sysmon_envsys.c revision 1.133 1 /* $NetBSD: sysmon_envsys.c,v 1.133 2015/04/24 11:34:14 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.133 2015/04/24 11:34:14 pgoyette Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rndsource.h>
80 #include <sys/module.h>
81
82 #include <dev/sysmon/sysmonvar.h>
83 #include <dev/sysmon/sysmon_envsysvar.h>
84 #include <dev/sysmon/sysmon_taskq.h>
85
86 kmutex_t sme_global_mtx;
87
88 prop_dictionary_t sme_propd;
89
90 struct sysmon_envsys_lh sysmon_envsys_list;
91
92 static uint32_t sysmon_envsys_next_sensor_index;
93 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
94
95 static void sysmon_envsys_destroy_plist(prop_array_t);
96 static void sme_remove_userprops(void);
97 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
98 prop_dictionary_t);
99 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
100 prop_array_t, prop_dictionary_t, envsys_data_t *);
101 static void sme_initial_refresh(void *);
102 static uint32_t sme_get_max_value(struct sysmon_envsys *,
103 bool (*)(const envsys_data_t*), bool);
104
105 MODULE(MODULE_CLASS_MISC, sysmon_envsys, "sysmon,sysmon_taskq,sysmon_power");
106
107 static struct sysmon_opvec sysmon_envsys_opvec = {
108 sysmonopen_envsys, sysmonclose_envsys, sysmonioctl_envsys,
109 NULL, NULL, NULL
110 };
111
112 /*
113 * sysmon_envsys_init:
114 *
115 * + Initialize global mutex, dictionary and the linked list.
116 */
117 int
118 sysmon_envsys_init(void)
119 {
120 int error;
121
122 LIST_INIT(&sysmon_envsys_list);
123 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
124 sme_propd = prop_dictionary_create();
125
126 error = sysmon_attach_minor(SYSMON_MINOR_ENVSYS, &sysmon_envsys_opvec);
127
128 return error;
129 }
130
131 int
132 sysmon_envsys_fini(void)
133 {
134 int error;
135
136 if ( ! LIST_EMPTY(&sysmon_envsys_list))
137 error = EBUSY;
138 else
139 error = sysmon_attach_minor(SYSMON_MINOR_ENVSYS, NULL);
140
141 if (error == 0)
142 mutex_destroy(&sme_global_mtx);
143
144 return error;
145 }
146
147 /*
148 * sysmonopen_envsys:
149 *
150 * + Open the system monitor device.
151 */
152 int
153 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
154 {
155 return 0;
156 }
157
158 /*
159 * sysmonclose_envsys:
160 *
161 * + Close the system monitor device.
162 */
163 int
164 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
165 {
166 return 0;
167 }
168
169 /*
170 * sysmonioctl_envsys:
171 *
172 * + Perform a sysmon envsys control request.
173 */
174 int
175 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
176 {
177 struct sysmon_envsys *sme = NULL;
178 int error = 0;
179 u_int oidx;
180
181 switch (cmd) {
182 /*
183 * To update the global dictionary with latest data from devices.
184 */
185 case ENVSYS_GETDICTIONARY:
186 {
187 struct plistref *plist = (struct plistref *)data;
188
189 /*
190 * Update dictionaries on all sysmon envsys devices
191 * registered.
192 */
193 mutex_enter(&sme_global_mtx);
194 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
195 sysmon_envsys_acquire(sme, false);
196 error = sme_update_dictionary(sme);
197 if (error) {
198 DPRINTF(("%s: sme_update_dictionary, "
199 "error=%d\n", __func__, error));
200 sysmon_envsys_release(sme, false);
201 mutex_exit(&sme_global_mtx);
202 return error;
203 }
204 sysmon_envsys_release(sme, false);
205 }
206 mutex_exit(&sme_global_mtx);
207 /*
208 * Copy global dictionary to userland.
209 */
210 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
211 break;
212 }
213 /*
214 * To set properties on multiple devices.
215 */
216 case ENVSYS_SETDICTIONARY:
217 {
218 const struct plistref *plist = (const struct plistref *)data;
219 prop_dictionary_t udict;
220 prop_object_iterator_t iter, iter2;
221 prop_object_t obj, obj2;
222 prop_array_t array_u, array_k;
223 const char *devname = NULL;
224
225 if ((flag & FWRITE) == 0)
226 return EPERM;
227
228 /*
229 * Get dictionary from userland.
