresh)
1427 {
1428 struct sysmon_envsys *sme;
1429 uint32_t maxv, v;
1430
1431 maxv = 0;
1432 mutex_enter(&sme_global_mtx);
1433 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1434 sysmon_envsys_acquire(sme, false);
1435 v = sme_get_max_value(sme, predicate, refresh);
1436 sysmon_envsys_release(sme, false);
1437 if (v > maxv)
1438 maxv = v;
1439 }
1440 mutex_exit(&sme_global_mtx);
1441 return maxv;
1442 }
1443
1444 static uint32_t
1445 sme_get_max_value(struct sysmon_envsys *sme,
1446 bool (*predicate)(const envsys_data_t*),
1447 bool refresh)
1448 {
1449 envsys_data_t *edata;
1450 uint32_t maxv, v;
1451
1452 /*
1453 * Iterate over all sensors that match the predicate
1454 */
1455 maxv = 0;
1456 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1457 if (!(*predicate)(edata))
1458 continue;
1459
1460 /*
1461 * refresh sensor data
1462 */
1463 mutex_enter(&sme->sme_mtx);
1464 sysmon_envsys_refresh_sensor(sme, edata);
1465 mutex_exit(&sme->sme_mtx);
1466
1467 v = edata->value_cur;
1468 if (v > maxv)
1469 maxv = v;
1470
1471 }
1472
1473 return maxv;
1474 }
1475
1476 /*
1477 * sme_update_dictionary:
1478 *
1479 * + Update per-sensor dictionaries with new values if there were
1480 * changes, otherwise the object in dictionary is untouched.
1481 */
1482 int
1483 sme_update_dictionary(struct sysmon_envsys *sme)
1484 {
1485 envsys_data_t *edata;
1486 prop_object_t array, dict, obj, obj2;
1487 int error = 0;
1488
1489 /*
1490 * Retrieve the array of dictionaries in device.
1491 */
1492 array = prop_dictionary_get(sme_propd, sme->sme_name);
1493 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1494 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1495 return EINVAL;
1496 }
1497
1498 /*
1499 * Get the last dictionary on the array, this contains the
1500 * 'device-properties' sub-dictionary.
1501 */
1502 obj = prop_array_get(array, prop_array_count(array) - 1);
1503 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1504 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1505 return EINVAL;
1506 }
1507
1508 obj2 = prop_dictionary_get(obj, "device-properties");
1509 if (!obj2)
1510 return EINVAL;
1511
1512 /*
1513 * Update the 'refresh-timeout' property.
1514 */
1515 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1516 sme->sme_events_timeout))
1517 return EINVAL;
1518
1519 /*
1520 * - iterate over all sensors.
1521 * - fetch new data.
1522 * - check if data in dictionary is different than new data.
1523 * - update dictionary if there were changes.
1524 */
1525 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1526 sme->sme_name, sme->sme_nsensors));
1527
1528 /*
1529 * Don't bother with locking when traversing the queue,
1530 * the device is already marked as busy; if a sensor
1531 * is going to be removed or added it will have to wait.
1532 */
1533 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1534 /*
1535 * refresh sensor data via sme_envsys_refresh_sensor
1536 */
1537 mutex_enter(&sme->sme_mtx);
1538 sysmon_envsys_refresh_sensor(sme, edata);
1539 mutex_exit(&sme->sme_mtx);
1540
1541 /*
1542 * retrieve sensor's dictionary.
1543 */
1544 dict = prop_array_get(array, edata->sensor);
1545 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1546 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1547 __func__, edata->sensor, sme->sme_name));
1548 return EINVAL;
1549 }
1550
1551 /*
1552 * update sensor's state.
