Home | History | Annotate | Line # | Download | only in sysmon
sysmon_envsys.c revision 1.127.2.3
      1 /*	$NetBSD: sysmon_envsys.c,v 1.127.2.3 2017/10/24 09:25:26 snj Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008 Juan Romero Pardines.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /*-
     29  * Copyright (c) 2000 Zembu Labs, Inc.
     30  * All rights reserved.
     31  *
     32  * Author: Jason R. Thorpe <thorpej (at) zembu.com>
     33  *
     34  * Redistribution and use in source and binary forms, with or without
     35  * modification, are permitted provided that the following conditions
     36  * are met:
     37  * 1. Redistributions of source code must retain the above copyright
     38  *    notice, this list of conditions and the following disclaimer.
     39  * 2. Redistributions in binary form must reproduce the above copyright
     40  *    notice, this list of conditions and the following disclaimer in the
     41  *    documentation and/or other materials provided with the distribution.
     42  * 3. All advertising materials mentioning features or use of this software
     43  *    must display the following acknowledgement:
     44  *	This product includes software developed by Zembu Labs, Inc.
     45  * 4. Neither the name of Zembu Labs nor the names of its employees may
     46  *    be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
     50  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
     51  * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
     52  * CLAIMED.  IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
     53  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     54  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     55  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     56  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     57  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     58  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Environmental sensor framework for sysmon, exported to userland
     63  * with proplib(3).
     64  */
     65 
     66 #include <sys/cdefs.h>
     67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.127.2.3 2017/10/24 09:25:26 snj Exp $");
     68 
     69 #include <sys/param.h>
     70 #include <sys/types.h>
     71 #include <sys/conf.h>
     72 #include <sys/errno.h>
     73 #include <sys/fcntl.h>
     74 #include <sys/kernel.h>
     75 #include <sys/systm.h>
     76 #include <sys/proc.h>
     77 #include <sys/mutex.h>
     78 #include <sys/kmem.h>
     79 #include <sys/rnd.h>
     80 
     81 #include <dev/sysmon/sysmonvar.h>
     82 #include <dev/sysmon/sysmon_envsysvar.h>
     83 #include <dev/sysmon/sysmon_taskq.h>
     84 
     85 kmutex_t sme_global_mtx;
     86 
     87 prop_dictionary_t sme_propd;
     88 
     89 struct sysmon_envsys_lh sysmon_envsys_list;
     90 
     91 static uint32_t sysmon_envsys_next_sensor_index;
     92 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
     93 
     94 static void sysmon_envsys_destroy_plist(prop_array_t);
     95 static void sme_remove_userprops(void);
     96 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
     97 				       prop_dictionary_t);
     98 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
     99 	prop_array_t, prop_dictionary_t, envsys_data_t *);
    100 static void sme_initial_refresh(void *);
    101 static uint32_t sme_get_max_value(struct sysmon_envsys *,
    102      bool (*)(const envsys_data_t*), bool);
    103 
    104 /*
    105  * sysmon_envsys_init:
    106  *
    107  * 	+ Initialize global mutex, dictionary and the linked list.
    108  */
    109 void
    110 sysmon_envsys_init(void)
    111 {
    112 	LIST_INIT(&sysmon_envsys_list);
    113 	mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
    114 	sme_propd = prop_dictionary_create();
    115 }
    116 
    117 /*
    118  * sysmonopen_envsys:
    119  *
    120  *	+ Open the system monitor device.
    121  */
    122 int
    123 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
    124 {
    125 	return 0;
    126 }
    127 
    128 /*
    129  * sysmonclose_envsys:
    130  *
    131  *	+ Close the system monitor device.
    132  */
    133 int
    134 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
    135 {
    136 	return 0;
    137 }
    138 
    139 /*
    140  * sysmonioctl_envsys:
    141  *
    142  *	+ Perform a sysmon envsys control request.
    143  */
    144 int
    145 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    146 {
    147 	struct sysmon_envsys *sme = NULL;
    148 	int error = 0;
    149 	u_int oidx;
    150 
    151 	switch (cmd) {
    152 	/*
    153 	 * To update the global dictionary with latest data from devices.
    154 	 */
    155 	case ENVSYS_GETDICTIONARY:
    156 	    {
    157 		struct plistref *plist = (struct plistref *)data;
    158 
    159 		/*
    160 		 * Update dictionaries on all sysmon envsys devices
    161 		 * registered.
    162 		 */
    163 		mutex_enter(&sme_global_mtx);
    164 		LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
    165 			sysmon_envsys_acquire(sme, false);
    166 			error = sme_update_dictionary(sme);
    167 			if (error) {
    168 				DPRINTF(("%s: sme_update_dictionary, "
    169 				    "error=%d\n", __func__, error));
    170 				sysmon_envsys_release(sme, false);
    171 				mutex_exit(&sme_global_mtx);
    172 				return error;
    173 			}
    174 			sysmon_envsys_release(sme, false);
    175 		}
    176 		mutex_exit(&sme_global_mtx);
    177 		/*
    178 		 * Copy global dictionary to userland.
    179 		 */
    180 		error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
    181 		break;
    182 	    }
    183 	/*
    184 	 * To set properties on multiple devices.
    185 	 */
    186 	case ENVSYS_SETDICTIONARY:
    187 	    {
    188 		const struct plistref *plist = (const struct plistref *)data;
    189 		prop_dictionary_t udict;
    190 		prop_object_iterator_t iter, iter2;
    191 		prop_object_t obj, obj2;
    192 		prop_array_t array_u, array_k;
    193 		const char *devname = NULL;
    194 
    195 		if ((flag & FWRITE) == 0)
    196 			return EPERM;
    197 
    198 		/*
    199 		 * Get dictionary from userland.
    200 		 */
    201 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
    202 		if (error) {
    203 			DPRINTF(("%s: copyin_ioctl error=%d\n",
    204 			    __func__, error));
    205 			break;
    206 		}
    207 
    208 		iter = prop_dictionary_iterator(udict);
    209 		if (!iter) {
    210 			prop_object_release(udict);
    211 			return ENOMEM;
    212 		}
    213 
    214 		/*
    215 		 * Iterate over the userland dictionary and process
    216 		 * the list of devices.
    217 		 */
    218 		while ((obj = prop_object_iterator_next(iter))) {
    219 			array_u = prop_dictionary_get_keysym(udict, obj);
    220 			if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
    221 				prop_object_iterator_release(iter);
    222 				prop_object_release(udict);
    223 				return EINVAL;
    224 			}
    225 
    226 			devname = prop_dictionary_keysym_cstring_nocopy(obj);
    227 			DPRINTF(("%s: processing the '%s' array requests\n",
    228 			    __func__, devname));
    229 
    230 			/*
    231 			 * find the correct sme device.
    232 			 */
    233 			sme = sysmon_envsys_find(devname);
    234 			if (!sme) {
    235 				DPRINTF(("%s: NULL sme\n", __func__));
    236 				prop_object_iterator_release(iter);
    237 				prop_object_release(udict);
    238 				return EINVAL;
    239 			}
    240 
    241 			/*
    242 			 * Find the correct array object with the string
    243 			 * supplied by the userland dictionary.
    244 			 */
    245 			array_k = prop_dictionary_get(sme_propd, devname);
    246 			if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
    247 				DPRINTF(("%s: array device failed\n",
    248 				    __func__));
    249 				sysmon_envsys_release(sme, false);
    250 				prop_object_iterator_release(iter);
    251 				prop_object_release(udict);
    252 				return EINVAL;
    253 			}
    254 
    255 			iter2 = prop_array_iterator(array_u);
    256 			if (!iter2) {
    257 				sysmon_envsys_release(sme, false);
    258 				prop_object_iterator_release(iter);
    259 				prop_object_release(udict);
    260 				return ENOMEM;
    261 			}
    262 
    263 			/*
    264 			 * Iterate over the array of dictionaries to
    265 			 * process the list of sensors and properties.
    266 			 */
    267 			while ((obj2 = prop_object_iterator_next(iter2))) {
    268 				/*
    269 				 * do the real work now.
    270 				 */
    271 				error = sme_userset_dictionary(sme,
    272 							       obj2,
    273 							       array_k);
    274 				if (error) {
    275 					sysmon_envsys_release(sme, false);
    276 					prop_object_iterator_release(iter2);
    277 					prop_object_iterator_release(iter);
    278 					prop_object_release(udict);
    279 					return error;
    280 				}
    281 			}
    282 
    283 			sysmon_envsys_release(sme, false);
    284 			prop_object_iterator_release(iter2);
    285 		}
    286 
    287 		prop_object_iterator_release(iter);
    288 		prop_object_release(udict);
    289 		break;
    290 	    }
    291 	/*
    292 	 * To remove all properties from all devices registered.