230 */
231 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
232 if (error) {
233 DPRINTF(("%s: copyin_ioctl error=%d\n",
234 __func__, error));
235 break;
236 }
237
238 iter = prop_dictionary_iterator(udict);
239 if (!iter) {
240 prop_object_release(udict);
241 return ENOMEM;
242 }
243
244 /*
245 * Iterate over the userland dictionary and process
246 * the list of devices.
247 */
248 while ((obj = prop_object_iterator_next(iter))) {
249 array_u = prop_dictionary_get_keysym(udict, obj);
250 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
251 prop_object_iterator_release(iter);
252 prop_object_release(udict);
253 return EINVAL;
254 }
255
256 devname = prop_dictionary_keysym_cstring_nocopy(obj);
257 DPRINTF(("%s: processing the '%s' array requests\n",
258 __func__, devname));
259
260 /*
261 * find the correct sme device.
262 */
263 sme = sysmon_envsys_find(devname);
264 if (!sme) {
265 DPRINTF(("%s: NULL sme\n", __func__));
266 prop_object_iterator_release(iter);
267 prop_object_release(udict);
268 return EINVAL;
269 }
270
271 /*
272 * Find the correct array object with the string
273 * supplied by the userland dictionary.
274 */
275 array_k = prop_dictionary_get(sme_propd, devname);
276 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
277 DPRINTF(("%s: array device failed\n",
278 __func__));
279 sysmon_envsys_release(sme, false);
280 prop_object_iterator_release(iter);
281 prop_object_release(udict);
282 return EINVAL;
283 }
284
285 iter2 = prop_array_iterator(array_u);
286 if (!iter2) {
287 sysmon_envsys_release(sme, false);
288 prop_object_iterator_release(iter);
289 prop_object_release(udict);
290 return ENOMEM;
291 }
292
293 /*
294 * Iterate over the array of dictionaries to
295 * process the list of sensors and properties.
296 */
297 while ((obj2 = prop_object_iterator_next(iter2))) {
298 /*
299 * do the real work now.
300 */
301 error = sme_userset_dictionary(sme,
302 obj2,
303 array_k);
304 if (error) {
305 sysmon_envsys_release(sme, false);
306 prop_object_iterator_release(iter2);
307 prop_object_iterator_release(iter);
308 prop_object_release(udict);
309 return error;
310 }
311 }
312
313 sysmon_envsys_release(sme, false);
314 prop_object_iterator_release(iter2);
315 }
316
317 prop_object_iterator_release(iter);
318 prop_object_release(udict);
319 break;
320 }
321 /*
322 * To remove all properties from all devices registered.
323 */
324 case ENVSYS_REMOVEPROPS:
325 {
326 const struct plistref *plist = (const struct plistref *)data;
327 prop_dictionary_t udict;
328 prop_object_t obj;
329
330 if ((flag & FWRITE) == 0)
331 return EPERM;
332
333 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
334 if (error) {
335 DPRINTF(("%s: copyin_ioctl error=%d\n",
336 __func__, error));
337 break;
338 }
339
340 obj = prop_dictionary_get(udict, "envsys-remove-props");
341 if (!obj || !prop_bool_true(obj)) {
342 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
343 __func__));
344 return EINVAL;
345 }
346
347 prop_object_release(udict);
348 sme_remove_userprops();
349
350 break;
351 }
352 /*
353 * Compatibility ioctls with the old interface, only implemented
354 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
355 * applications work.
356 */
357 case ENVSYS_GTREDATA:
358 {
359 struct envsys_tre_data *tred = (void *)data;
360 envsys_data_t *edata = NULL;
361 bool found = false;
362
363 tred->validflags = 0;
364
365 sme = sysmon_envsys_find_40(tred->sensor);
366 if (!sme)
367 break;
368
369 oidx = tred->sensor;
370 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
371
372 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
373 __func__, tred->sensor, oidx, sme->sme_name,
374 sme->sme_nsensors));
375
376 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
377 if (edata->sensor == tred->sensor) {
378 found = true;
379 break;
380 }
381 }
382
383 if (!found) {
384 sysmon_envsys_release(sme, false);
385 error = ENODEV;
386 break;
387 }
388
389 if (tred->sensor < sme->sme_nsensors) {
390 if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
391 mutex_enter(&sme->sme_mtx);
392 sysmon_envsys_refresh_sensor(sme, edata);
393 mutex_exit(&sme->sme_mtx);
394 }
395
396 /*
397 * copy required values to the old interface.
