sysmon_envsys.c revision 1.127 1 /* $NetBSD: sysmon_envsys.c,v 1.127 2014/08/10 16:44:36 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.127 2014/08/10 16:44:36 tls Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rnd.h>
80
81 #include <dev/sysmon/sysmonvar.h>
82 #include <dev/sysmon/sysmon_envsysvar.h>
83 #include <dev/sysmon/sysmon_taskq.h>
84
85 kmutex_t sme_global_mtx;
86
87 prop_dictionary_t sme_propd;
88
89 struct sysmon_envsys_lh sysmon_envsys_list;
90
91 static uint32_t sysmon_envsys_next_sensor_index;
92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
93
94 static void sysmon_envsys_destroy_plist(prop_array_t);
95 static void sme_remove_userprops(void);
96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
97 prop_dictionary_t);
98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
99 prop_array_t, prop_dictionary_t, envsys_data_t *);
100 static void sme_initial_refresh(void *);
101 static uint32_t sme_get_max_value(struct sysmon_envsys *,
102 bool (*)(const envsys_data_t*), bool);
103
104 /*
105 * sysmon_envsys_init:
106 *
107 * + Initialize global mutex, dictionary and the linked list.
108 */
109 void
110 sysmon_envsys_init(void)
111 {
112 LIST_INIT(&sysmon_envsys_list);
113 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
114 sme_propd = prop_dictionary_create();
115 }
116
117 /*
118 * sysmonopen_envsys:
119 *
120 * + Open the system monitor device.
121 */
122 int
123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
124 {
125 return 0;
126 }
127
128 /*
129 * sysmonclose_envsys:
130 *
131 * + Close the system monitor device.
132 */
133 int
134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
135 {
136 return 0;
137 }
138
139 /*
140 * sysmonioctl_envsys:
141 *
142 * + Perform a sysmon envsys control request.
143 */
144 int
145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
146 {
147 struct sysmon_envsys *sme = NULL;
148 int error = 0;
149 u_int oidx;
150
151 switch (cmd) {
152 /*
153 * To update the global dictionary with latest data from devices.
154 */
155 case ENVSYS_GETDICTIONARY:
156 {
157 struct plistref *plist = (struct plistref *)data;
158
159 /*
160 * Update dictionaries on all sysmon envsys devices
161 * registered.
162 */
163 mutex_enter(&sme_global_mtx);
164 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
165 sysmon_envsys_acquire(sme, false);
166 error = sme_update_dictionary(sme);
167 if (error) {
168 DPRINTF(("%s: sme_update_dictionary, "
169 "error=%d\n", __func__, error));
170 sysmon_envsys_release(sme, false);
171 mutex_exit(&sme_global_mtx);
172 return error;
173 }
174 sysmon_envsys_release(sme, false);
175 }
176 mutex_exit(&sme_global_mtx);
177 /*
178 * Copy global dictionary to userland.
179 */
180 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
181 break;
182 }
183 /*
184 * To set properties on multiple devices.
185 */
186 case ENVSYS_SETDICTIONARY:
187 {
188 const struct plistref *plist = (const struct plistref *)data;
189 prop_dictionary_t udict;
190 prop_object_iterator_t iter, iter2;
191 prop_object_t obj, obj2;
192 prop_array_t array_u, array_k;
193 const char *devname = NULL;
194
195 if ((flag & FWRITE) == 0)
196 return EPERM;
197
198 /*
199 * Get dictionary from userland.
200 */
201 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
202 if (error) {
203 DPRINTF(("%s: copyin_ioctl error=%d\n",
204 __func__, error));
205 break;
206 }
207
208 iter = prop_dictionary_iterator(udict);
209 if (!iter) {
210 prop_object_release(udict);
211 return ENOMEM;
212 }
213
214 /*
215 * Iterate over the userland dictionary and process
216 * the list of devices.
217 */
218 while ((obj = prop_object_iterator_next(iter))) {
219 array_u = prop_dictionary_get_keysym(udict, obj);
220 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
221 prop_object_iterator_release(iter);
222 prop_object_release(udict);
223 return EINVAL;
224 }
225
226 devname = prop_dictionary_keysym_cstring_nocopy(obj);
227 DPRINTF(("%s: processing the '%s' array requests\n",
228 __func__, devname));
229
230 /*
231 * find the correct sme device.
232 */
233 sme = sysmon_envsys_find(devname);
234 if (!sme) {
235 DPRINTF(("%s: NULL sme\n", __func__));
236 prop_object_iterator_release(iter);
237 prop_object_release(udict);
238 return EINVAL;
239 }
240
241 /*
242 * Find the correct array object with the string
243 * supplied by the userland dictionary.
244 */
245 array_k = prop_dictionary_get(sme_propd, devname);
246 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
247 DPRINTF(("%s: array device failed\n",
248 __func__));
249 sysmon_envsys_release(sme, false);
250 prop_object_iterator_release(iter);
251 prop_object_release(udict);
252 return EINVAL;
253 }
254
255 iter2 = prop_array_iterator(array_u);
256 if (!iter2) {
257 sysmon_envsys_release(sme, false);
258 prop_object_iterator_release(iter);
259 prop_object_release(udict);
260 return ENOMEM;
261 }
262
263 /*
264 * Iterate over the array of dictionaries to
265 * process the list of sensors and properties.
266 */
267 while ((obj2 = prop_object_iterator_next(iter2))) {
268 /*
269 * do the real work now.
270 */
271 error = sme_userset_dictionary(sme,
272 obj2,
273 array_k);
274 if (error) {
275 sysmon_envsys_release(sme, false);
276 prop_object_iterator_release(iter2);
277 prop_object_iterator_release(iter);
278 prop_object_release(udict);
279 return error;
280 }
281 }
282
283 sysmon_envsys_release(sme, false);
284 prop_object_iterator_release(iter2);
285 }
286
287 prop_object_iterator_release(iter);
288 prop_object_release(udict);
289 break;
290 }
291 /*
292 * To remove all properties from all devices registered.
293 */
294 case ENVSYS_REMOVEPROPS:
295 {
296 const struct plistref *plist = (const struct plistref *)data;
297 prop_dictionary_t udict;
298 prop_object_t obj;
299
300 if ((flag & FWRITE) == 0)
301 return EPERM;
302
303 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
304 if (error) {
305 DPRINTF(("%s: copyin_ioctl error=%d\n",
306 __func__, error));
307 break;
308 }
309
310 obj = prop_dictionary_get(udict, "envsys-remove-props");
311 if (!obj || !prop_bool_true(obj)) {
312 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
313 __func__));
314 return EINVAL;
315 }
316
317 prop_object_release(udict);
318 sme_remove_userprops();
319
320 break;
321 }
322 /*
323 * Compatibility ioctls with the old interface, only implemented
324 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
325 * applications work.