    293 	 */
    294 	case ENVSYS_REMOVEPROPS:
    295 	    {
    296 		const struct plistref *plist = (const struct plistref *)data;
    297 		prop_dictionary_t udict;
    298 		prop_object_t obj;
    299 
    300 		if ((flag & FWRITE) == 0)
    301 			return EPERM;
    302 
    303 		error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
    304 		if (error) {
    305 			DPRINTF(("%s: copyin_ioctl error=%d\n",
    306 			    __func__, error));
    307 			break;
    308 		}
    309 
    310 		obj = prop_dictionary_get(udict, "envsys-remove-props");
    311 		if (!obj || !prop_bool_true(obj)) {
    312 			DPRINTF(("%s: invalid 'envsys-remove-props'\n",
    313 			     __func__));
    314 			return EINVAL;
    315 		}
    316 
    317 		prop_object_release(udict);
    318 		sme_remove_userprops();
    319 
    320 		break;
    321 	    }
    322 	/*
    323 	 * Compatibility ioctls with the old interface, only implemented
    324 	 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
    325 	 * applications work.
    326 	 */
    327 	case ENVSYS_GTREDATA:
    328 	    {
    329 		struct envsys_tre_data *tred = (void *)data;
    330 		envsys_data_t *edata = NULL;
    331 		bool found = false;
    332 
    333 		tred->validflags = 0;
    334 
    335 		sme = sysmon_envsys_find_40(tred->sensor);
    336 		if (!sme)
    337 			break;
    338 
    339 		oidx = tred->sensor;
    340 		tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
    341 
    342 		DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
    343 		    __func__, tred->sensor, oidx, sme->sme_name,
    344 		    sme->sme_nsensors));
    345 
    346 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
    347 			if (edata->sensor == tred->sensor) {
    348 				found = true;
    349 				break;
    350 			}
    351 		}
    352 
    353 		if (!found) {
    354 			sysmon_envsys_release(sme, false);
    355 			error = ENODEV;
    356 			break;
    357 		}
    358 
    359 		if (tred->sensor < sme->sme_nsensors) {
    360 			if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
    361 				mutex_enter(&sme->sme_mtx);
    362 				sysmon_envsys_refresh_sensor(sme, edata);
    363 				mutex_exit(&sme->sme_mtx);
    364 			}
    365 
    366 			/*
    367 			 * copy required values to the old interface.
    368 			 */
    369 			tred->sensor = edata->sensor;
    370 			tred->cur.data_us = edata->value_cur;
    371 			tred->cur.data_s = edata->value_cur;
    372 			tred->max.data_us = edata->value_max;
    373 			tred->max.data_s = edata->value_max;
    374 			tred->min.data_us = edata->value_min;
    375 			tred->min.data_s = edata->value_min;
    376 			tred->avg.data_us = 0;
    377 			tred->avg.data_s = 0;
    378 			if (edata->units == ENVSYS_BATTERY_CHARGE)
    379 				tred->units = ENVSYS_INDICATOR;
    380 			else
    381 				tred->units = edata->units;
    382 
    383 			tred->validflags |= ENVSYS_FVALID;
    384 			tred->validflags |= ENVSYS_FCURVALID;
    385 
    386 			if (edata->flags & ENVSYS_FPERCENT) {
    387 				tred->validflags |= ENVSYS_FMAXVALID;
    388 				tred->validflags |= ENVSYS_FFRACVALID;
    389 			}
    390 
    391 			if (edata->state == ENVSYS_SINVALID) {
    392 				tred->validflags &= ~ENVSYS_FCURVALID;
    393 				tred->cur.data_us = tred->cur.data_s = 0;
    394 			}
    395 
    396 			DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
    397 			    __func__, edata->desc, tred->cur.data_s));
    398 			DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
    399 			    " tred->sensor=%d\n", __func__, tred->validflags,
    400 			    tred->units, tred->sensor));
    401 		}
    402 		tred->sensor = oidx;
    403 		sysmon_envsys_release(sme, false);
    404 
    405 		break;
    406 	    }
    407 	case ENVSYS_GTREINFO:
    408 	    {
    409 		struct envsys_basic_info *binfo = (void *)data;
    410 		envsys_data_t *edata = NULL;
    411 		bool found = false;
    412 
    413 		binfo->validflags = 0;
    414 
    415 		sme = sysmon_envsys_find_40(binfo->sensor);
    416 		if (!sme)
    417 			break;
    418 
    419 		oidx = binfo->sensor;
    420 		binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
    421 
    422 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
    423 			if (edata->sensor == binfo->sensor) {
    424 				found = true;
    425 				break;
    426 			}
    427 		}
    428 
    429 		if (!found) {
    430 			sysmon_envsys_release(sme, false);
    431 			error = ENODEV;
    432 			break;
    433 		}
    434 
    435 		binfo->validflags |= ENVSYS_FVALID;
    436 
    437 		if (binfo->sensor < sme->sme_nsensors) {
    438 			if (edata->units == ENVSYS_BATTERY_CHARGE)
    439 				binfo->units = ENVSYS_INDICATOR;
    440 			else
    441 				binfo->units = edata->units;
    442 
    443 			/*
    444 			 * previously, the ACPI sensor names included the
    445 			 * device name. Include that in compatibility code.
    446 			 */
    447 			if (strncmp(sme->sme_name, "acpi", 4) == 0)
    448 				(void)snprintf(binfo->desc, sizeof(binfo->desc),
    449 				    "%s %s", sme->sme_name, edata->desc);
    450 			else
    451 				(void)strlcpy(binfo->desc, edata->desc,
    452 				    sizeof(binfo->desc));
    453 		}
    454 
    455 		DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
    456 		    __func__, binfo->units, binfo->validflags));
    457 		DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
    458 		    __func__, binfo->desc, binfo->sensor));
    459 
    460 		binfo->sensor = oidx;
    461 		sysmon_envsys_release(sme, false);
    462 
    463 		break;
    464 	    }
    465 	default:
    466 		error = ENOTTY;
    467 		break;
    468 	}
    469 
    470 	return error;
    471 }
    472 
    473 /*
    474  * sysmon_envsys_create:
    475  *
    476  * 	+ Allocates a new sysmon_envsys object and initializes the
    477  * 	  stuff for sensors and events.
    478  */
    479 struct sysmon_envsys *
    480 sysmon_envsys_create(void)
    481 {
    482 	struct sysmon_envsys *sme;
    483 
    484 	sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
    485 	TAILQ_INIT(&sme->sme_sensors_list);
    486 	LIST_INIT(&sme->sme_events_list);
    487 	mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
    488 	mutex_init(&sme->sme_work_mtx, MUTEX_DEFAULT, IPL_NONE);
    489 	cv_init(&sme->sme_condvar, "sme_wait");
    490 
    491 	return sme;
    492 }
    493 
    494 /*
    495  * sysmon_envsys_destroy:
    496  *
    497  * 	+ Removes all sensors from the tail queue, destroys the callout
    498  * 	  and frees the sysmon_envsys object.
    499  */
    500 void
    501 sysmon_envsys_destroy(struct sysmon_envsys *sme)
    502 {
    503 	envsys_data_t *edata;
    504 
    505 	KASSERT(sme != NULL);
    506 
    507 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
    508 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
    509 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
    510 	}
    511 	mutex_destroy(&sme->sme_mtx);
    512 	mutex_destroy(&sme->sme_work_mtx);
    513 	cv_destroy(&sme->sme_condvar);
    514 	kmem_free(sme, sizeof(*sme));
    515 }
    516 
    517 /*
    518  * sysmon_envsys_sensor_attach:
    519  *
    520  * 	+ Attaches a sensor into a sysmon_envsys device checking that units
    521  * 	  is set to a valid type and description is unique and not empty.
    522  */
    523 int
    524 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
    525 {
    526 	const struct sme_descr_entry *sdt_units;
    527 	envsys_data_t *oedata;
    528 
    529 	KASSERT(sme != NULL || edata != NULL);
    530 
    531 	/*
    532 	 * Find the correct units for this sensor.
    533 	 */
    534 	sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
    535 	if (sdt_units->type == -1)
    536 		return EINVAL;
    537 
    538 	/*
    539 	 * Check that description is not empty or duplicate.
    540 	 */
    541 	if (strlen(edata->desc) == 0)
    542 		return EINVAL;
    543 
    544 	mutex_enter(&sme->sme_mtx);
    545 	sysmon_envsys_acquire(sme, true);
    546 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
    547 		if (strcmp(oedata->desc, edata->desc) == 0) {
    548 			sysmon_envsys_release(sme, true);
    549 			mutex_exit(&sme->sme_mtx);
    550 			return EEXIST;
    551 		}
    552 	}
    553 	/*
    554 	 * Ok, the sensor has been added into the device queue.