398 */
399 tred->sensor = edata->sensor;
400 tred->cur.data_us = edata->value_cur;
401 tred->cur.data_s = edata->value_cur;
402 tred->max.data_us = edata->value_max;
403 tred->max.data_s = edata->value_max;
404 tred->min.data_us = edata->value_min;
405 tred->min.data_s = edata->value_min;
406 tred->avg.data_us = 0;
407 tred->avg.data_s = 0;
408 if (edata->units == ENVSYS_BATTERY_CHARGE)
409 tred->units = ENVSYS_INDICATOR;
410 else
411 tred->units = edata->units;
412
413 tred->validflags |= ENVSYS_FVALID;
414 tred->validflags |= ENVSYS_FCURVALID;
415
416 if (edata->flags & ENVSYS_FPERCENT) {
417 tred->validflags |= ENVSYS_FMAXVALID;
418 tred->validflags |= ENVSYS_FFRACVALID;
419 }
420
421 if (edata->state == ENVSYS_SINVALID) {
422 tred->validflags &= ~ENVSYS_FCURVALID;
423 tred->cur.data_us = tred->cur.data_s = 0;
424 }
425
426 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
427 __func__, edata->desc, tred->cur.data_s));
428 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
429 " tred->sensor=%d\n", __func__, tred->validflags,
430 tred->units, tred->sensor));
431 }
432 tred->sensor = oidx;
433 sysmon_envsys_release(sme, false);
434
435 break;
436 }
437 case ENVSYS_GTREINFO:
438 {
439 struct envsys_basic_info *binfo = (void *)data;
440 envsys_data_t *edata = NULL;
441 bool found = false;
442
443 binfo->validflags = 0;
444
445 sme = sysmon_envsys_find_40(binfo->sensor);
446 if (!sme)
447 break;
448
449 oidx = binfo->sensor;
450 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
451
452 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
453 if (edata->sensor == binfo->sensor) {
454 found = true;
455 break;
456 }
457 }
458
459 if (!found) {
460 sysmon_envsys_release(sme, false);
461 error = ENODEV;
462 break;
463 }
464
465 binfo->validflags |= ENVSYS_FVALID;
466
467 if (binfo->sensor < sme->sme_nsensors) {
468 if (edata->units == ENVSYS_BATTERY_CHARGE)
469 binfo->units = ENVSYS_INDICATOR;
470 else
471 binfo->units = edata->units;
472
473 /*
474 * previously, the ACPI sensor names included the
475 * device name. Include that in compatibility code.
476 */
477 if (strncmp(sme->sme_name, "acpi", 4) == 0)
478 (void)snprintf(binfo->desc, sizeof(binfo->desc),
479 "%s %s", sme->sme_name, edata->desc);
480 else
481 (void)strlcpy(binfo->desc, edata->desc,
482 sizeof(binfo->desc));
483 }
484
485 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
486 __func__, binfo->units, binfo->validflags));
487 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
488 __func__, binfo->desc, binfo->sensor));
489
490 binfo->sensor = oidx;
491 sysmon_envsys_release(sme, false);
492
493 break;
494 }
495 default:
496 error = ENOTTY;
497 break;
498 }
499
500 return error;
501 }
502
503 /*
504 * sysmon_envsys_create:
505 *
506 * + Allocates a new sysmon_envsys object and initializes the
507 * stuff for sensors and events.
508 */
509 struct sysmon_envsys *
510 sysmon_envsys_create(void)
511 {
512 struct sysmon_envsys *sme;
513
514 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
515 TAILQ_INIT(&sme->sme_sensors_list);
516 LIST_INIT(&sme->sme_events_list);
517 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
518 mutex_init(&sme->sme_work_mtx, MUTEX_DEFAULT, IPL_NONE);
519 cv_init(&sme->sme_condvar, "sme_wait");
520
521 return sme;
522 }
523
524 /*
525 * sysmon_envsys_destroy:
526 *
527 * + Removes all sensors from the tail queue, destroys the callout
528 * and frees the sysmon_envsys object.
529 */
530 void
531 sysmon_envsys_destroy(struct sysmon_envsys *sme)
532 {
533 envsys_data_t *edata;
534
535 KASSERT(sme != NULL);
536
537 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
538 edata = TAILQ_FIRST(&sme->sme_sensors_list);
539 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
540 }
541 mutex_destroy(&sme->sme_mtx);
542 mutex_destroy(&sme->sme_work_mtx);
543 cv_destroy(&sme->sme_condvar);
544 kmem_free(sme, sizeof(*sme));
545 }
546
547 /*
548 * sysmon_envsys_sensor_attach:
549 *
550 * + Attaches a sensor into a sysmon_envsys device checking that units
551 * is set to a valid type and description is unique and not empty.