326 */
327 case ENVSYS_GTREDATA:
328 {
329 struct envsys_tre_data *tred = (void *)data;
330 envsys_data_t *edata = NULL;
331 bool found = false;
332
333 tred->validflags = 0;
334
335 sme = sysmon_envsys_find_40(tred->sensor);
336 if (!sme)
337 break;
338
339 oidx = tred->sensor;
340 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
341
342 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
343 __func__, tred->sensor, oidx, sme->sme_name,
344 sme->sme_nsensors));
345
346 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
347 if (edata->sensor == tred->sensor) {
348 found = true;
349 break;
350 }
351 }
352
353 if (!found) {
354 sysmon_envsys_release(sme, false);
355 error = ENODEV;
356 break;
357 }
358
359 if (tred->sensor < sme->sme_nsensors) {
360 if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
361 mutex_enter(&sme->sme_mtx);
362 sysmon_envsys_refresh_sensor(sme, edata);
363 mutex_exit(&sme->sme_mtx);
364 }
365
366 /*
367 * copy required values to the old interface.
368 */
369 tred->sensor = edata->sensor;
370 tred->cur.data_us = edata->value_cur;
371 tred->cur.data_s = edata->value_cur;
372 tred->max.data_us = edata->value_max;
373 tred->max.data_s = edata->value_max;
374 tred->min.data_us = edata->value_min;
375 tred->min.data_s = edata->value_min;
376 tred->avg.data_us = 0;
377 tred->avg.data_s = 0;
378 if (edata->units == ENVSYS_BATTERY_CHARGE)
379 tred->units = ENVSYS_INDICATOR;
380 else
381 tred->units = edata->units;
382
383 tred->validflags |= ENVSYS_FVALID;
384 tred->validflags |= ENVSYS_FCURVALID;
385
386 if (edata->flags & ENVSYS_FPERCENT) {
387 tred->validflags |= ENVSYS_FMAXVALID;
388 tred->validflags |= ENVSYS_FFRACVALID;
389 }
390
391 if (edata->state == ENVSYS_SINVALID) {
392 tred->validflags &= ~ENVSYS_FCURVALID;
393 tred->cur.data_us = tred->cur.data_s = 0;
394 }
395
396 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
397 __func__, edata->desc, tred->cur.data_s));
398 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
399 " tred->sensor=%d\n", __func__, tred->validflags,
400 tred->units, tred->sensor));
401 }
402 tred->sensor = oidx;
403 sysmon_envsys_release(sme, false);
404
405 break;
406 }
407 case ENVSYS_GTREINFO:
408 {
409 struct envsys_basic_info *binfo = (void *)data;
410 envsys_data_t *edata = NULL;
411 bool found = false;
412
413 binfo->validflags = 0;
414
415 sme = sysmon_envsys_find_40(binfo->sensor);
416 if (!sme)
417 break;
418
419 oidx = binfo->sensor;
420 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
421
422 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
423 if (edata->sensor == binfo->sensor) {
424 found = true;
425 break;
426 }
427 }
428
429 if (!found) {
430 sysmon_envsys_release(sme, false);
431 error = ENODEV;
432 break;
433 }
434
435 binfo->validflags |= ENVSYS_FVALID;
436
437 if (binfo->sensor < sme->sme_nsensors) {
438 if (edata->units == ENVSYS_BATTERY_CHARGE)
439 binfo->units = ENVSYS_INDICATOR;
440 else
441 binfo->units = edata->units;
442
443 /*
444 * previously, the ACPI sensor names included the
445 * device name. Include that in compatibility code.
446 */
447 if (strncmp(sme->sme_name, "acpi", 4) == 0)
448 (void)snprintf(binfo->desc, sizeof(binfo->desc),
449 "%s %s", sme->sme_name, edata->desc);
450 else
451 (void)strlcpy(binfo->desc, edata->desc,
452 sizeof(binfo->desc));
453 }
454
455 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
456 __func__, binfo->units, binfo->validflags));
457 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
458 __func__, binfo->desc, binfo->sensor));
459
460 binfo->sensor = oidx;
461 sysmon_envsys_release(sme, false);
462
463 break;
464 }
465 default:
466 error = ENOTTY;
467 break;
468 }
469
470 return error;
471 }
472
473 /*
474 * sysmon_envsys_create:
475 *
476 * + Allocates a new sysmon_envsys object and initializes the
477 * stuff for sensors and events.
478 */
479 struct sysmon_envsys *
480 sysmon_envsys_create(void)
481 {
482 struct sysmon_envsys *sme;
483
484 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
485 TAILQ_INIT(&sme->sme_sensors_list);
486 LIST_INIT(&sme->sme_events_list);
487 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
488 cv_init(&sme->sme_condvar, "sme_wait");
489
490 return sme;
491 }
492
493 /*
494 * sysmon_envsys_destroy:
495 *
496 * + Removes all sensors from the tail queue, destroys the callout
497 * and frees the sysmon_envsys object.
498 */
499 void
500 sysmon_envsys_destroy(struct sysmon_envsys *sme)
501 {
502 envsys_data_t *edata;
503
504 KASSERT(sme != NULL);
505
506 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
507 edata = TAILQ_FIRST(&sme->sme_sensors_list);
508 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
509 }
510 mutex_destroy(&sme->sme_mtx);
511 cv_destroy(&sme->sme_condvar);
512 kmem_free(sme, sizeof(*sme));
513 }
514
515 /*
516 * sysmon_envsys_sensor_attach:
517 *
518 * + Attaches a sensor into a sysmon_envsys device checking that units
519 * is set to a valid type and description is unique and not empty.
520 */
521 int
522 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
523 {
524 const struct sme_descr_entry *sdt_units;
525 envsys_data_t *oedata;
526
527 KASSERT(sme != NULL || edata != NULL);
528
529 /*
530 * Find the correct units for this sensor.
531 */
532 sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
533 if (sdt_units->type == -1)
534 return EINVAL;
535
536 /*
537 * Check that description is not empty or duplicate.
538 */
539 if (strlen(edata->desc) == 0)
540 return EINVAL;
541
542 mutex_enter(&sme->sme_mtx);
543 sysmon_envsys_acquire(sme, true);
544 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
545 if (strcmp(oedata->desc, edata->desc) == 0) {
546 sysmon_envsys_release(sme, true);
547 mutex_exit(&sme->sme_mtx);
548 return EEXIST;
549 }
550 }
551 /*
552 * Ok, the sensor has been added into the device queue.
553 */
554 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
555
556 /*
557 * Give the sensor an index position.
558 */
559 edata->sensor = sme->sme_nsensors;
560 sme->sme_nsensors++;
561 sysmon_envsys_release(sme, true);
562 mutex_exit(&sme->sme_mtx);
563
564 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
565 __func__, edata->sensor, edata->desc,
566 sdt_units->type, sdt_units->desc));
567
568 return 0;
569 }
570
571 /*
572 * sysmon_envsys_sensor_detach:
573 *
574 * + Detachs a sensor from a sysmon_envsys device and decrements the
575 * sensors count on success.
576 */
577 int
578 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
579 {
580 envsys_data_t *oedata;
581 bool found = false;
582
583 KASSERT(sme != NULL || edata != NULL);
584
585 /*
586 * Check the sensor is already on the list.