    555 	 */
    556 	TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
    557 
    558 	/*
    559 	 * Give the sensor an index position.
    560 	 */
    561 	edata->sensor = sme->sme_nsensors;
    562 	sme->sme_nsensors++;
    563 	sysmon_envsys_release(sme, true);
    564 	mutex_exit(&sme->sme_mtx);
    565 
    566 	DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
    567 	    __func__, edata->sensor, edata->desc,
    568 	    sdt_units->type, sdt_units->desc));
    569 
    570 	return 0;
    571 }
    572 
    573 /*
    574  * sysmon_envsys_sensor_detach:
    575  *
    576  * 	+ Detachs a sensor from a sysmon_envsys device and decrements the
    577  * 	  sensors count on success.
    578  */
    579 int
    580 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
    581 {
    582 	envsys_data_t *oedata;
    583 	bool found = false;
    584 
    585 	KASSERT(sme != NULL || edata != NULL);
    586 
    587 	/*
    588 	 * Check the sensor is already on the list.
    589 	 */
    590 	mutex_enter(&sme->sme_mtx);
    591 	sysmon_envsys_acquire(sme, true);
    592 	TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
    593 		if (oedata->sensor == edata->sensor) {
    594 			found = true;
    595 			break;
    596 		}
    597 	}
    598 
    599 	if (!found) {
    600 		sysmon_envsys_release(sme, true);
    601 		mutex_exit(&sme->sme_mtx);
    602 		return EINVAL;
    603 	}
    604 
    605 	/*
    606 	 * remove it, unhook from rnd(4), and decrement the sensors count.
    607 	 */
    608 	sme_event_unregister_sensor(sme, edata);
    609 	TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
    610 	sme->sme_nsensors--;
    611 	sysmon_envsys_release(sme, true);
    612 	mutex_exit(&sme->sme_mtx);
    613 
    614 	return 0;
    615 }
    616 
    617 
    618 /*
    619  * sysmon_envsys_register:
    620  *
    621  *	+ Register a sysmon envsys device.
    622  *	+ Create array of dictionaries for a device.
    623  */
    624 int
    625 sysmon_envsys_register(struct sysmon_envsys *sme)
    626 {
    627 	struct sme_evdrv {
    628 		SLIST_ENTRY(sme_evdrv) evdrv_head;
    629 		sme_event_drv_t *evdrv;
    630 	};
    631 	SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
    632 	struct sme_evdrv *evdv = NULL;
    633 	struct sysmon_envsys *lsme;
    634 	prop_array_t array = NULL;
    635 	prop_dictionary_t dict, dict2;
    636 	envsys_data_t *edata = NULL;
    637 	sme_event_drv_t *this_evdrv;
    638 	int nevent;
    639 	int error = 0;
    640 	char rnd_name[sizeof(edata->rnd_src.name)];
    641 
    642 	KASSERT(sme != NULL);
    643 	KASSERT(sme->sme_name != NULL);
    644 
    645 	/*
    646 	 * Check if requested sysmon_envsys device is valid
    647 	 * and does not exist already in the list.
    648 	 */
    649 	mutex_enter(&sme_global_mtx);
    650 	LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
    651 	       if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
    652 		       mutex_exit(&sme_global_mtx);
    653 		       return EEXIST;
    654 	       }
    655 	}
    656 	mutex_exit(&sme_global_mtx);
    657 
    658 	/*
    659 	 * sanity check: if SME_DISABLE_REFRESH is not set,
    660 	 * the sme_refresh function callback must be non NULL.
    661 	 */
    662 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
    663 		if (!sme->sme_refresh)
    664 			return EINVAL;
    665 
    666 	/*
    667 	 * If the list of sensors is empty, there's no point to continue...
    668 	 */
    669 	if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
    670 		DPRINTF(("%s: sensors list empty for %s\n", __func__,
    671 		    sme->sme_name));
    672 		return ENOTSUP;
    673 	}
    674 
    675 	/*
    676 	 * Initialize the singly linked list for driver events.
    677 	 */
    678 	SLIST_INIT(&sme_evdrv_list);
    679 
    680 	array = prop_array_create();
    681 	if (!array)
    682 		return ENOMEM;
    683 
    684 	/*
    685 	 * Iterate over all sensors and create a dictionary per sensor.
    686 	 * We must respect the order in which the sensors were added.
    687 	 */
    688 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
    689 		dict = prop_dictionary_create();
    690 		if (!dict) {
    691 			error = ENOMEM;
    692 			goto out2;
    693 		}
    694 
    695 		/*
    696 		 * Create all objects in sensor's dictionary.
    697 		 */
    698 		this_evdrv = sme_add_sensor_dictionary(sme, array,
    699 						       dict, edata);
    700 		if (this_evdrv) {
    701 			evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
    702 			evdv->evdrv = this_evdrv;
    703 			SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
    704 		}
    705 	}
    706 
    707 	/*
    708 	 * If the array does not contain any object (sensor), there's
    709 	 * no need to attach the driver.
    710 	 */
    711 	if (prop_array_count(array) == 0) {
    712 		error = EINVAL;
    713 		DPRINTF(("%s: empty array for '%s'\n", __func__,
    714 		    sme->sme_name));
    715 		goto out;
    716 	}
    717 
    718 	/*
    719 	 * Add the dictionary for the global properties of this device.
    720 	 */
    721 	dict2 = prop_dictionary_create();
    722 	if (!dict2) {
    723 		error = ENOMEM;
    724 		goto out;
    725 	}
    726 
    727 	error = sme_add_property_dictionary(sme, array, dict2);
    728 	if (error) {
    729 		prop_object_release(dict2);
    730 		goto out;
    731 	}
    732 
    733 	/*
    734 	 * Add the array into the global dictionary for the driver.
    735 	 *
    736 	 * <dict>
    737 	 * 	<key>foo0</key>
    738 	 * 	<array>
    739 	 * 		...
    740 	 */
    741 	mutex_enter(&sme_global_mtx);
    742 	if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
    743 		error = EINVAL;
    744 		DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
    745 		    sme->sme_name));
    746 		goto out;
    747 	}
    748 
    749 	/*
    750 	 * Add the device into the list.
    751 	 */
    752 	LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
    753 	sme->sme_fsensor = sysmon_envsys_next_sensor_index;
    754 	sysmon_envsys_next_sensor_index += sme->sme_nsensors;
    755 	mutex_exit(&sme_global_mtx);
    756 
    757 out:
    758 	/*
    759 	 * No errors?  Make an initial data refresh if was requested,
    760 	 * then register the events that were set in the driver.  Do
    761 	 * the refresh first in case it is needed to establish the
    762 	 * limits or max_value needed by some events.
    763 	 */
    764 	if (error == 0) {
    765 		nevent = 0;
    766 		sysmon_task_queue_init();
    767 
    768 		if (sme->sme_flags & SME_INIT_REFRESH) {
    769 			sysmon_task_queue_sched(0, sme_initial_refresh, sme);
    770 			DPRINTF(("%s: scheduled initial refresh for '%s'\n",
    771 				__func__, sme->sme_name));
    772 		}
    773 		SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
    774 			sysmon_task_queue_sched(0,
    775 			    sme_event_drvadd, evdv->evdrv);
    776 			nevent++;
    777 		}
    778 		/*
    779 		 * Hook the sensor into rnd(4) entropy pool if requested
    780 		 */
    781 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
    782 			if (edata->flags & ENVSYS_FHAS_ENTROPY) {
    783 				uint32_t rnd_type, rnd_flag = 0;
    784 				size_t n;
    785 				int tail = 1;
    786 
    787 				snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
    788 				    sme->sme_name, edata->desc);
    789 				n = strlen(rnd_name);
    790 				/*
    791 				 * 1) Remove trailing white space(s).