552 */
553 int
554 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
555 {
556 const struct sme_descr_entry *sdt_units;
557 envsys_data_t *oedata;
558
559 KASSERT(sme != NULL || edata != NULL);
560
561 /*
562 * Find the correct units for this sensor.
563 */
564 sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
565 if (sdt_units->type == -1)
566 return EINVAL;
567
568 /*
569 * Check that description is not empty or duplicate.
570 */
571 if (strlen(edata->desc) == 0)
572 return EINVAL;
573
574 mutex_enter(&sme->sme_mtx);
575 sysmon_envsys_acquire(sme, true);
576 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
577 if (strcmp(oedata->desc, edata->desc) == 0) {
578 sysmon_envsys_release(sme, true);
579 mutex_exit(&sme->sme_mtx);
580 return EEXIST;
581 }
582 }
583 /*
584 * Ok, the sensor has been added into the device queue.
585 */
586 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
587
588 /*
589 * Give the sensor an index position.
590 */
591 edata->sensor = sme->sme_nsensors;
592 sme->sme_nsensors++;
593 sysmon_envsys_release(sme, true);
594 mutex_exit(&sme->sme_mtx);
595
596 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
597 __func__, edata->sensor, edata->desc,
598 sdt_units->type, sdt_units->desc));
599
600 return 0;
601 }
602
603 /*
604 * sysmon_envsys_sensor_detach:
605 *
606 * + Detachs a sensor from a sysmon_envsys device and decrements the
607 * sensors count on success.
608 */
609 int
610 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
611 {
612 envsys_data_t *oedata;
613 bool found = false;
614 bool destroy = false;
615
616 KASSERT(sme != NULL || edata != NULL);
617
618 /*
619 * Check the sensor is already on the list.
620 */
621 mutex_enter(&sme->sme_mtx);
622 sysmon_envsys_acquire(sme, true);
623 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
624 if (oedata->sensor == edata->sensor) {
625 found = true;
626 break;
627 }
628 }
629
630 if (!found) {
631 sysmon_envsys_release(sme, true);
632 mutex_exit(&sme->sme_mtx);
633 return EINVAL;
634 }
635
636 /*
637 * remove it, unhook from rnd(4), and decrement the sensors count.
638 */
639 sme_event_unregister_sensor(sme, edata);
640 if (LIST_EMPTY(&sme->sme_events_list)) {
641 sme_events_halt_callout(sme);
642 destroy = true;
643 }
644 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
645 sme->sme_nsensors--;
646 sysmon_envsys_release(sme, true);
647 mutex_exit(&sme->sme_mtx);
648
649 if (destroy)
650 sme_events_destroy(sme);
651
652 return 0;
653 }
654
655
656 /*
657 * sysmon_envsys_register:
658 *
659 * + Register a sysmon envsys device.
660 * + Create array of dictionaries for a device.
661 */
662 int
663 sysmon_envsys_register(struct sysmon_envsys *sme)
664 {
665 struct sme_evdrv {
666 SLIST_ENTRY(sme_evdrv) evdrv_head;
667 sme_event_drv_t *evdrv;
668 };
669 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
670 struct sme_evdrv *evdv = NULL;
671 struct sysmon_envsys *lsme;
672 prop_array_t array = NULL;
673 prop_dictionary_t dict, dict2;
674 envsys_data_t *edata = NULL;
675 sme_event_drv_t *this_evdrv;
676 int nevent;
677 int error = 0;
678 char rnd_name[sizeof(edata->rnd_src.name)];
679
680 KASSERT(sme != NULL);
681 KASSERT(sme->sme_name != NULL);
682
683 /*
684 * Check if requested sysmon_envsys device is valid
685 * and does not exist already in the list.
686 */
687 mutex_enter(&sme_global_mtx);
688 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
689 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
690 mutex_exit(&sme_global_mtx);
691 return EEXIST;
692 }
693 }
694 mutex_exit(&sme_global_mtx);
695
696 /*
697 * sanity check: if SME_DISABLE_REFRESH is not set,
698 * the sme_refresh function callback must be non NULL.
699 */
700 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
701 if (!sme->sme_refresh)
702 return EINVAL;
703
704 /*
705 * If the list of sensors is empty, there's no point to continue...
706 */
707 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
708 DPRINTF(("%s: sensors list empty for %s\n", __func__,
709 sme->sme_name));
710 return ENOTSUP;
711 }
712
713 /*
714 * Initialize the singly linked list for driver events.