1553 */
1554 error = sme_update_sensor_dictionary(dict, edata, true);
1555
1556 if (error)
1557 break;
1558 }
1559
1560 return error;
1561 }
1562
1563 int
1564 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1565 bool value_update)
1566 {
1567 const struct sme_descr_entry *sdt;
1568 int error = 0;
1569
1570 sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1571 if (sdt == NULL) {
1572 printf("sme_update_sensor_dictionary: can not update sensor "
1573 "state %d unknown\n", edata->state);
1574 return EINVAL;
1575 }
1576
1577 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1578 edata->sensor, sdt->type, sdt->desc, edata->flags));
1579
1580 error = sme_sensor_upstring(dict, "state", sdt->desc);
1581 if (error)
1582 return (-error);
1583
1584 /*
1585 * update sensor's type.
1586 */
1587 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1588
1589 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1590 sdt->type, sdt->desc));
1591
1592 error = sme_sensor_upstring(dict, "type", sdt->desc);
1593 if (error)
1594 return (-error);
1595
1596 if (value_update) {
1597 /*
1598 * update sensor's current value.
1599 */
1600 error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1601 if (error)
1602 return error;
1603 }
1604
1605 /*
1606 * Battery charge and Indicator types do not
1607 * need the remaining objects, so skip them.
1608 */
1609 if (edata->units == ENVSYS_INDICATOR ||
1610 edata->units == ENVSYS_BATTERY_CHARGE)
1611 return error;
1612
1613 /*
1614 * update sensor flags.
1615 */
1616 if (edata->flags & ENVSYS_FPERCENT) {
1617 error = sme_sensor_upbool(dict, "want-percentage", true);
1618 if (error)
1619 return error;
1620 }
1621
1622 if (value_update) {
1623 /*
1624 * update sensor's {max,min}-value.
1625 */
1626 if (edata->flags & ENVSYS_FVALID_MAX) {
1627 error = sme_sensor_upint32(dict, "max-value",
1628 edata->value_max);
1629 if (error)
1630 return error;
1631 }
1632
1633 if (edata->flags & ENVSYS_FVALID_MIN) {
1634 error = sme_sensor_upint32(dict, "min-value",
1635 edata->value_min);
1636 if (error)
1637 return error;
1638 }
1639
1640 /*
1641 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1642 */
1643 if (edata->units == ENVSYS_SFANRPM) {
1644 error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1645 if (error)
1646 return error;
1647 }
1648
1649 /*
1650 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1651 */
1652 if (edata->units == ENVSYS_SVOLTS_AC ||
1653 edata->units == ENVSYS_SVOLTS_DC) {
1654 error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1655 if (error)
1656 return error;
1657 }
1658 }
1659
1660 /*
1661 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1662 */
1663 if (edata->units == ENVSYS_DRIVE) {
1664 sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1665 edata->value_cur);
1666 error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1667 if (error)
1668 return error;
1669 }
1670
1671 /*
1672 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1673 * sensors.
1674 */
1675 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1676 sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1677 edata->value_cur);
1678 error = sme_sensor_upstring(dict, "battery-capacity",
1679 sdt->desc);
1680 if (error)
1681 return error;
1682 }
1683
1684 return error;
1685 }
1686
1687 /*
1688 * sme_userset_dictionary:
1689 *
1690 * + Parse the userland dictionary and run the appropiate tasks
1691 * that were specified.
1692 */
1693 int
1694 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1695 prop_array_t array)
1696 {
1697 const struct sme_descr_entry *sdt;
1698 envsys_data_t *edata;
1699 prop_dictionary_t dict, tdict = NULL;
1700 prop_object_t obj, obj1, obj2, tobj = NULL;
1701 uint32_t props;
1702 uint64_t refresh_timo = 0;
1703 sysmon_envsys_lim_t lims;
1704 int i, error = 0;
1705 const char *blah;
1706 bool targetfound = false;
1707
1708 /*
1709 * The user wanted to change the refresh timeout value for this
1710 * device.
1711 *
1712 * Get the 'device-properties' object from the userland dictionary.
1713 */
1714 obj = prop_dictionary_get(udict, "device-properties");
1715 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1716 /*
1717 * Get the 'refresh-timeout' property for this device.