    792 				 * 2) If space exist, replace it with '-'
    793 				 */
    794 				while (--n) {
    795 					if (rnd_name[n] == ' ') {
    796 						if (tail != 0)
    797 							rnd_name[n] = '\0';
    798 						else
    799 							rnd_name[n] = '-';
    800 					} else
    801 						tail = 0;
    802 				}
    803 				rnd_flag |= RND_FLAG_COLLECT_TIME;
    804 				rnd_flag |= RND_FLAG_ESTIMATE_TIME;
    805 
    806 				switch (edata->units) {
    807 				    case ENVSYS_STEMP:
    808 				    case ENVSYS_SFANRPM:
    809 				    case ENVSYS_INTEGER:
    810 					rnd_type = RND_TYPE_ENV;
    811 					rnd_flag |= RND_FLAG_COLLECT_VALUE;
    812 					rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
    813 					break;
    814 				    case ENVSYS_SVOLTS_AC:
    815 				    case ENVSYS_SVOLTS_DC:
    816 				    case ENVSYS_SOHMS:
    817 				    case ENVSYS_SWATTS:
    818 				    case ENVSYS_SAMPS:
    819 				    case ENVSYS_SWATTHOUR:
    820 				    case ENVSYS_SAMPHOUR:
    821 					rnd_type = RND_TYPE_POWER;
    822 					rnd_flag |= RND_FLAG_COLLECT_VALUE;
    823 					rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
    824 					break;
    825 				    default:
    826 					rnd_type = RND_TYPE_UNKNOWN;
    827 					break;
    828 				}
    829 				rnd_attach_source(&edata->rnd_src, rnd_name,
    830 				    rnd_type, rnd_flag);
    831 			}
    832 		}
    833 		DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
    834 		    __func__, sme->sme_name, sme->sme_nsensors, nevent));
    835 	}
    836 
    837 out2:
    838 	while (!SLIST_EMPTY(&sme_evdrv_list)) {
    839 		evdv = SLIST_FIRST(&sme_evdrv_list);
    840 		SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
    841 		kmem_free(evdv, sizeof(*evdv));
    842 	}
    843 	if (!error)
    844 		return 0;
    845 
    846 	/*
    847 	 * Ugh... something wasn't right; unregister all events and sensors
    848 	 * previously assigned and destroy the array with all its objects.
    849 	 */
    850 	DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
    851 	    sme->sme_name, error));
    852 
    853 	sme_event_unregister_all(sme);
    854 	while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
    855 		edata = TAILQ_FIRST(&sme->sme_sensors_list);
    856 		TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
    857 	}
    858 	sysmon_envsys_destroy_plist(array);
    859 	return error;
    860 }
    861 
    862 /*
    863  * sysmon_envsys_destroy_plist:
    864  *
    865  * 	+ Remove all objects from the array of dictionaries that is
    866  * 	  created in a sysmon envsys device.
    867  */
    868 static void
    869 sysmon_envsys_destroy_plist(prop_array_t array)
    870 {
    871 	prop_object_iterator_t iter, iter2;
    872 	prop_dictionary_t dict;
    873 	prop_object_t obj;
    874 
    875 	KASSERT(array != NULL);
    876 	KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
    877 
    878 	DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
    879 	    prop_array_count(array)));
    880 
    881 	iter = prop_array_iterator(array);
    882 	if (!iter)
    883 		return;
    884 
    885 	while ((dict = prop_object_iterator_next(iter))) {
    886 		KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
    887 		iter2 = prop_dictionary_iterator(dict);
    888 		if (!iter2)
    889 			goto out;
    890 		DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
    891 		while ((obj = prop_object_iterator_next(iter2)) != NULL) {
    892 			DPRINTFOBJ(("%s: obj=%s\n", __func__,
    893 			    prop_dictionary_keysym_cstring_nocopy(obj)));
    894 			prop_dictionary_remove(dict,
    895 			    prop_dictionary_keysym_cstring_nocopy(obj));
    896 			prop_object_iterator_reset(iter2);
    897 		}
    898 		prop_object_iterator_release(iter2);
    899 		DPRINTFOBJ(("%s: objects in dictionary:%d\n",
    900 		    __func__, prop_dictionary_count(dict)));
    901 		prop_object_release(dict);
    902 	}
    903 
    904 out:
    905 	prop_object_iterator_release(iter);
    906 	prop_object_release(array);
    907 }
    908 
    909 /*
    910  * sysmon_envsys_unregister:
    911  *
    912  *	+ Unregister a sysmon envsys device.
    913  */
    914 void
    915 sysmon_envsys_unregister(struct sysmon_envsys *sme)
    916 {
    917 	prop_array_t array;
    918 	struct sysmon_envsys *osme;
    919 
    920 	KASSERT(sme != NULL);
    921 
    922 	/*
    923 	 * Unregister all events associated with device.
    924 	 */
    925 	sme_event_unregister_all(sme);
    926 	/*
    927 	 * Decrement global sensors counter and the first_sensor index
    928 	 * for remaining devices in the list (only used for compatibility
    929 	 * with previous API), and remove the device from the list.
    930 	 */
    931 	mutex_enter(&sme_global_mtx);
    932 	sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
    933 	LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
    934 		if (osme->sme_fsensor >= sme->sme_fsensor)
    935 			osme->sme_fsensor -= sme->sme_nsensors;
    936 	}
    937 	LIST_REMOVE(sme, sme_list);
    938 	mutex_exit(&sme_global_mtx);
    939 
    940 	/*
    941 	 * Remove the device (and all its objects) from the global dictionary.
    942 	 */
    943 	array = prop_dictionary_get(sme_propd, sme->sme_name);
    944 	if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
    945 		mutex_enter(&sme_global_mtx);
    946 		prop_dictionary_remove(sme_propd, sme->sme_name);
    947 		mutex_exit(&sme_global_mtx);
    948 		sysmon_envsys_destroy_plist(array);
    949 	}
    950 	/*
    951 	 * And finally destroy the sysmon_envsys object.
    952 	 */
    953 	sysmon_envsys_destroy(sme);
    954 }
    955 
    956 /*
    957  * sysmon_envsys_find:
    958  *
    959  *	+ Find a sysmon envsys device and mark it as busy
    960  *	  once it's available.
    961  */
    962 struct sysmon_envsys *
    963 sysmon_envsys_find(const char *name)
    964 {
    965 	struct sysmon_envsys *sme;
    966 
    967 	mutex_enter(&sme_global_mtx);
    968 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
    969 		if (strcmp(sme->sme_name, name) == 0) {
    970 			sysmon_envsys_acquire(sme, false);
    971 			break;
    972 		}
    973 	}
    974 	mutex_exit(&sme_global_mtx);
    975 
    976 	return sme;
    977 }
    978 
    979 /*
    980  * Compatibility function with the old API.
    981  */
    982 struct sysmon_envsys *
    983 sysmon_envsys_find_40(u_int idx)
    984 {
    985 	struct sysmon_envsys *sme;
    986 
    987 	mutex_enter(&sme_global_mtx);
    988 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
    989 		if (idx >= sme->sme_fsensor &&
    990 	    	    idx < (sme->sme_fsensor + sme->sme_nsensors)) {
    991 			sysmon_envsys_acquire(sme, false);
    992 			break;
    993 		}
    994 	}
    995 	mutex_exit(&sme_global_mtx);
    996 
    997 	return sme;
    998 }
    999 
   1000 /*
   1001  * sysmon_envsys_acquire:
   1002  *
   1003  * 	+ Wait until a sysmon envsys device is available and mark
   1004  * 	  it as busy.
   1005  */
   1006 void
   1007 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
   1008 {
   1009 	KASSERT(sme != NULL);
   1010 
   1011 	if (locked) {
   1012 		while (sme->sme_flags & SME_FLAG_BUSY)
   1013 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
   1014 		sme->sme_flags |= SME_FLAG_BUSY;
   1015 	} else {
   1016 		mutex_enter(&sme->sme_mtx);
   1017 		while (sme->sme_flags & SME_FLAG_BUSY)
   1018 			cv_wait(&sme->sme_condvar, &sme->sme_mtx);
   1019 		sme->sme_flags |= SME_FLAG_BUSY;
   1020 		mutex_exit(&sme->sme_mtx);
   1021 	}
   1022 }
   1023 
   1024 /*
   1025  * sysmon_envsys_release:
   1026  *
   1027  * 	+ Unmark a sysmon envsys device as busy, and notify
   1028  * 	  waiters.
   1029  */
   1030 void
   1031 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
   1032 {
   1033 	KASSERT(sme != NULL);
   1034 
   1035 	if (locked) {
   1036 		sme->sme_flags &= ~SME_FLAG_BUSY;
   1037 		cv_broadcast(&sme->sme_condvar);
   1038 	} else {
   1039 		mutex_enter(&sme->sme_mtx);
   1040 		sme->sme_flags &= ~SME_FLAG_BUSY;
   1041 		cv_broadcast(&sme->sme_condvar);
   1042 		mutex_exit(&sme->sme_mtx);
   1043 	}
   1044 }
   1045 
   1046 /*
   1047  * sme_initial_refresh:
   1048  *
   1049  * 	+ Do an initial refresh of the sensors in a device just after
   1050  * 	  interrupts are enabled in the autoconf(9) process.
   1051  *
   1052  */
   1053 static void
   1054 sme_initial_refresh(void *arg)
   1055 {
   1056 	struct sysmon_envsys *sme = arg;
   1057 	envsys_data_t *edata;
   1058 
   1059 	mutex_enter(&sme->sme_mtx);
   1060 	sysmon_envsys_acquire(sme, true);
   1061 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
   1062 		sysmon_envsys_refresh_sensor(sme, edata);
   1063 	sysmon_envsys_release(sme, true);
   1064 	mutex_exit(&sme->sme_mtx);
   1065 }
   1066 
   1067 /*
   1068  * sme_sensor_dictionary_get:
   1069  *
   1070  * 	+ Returns a dictionary of a device specified by its index
   1071  * 	  position.