715 */
716 SLIST_INIT(&sme_evdrv_list);
717
718 array = prop_array_create();
719 if (!array)
720 return ENOMEM;
721
722 /*
723 * Iterate over all sensors and create a dictionary per sensor.
724 * We must respect the order in which the sensors were added.
725 */
726 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
727 dict = prop_dictionary_create();
728 if (!dict) {
729 error = ENOMEM;
730 goto out2;
731 }
732
733 /*
734 * Create all objects in sensor's dictionary.
735 */
736 this_evdrv = sme_add_sensor_dictionary(sme, array,
737 dict, edata);
738 if (this_evdrv) {
739 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
740 evdv->evdrv = this_evdrv;
741 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
742 }
743 }
744
745 /*
746 * If the array does not contain any object (sensor), there's
747 * no need to attach the driver.
748 */
749 if (prop_array_count(array) == 0) {
750 error = EINVAL;
751 DPRINTF(("%s: empty array for '%s'\n", __func__,
752 sme->sme_name));
753 goto out;
754 }
755
756 /*
757 * Add the dictionary for the global properties of this device.
758 */
759 dict2 = prop_dictionary_create();
760 if (!dict2) {
761 error = ENOMEM;
762 goto out;
763 }
764
765 error = sme_add_property_dictionary(sme, array, dict2);
766 if (error) {
767 prop_object_release(dict2);
768 goto out;
769 }
770
771 /*
772 * Add the array into the global dictionary for the driver.
773 *
774 * <dict>
775 * <key>foo0</key>
776 * <array>
777 * ...
778 */
779 mutex_enter(&sme_global_mtx);
780 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
781 error = EINVAL;
782 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
783 sme->sme_name));
784 goto out;
785 }
786
787 /*
788 * Add the device into the list.
789 */
790 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
791 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
792 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
793 mutex_exit(&sme_global_mtx);
794
795 out:
796 /*
797 * No errors? Make an initial data refresh if was requested,
798 * then register the events that were set in the driver. Do
799 * the refresh first in case it is needed to establish the
800 * limits or max_value needed by some events.
801 */
802 if (error == 0) {
803 nevent = 0;
804
805 if (sme->sme_flags & SME_INIT_REFRESH) {
806 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
807 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
808 __func__, sme->sme_name));
809 }
810 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
811 sysmon_task_queue_sched(0,
812 sme_event_drvadd, evdv->evdrv);
813 nevent++;
814 }
815 /*
816 * Hook the sensor into rnd(4) entropy pool if requested
817 */
818 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
819 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
820 uint32_t rnd_type, rnd_flag = 0;
821 size_t n;
822 int tail = 1;
823
824 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
825 sme->sme_name, edata->desc);
826 n = strlen(rnd_name);
827 /*
828 * 1) Remove trailing white space(s).
829 * 2) If space exist, replace it with '-'
830 */
831 while (--n) {
832 if (rnd_name[n] == ' ') {
833 if (tail != 0)
834 rnd_name[n] = '\0';
835 else
836 rnd_name[n] = '-';
837 } else
838 tail = 0;
839 }
840 rnd_flag |= RND_FLAG_COLLECT_TIME;
841 rnd_flag |= RND_FLAG_ESTIMATE_TIME;
842
843 switch (edata->units) {
844 case ENVSYS_STEMP:
845 case ENVSYS_SFANRPM:
846 case ENVSYS_INTEGER:
847 rnd_type = RND_TYPE_ENV;
848 rnd_flag |= RND_FLAG_COLLECT_VALUE;
849 rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
850 break;
851 case ENVSYS_SVOLTS_AC:
852 case ENVSYS_SVOLTS_DC:
853 case ENVSYS_SOHMS:
854 case ENVSYS_SWATTS:
855 case ENVSYS_SAMPS:
856 case ENVSYS_SWATTHOUR:
857 case ENVSYS_SAMPHOUR:
858 rnd_type = RND_TYPE_POWER;
859 rnd_flag |= RND_FLAG_COLLECT_VALUE;
860 rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
861 break;
862 default:
863 rnd_type = RND_TYPE_UNKNOWN;
864 break;
865 }
866 rnd_attach_source(&edata->rnd_src, rnd_name,
867 rnd_type, rnd_flag);
868 }
869 }
870 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
871 __func__, sme->sme_name, sme->sme_nsensors, nevent));
872 }
873
874 out2:
875 while (!SLIST_EMPTY(&sme_evdrv_list)) {
876 evdv = SLIST_FIRST(&sme_evdrv_list);
877 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
878 kmem_free(evdv, sizeof(*evdv));
879 }
880 if (!error)
881 return 0;
882
883 /*
884 * Ugh... something wasn't right; unregister all events and sensors
885 * previously assigned and destroy the array with all its objects.