587 */
588 mutex_enter(&sme->sme_mtx);
589 sysmon_envsys_acquire(sme, true);
590 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
591 if (oedata->sensor == edata->sensor) {
592 found = true;
593 break;
594 }
595 }
596
597 if (!found) {
598 sysmon_envsys_release(sme, true);
599 mutex_exit(&sme->sme_mtx);
600 return EINVAL;
601 }
602
603 /*
604 * remove it, unhook from rnd(4), and decrement the sensors count.
605 */
606 sme_event_unregister_sensor(sme, edata);
607 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
608 sme->sme_nsensors--;
609 sysmon_envsys_release(sme, true);
610 mutex_exit(&sme->sme_mtx);
611
612 return 0;
613 }
614
615
616 /*
617 * sysmon_envsys_register:
618 *
619 * + Register a sysmon envsys device.
620 * + Create array of dictionaries for a device.
621 */
622 int
623 sysmon_envsys_register(struct sysmon_envsys *sme)
624 {
625 struct sme_evdrv {
626 SLIST_ENTRY(sme_evdrv) evdrv_head;
627 sme_event_drv_t *evdrv;
628 };
629 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
630 struct sme_evdrv *evdv = NULL;
631 struct sysmon_envsys *lsme;
632 prop_array_t array = NULL;
633 prop_dictionary_t dict, dict2;
634 envsys_data_t *edata = NULL;
635 sme_event_drv_t *this_evdrv;
636 int nevent;
637 int error = 0;
638 char rnd_name[sizeof(edata->rnd_src.name)];
639
640 KASSERT(sme != NULL);
641 KASSERT(sme->sme_name != NULL);
642
643 /*
644 * Check if requested sysmon_envsys device is valid
645 * and does not exist already in the list.
646 */
647 mutex_enter(&sme_global_mtx);
648 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
649 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
650 mutex_exit(&sme_global_mtx);
651 return EEXIST;
652 }
653 }
654 mutex_exit(&sme_global_mtx);
655
656 /*
657 * sanity check: if SME_DISABLE_REFRESH is not set,
658 * the sme_refresh function callback must be non NULL.
659 */
660 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
661 if (!sme->sme_refresh)
662 return EINVAL;
663
664 /*
665 * If the list of sensors is empty, there's no point to continue...
666 */
667 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
668 DPRINTF(("%s: sensors list empty for %s\n", __func__,
669 sme->sme_name));
670 return ENOTSUP;
671 }
672
673 /*
674 * Initialize the singly linked list for driver events.
675 */
676 SLIST_INIT(&sme_evdrv_list);
677
678 array = prop_array_create();
679 if (!array)
680 return ENOMEM;
681
682 /*
683 * Iterate over all sensors and create a dictionary per sensor.
684 * We must respect the order in which the sensors were added.
685 */
686 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
687 dict = prop_dictionary_create();
688 if (!dict) {
689 error = ENOMEM;
690 goto out2;
691 }
692
693 /*
694 * Create all objects in sensor's dictionary.
695 */
696 this_evdrv = sme_add_sensor_dictionary(sme, array,
697 dict, edata);
698 if (this_evdrv) {
699 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
700 evdv->evdrv = this_evdrv;
701 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
702 }
703 }
704
705 /*
706 * If the array does not contain any object (sensor), there's
707 * no need to attach the driver.
708 */
709 if (prop_array_count(array) == 0) {
710 error = EINVAL;
711 DPRINTF(("%s: empty array for '%s'\n", __func__,
712 sme->sme_name));
713 goto out;
714 }
715
716 /*
717 * Add the dictionary for the global properties of this device.
718 */
719 dict2 = prop_dictionary_create();
720 if (!dict2) {
721 error = ENOMEM;
722 goto out;
723 }
724
725 error = sme_add_property_dictionary(sme, array, dict2);
726 if (error) {
727 prop_object_release(dict2);
728 goto out;
729 }
730
731 /*
732 * Add the array into the global dictionary for the driver.
733 *
734 * <dict>
735 * <key>foo0</key>
736 * <array>
737 * ...
738 */
739 mutex_enter(&sme_global_mtx);
740 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
741 error = EINVAL;
742 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
743 sme->sme_name));
744 goto out;
745 }
746
747 /*
748 * Add the device into the list.
749 */
750 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
751 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
752 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
753 mutex_exit(&sme_global_mtx);
754
755 out:
756 /*
757 * No errors? Make an initial data refresh if was requested,
758 * then register the events that were set in the driver. Do
759 * the refresh first in case it is needed to establish the
760 * limits or max_value needed by some events.
761 */
762 if (error == 0) {
763 nevent = 0;
764 sysmon_task_queue_init();
765
766 if (sme->sme_flags & SME_INIT_REFRESH) {
767 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
768 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
769 __func__, sme->sme_name));
770 }
771 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
772 sysmon_task_queue_sched(0,
773 sme_event_drvadd, evdv->evdrv);
774 nevent++;
775 }
776 /*
777 * Hook the sensor into rnd(4) entropy pool if requested
778 */
779 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
780 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
781 uint32_t rnd_type, rnd_flag = 0;
782 size_t n;
783 int tail = 1;
784
785 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
786 sme->sme_name, edata->desc);
787 n = strlen(rnd_name);
788 /*
789 * 1) Remove trailing white space(s).
790 * 2) If space exist, replace it with '-'
791 */
792 while (--n) {
793 if (rnd_name[n] == ' ') {
794 if (tail != 0)
795 rnd_name[n] = '\0';
796 else
797 rnd_name[n] = '-';
798 } else
799 tail = 0;
800 }
801 rnd_flag |= RND_FLAG_COLLECT_TIME;
802 rnd_flag |= RND_FLAG_ESTIMATE_TIME;
803
804 switch (edata->units) {
805 case ENVSYS_STEMP:
806 case ENVSYS_SFANRPM:
807 case ENVSYS_INTEGER:
808 rnd_type = RND_TYPE_ENV;
809 rnd_flag |= RND_FLAG_COLLECT_VALUE;
810 rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
811 break;
812 case ENVSYS_SVOLTS_AC:
813 case ENVSYS_SVOLTS_DC:
814 case ENVSYS_SOHMS:
815 case ENVSYS_SWATTS:
816 case ENVSYS_SAMPS:
817 case ENVSYS_SWATTHOUR:
818 case ENVSYS_SAMPHOUR:
819 rnd_type = RND_TYPE_POWER;
820 rnd_flag |= RND_FLAG_COLLECT_VALUE;
821 rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
822 break;
823 default:
824 rnd_type = RND_TYPE_UNKNOWN;
825 break;
826 }
827 rnd_attach_source(&edata->rnd_src, rnd_name,
828 rnd_type, rnd_flag);
829 }
830 }
831 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
832 __func__, sme->sme_name, sme->sme_nsensors, nevent));
833 }
834
835 out2:
836 while (!SLIST_EMPTY(&sme_evdrv_list)) {
837 evdv = SLIST_FIRST(&sme_evdrv_list);
838 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
839 kmem_free(evdv, sizeof(*evdv));
840 }
841 if (!error)
842 return 0;
843
844 /*
845 * Ugh... something wasn't right; unregister all events and sensors
846 * previously assigned and destroy the array with all its objects.