   1072  */
   1073 prop_dictionary_t
   1074 sme_sensor_dictionary_get(prop_array_t array, const char *index)
   1075 {
   1076 	prop_object_iterator_t iter;
   1077 	prop_dictionary_t dict;
   1078 	prop_object_t obj;
   1079 
   1080 	KASSERT(array != NULL || index != NULL);
   1081 
   1082 	iter = prop_array_iterator(array);
   1083 	if (!iter)
   1084 		return NULL;
   1085 
   1086 	while ((dict = prop_object_iterator_next(iter))) {
   1087 		obj = prop_dictionary_get(dict, "index");
   1088 		if (prop_string_equals_cstring(obj, index))
   1089 			break;
   1090 	}
   1091 
   1092 	prop_object_iterator_release(iter);
   1093 	return dict;
   1094 }
   1095 
   1096 /*
   1097  * sme_remove_userprops:
   1098  *
   1099  * 	+ Remove all properties from all devices that were set by
   1100  * 	  the ENVSYS_SETDICTIONARY ioctl.
   1101  */
   1102 static void
   1103 sme_remove_userprops(void)
   1104 {
   1105 	struct sysmon_envsys *sme;
   1106 	prop_array_t array;
   1107 	prop_dictionary_t sdict;
   1108 	envsys_data_t *edata = NULL;
   1109 	char tmp[ENVSYS_DESCLEN];
   1110 	char rnd_name[sizeof(edata->rnd_src.name)];
   1111 	sysmon_envsys_lim_t lims;
   1112 	const struct sme_descr_entry *sdt_units;
   1113 	uint32_t props;
   1114 	int ptype;
   1115 
   1116 	mutex_enter(&sme_global_mtx);
   1117 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
   1118 		sysmon_envsys_acquire(sme, false);
   1119 		array = prop_dictionary_get(sme_propd, sme->sme_name);
   1120 
   1121 		TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
   1122 			(void)snprintf(tmp, sizeof(tmp), "sensor%d",
   1123 				       edata->sensor);
   1124 			sdict = sme_sensor_dictionary_get(array, tmp);
   1125 			KASSERT(sdict != NULL);
   1126 
   1127 			ptype = 0;
   1128 			if (edata->upropset & PROP_BATTCAP) {
   1129 				prop_dictionary_remove(sdict,
   1130 				    "critical-capacity");
   1131 				ptype = PENVSYS_EVENT_CAPACITY;
   1132 			}
   1133 
   1134 			if (edata->upropset & PROP_BATTWARN) {
   1135 				prop_dictionary_remove(sdict,
   1136 				    "warning-capacity");
   1137 				ptype = PENVSYS_EVENT_CAPACITY;
   1138 			}
   1139 
   1140 			if (edata->upropset & PROP_BATTHIGH) {
   1141 				prop_dictionary_remove(sdict,
   1142 				    "high-capacity");
   1143 				ptype = PENVSYS_EVENT_CAPACITY;
   1144 			}
   1145 
   1146 			if (edata->upropset & PROP_BATTMAX) {
   1147 				prop_dictionary_remove(sdict,
   1148 				    "maximum-capacity");
   1149 				ptype = PENVSYS_EVENT_CAPACITY;
   1150 			}
   1151 			if (edata->upropset & PROP_WARNMAX) {
   1152 				prop_dictionary_remove(sdict, "warning-max");
   1153 				ptype = PENVSYS_EVENT_LIMITS;
   1154 			}
   1155 
   1156 			if (edata->upropset & PROP_WARNMIN) {
   1157 				prop_dictionary_remove(sdict, "warning-min");
   1158 				ptype = PENVSYS_EVENT_LIMITS;
   1159 			}
   1160 
   1161 			if (edata->upropset & PROP_CRITMAX) {
   1162 				prop_dictionary_remove(sdict, "critical-max");
   1163 				ptype = PENVSYS_EVENT_LIMITS;
   1164 			}
   1165 
   1166 			if (edata->upropset & PROP_CRITMIN) {
   1167 				prop_dictionary_remove(sdict, "critical-min");
   1168 				ptype = PENVSYS_EVENT_LIMITS;
   1169 			}
   1170 			if (edata->upropset & PROP_RFACT) {
   1171 				(void)sme_sensor_upint32(sdict, "rfact", 0);
   1172 				edata->rfact = 0;
   1173 			}
   1174 
   1175 			if (edata->upropset & PROP_DESC)
   1176 				(void)sme_sensor_upstring(sdict,
   1177 			  	    "description", edata->desc);
   1178 
   1179 			if (ptype == 0)
   1180 				continue;
   1181 
   1182 			/*
   1183 			 * If there were any limit values removed, we
   1184 			 * need to revert to initial limits.
   1185 			 *
   1186 			 * First, tell the driver that we need it to
   1187 			 * restore any h/w limits which may have been
   1188 			 * changed to stored, boot-time values.
   1189 			 */
   1190 			if (sme->sme_set_limits) {
   1191 				DPRINTF(("%s: reset limits for %s %s\n",
   1192 					__func__, sme->sme_name, edata->desc));
   1193 				(*sme->sme_set_limits)(sme, edata, NULL, NULL);
   1194 			}
   1195 
   1196 			/*
   1197 			 * Next, we need to retrieve those initial limits.
   1198 			 */
   1199 			props = 0;
   1200 			edata->upropset &= ~PROP_LIMITS;
   1201 			if (sme->sme_get_limits) {
   1202 				DPRINTF(("%s: retrieve limits for %s %s\n",
   1203 					__func__, sme->sme_name, edata->desc));
   1204 				lims = edata->limits;
   1205 				(*sme->sme_get_limits)(sme, edata, &lims,
   1206 						       &props);
   1207 			}
   1208 
   1209 			/*
   1210 			 * Detach from entropy collection
   1211 			 */
   1212 			if (edata->flags & ENVSYS_FHAS_ENTROPY)
   1213 				rnd_detach_source(&edata->rnd_src);
   1214 
   1215 			/*
   1216 			 * Finally, remove any old limits event, then
   1217 			 * install a new event (which will update the
   1218 			 * dictionary)
   1219 			 */
   1220 			sme_event_unregister(sme, edata->desc,
   1221 			    PENVSYS_EVENT_LIMITS);
   1222 
   1223 			/*
   1224 			 * Find the correct units for this sensor.
   1225 			 */
   1226 			sdt_units = sme_find_table_entry(SME_DESC_UNITS,
   1227 			    edata->units);
   1228 
   1229 			if (props & PROP_LIMITS) {
   1230 				DPRINTF(("%s: install limits for %s %s\n",
   1231 					__func__, sme->sme_name, edata->desc));
   1232 
   1233 				sme_event_register(sdict, edata, sme,
   1234 				    &lims, props, PENVSYS_EVENT_LIMITS,
   1235 				    sdt_units->crittype);
   1236 			}
   1237 			if (edata->flags & ENVSYS_FHAS_ENTROPY) {
   1238 				sme_event_register(sdict, edata, sme,
   1239 				    &lims, props, PENVSYS_EVENT_NULL,
   1240 				    sdt_units->crittype);
   1241 				snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
   1242 				    sme->sme_name, edata->desc);
   1243 				rnd_attach_source(&edata->rnd_src, rnd_name,
   1244 				    RND_TYPE_ENV, RND_FLAG_COLLECT_VALUE|
   1245 						  RND_FLAG_COLLECT_TIME|
   1246 						  RND_FLAG_ESTIMATE_VALUE|
   1247 						  RND_FLAG_ESTIMATE_TIME);
   1248 			}
   1249 		}
   1250 
   1251 		/*
   1252 		 * Restore default timeout value.
   1253 		 */
   1254 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
   1255 		sme_schedule_callout(sme);
   1256 		sysmon_envsys_release(sme, false);
   1257 	}
   1258 	mutex_exit(&sme_global_mtx);
   1259 }
   1260 
   1261 /*
   1262  * sme_add_property_dictionary:
   1263  *
   1264  * 	+ Add global properties into a device.
   1265  */
   1266 static int
   1267 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
   1268 			    prop_dictionary_t dict)
   1269 {
   1270 	prop_dictionary_t pdict;
   1271 	const char *class;
   1272 	int error = 0;
   1273 
   1274 	pdict = prop_dictionary_create();
   1275 	if (!pdict)
   1276 		return EINVAL;
   1277 
   1278 	/*
   1279 	 * Add the 'refresh-timeout' and 'dev-class' objects into the
   1280 	 * 'device-properties' dictionary.
   1281 	 *
   1282 	 * 	...