886 */
887 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
888 sme->sme_name, error));
889
890 sme_event_unregister_all(sme);
891 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
892 edata = TAILQ_FIRST(&sme->sme_sensors_list);
893 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
894 }
895 sysmon_envsys_destroy_plist(array);
896 return error;
897 }
898
899 /*
900 * sysmon_envsys_destroy_plist:
901 *
902 * + Remove all objects from the array of dictionaries that is
903 * created in a sysmon envsys device.
904 */
905 static void
906 sysmon_envsys_destroy_plist(prop_array_t array)
907 {
908 prop_object_iterator_t iter, iter2;
909 prop_dictionary_t dict;
910 prop_object_t obj;
911
912 KASSERT(array != NULL);
913 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
914
915 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
916 prop_array_count(array)));
917
918 iter = prop_array_iterator(array);
919 if (!iter)
920 return;
921
922 while ((dict = prop_object_iterator_next(iter))) {
923 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
924 iter2 = prop_dictionary_iterator(dict);
925 if (!iter2)
926 goto out;
927 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
928 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
929 DPRINTFOBJ(("%s: obj=%s\n", __func__,
930 prop_dictionary_keysym_cstring_nocopy(obj)));
931 prop_dictionary_remove(dict,
932 prop_dictionary_keysym_cstring_nocopy(obj));
933 prop_object_iterator_reset(iter2);
934 }
935 prop_object_iterator_release(iter2);
936 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
937 __func__, prop_dictionary_count(dict)));
938 prop_object_release(dict);
939 }
940
941 out:
942 prop_object_iterator_release(iter);
943 prop_object_release(array);
944 }
945
946 /*
947 * sysmon_envsys_unregister:
948 *
949 * + Unregister a sysmon envsys device.
950 */
951 void
952 sysmon_envsys_unregister(struct sysmon_envsys *sme)
953 {
954 prop_array_t array;
955 struct sysmon_envsys *osme;
956
957 KASSERT(sme != NULL);
958
959 /*
960 * Decrement global sensors counter and the first_sensor index
961 * for remaining devices in the list (only used for compatibility
962 * with previous API), and remove the device from the list.
963 */
964 mutex_enter(&sme_global_mtx);
965 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
966 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
967 if (osme->sme_fsensor >= sme->sme_fsensor)
968 osme->sme_fsensor -= sme->sme_nsensors;
969 }
970 LIST_REMOVE(sme, sme_list);
971 mutex_exit(&sme_global_mtx);
972
973 /*
974 * Unregister all events associated with device.
975 */
976 sme_event_unregister_all(sme);
977
978 /*
979 * Remove the device (and all its objects) from the global dictionary.
980 */
981 array = prop_dictionary_get(sme_propd, sme->sme_name);
982 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
983 mutex_enter(&sme_global_mtx);
984 prop_dictionary_remove(sme_propd, sme->sme_name);
985 mutex_exit(&sme_global_mtx);
986 sysmon_envsys_destroy_plist(array);
987 }
988 /*
989 * And finally destroy the sysmon_envsys object.
990 */
991 sysmon_envsys_destroy(sme);
992 }
993
994 /*
995 * sysmon_envsys_find:
996 *
997 * + Find a sysmon envsys device and mark it as busy
998 * once it's available.
999 */
1000 struct sysmon_envsys *
1001 sysmon_envsys_find(const char *name)
1002 {
1003 struct sysmon_envsys *sme;
1004
1005 mutex_enter(&sme_global_mtx);
1006 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1007 if (strcmp(sme->sme_name, name) == 0) {
1008 sysmon_envsys_acquire(sme, false);
1009 break;
1010 }
1011 }
1012 mutex_exit(&sme_global_mtx);
1013
1014 return sme;
1015 }
1016
1017 /*
1018 * Compatibility function with the old API.
1019 */
1020 struct sysmon_envsys *
1021 sysmon_envsys_find_40(u_int idx)
1022 {
1023 struct sysmon_envsys *sme;
1024
1025 mutex_enter(&sme_global_mtx);
1026 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1027 if (idx >= sme->sme_fsensor &&
1028 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
1029 sysmon_envsys_acquire(sme, false);
1030 break;
1031 }
1032 }
1033 mutex_exit(&sme_global_mtx);
1034
1035 return sme;
1036 }
1037
1038 /*
1039 * sysmon_envsys_acquire:
1040 *
1041 * + Wait until a sysmon envsys device is available and mark
1042 * it as busy.