847 */
848 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
849 sme->sme_name, error));
850
851 sme_event_unregister_all(sme);
852 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
853 edata = TAILQ_FIRST(&sme->sme_sensors_list);
854 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
855 }
856 sysmon_envsys_destroy_plist(array);
857 return error;
858 }
859
860 /*
861 * sysmon_envsys_destroy_plist:
862 *
863 * + Remove all objects from the array of dictionaries that is
864 * created in a sysmon envsys device.
865 */
866 static void
867 sysmon_envsys_destroy_plist(prop_array_t array)
868 {
869 prop_object_iterator_t iter, iter2;
870 prop_dictionary_t dict;
871 prop_object_t obj;
872
873 KASSERT(array != NULL);
874 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
875
876 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
877 prop_array_count(array)));
878
879 iter = prop_array_iterator(array);
880 if (!iter)
881 return;
882
883 while ((dict = prop_object_iterator_next(iter))) {
884 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
885 iter2 = prop_dictionary_iterator(dict);
886 if (!iter2)
887 goto out;
888 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
889 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
890 DPRINTFOBJ(("%s: obj=%s\n", __func__,
891 prop_dictionary_keysym_cstring_nocopy(obj)));
892 prop_dictionary_remove(dict,
893 prop_dictionary_keysym_cstring_nocopy(obj));
894 prop_object_iterator_reset(iter2);
895 }
896 prop_object_iterator_release(iter2);
897 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
898 __func__, prop_dictionary_count(dict)));
899 prop_object_release(dict);
900 }
901
902 out:
903 prop_object_iterator_release(iter);
904 prop_object_release(array);
905 }
906
907 /*
908 * sysmon_envsys_unregister:
909 *
910 * + Unregister a sysmon envsys device.
911 */
912 void
913 sysmon_envsys_unregister(struct sysmon_envsys *sme)
914 {
915 prop_array_t array;
916 struct sysmon_envsys *osme;
917
918 KASSERT(sme != NULL);
919
920 /*
921 * Unregister all events associated with device.
922 */
923 sme_event_unregister_all(sme);
924 /*
925 * Decrement global sensors counter and the first_sensor index
926 * for remaining devices in the list (only used for compatibility
927 * with previous API), and remove the device from the list.
928 */
929 mutex_enter(&sme_global_mtx);
930 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
931 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
932 if (osme->sme_fsensor >= sme->sme_fsensor)
933 osme->sme_fsensor -= sme->sme_nsensors;
934 }
935 LIST_REMOVE(sme, sme_list);
936 mutex_exit(&sme_global_mtx);
937
938 /*
939 * Remove the device (and all its objects) from the global dictionary.
940 */
941 array = prop_dictionary_get(sme_propd, sme->sme_name);
942 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
943 mutex_enter(&sme_global_mtx);
944 prop_dictionary_remove(sme_propd, sme->sme_name);
945 mutex_exit(&sme_global_mtx);
946 sysmon_envsys_destroy_plist(array);
947 }
948 /*
949 * And finally destroy the sysmon_envsys object.
950 */
951 sysmon_envsys_destroy(sme);
952 }
953
954 /*
955 * sysmon_envsys_find:
956 *
957 * + Find a sysmon envsys device and mark it as busy
958 * once it's available.
959 */
960 struct sysmon_envsys *
961 sysmon_envsys_find(const char *name)
962 {
963 struct sysmon_envsys *sme;
964
965 mutex_enter(&sme_global_mtx);
966 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
967 if (strcmp(sme->sme_name, name) == 0) {
968 sysmon_envsys_acquire(sme, false);
969 break;
970 }
971 }
972 mutex_exit(&sme_global_mtx);
973
974 return sme;
975 }
976
977 /*
978 * Compatibility function with the old API.
979 */
980 struct sysmon_envsys *
981 sysmon_envsys_find_40(u_int idx)
982 {
983 struct sysmon_envsys *sme;
984
985 mutex_enter(&sme_global_mtx);
986 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
987 if (idx >= sme->sme_fsensor &&
988 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
989 sysmon_envsys_acquire(sme, false);
990 break;
991 }
992 }
993 mutex_exit(&sme_global_mtx);
994
995 return sme;
996 }
997
998 /*
999 * sysmon_envsys_acquire:
1000 *
1001 * + Wait until a sysmon envsys device is available and mark
1002 * it as busy.
1003 */
1004 void
1005 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
1006 {
1007 KASSERT(sme != NULL);
1008
1009 if (locked) {
1010 while (sme->sme_flags & SME_FLAG_BUSY)
1011 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1012 sme->sme_flags |= SME_FLAG_BUSY;
1013 } else {
1014 mutex_enter(&sme->sme_mtx);
1015 while (sme->sme_flags & SME_FLAG_BUSY)
1016 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1017 sme->sme_flags |= SME_FLAG_BUSY;
1018 mutex_exit(&sme->sme_mtx);
1019 }
1020 }
1021
1022 /*
1023 * sysmon_envsys_release:
1024 *
1025 * + Unmark a sysmon envsys device as busy, and notify
1026 * waiters.
1027 */
1028 void
1029 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
1030 {
1031 KASSERT(sme != NULL);
1032
1033 if (locked) {
1034 sme->sme_flags &= ~SME_FLAG_BUSY;
1035 cv_broadcast(&sme->sme_condvar);
1036 } else {
1037 mutex_enter(&sme->sme_mtx);
1038 sme->sme_flags &= ~SME_FLAG_BUSY;
1039 cv_broadcast(&sme->sme_condvar);
1040 mutex_exit(&sme->sme_mtx);
1041 }
1042 }
1043
1044 /*
1045 * sme_initial_refresh:
1046 *
1047 * + Do an initial refresh of the sensors in a device just after
1048 * interrupts are enabled in the autoconf(9) process.
1049 *
1050 */
1051 static void
1052 sme_initial_refresh(void *arg)
1053 {
1054 struct sysmon_envsys *sme = arg;
1055 envsys_data_t *edata;
1056
1057 mutex_enter(&sme->sme_mtx);
1058 sysmon_envsys_acquire(sme, true);
1059 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1060 sysmon_envsys_refresh_sensor(sme, edata);
1061 sysmon_envsys_release(sme, true);
1062 mutex_exit(&sme->sme_mtx);
1063 }
1064
1065 /*
1066 * sme_sensor_dictionary_get:
1067 *
1068 * + Returns a dictionary of a device specified by its index
1069 * position.