   1283 	 * 	<dict>
   1284 	 * 		<key>device-properties</key>
   1285 	 * 		<dict>
   1286 	 * 			<key>refresh-timeout</key>
   1287 	 * 			<integer>120</integer<
   1288 	 *			<key>device-class</key>
   1289 	 *			<string>class_name</string>
   1290 	 * 		</dict>
   1291 	 * 	</dict>
   1292 	 * 	...
   1293 	 *
   1294 	 */
   1295 	if (sme->sme_events_timeout == 0) {
   1296 		sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
   1297 		sme_schedule_callout(sme);
   1298 	}
   1299 
   1300 	if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
   1301 					sme->sme_events_timeout)) {
   1302 		error = EINVAL;
   1303 		goto out;
   1304 	}
   1305 	if (sme->sme_class == SME_CLASS_BATTERY)
   1306 		class = "battery";
   1307 	else if (sme->sme_class == SME_CLASS_ACADAPTER)
   1308 		class = "ac-adapter";
   1309 	else
   1310 		class = "other";
   1311 	if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
   1312 		error = EINVAL;
   1313 		goto out;
   1314 	}
   1315 
   1316 	if (!prop_dictionary_set(dict, "device-properties", pdict)) {
   1317 		error = EINVAL;
   1318 		goto out;
   1319 	}
   1320 
   1321 	/*
   1322 	 * Add the device dictionary into the sysmon envsys array.
   1323 	 */
   1324 	if (!prop_array_add(array, dict))
   1325 		error = EINVAL;
   1326 
   1327 out:
   1328 	prop_object_release(pdict);
   1329 	return error;
   1330 }
   1331 
   1332 /*
   1333  * sme_add_sensor_dictionary:
   1334  *
   1335  * 	+ Adds the sensor objects into the dictionary and returns a pointer
   1336  * 	  to a sme_event_drv_t object if a monitoring flag was set
   1337  * 	  (or NULL otherwise).
   1338  */
   1339 static sme_event_drv_t *
   1340 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
   1341 		    	  prop_dictionary_t dict, envsys_data_t *edata)
   1342 {
   1343 	const struct sme_descr_entry *sdt;
   1344 	int error;
   1345 	sme_event_drv_t *sme_evdrv_t = NULL;
   1346 	char indexstr[ENVSYS_DESCLEN];
   1347 	bool mon_supported, allow_rfact;
   1348 
   1349 	/*
   1350 	 * Add the index sensor string.
   1351 	 *
   1352 	 * 		...
   1353 	 * 		<key>index</eyr
   1354 	 * 		<string>sensor0</string>
   1355 	 * 		...
   1356 	 */
   1357 	(void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
   1358 	if (sme_sensor_upstring(dict, "index", indexstr))
   1359 		goto bad;
   1360 
   1361 	/*
   1362 	 * 		...
   1363 	 * 		<key>description</key>
   1364 	 * 		<string>blah blah</string>
   1365 	 * 		...
   1366 	 */
   1367 	if (sme_sensor_upstring(dict, "description", edata->desc))
   1368 		goto bad;
   1369 
   1370 	/*
   1371 	 * Add the monitoring boolean object:
   1372 	 *
   1373 	 * 		...
   1374 	 * 		<key>monitoring-supported</key>
   1375 	 * 		<true/>
   1376 	 *		...
   1377 	 *
   1378 	 * always false on Battery {capacity,charge}, Drive and Indicator types.
   1379 	 * They cannot be monitored.
   1380 	 *
   1381 	 */
   1382 	if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
   1383 	    (edata->units == ENVSYS_INDICATOR) ||
   1384 	    (edata->units == ENVSYS_DRIVE) ||
   1385 	    (edata->units == ENVSYS_BATTERY_CAPACITY) ||
   1386 	    (edata->units == ENVSYS_BATTERY_CHARGE))
   1387 		mon_supported = false;
   1388 	else
   1389 		mon_supported = true;
   1390 	if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
   1391 		goto out;
   1392 
   1393 	/*
   1394 	 * Add the allow-rfact boolean object, true if
   1395 	 * ENVSYS_FCHANGERFACT is set, false otherwise.
   1396 	 *
   1397 	 * 		...
   1398 	 * 		<key>allow-rfact</key>
   1399 	 * 		<true/>
   1400 	 * 		...
   1401 	 */
   1402 	if (edata->units == ENVSYS_SVOLTS_DC ||
   1403 	    edata->units == ENVSYS_SVOLTS_AC) {
   1404 		if (edata->flags & ENVSYS_FCHANGERFACT)
   1405 			allow_rfact = true;
   1406 		else
   1407 			allow_rfact = false;
   1408 		if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
   1409 			goto out;
   1410 	}
   1411 
   1412 	error = sme_update_sensor_dictionary(dict, edata,
   1413 			(edata->state == ENVSYS_SVALID));
   1414 	if (error < 0)
   1415 		goto bad;
   1416 	else if (error)
   1417 		goto out;
   1418 
   1419 	/*
   1420 	 * 	...
   1421 	 * </dict>
   1422 	 *
   1423 	 * Add the dictionary into the array.
   1424 	 *
   1425 	 */
   1426 	if (!prop_array_add(array, dict)) {
   1427 		DPRINTF(("%s: prop_array_add\n", __func__));
   1428 		goto bad;
   1429 	}
   1430 
   1431 	/*
   1432 	 * Register new event(s) if any monitoring flag was set or if
   1433 	 * the sensor provides entropy for rnd(4).
   1434 	 */
   1435 	if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
   1436 		sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
   1437 		sme_evdrv_t->sed_sdict = dict;
   1438 		sme_evdrv_t->sed_edata = edata;
   1439 		sme_evdrv_t->sed_sme = sme;
   1440 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
   1441 		sme_evdrv_t->sed_powertype = sdt->crittype;
   1442 	}
   1443 
   1444 out:
   1445 	return sme_evdrv_t;
   1446 
   1447 bad:
   1448 	prop_object_release(dict);
   1449 	return NULL;
   1450 }
   1451 
   1452 /*
   1453  * Find the maximum of all currently reported values.
   1454  * The provided callback decides whether a sensor is part of the
   1455  * maximum calculation (by returning true) or ignored (callback
   1456  * returns false). Example usage: callback selects temperature
   1457  * sensors in a given thermal zone, the function calculates the
   1458  * maximum currently reported temperature in this zone.
   1459  * If the parameter "refresh" is true, new values will be aquired
   1460  * from the hardware, if not, the last reported value will be used.
   1461  */
   1462 uint32_t
   1463 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
   1464 	bool refresh)
   1465 {
   1466 	struct sysmon_envsys *sme;
   1467 	uint32_t maxv, v;
   1468 
   1469 	maxv = 0;
   1470 	mutex_enter(&sme_global_mtx);
   1471 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
   1472 		sysmon_envsys_acquire(sme, false);
   1473 		v = sme_get_max_value(sme, predicate, refresh);
   1474 		sysmon_envsys_release(sme, false);
   1475 		if (v > maxv)
   1476 			maxv = v;
   1477 	}
   1478 	mutex_exit(&sme_global_mtx);
   1479 	return maxv;
   1480 }
   1481 
   1482 static uint32_t
   1483 sme_get_max_value(struct sysmon_envsys *sme,
   1484     bool (*predicate)(const envsys_data_t*),
   1485     bool refresh)
   1486 {
   1487 	envsys_data_t *edata;
   1488 	uint32_t maxv, v;
   1489 
   1490 	/*
   1491 	 * Iterate over all sensors that match the predicate
   1492 	 */
   1493 	maxv = 0;
   1494 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
   1495 		if (!(*predicate)(edata))
   1496 			continue;
   1497 
   1498 		/*
   1499 		 * refresh sensor data
   1500 		 */
   1501 		mutex_enter(&sme->sme_mtx);
   1502 		sysmon_envsys_refresh_sensor(sme, edata);
   1503 		mutex_exit(&sme->sme_mtx);
   1504 
   1505 		v = edata->value_cur;
   1506 		if (v > maxv)
   1507 			maxv = v;
   1508 
   1509 	}
   1510 
   1511 	return maxv;
   1512 }
   1513 
   1514 /*
   1515  * sme_update_dictionary:
   1516  *
   1517  * 	+ Update per-sensor dictionaries with new values if there were
   1518  * 	  changes, otherwise the object in dictionary is untouched.
   1519  */
   1520 int
   1521 sme_update_dictionary(struct sysmon_envsys *sme)
   1522 {
   1523 	envsys_data_t *edata;
   1524 	prop_object_t array, dict, obj, obj2;
   1525 	int error = 0;
   1526 
   1527 	/*
   1528 	 * Retrieve the array of dictionaries in device.