1043 */
1044 void
1045 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
1046 {
1047 KASSERT(sme != NULL);
1048
1049 if (locked) {
1050 while (sme->sme_flags & SME_FLAG_BUSY)
1051 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1052 sme->sme_flags |= SME_FLAG_BUSY;
1053 } else {
1054 mutex_enter(&sme->sme_mtx);
1055 while (sme->sme_flags & SME_FLAG_BUSY)
1056 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1057 sme->sme_flags |= SME_FLAG_BUSY;
1058 mutex_exit(&sme->sme_mtx);
1059 }
1060 }
1061
1062 /*
1063 * sysmon_envsys_release:
1064 *
1065 * + Unmark a sysmon envsys device as busy, and notify
1066 * waiters.
1067 */
1068 void
1069 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
1070 {
1071 KASSERT(sme != NULL);
1072
1073 if (locked) {
1074 sme->sme_flags &= ~SME_FLAG_BUSY;
1075 cv_broadcast(&sme->sme_condvar);
1076 } else {
1077 mutex_enter(&sme->sme_mtx);
1078 sme->sme_flags &= ~SME_FLAG_BUSY;
1079 cv_broadcast(&sme->sme_condvar);
1080 mutex_exit(&sme->sme_mtx);
1081 }
1082 }
1083
1084 /*
1085 * sme_initial_refresh:
1086 *
1087 * + Do an initial refresh of the sensors in a device just after
1088 * interrupts are enabled in the autoconf(9) process.
1089 *
1090 */
1091 static void
1092 sme_initial_refresh(void *arg)
1093 {
1094 struct sysmon_envsys *sme = arg;
1095 envsys_data_t *edata;
1096
1097 mutex_enter(&sme->sme_mtx);
1098 sysmon_envsys_acquire(sme, true);
1099 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1100 sysmon_envsys_refresh_sensor(sme, edata);
1101 sysmon_envsys_release(sme, true);
1102 mutex_exit(&sme->sme_mtx);
1103 }
1104
1105 /*
1106 * sme_sensor_dictionary_get:
1107 *
1108 * + Returns a dictionary of a device specified by its index
1109 * position.
1110 */
1111 prop_dictionary_t
1112 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1113 {
1114 prop_object_iterator_t iter;
1115 prop_dictionary_t dict;
1116 prop_object_t obj;
1117
1118 KASSERT(array != NULL || index != NULL);
1119
1120 iter = prop_array_iterator(array);
1121 if (!iter)
1122 return NULL;
1123
1124 while ((dict = prop_object_iterator_next(iter))) {
1125 obj = prop_dictionary_get(dict, "index");
1126 if (prop_string_equals_cstring(obj, index))
1127 break;
1128 }
1129
1130 prop_object_iterator_release(iter);
1131 return dict;
1132 }
1133
1134 /*
1135 * sme_remove_userprops:
1136 *
1137 * + Remove all properties from all devices that were set by
1138 * the ENVSYS_SETDICTIONARY ioctl.
1139 */
1140 static void
1141 sme_remove_userprops(void)
1142 {
1143 struct sysmon_envsys *sme;
1144 prop_array_t array;
1145 prop_dictionary_t sdict;
1146 envsys_data_t *edata = NULL;
1147 char tmp[ENVSYS_DESCLEN];
1148 char rnd_name[sizeof(edata->rnd_src.name)];
1149 sysmon_envsys_lim_t lims;
1150 const struct sme_descr_entry *sdt_units;
1151 uint32_t props;
1152 int ptype;
1153
1154 mutex_enter(&sme_global_mtx);
1155 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1156 sysmon_envsys_acquire(sme, false);
1157 array = prop_dictionary_get(sme_propd, sme->sme_name);
1158
1159 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1160 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1161 edata->sensor);
1162 sdict = sme_sensor_dictionary_get(array, tmp);
1163 KASSERT(sdict != NULL);
1164
1165 ptype = 0;
1166 if (edata->upropset & PROP_BATTCAP) {
1167 prop_dictionary_remove(sdict,
1168 "critical-capacity");
1169 ptype = PENVSYS_EVENT_CAPACITY;
1170 }
1171
1172 if (edata->upropset & PROP_BATTWARN) {
1173 prop_dictionary_remove(sdict,
1174 "warning-capacity");
1175 ptype = PENVSYS_EVENT_CAPACITY;