1070 */
1071 prop_dictionary_t
1072 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1073 {
1074 prop_object_iterator_t iter;
1075 prop_dictionary_t dict;
1076 prop_object_t obj;
1077
1078 KASSERT(array != NULL || index != NULL);
1079
1080 iter = prop_array_iterator(array);
1081 if (!iter)
1082 return NULL;
1083
1084 while ((dict = prop_object_iterator_next(iter))) {
1085 obj = prop_dictionary_get(dict, "index");
1086 if (prop_string_equals_cstring(obj, index))
1087 break;
1088 }
1089
1090 prop_object_iterator_release(iter);
1091 return dict;
1092 }
1093
1094 /*
1095 * sme_remove_userprops:
1096 *
1097 * + Remove all properties from all devices that were set by
1098 * the ENVSYS_SETDICTIONARY ioctl.
1099 */
1100 static void
1101 sme_remove_userprops(void)
1102 {
1103 struct sysmon_envsys *sme;
1104 prop_array_t array;
1105 prop_dictionary_t sdict;
1106 envsys_data_t *edata = NULL;
1107 char tmp[ENVSYS_DESCLEN];
1108 char rnd_name[sizeof(edata->rnd_src.name)];
1109 sysmon_envsys_lim_t lims;
1110 const struct sme_descr_entry *sdt_units;
1111 uint32_t props;
1112 int ptype;
1113
1114 mutex_enter(&sme_global_mtx);
1115 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1116 sysmon_envsys_acquire(sme, false);
1117 array = prop_dictionary_get(sme_propd, sme->sme_name);
1118
1119 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1120 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1121 edata->sensor);
1122 sdict = sme_sensor_dictionary_get(array, tmp);
1123 KASSERT(sdict != NULL);
1124
1125 ptype = 0;
1126 if (edata->upropset & PROP_BATTCAP) {
1127 prop_dictionary_remove(sdict,
1128 "critical-capacity");
1129 ptype = PENVSYS_EVENT_CAPACITY;
1130 }
1131
1132 if (edata->upropset & PROP_BATTWARN) {
1133 prop_dictionary_remove(sdict,
1134 "warning-capacity");
1135 ptype = PENVSYS_EVENT_CAPACITY;
1136 }
1137
1138 if (edata->upropset & PROP_BATTHIGH) {
1139 prop_dictionary_remove(sdict,
1140 "high-capacity");
1141 ptype = PENVSYS_EVENT_CAPACITY;
1142 }
1143
1144 if (edata->upropset & PROP_BATTMAX) {
1145 prop_dictionary_remove(sdict,
1146 "maximum-capacity");
1147 ptype = PENVSYS_EVENT_CAPACITY;
1148 }
1149 if (edata->upropset & PROP_WARNMAX) {
1150 prop_dictionary_remove(sdict, "warning-max");
1151 ptype = PENVSYS_EVENT_LIMITS;
1152 }
1153
1154 if (edata->upropset & PROP_WARNMIN) {
1155 prop_dictionary_remove(sdict, "warning-min");
1156 ptype = PENVSYS_EVENT_LIMITS;
1157 }
1158
1159 if (edata->upropset & PROP_CRITMAX) {
1160 prop_dictionary_remove(sdict, "critical-max");
1161 ptype = PENVSYS_EVENT_LIMITS;
1162 }
1163
1164 if (edata->upropset & PROP_CRITMIN) {
1165 prop_dictionary_remove(sdict, "critical-min");
1166 ptype = PENVSYS_EVENT_LIMITS;
1167 }
1168 if (edata->upropset & PROP_RFACT) {
1169 (void)sme_sensor_upint32(sdict, "rfact", 0);
1170 edata->rfact = 0;
1171 }
1172
1173 if (edata->upropset & PROP_DESC)
1174 (void)sme_sensor_upstring(sdict,
1175 "description", edata->desc);
1176
1177 if (ptype == 0)
1178 continue;
1179
1180 /*
1181 * If there were any limit values removed, we
1182 * need to revert to initial limits.
1183 *
1184 * First, tell the driver that we need it to
1185 * restore any h/w limits which may have been
1186 * changed to stored, boot-time values.
1187 */
1188 if (sme->sme_set_limits) {
1189 DPRINTF(("%s: reset limits for %s %s\n",
1190 __func__, sme->sme_name, edata->desc));
1191 (*sme->sme_set_limits)(sme, edata, NULL, NULL);
1192 }
1193
1194 /*
1195 * Next, we need to retrieve those initial limits.
1196 */
1197 props = 0;
1198 edata->upropset &= ~PROP_LIMITS;
1199 if (sme->sme_get_limits) {
1200 DPRINTF(("%s: retrieve limits for %s %s\n",
1201 __func__, sme->sme_name, edata->desc));
1202 lims = edata->limits;
1203 (*sme->sme_get_limits)(sme, edata, &lims,
1204 &props);
1205 }
1206
1207 /*
1208 * Finally, remove any old limits event, then
1209 * install a new event (which will update the
1210 * dictionary)
1211 */
1212 sme_event_unregister(sme, edata->desc,
1213 PENVSYS_EVENT_LIMITS);
1214
1215 /*
1216 * Find the correct units for this sensor.
1217 */
1218 sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1219 edata->units);
1220
1221 if (props & PROP_LIMITS) {
1222 DPRINTF(("%s: install limits for %s %s\n",
1223 __func__, sme->sme_name, edata->desc));
1224
1225 sme_event_register(sdict, edata, sme,
1226 &lims, props, PENVSYS_EVENT_LIMITS,
1227 sdt_units->crittype);
1228 }
1229 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1230 sme_event_register(sdict, edata, sme,
1231 &lims, props, PENVSYS_EVENT_NULL,
1232 sdt_units->crittype);
1233 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1234 sme->sme_name, edata->desc);
1235 rnd_attach_source(&edata->rnd_src, rnd_name,
1236 RND_TYPE_ENV, RND_FLAG_COLLECT_VALUE|
1237 RND_FLAG_COLLECT_TIME|
1238 RND_FLAG_ESTIMATE_VALUE|
1239 RND_FLAG_ESTIMATE_TIME);
1240 }
1241 }
1242
1243 /*
1244 * Restore default timeout value.
1245 */
1246 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1247 sme_schedule_callout(sme);
1248 sysmon_envsys_release(sme, false);
1249 }
1250 mutex_exit(&sme_global_mtx);
1251 }
1252
1253 /*
1254 * sme_add_property_dictionary:
1255 *
1256 * + Add global properties into a device.
1257 */
1258 static int
1259 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1260 prop_dictionary_t dict)
1261 {
1262 prop_dictionary_t pdict;
1263 const char *class;
1264 int error = 0;
1265
1266 pdict = prop_dictionary_create();
1267 if (!pdict)
1268 return EINVAL;
1269
1270 /*
1271 * Add the 'refresh-timeout' and 'dev-class' objects into the
1272 * 'device-properties' dictionary.
1273 *
1274 * ...
1275 * <dict>
1276 * <key>device-properties</key>
1277 * <dict>
1278 * <key>refresh-timeout</key>
1279 * <integer>120</integer<
1280 * <key>device-class</key>
1281 * <string>class_name</string>
1282 * </dict>
1283 * </dict>
1284 * ...