   1529 	 */
   1530 	array = prop_dictionary_get(sme_propd, sme->sme_name);
   1531 	if (prop_object_type(array) != PROP_TYPE_ARRAY) {
   1532 		DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
   1533 		return EINVAL;
   1534 	}
   1535 
   1536 	/*
   1537 	 * Get the last dictionary on the array, this contains the
   1538 	 * 'device-properties' sub-dictionary.
   1539 	 */
   1540 	obj = prop_array_get(array, prop_array_count(array) - 1);
   1541 	if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
   1542 		DPRINTF(("%s: not a device-properties dictionary\n", __func__));
   1543 		return EINVAL;
   1544 	}
   1545 
   1546 	obj2 = prop_dictionary_get(obj, "device-properties");
   1547 	if (!obj2)
   1548 		return EINVAL;
   1549 
   1550 	/*
   1551 	 * Update the 'refresh-timeout' property.
   1552 	 */
   1553 	if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
   1554 					sme->sme_events_timeout))
   1555 		return EINVAL;
   1556 
   1557 	/*
   1558 	 * - iterate over all sensors.
   1559 	 * - fetch new data.
   1560 	 * - check if data in dictionary is different than new data.
   1561 	 * - update dictionary if there were changes.
   1562 	 */
   1563 	DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
   1564 	    sme->sme_name, sme->sme_nsensors));
   1565 
   1566 	/*
   1567 	 * Don't bother with locking when traversing the queue,
   1568 	 * the device is already marked as busy; if a sensor
   1569 	 * is going to be removed or added it will have to wait.
   1570 	 */
   1571 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
   1572 		/*
   1573 		 * refresh sensor data via sme_envsys_refresh_sensor
   1574 		 */
   1575 		mutex_enter(&sme->sme_mtx);
   1576 		sysmon_envsys_refresh_sensor(sme, edata);
   1577 		mutex_exit(&sme->sme_mtx);
   1578 
   1579 		/*
   1580 		 * retrieve sensor's dictionary.
   1581 		 */
   1582 		dict = prop_array_get(array, edata->sensor);
   1583 		if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
   1584 			DPRINTF(("%s: not a dictionary (%d:%s)\n",
   1585 			    __func__, edata->sensor, sme->sme_name));
   1586 			return EINVAL;
   1587 		}
   1588 
   1589 		/*
   1590 		 * update sensor's state.
   1591 		 */
   1592 		error = sme_update_sensor_dictionary(dict, edata, true);
   1593 
   1594 		if (error)
   1595 			break;
   1596 	}
   1597 
   1598 	return error;
   1599 }
   1600 
   1601 int
   1602 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
   1603 	bool value_update)
   1604 {
   1605 	const struct sme_descr_entry *sdt;
   1606 	int error = 0;
   1607 
   1608 	sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
   1609 	if (sdt == NULL) {
   1610 		printf("sme_update_sensor_dictionary: can not update sensor "
   1611 		    "state %d unknown\n", edata->state);
   1612 		return EINVAL;
   1613 	}
   1614 
   1615 	DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
   1616 	    edata->sensor, sdt->type, sdt->desc, edata->flags));
   1617 
   1618 	error = sme_sensor_upstring(dict, "state", sdt->desc);
   1619 	if (error)
   1620 		return (-error);
   1621 
   1622 	/*
   1623 	 * update sensor's type.
   1624 	 */
   1625 	sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
   1626 
   1627 	DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
   1628 	    sdt->type, sdt->desc));
   1629 
   1630 	error = sme_sensor_upstring(dict, "type", sdt->desc);
   1631 	if (error)
   1632 		return (-error);
   1633 
   1634 	if (value_update) {
   1635 		/*
   1636 		 * update sensor's current value.
   1637 		 */
   1638 		error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
   1639 		if (error)
   1640 			return error;
   1641 	}
   1642 
   1643 	/*
   1644 	 * Battery charge and Indicator types do not
   1645 	 * need the remaining objects, so skip them.
   1646 	 */
   1647 	if (edata->units == ENVSYS_INDICATOR ||
   1648 	    edata->units == ENVSYS_BATTERY_CHARGE)
   1649 		return error;
   1650 
   1651 	/*
   1652 	 * update sensor flags.
   1653 	 */
   1654 	if (edata->flags & ENVSYS_FPERCENT) {
   1655 		error = sme_sensor_upbool(dict, "want-percentage", true);
   1656 		if (error)
   1657 			return error;
   1658 	}
   1659 
   1660 	if (value_update) {
   1661 		/*
   1662 		 * update sensor's {max,min}-value.
   1663 		 */
   1664 		if (edata->flags & ENVSYS_FVALID_MAX) {
   1665 			error = sme_sensor_upint32(dict, "max-value",
   1666 						   edata->value_max);
   1667 			if (error)
   1668 				return error;
   1669 		}
   1670 
   1671 		if (edata->flags & ENVSYS_FVALID_MIN) {
   1672 			error = sme_sensor_upint32(dict, "min-value",
   1673 						   edata->value_min);
   1674 			if (error)
   1675 				return error;
   1676 		}
   1677 
   1678 		/*
   1679 		 * update 'rpms' only for ENVSYS_SFANRPM sensors.
   1680 		 */
   1681 		if (edata->units == ENVSYS_SFANRPM) {
   1682 			error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
   1683 			if (error)
   1684 				return error;
   1685 		}
   1686 
   1687 		/*
   1688 		 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
   1689 		 */
   1690 		if (edata->units == ENVSYS_SVOLTS_AC ||
   1691 		    edata->units == ENVSYS_SVOLTS_DC) {
   1692 			error = sme_sensor_upint32(dict, "rfact", edata->rfact);
   1693 			if (error)
   1694 				return error;
   1695 		}
   1696 	}
   1697 
   1698 	/*
   1699 	 * update 'drive-state' only for ENVSYS_DRIVE sensors.
   1700 	 */
   1701 	if (edata->units == ENVSYS_DRIVE) {
   1702 		sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
   1703 					   edata->value_cur);
   1704 		error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
   1705 		if (error)
   1706 			return error;
   1707 	}
   1708 
   1709 	/*
   1710 	 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
   1711 	 * sensors.
   1712 	 */
   1713 	if (edata->units == ENVSYS_BATTERY_CAPACITY) {
   1714 		sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
   1715 		    edata->value_cur);
   1716 		error = sme_sensor_upstring(dict, "battery-capacity",
   1717 					    sdt->desc);
   1718 		if (error)
   1719 			return error;
   1720 	}
   1721 
   1722 	return error;
   1723 }
   1724 
   1725 /*
   1726  * sme_userset_dictionary:
   1727  *
   1728  * 	+ Parse the userland dictionary and run the appropiate tasks
   1729  * 	  that were specified.
   1730  */
   1731 int
   1732 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
   1733 		       prop_array_t array)
   1734 {
   1735 	const struct sme_descr_entry *sdt;
   1736 	envsys_data_t *edata;
   1737 	prop_dictionary_t dict, tdict = NULL;
   1738 	prop_object_t obj, obj1, obj2, tobj = NULL;
   1739 	uint32_t props;
   1740 	uint64_t refresh_timo = 0;
   1741 	sysmon_envsys_lim_t lims;
   1742 	int i, error = 0;
   1743 	const char *blah;
   1744 	bool targetfound = false;
   1745 
   1746 	/*
   1747 	 * The user wanted to change the refresh timeout value for this
   1748 	 * device.
   1749 	 *
   1750 	 * Get the 'device-properties' object from the userland dictionary.
   1751 	 */
   1752 	obj = prop_dictionary_get(udict, "device-properties");
   1753 	if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
   1754 		/*
   1755 		 * Get the 'refresh-timeout' property for this device.
   1756 		 */
   1757 		obj1 = prop_dictionary_get(obj, "refresh-timeout");
   1758 		if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
   1759 			targetfound = true;
   1760 			refresh_timo =
   1761 			    prop_number_unsigned_integer_value(obj1);
   1762 			if (refresh_timo < 1)
   1763 				error = EINVAL;
   1764 			else {
   1765 				mutex_enter(&sme->sme_mtx);
   1766 				if (sme->sme_events_timeout != refresh_timo) {
   1767 					sme->sme_events_timeout = refresh_timo;
   1768 					sme_schedule_callout(sme);
   1769 				}
   1770 				mutex_exit(&sme->sme_mtx);
   1771 		}
   1772 		}
   1773 		return error;
   1774 
   1775 	} else if (!obj) {
   1776 		/*
   1777 		 * Get sensor's index from userland dictionary.
   1778 		 */
   1779 		obj = prop_dictionary_get(udict, "index");
   1780 		if (!obj)
   1781 			return EINVAL;
   1782 		if (prop_object_type(obj) != PROP_TYPE_STRING) {
   1783 			DPRINTF(("%s: 'index' not a string\n", __func__));
   1784 			return EINVAL;
   1785 		}
   1786 	} else
   1787 		return EINVAL;
   1788 
   1789 	/*
   1790 	 * Don't bother with locking when traversing the queue,
   1791 	 * the device is already marked as busy; if a sensor
   1792 	 * is going to be removed or added it will have to wait.