1718 */
1719 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1720 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1721 targetfound = true;
1722 refresh_timo =
1723 prop_number_unsigned_integer_value(obj1);
1724 if (refresh_timo < 1)
1725 error = EINVAL;
1726 else {
1727 mutex_enter(&sme->sme_mtx);
1728 if (sme->sme_events_timeout != refresh_timo) {
1729 sme->sme_events_timeout = refresh_timo;
1730 sme_schedule_callout(sme);
1731 }
1732 mutex_exit(&sme->sme_mtx);
1733 }
1734 }
1735 return error;
1736
1737 } else if (!obj) {
1738 /*
1739 * Get sensor's index from userland dictionary.
1740 */
1741 obj = prop_dictionary_get(udict, "index");
1742 if (!obj)
1743 return EINVAL;
1744 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1745 DPRINTF(("%s: 'index' not a string\n", __func__));
1746 return EINVAL;
1747 }
1748 } else
1749 return EINVAL;
1750
1751 /*
1752 * Don't bother with locking when traversing the queue,
1753 * the device is already marked as busy; if a sensor
1754 * is going to be removed or added it will have to wait.
1755 */
1756 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1757 /*
1758 * Get a dictionary and check if it's our sensor by checking
1759 * at its index position.
1760 */
1761 dict = prop_array_get(array, edata->sensor);
1762 obj1 = prop_dictionary_get(dict, "index");
1763
1764 /*
1765 * is it our sensor?
1766 */
1767 if (!prop_string_equals(obj1, obj))
1768 continue;
1769
1770 props = 0;
1771
1772 /*
1773 * Check if a new description operation was
1774 * requested by the user and set new description.
1775 */
1776 obj2 = prop_dictionary_get(udict, "description");
1777 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1778 targetfound = true;
1779 blah = prop_string_cstring_nocopy(obj2);
1780
1781 /*
1782 * Check for duplicate description.
1783 */
1784 for (i = 0; i < sme->sme_nsensors; i++) {
1785 if (i == edata->sensor)
1786 continue;
1787 tdict = prop_array_get(array, i);
1788 tobj =
1789 prop_dictionary_get(tdict, "description");
1790 if (prop_string_equals(obj2, tobj)) {
1791 error = EEXIST;
1792 goto out;
1793 }
1794 }
1795
1796 /*
1797 * Update the object in dictionary.
1798 */
1799 mutex_enter(&sme->sme_mtx);
1800 error = sme_sensor_upstring(dict,
1801 "description",
1802 blah);
1803 if (error) {
1804 mutex_exit(&sme->sme_mtx);
1805 goto out;
1806 }
1807
1808 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1809 __func__, edata->sensor, blah));
1810 edata->upropset |= PROP_DESC;
1811 mutex_exit(&sme->sme_mtx);
1812 }
1813
1814 /*
1815 * did the user want to change the rfact?
1816 */
1817 obj2 = prop_dictionary_get(udict, "rfact");
1818 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1819 targetfound = true;
1820 if (edata->flags & ENVSYS_FCHANGERFACT) {
1821 mutex_enter(&sme->sme_mtx);
1822 edata->rfact = prop_number_integer_value(obj2);
1823 edata->upropset |= PROP_RFACT;
1824 mutex_exit(&sme->sme_mtx);
1825 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1826 __func__, edata->sensor, edata->rfact));
1827 } else {
1828 error = ENOTSUP;
1829 goto out;
1830 }
1831 }
1832
1833 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1834
1835 /*
1836 * did the user want to set a critical capacity event?
1837 */
1838 obj2 = prop_dictionary_get(udict, "critical-capacity");
1839 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1840 targetfound = true;
1841 lims.sel_critmin = prop_number_integer_value(obj2);
1842 props |= PROP_BATTCAP;
1843 }
1844
1845 /*
1846 * did the user want to set a warning capacity event?
1847 */
1848 obj2 = prop_dictionary_get(udict, "warning-capacity");
1849 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1850 targetfound = true;
1851 lims.sel_warnmin = prop_number_integer_value(obj2);
1852 props |= PROP_BATTWARN;
1853 }
1854
1855 /*
1856 * did the user want to set a high capacity event?