1285 *
1286 */
1287 if (sme->sme_events_timeout == 0) {
1288 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1289 sme_schedule_callout(sme);
1290 }
1291
1292 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1293 sme->sme_events_timeout)) {
1294 error = EINVAL;
1295 goto out;
1296 }
1297 if (sme->sme_class == SME_CLASS_BATTERY)
1298 class = "battery";
1299 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1300 class = "ac-adapter";
1301 else
1302 class = "other";
1303 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1304 error = EINVAL;
1305 goto out;
1306 }
1307
1308 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1309 error = EINVAL;
1310 goto out;
1311 }
1312
1313 /*
1314 * Add the device dictionary into the sysmon envsys array.
1315 */
1316 if (!prop_array_add(array, dict))
1317 error = EINVAL;
1318
1319 out:
1320 prop_object_release(pdict);
1321 return error;
1322 }
1323
1324 /*
1325 * sme_add_sensor_dictionary:
1326 *
1327 * + Adds the sensor objects into the dictionary and returns a pointer
1328 * to a sme_event_drv_t object if a monitoring flag was set
1329 * (or NULL otherwise).
1330 */
1331 static sme_event_drv_t *
1332 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1333 prop_dictionary_t dict, envsys_data_t *edata)
1334 {
1335 const struct sme_descr_entry *sdt;
1336 int error;
1337 sme_event_drv_t *sme_evdrv_t = NULL;
1338 char indexstr[ENVSYS_DESCLEN];
1339 bool mon_supported, allow_rfact;
1340
1341 /*
1342 * Add the index sensor string.
1343 *
1344 * ...
1345 * <key>index</eyr
1346 * <string>sensor0</string>
1347 * ...
1348 */
1349 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1350 if (sme_sensor_upstring(dict, "index", indexstr))
1351 goto bad;
1352
1353 /*
1354 * ...
1355 * <key>description</key>
1356 * <string>blah blah</string>
1357 * ...
1358 */
1359 if (sme_sensor_upstring(dict, "description", edata->desc))
1360 goto bad;
1361
1362 /*
1363 * Add the monitoring boolean object:
1364 *
1365 * ...
1366 * <key>monitoring-supported</key>
1367 * <true/>
1368 * ...
1369 *
1370 * always false on Battery {capacity,charge}, Drive and Indicator types.
1371 * They cannot be monitored.
1372 *
1373 */
1374 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1375 (edata->units == ENVSYS_INDICATOR) ||
1376 (edata->units == ENVSYS_DRIVE) ||
1377 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1378 (edata->units == ENVSYS_BATTERY_CHARGE))
1379 mon_supported = false;
1380 else
1381 mon_supported = true;
1382 if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1383 goto out;
1384
1385 /*
1386 * Add the allow-rfact boolean object, true if
1387 * ENVSYS_FCHANGERFACT is set, false otherwise.
1388 *
1389 * ...
1390 * <key>allow-rfact</key>
1391 * <true/>
1392 * ...
1393 */
1394 if (edata->units == ENVSYS_SVOLTS_DC ||
1395 edata->units == ENVSYS_SVOLTS_AC) {
1396 if (edata->flags & ENVSYS_FCHANGERFACT)
1397 allow_rfact = true;
1398 else
1399 allow_rfact = false;
1400 if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1401 goto out;
1402 }
1403
1404 error = sme_update_sensor_dictionary(dict, edata,
1405 (edata->state == ENVSYS_SVALID));
1406 if (error < 0)
1407 goto bad;
1408 else if (error)
1409 goto out;
1410
1411 /*
1412 * ...
1413 * </dict>
1414 *
1415 * Add the dictionary into the array.
1416 *
1417 */
1418 if (!prop_array_add(array, dict)) {
1419 DPRINTF(("%s: prop_array_add\n", __func__));
1420 goto bad;
1421 }
1422
1423 /*
1424 * Register new event(s) if any monitoring flag was set or if
1425 * the sensor provides entropy for rnd(4).
1426 */
1427 if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1428 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1429 sme_evdrv_t->sed_sdict = dict;
1430 sme_evdrv_t->sed_edata = edata;
1431 sme_evdrv_t->sed_sme = sme;
1432 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1433 sme_evdrv_t->sed_powertype = sdt->crittype;
1434 }
1435
1436 out:
1437 return sme_evdrv_t;
1438
1439 bad:
1440 prop_object_release(dict);
1441 return NULL;
1442 }
1443
1444 /*
1445 * Find the maximum of all currently reported values.
1446 * The provided callback decides whether a sensor is part of the
1447 * maximum calculation (by returning true) or ignored (callback
1448 * returns false). Example usage: callback selects temperature
1449 * sensors in a given thermal zone, the function calculates the
1450 * maximum currently reported temperature in this zone.
1451 * If the parameter "refresh" is true, new values will be aquired
1452 * from the hardware, if not, the last reported value will be used.
1453 */
1454 uint32_t
1455 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1456 bool refresh)
1457 {
1458 struct sysmon_envsys *sme;
1459 uint32_t maxv, v;
1460
1461 maxv = 0;
1462 mutex_enter(&sme_global_mtx);
1463 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1464 sysmon_envsys_acquire(sme, false);
1465 v = sme_get_max_value(sme, predicate, refresh);
1466 sysmon_envsys_release(sme, false);
1467 if (v > maxv)
1468 maxv = v;
1469 }
1470 mutex_exit(&sme_global_mtx);
1471 return maxv;
1472 }
1473
1474 static uint32_t
1475 sme_get_max_value(struct sysmon_envsys *sme,
1476 bool (*predicate)(const envsys_data_t*),
1477 bool refresh)
1478 {
1479 envsys_data_t *edata;
1480 uint32_t maxv, v;
1481
1482 /*
1483 * Iterate over all sensors that match the predicate
1484 */
1485 maxv = 0;
1486 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1487 if (!(*predicate)(edata))
1488 continue;
1489
1490 /*
1491 * refresh sensor data
1492 */
1493 mutex_enter(&sme->sme_mtx);
1494 sysmon_envsys_refresh_sensor(sme, edata);
1495 mutex_exit(&sme->sme_mtx);
1496
1497 v = edata->value_cur;
1498 if (v > maxv)
1499 maxv = v;
1500
1501 }
1502
1503 return maxv;
1504 }
1505
1506 /*
1507 * sme_update_dictionary:
1508 *
1509 * + Update per-sensor dictionaries with new values if there were
1510 * changes, otherwise the object in dictionary is untouched.
1511 */
1512 int
1513 sme_update_dictionary(struct sysmon_envsys *sme)
1514 {
1515 envsys_data_t *edata;
1516 prop_object_t array, dict, obj, obj2;
1517 int error = 0;
1518
1519 /*
1520 * Retrieve the array of dictionaries in device.
1521 */
1522 array = prop_dictionary_get(sme_propd, sme->sme_name);
1523 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1524 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1525 return EINVAL;
1526 }
1527
1528 /*
1529 * Get the last dictionary on the array, this contains the
1530 * 'device-properties' sub-dictionary.