   1793 	 */
   1794 	TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
   1795 		/*
   1796 		 * Get a dictionary and check if it's our sensor by checking
   1797 		 * at its index position.
   1798 		 */
   1799 		dict = prop_array_get(array, edata->sensor);
   1800 		obj1 = prop_dictionary_get(dict, "index");
   1801 
   1802 		/*
   1803 		 * is it our sensor?
   1804 		 */
   1805 		if (!prop_string_equals(obj1, obj))
   1806 			continue;
   1807 
   1808 		props = 0;
   1809 
   1810 		/*
   1811 		 * Check if a new description operation was
   1812 		 * requested by the user and set new description.
   1813 		 */
   1814 		obj2 = prop_dictionary_get(udict, "description");
   1815 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
   1816 			targetfound = true;
   1817 			blah = prop_string_cstring_nocopy(obj2);
   1818 
   1819 			/*
   1820 			 * Check for duplicate description.
   1821 			 */
   1822 			for (i = 0; i < sme->sme_nsensors; i++) {
   1823 				if (i == edata->sensor)
   1824 					continue;
   1825 				tdict = prop_array_get(array, i);
   1826 				tobj =
   1827 				    prop_dictionary_get(tdict, "description");
   1828 				if (prop_string_equals(obj2, tobj)) {
   1829 					error = EEXIST;
   1830 					goto out;
   1831 				}
   1832 			}
   1833 
   1834 			/*
   1835 			 * Update the object in dictionary.
   1836 			 */
   1837 			mutex_enter(&sme->sme_mtx);
   1838 			error = sme_sensor_upstring(dict,
   1839 						    "description",
   1840 						    blah);
   1841 			if (error) {
   1842 				mutex_exit(&sme->sme_mtx);
   1843 				goto out;
   1844 			}
   1845 
   1846 			DPRINTF(("%s: sensor%d changed desc to: %s\n",
   1847 			    __func__, edata->sensor, blah));
   1848 			edata->upropset |= PROP_DESC;
   1849 			mutex_exit(&sme->sme_mtx);
   1850 		}
   1851 
   1852 		/*
   1853 		 * did the user want to change the rfact?
   1854 		 */
   1855 		obj2 = prop_dictionary_get(udict, "rfact");
   1856 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1857 			targetfound = true;
   1858 			if (edata->flags & ENVSYS_FCHANGERFACT) {
   1859 				mutex_enter(&sme->sme_mtx);
   1860 				edata->rfact = prop_number_integer_value(obj2);
   1861 				edata->upropset |= PROP_RFACT;
   1862 				mutex_exit(&sme->sme_mtx);
   1863 				DPRINTF(("%s: sensor%d changed rfact to %d\n",
   1864 				    __func__, edata->sensor, edata->rfact));
   1865 			} else {
   1866 				error = ENOTSUP;
   1867 				goto out;
   1868 			}
   1869 		}
   1870 
   1871 		sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
   1872 
   1873 		/*
   1874 		 * did the user want to set a critical capacity event?
   1875 		 */
   1876 		obj2 = prop_dictionary_get(udict, "critical-capacity");
   1877 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1878 			targetfound = true;
   1879 			lims.sel_critmin = prop_number_integer_value(obj2);
   1880 			props |= PROP_BATTCAP;
   1881 		}
   1882 
   1883 		/*
   1884 		 * did the user want to set a warning capacity event?
   1885 		 */
   1886 		obj2 = prop_dictionary_get(udict, "warning-capacity");
   1887 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1888 			targetfound = true;
   1889 			lims.sel_warnmin = prop_number_integer_value(obj2);
   1890 			props |= PROP_BATTWARN;
   1891 		}
   1892 
   1893 		/*
   1894 		 * did the user want to set a high capacity event?
   1895 		 */
   1896 		obj2 = prop_dictionary_get(udict, "high-capacity");
   1897 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1898 			targetfound = true;
   1899 			lims.sel_warnmin = prop_number_integer_value(obj2);
   1900 			props |= PROP_BATTHIGH;
   1901 		}
   1902 
   1903 		/*
   1904 		 * did the user want to set a maximum capacity event?
   1905 		 */
   1906 		obj2 = prop_dictionary_get(udict, "maximum-capacity");
   1907 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1908 			targetfound = true;
   1909 			lims.sel_warnmin = prop_number_integer_value(obj2);
   1910 			props |= PROP_BATTMAX;
   1911 		}
   1912 
   1913 		/*
   1914 		 * did the user want to set a critical max event?
   1915 		 */
   1916 		obj2 = prop_dictionary_get(udict, "critical-max");
   1917 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1918 			targetfound = true;
   1919 			lims.sel_critmax = prop_number_integer_value(obj2);
   1920 			props |= PROP_CRITMAX;
   1921 		}
   1922 
   1923 		/*
   1924 		 * did the user want to set a warning max event?
   1925 		 */
   1926 		obj2 = prop_dictionary_get(udict, "warning-max");
   1927 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1928 			targetfound = true;
   1929 			lims.sel_warnmax = prop_number_integer_value(obj2);
   1930 			props |= PROP_WARNMAX;
   1931 		}
   1932 
   1933 		/*
   1934 		 * did the user want to set a critical min event?
   1935 		 */
   1936 		obj2 = prop_dictionary_get(udict, "critical-min");
   1937 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1938 			targetfound = true;
   1939 			lims.sel_critmin = prop_number_integer_value(obj2);
   1940 			props |= PROP_CRITMIN;
   1941 		}
   1942 
   1943 		/*
   1944 		 * did the user want to set a warning min event?
   1945 		 */
   1946 		obj2 = prop_dictionary_get(udict, "warning-min");
   1947 		if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
   1948 			targetfound = true;
   1949 			lims.sel_warnmin = prop_number_integer_value(obj2);
   1950 			props |= PROP_WARNMIN;
   1951 		}
   1952 
   1953 		if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
   1954 			error = ENOTSUP;
   1955 			goto out;
   1956 		}
   1957 		if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
   1958 			error = sme_event_register(dict, edata, sme, &lims,
   1959 					props,
   1960 					(edata->flags & ENVSYS_FPERCENT)?
   1961 						PENVSYS_EVENT_CAPACITY:
   1962 						PENVSYS_EVENT_LIMITS,
   1963 					sdt->crittype);
   1964 			if (error == EEXIST)
   1965 				error = 0;
   1966 			if (error)
   1967 				goto out;
   1968 		}
   1969 
   1970 		/*
   1971 		 * All objects in dictionary were processed.
   1972 		 */
   1973 		break;
   1974 	}
   1975 
   1976 out:
   1977 	/*
   1978 	 * invalid target? return the error.
   1979 	 */
   1980 	if (!targetfound)
   1981 		error = EINVAL;
   1982 
   1983 	return error;
   1984 }
   1985 
   1986 /*
   1987  * + sysmon_envsys_foreach_sensor
   1988  *
   1989  *	Walk through the devices' sensor lists and execute the callback.
   1990  *	If the callback returns false, the remainder of the current
   1991  *	device's sensors are skipped.
   1992  */
   1993 void
   1994 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
   1995 			     bool refresh)
   1996 {
   1997 	struct sysmon_envsys *sme;
   1998 	envsys_data_t *sensor;
   1999 
   2000 	mutex_enter(&sme_global_mtx);
   2001 	LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
   2002 
   2003 		sysmon_envsys_acquire(sme, false);
   2004 		TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
   2005 			if (refresh) {
   2006 				mutex_enter(&sme->sme_mtx);
   2007 				sysmon_envsys_refresh_sensor(sme, sensor);
   2008 				mutex_exit(&sme->sme_mtx);
   2009 			}
   2010 			if (!(*func)(sme, sensor, arg))
   2011 				break;
   2012 		}
   2013 		sysmon_envsys_release(sme, false);
   2014 	}
   2015 	mutex_exit(&sme_global_mtx);
   2016 }
   2017 
   2018 /*
   2019  * Call the sensor's refresh function, and collect/stir entropy
   2020  */
   2021 void
   2022 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
   2023 {
   2024 
   2025 	if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
   2026 		(*sme->sme_refresh)(sme, edata);
   2027 
   2028 	if (edata->flags & ENVSYS_FHAS_ENTROPY &&
   2029 	    edata->state != ENVSYS_SINVALID &&
   2030 	    edata->value_prev != edata->value_cur)
   2031 		rnd_add_uint32(&edata->rnd_src, edata->value_cur);
   2032 	edata->value_prev = edata->value_cur;
   2033 }
   2034