1857 */
1858 obj2 = prop_dictionary_get(udict, "high-capacity");
1859 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1860 targetfound = true;
1861 lims.sel_warnmin = prop_number_integer_value(obj2);
1862 props |= PROP_BATTHIGH;
1863 }
1864
1865 /*
1866 * did the user want to set a maximum capacity event?
1867 */
1868 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1869 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1870 targetfound = true;
1871 lims.sel_warnmin = prop_number_integer_value(obj2);
1872 props |= PROP_BATTMAX;
1873 }
1874
1875 /*
1876 * did the user want to set a critical max event?
1877 */
1878 obj2 = prop_dictionary_get(udict, "critical-max");
1879 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1880 targetfound = true;
1881 lims.sel_critmax = prop_number_integer_value(obj2);
1882 props |= PROP_CRITMAX;
1883 }
1884
1885 /*
1886 * did the user want to set a warning max event?
1887 */
1888 obj2 = prop_dictionary_get(udict, "warning-max");
1889 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1890 targetfound = true;
1891 lims.sel_warnmax = prop_number_integer_value(obj2);
1892 props |= PROP_WARNMAX;
1893 }
1894
1895 /*
1896 * did the user want to set a critical min event?
1897 */
1898 obj2 = prop_dictionary_get(udict, "critical-min");
1899 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1900 targetfound = true;
1901 lims.sel_critmin = prop_number_integer_value(obj2);
1902 props |= PROP_CRITMIN;
1903 }
1904
1905 /*
1906 * did the user want to set a warning min event?
1907 */
1908 obj2 = prop_dictionary_get(udict, "warning-min");
1909 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1910 targetfound = true;
1911 lims.sel_warnmin = prop_number_integer_value(obj2);
1912 props |= PROP_WARNMIN;
1913 }
1914
1915 if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1916 error = ENOTSUP;
1917 goto out;
1918 }
1919 if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1920 error = sme_event_register(dict, edata, sme, &lims,
1921 props,
1922 (edata->flags & ENVSYS_FPERCENT)?
1923 PENVSYS_EVENT_CAPACITY:
1924 PENVSYS_EVENT_LIMITS,
1925 sdt->crittype);
1926 if (error == EEXIST)
1927 error = 0;
1928 if (error)
1929 goto out;
1930 }
1931
1932 /*
1933 * All objects in dictionary were processed.
1934 */
1935 break;
1936 }
1937
1938 out:
1939 /*
1940 * invalid target? return the error.
1941 */
1942 if (!targetfound)
1943 error = EINVAL;
1944
1945 return error;
1946 }
1947
1948 /*
1949 * + sysmon_envsys_foreach_sensor
1950 *
1951 * Walk through the devices' sensor lists and execute the callback.
1952 * If the callback returns false, the remainder of the current
1953 * device's sensors are skipped.
1954 */
1955 void
1956 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
1957 bool refresh)
1958 {
1959 struct sysmon_envsys *sme;
1960 envsys_data_t *sensor;
1961
1962 mutex_enter(&sme_global_mtx);
1963 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1964
1965 sysmon_envsys_acquire(sme, false);
1966 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
1967 if (refresh) {
1968 mutex_enter(&sme->sme_mtx);
1969 sysmon_envsys_refresh_sensor(sme, sensor);
1970 mutex_exit(&sme->sme_mtx);
1971 }
1972 if (!(*func)(sme, sensor, arg))
1973 break;
1974 }
1975 sysmon_envsys_release(sme, false);
1976 }
1977 mutex_exit(&sme_global_mtx);
1978 }
1979
1980 /*
1981 * Call the sensor's refresh function, and collect/stir entropy
1982 */
1983 void
1984 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
1985 {
1986
1987 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
1988 (*sme->sme_refresh)(sme, edata);
1989
1990 if (edata->flags & ENVSYS_FHAS_ENTROPY &&
1991 edata->state != ENVSYS_SINVALID &&
1992 edata->value_prev != edata->value_cur)
1993 rnd_add_uint32(&edata->rnd_src, edata->value_cur);
1994 edata->value_prev = edata->value_cur;
1995 }
1996