1531 */
1532 obj = prop_array_get(array, prop_array_count(array) - 1);
1533 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1534 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1535 return EINVAL;
1536 }
1537
1538 obj2 = prop_dictionary_get(obj, "device-properties");
1539 if (!obj2)
1540 return EINVAL;
1541
1542 /*
1543 * Update the 'refresh-timeout' property.
1544 */
1545 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1546 sme->sme_events_timeout))
1547 return EINVAL;
1548
1549 /*
1550 * - iterate over all sensors.
1551 * - fetch new data.
1552 * - check if data in dictionary is different than new data.
1553 * - update dictionary if there were changes.
1554 */
1555 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1556 sme->sme_name, sme->sme_nsensors));
1557
1558 /*
1559 * Don't bother with locking when traversing the queue,
1560 * the device is already marked as busy; if a sensor
1561 * is going to be removed or added it will have to wait.
1562 */
1563 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1564 /*
1565 * refresh sensor data via sme_envsys_refresh_sensor
1566 */
1567 mutex_enter(&sme->sme_mtx);
1568 sysmon_envsys_refresh_sensor(sme, edata);
1569 mutex_exit(&sme->sme_mtx);
1570
1571 /*
1572 * retrieve sensor's dictionary.
1573 */
1574 dict = prop_array_get(array, edata->sensor);
1575 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1576 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1577 __func__, edata->sensor, sme->sme_name));
1578 return EINVAL;
1579 }
1580
1581 /*
1582 * update sensor's state.
1583 */
1584 error = sme_update_sensor_dictionary(dict, edata, true);
1585
1586 if (error)
1587 break;
1588 }
1589
1590 return error;
1591 }
1592
1593 int
1594 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1595 bool value_update)
1596 {
1597 const struct sme_descr_entry *sdt;
1598 int error = 0;
1599
1600 sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1601 if (sdt == NULL) {
1602 printf("sme_update_sensor_dictionary: can not update sensor "
1603 "state %d unknown\n", edata->state);
1604 return EINVAL;
1605 }
1606
1607 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1608 edata->sensor, sdt->type, sdt->desc, edata->flags));
1609
1610 error = sme_sensor_upstring(dict, "state", sdt->desc);
1611 if (error)
1612 return (-error);
1613
1614 /*
1615 * update sensor's type.
1616 */
1617 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1618
1619 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1620 sdt->type, sdt->desc));
1621
1622 error = sme_sensor_upstring(dict, "type", sdt->desc);
1623 if (error)
1624 return (-error);
1625
1626 if (value_update) {
1627 /*
1628 * update sensor's current value.
1629 */
1630 error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1631 if (error)
1632 return error;
1633 }
1634
1635 /*
1636 * Battery charge and Indicator types do not
1637 * need the remaining objects, so skip them.
1638 */
1639 if (edata->units == ENVSYS_INDICATOR ||
1640 edata->units == ENVSYS_BATTERY_CHARGE)
1641 return error;
1642
1643 /*
1644 * update sensor flags.
1645 */
1646 if (edata->flags & ENVSYS_FPERCENT) {
1647 error = sme_sensor_upbool(dict, "want-percentage", true);
1648 if (error)
1649 return error;
1650 }
1651
1652 if (value_update) {
1653 /*
1654 * update sensor's {max,min}-value.
1655 */
1656 if (edata->flags & ENVSYS_FVALID_MAX) {
1657 error = sme_sensor_upint32(dict, "max-value",
1658 edata->value_max);
1659 if (error)
1660 return error;
1661 }
1662
1663 if (edata->flags & ENVSYS_FVALID_MIN) {
1664 error = sme_sensor_upint32(dict, "min-value",
1665 edata->value_min);
1666 if (error)
1667 return error;
1668 }
1669
1670 /*
1671 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1672 */
1673 if (edata->units == ENVSYS_SFANRPM) {
1674 error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1675 if (error)
1676 return error;
1677 }
1678
1679 /*
1680 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1681 */
1682 if (edata->units == ENVSYS_SVOLTS_AC ||
1683 edata->units == ENVSYS_SVOLTS_DC) {
1684 error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1685 if (error)
1686 return error;
1687 }
1688 }
1689
1690 /*
1691 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1692 */
1693 if (edata->units == ENVSYS_DRIVE) {
1694 sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1695 edata->value_cur);
1696 error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1697 if (error)
1698 return error;
1699 }
1700
1701 /*
1702 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1703 * sensors.
1704 */
1705 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1706 sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1707 edata->value_cur);
1708 error = sme_sensor_upstring(dict, "battery-capacity",
1709 sdt->desc);
1710 if (error)
1711 return error;
1712 }
1713
1714 return error;
1715 }
1716
1717 /*
1718 * sme_userset_dictionary:
1719 *
1720 * + Parse the userland dictionary and run the appropiate tasks
1721 * that were specified.
1722 */
1723 int
1724 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1725 prop_array_t array)
1726 {
1727 const struct sme_descr_entry *sdt;
1728 envsys_data_t *edata;
1729 prop_dictionary_t dict, tdict = NULL;
1730 prop_object_t obj, obj1, obj2, tobj = NULL;
1731 uint32_t props;
1732 uint64_t refresh_timo = 0;
1733 sysmon_envsys_lim_t lims;
1734 int i, error = 0;
1735 const char *blah;
1736 bool targetfound = false;
1737
1738 /*
1739 * The user wanted to change the refresh timeout value for this
1740 * device.
1741 *
1742 * Get the 'device-properties' object from the userland dictionary.
1743 */
1744 obj = prop_dictionary_get(udict, "device-properties");
1745 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1746 /*
1747 * Get the 'refresh-timeout' property for this device.
1748 */
1749 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1750 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1751 targetfound = true;
1752 refresh_timo =
1753 prop_number_unsigned_integer_value(obj1);
1754 if (refresh_timo < 1)
1755 error = EINVAL;
1756 else {
1757 mutex_enter(&sme->sme_mtx);
1758 if (sme->sme_events_timeout != refresh_timo) {
1759 sme->sme_events_timeout = refresh_timo;
1760 sme_schedule_callout(sme);
1761 }
1762 mutex_exit(&sme->sme_mtx);
1763 }
1764 }
1765 return error;
1766
1767 } else if (!obj) {
1768 /*
1769 * Get sensor's index from userland dictionary.
1770 */
1771 obj = prop_dictionary_get(udict, "index");
1772 if (!obj)
1773 return EINVAL;
1774 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1775 DPRINTF(("%s: 'index' not a string\n", __func__));
1776 return EINVAL;
1777 }
1778 } else
1779 return EINVAL;
1780
1781 /*
1782 * Don't bother with locking when traversing the queue,
1783 * the device is already marked as busy; if a sensor
1784 * is going to be removed or added it will have to wait.
1785 */
1786 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1787 /*
1788 * Get a dictionary and check if it's our sensor by checking
1789 * at its index position.
1790 */
1791 dict = prop_array_get(array, edata->sensor);
1792 obj1 = prop_dictionary_get(dict, "index");
1793
1794 /*
1795 * is it our sensor?
1796 */
1797 if (!prop_string_equals(obj1, obj))
1798 continue;
1799
1800 props = 0;
1801
1802 /*
1803 * Check if a new description operation was
1804 * requested by the user and set new description.
1805 */
1806 obj2 = prop_dictionary_get(udict, "description");
1807 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1808 targetfound = true;
1809 blah = prop_string_cstring_nocopy(obj2);
1810
1811 /*
1812 * Check for duplicate description.
1813 */
1814 for (i = 0; i < sme->sme_nsensors; i++) {
1815 if (i == edata->sensor)
1816 continue;
1817 tdict = prop_array_get(array, i);
1818 tobj =
1819 prop_dictionary_get(tdict, "description");
1820 if (prop_string_equals(obj2, tobj)) {
1821 error = EEXIST;
1822 goto out;
1823 }
1824 }
1825
1826 /*
1827 * Update the object in dictionary.
1828 */
1829 mutex_enter(&sme->sme_mtx);
1830 error = sme_sensor_upstring(dict,
1831 "description",
1832 blah);
1833 if (error) {
1834 mutex_exit(&sme->sme_mtx);
1835 goto out;
1836 }
1837
1838 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1839 __func__, edata->sensor, blah));
1840 edata->upropset |= PROP_DESC;
1841 mutex_exit(&sme->sme_mtx);
1842 }
1843
1844 /*
1845 * did the user want to change the rfact?
1846 */
1847 obj2 = prop_dictionary_get(udict, "rfact");
1848 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1849 targetfound = true;
1850 if (edata->flags & ENVSYS_FCHANGERFACT) {
1851 mutex_enter(&sme->sme_mtx);
1852 edata->rfact = prop_number_integer_value(obj2);
1853 edata->upropset |= PROP_RFACT;
1854 mutex_exit(&sme->sme_mtx);
1855 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1856 __func__, edata->sensor, edata->rfact));
1857 } else {
1858 error = ENOTSUP;
1859 goto out;
1860 }
1861 }
1862
1863 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1864
1865 /*
1866 * did the user want to set a critical capacity event?
1867 */
1868 obj2 = prop_dictionary_get(udict, "critical-capacity");
1869 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1870 targetfound = true;
1871 lims.sel_critmin = prop_number_integer_value(obj2);
1872 props |= PROP_BATTCAP;
1873 }
1874
1875 /*
1876 * did the user want to set a warning capacity event?
1877 */
1878 obj2 = prop_dictionary_get(udict, "warning-capacity");
1879 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1880 targetfound = true;
1881 lims.sel_warnmin = prop_number_integer_value(obj2);
1882 props |= PROP_BATTWARN;
1883 }
1884
1885 /*
1886 * did the user want to set a high capacity event?
1887 */
1888 obj2 = prop_dictionary_get(udict, "high-capacity");
1889 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1890 targetfound = true;
1891 lims.sel_warnmin = prop_number_integer_value(obj2);
1892 props |= PROP_BATTHIGH;
1893 }
1894
1895 /*
1896 * did the user want to set a maximum capacity event?
1897 */
1898 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1899 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1900 targetfound = true;
1901 lims.sel_warnmin = prop_number_integer_value(obj2);
1902 props |= PROP_BATTMAX;
1903 }
1904
1905 /*
1906 * did the user want to set a critical max event?
1907 */
1908 obj2 = prop_dictionary_get(udict, "critical-max");
1909 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1910 targetfound = true;
1911 lims.sel_critmax = prop_number_integer_value(obj2);
1912 props |= PROP_CRITMAX;
1913 }
1914
1915 /*
1916 * did the user want to set a warning max event?
1917 */
1918 obj2 = prop_dictionary_get(udict, "warning-max");
1919 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1920 targetfound = true;
1921 lims.sel_warnmax = prop_number_integer_value(obj2);
1922 props |= PROP_WARNMAX;
1923 }
1924
1925 /*
1926 * did the user want to set a critical min event?
1927 */
1928 obj2 = prop_dictionary_get(udict, "critical-min");
1929 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1930 targetfound = true;
1931 lims.sel_critmin = prop_number_integer_value(obj2);
1932 props |= PROP_CRITMIN;
1933 }
1934
1935 /*
1936 * did the user want to set a warning min event?
1937 */
1938 obj2 = prop_dictionary_get(udict, "warning-min");
1939 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1940 targetfound = true;
1941 lims.sel_warnmin = prop_number_integer_value(obj2);
1942 props |= PROP_WARNMIN;
1943 }
1944
1945 if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1946 error = ENOTSUP;
1947 goto out;
1948 }
1949 if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1950 error = sme_event_register(dict, edata, sme, &lims,
1951 props,
1952 (edata->flags & ENVSYS_FPERCENT)?
1953 PENVSYS_EVENT_CAPACITY:
1954 PENVSYS_EVENT_LIMITS,
1955 sdt->crittype);
1956 if (error == EEXIST)
1957 error = 0;
1958 if (error)
1959 goto out;
1960 }
1961
1962 /*
1963 * All objects in dictionary were processed.
1964 */
1965 break;
1966 }
1967
1968 out:
1969 /*
1970 * invalid target? return the error.
1971 */
1972 if (!targetfound)
1973 error = EINVAL;
1974
1975 return error;
1976 }
1977
1978 /*
1979 * + sysmon_envsys_foreach_sensor
1980 *
1981 * Walk through the devices' sensor lists and execute the callback.
1982 * If the callback returns false, the remainder of the current
1983 * device's sensors are skipped.
1984 */
1985 void
1986 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
1987 bool refresh)
1988 {
1989 struct sysmon_envsys *sme;
1990 envsys_data_t *sensor;
1991
1992 mutex_enter(&sme_global_mtx);
1993 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1994
1995 sysmon_envsys_acquire(sme, false);
1996 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
1997 if (refresh) {
1998 mutex_enter(&sme->sme_mtx);
1999 sysmon_envsys_refresh_sensor(sme, sensor);
2000 mutex_exit(&sme->sme_mtx);
2001 }
2002 if (!(*func)(sme, sensor, arg))
2003 break;
2004 }
2005 sysmon_envsys_release(sme, false);
2006 }
2007 mutex_exit(&sme_global_mtx);
2008 }
2009
2010 /*
2011 * Call the sensor's refresh function, and collect/stir entropy
2012 */
2013 void
2014 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
2015 {
2016
2017 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
2018 (*sme->sme_refresh)(sme, edata);
2019
2020 if (edata->flags & ENVSYS_FHAS_ENTROPY &&
2021 edata->state != ENVSYS_SINVALID &&
2022 edata->value_prev != edata->value_cur)
2023 rnd_add_uint32(&edata->rnd_src, edata->value_cur);
2024 edata->value_prev = edata->value_cur;
2025 }
2026