1176 }
1177
1178 if (edata->upropset & PROP_BATTHIGH) {
1179 prop_dictionary_remove(sdict,
1180 "high-capacity");
1181 ptype = PENVSYS_EVENT_CAPACITY;
1182 }
1183
1184 if (edata->upropset & PROP_BATTMAX) {
1185 prop_dictionary_remove(sdict,
1186 "maximum-capacity");
1187 ptype = PENVSYS_EVENT_CAPACITY;
1188 }
1189 if (edata->upropset & PROP_WARNMAX) {
1190 prop_dictionary_remove(sdict, "warning-max");
1191 ptype = PENVSYS_EVENT_LIMITS;
1192 }
1193
1194 if (edata->upropset & PROP_WARNMIN) {
1195 prop_dictionary_remove(sdict, "warning-min");
1196 ptype = PENVSYS_EVENT_LIMITS;
1197 }
1198
1199 if (edata->upropset & PROP_CRITMAX) {
1200 prop_dictionary_remove(sdict, "critical-max");
1201 ptype = PENVSYS_EVENT_LIMITS;
1202 }
1203
1204 if (edata->upropset & PROP_CRITMIN) {
1205 prop_dictionary_remove(sdict, "critical-min");
1206 ptype = PENVSYS_EVENT_LIMITS;
1207 }
1208 if (edata->upropset & PROP_RFACT) {
1209 (void)sme_sensor_upint32(sdict, "rfact", 0);
1210 edata->rfact = 0;
1211 }
1212
1213 if (edata->upropset & PROP_DESC)
1214 (void)sme_sensor_upstring(sdict,
1215 "description", edata->desc);
1216
1217 if (ptype == 0)
1218 continue;
1219
1220 /*
1221 * If there were any limit values removed, we
1222 * need to revert to initial limits.
1223 *
1224 * First, tell the driver that we need it to
1225 * restore any h/w limits which may have been
1226 * changed to stored, boot-time values.
1227 */
1228 if (sme->sme_set_limits) {
1229 DPRINTF(("%s: reset limits for %s %s\n",
1230 __func__, sme->sme_name, edata->desc));
1231 (*sme->sme_set_limits)(sme, edata, NULL, NULL);
1232 }
1233
1234 /*
1235 * Next, we need to retrieve those initial limits.
1236 */
1237 props = 0;
1238 edata->upropset &= ~PROP_LIMITS;
1239 if (sme->sme_get_limits) {
1240 DPRINTF(("%s: retrieve limits for %s %s\n",
1241 __func__, sme->sme_name, edata->desc));
1242 lims = edata->limits;
1243 (*sme->sme_get_limits)(sme, edata, &lims,
1244 &props);
1245 }
1246
1247 /*
1248 * Finally, remove any old limits event, then
1249 * install a new event (which will update the
1250 * dictionary)
1251 */
1252 sme_event_unregister(sme, edata->desc,
1253 PENVSYS_EVENT_LIMITS);
1254
1255 /*
1256 * Find the correct units for this sensor.
1257 */
1258 sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1259 edata->units);
1260
1261 if (props & PROP_LIMITS) {
1262 DPRINTF(("%s: install limits for %s %s\n",
1263 __func__, sme->sme_name, edata->desc));
1264
1265 sme_event_register(sdict, edata, sme,
1266 &lims, props, PENVSYS_EVENT_LIMITS,
1267 sdt_units->crittype);
1268 }
1269 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1270 sme_event_register(sdict, edata, sme,
1271 &lims, props, PENVSYS_EVENT_NULL,
1272 sdt_units->crittype);
1273 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1274 sme->sme_name, edata->desc);
1275 rnd_attach_source(&edata->rnd_src, rnd_name,
1276 RND_TYPE_ENV, RND_FLAG_COLLECT_VALUE|
1277 RND_FLAG_COLLECT_TIME|
1278 RND_FLAG_ESTIMATE_VALUE|
1279 RND_FLAG_ESTIMATE_TIME);
1280 }
1281 }
1282
1283 /*
1284 * Restore default timeout value.
1285 */
1286 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1287 sme_schedule_callout(sme);
1288 sysmon_envsys_release(sme, false);
1289 }
1290 mutex_exit(&sme_global_mtx);
1291 }
1292
1293 /*
1294 * sme_add_property_dictionary:
1295 *
1296 * + Add global properties into a device.
1297 */
1298 static int
1299 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1300 prop_dictionary_t dict)
1301 {
1302 prop_dictionary_t pdict;
1303 const char *class;
1304 int error = 0;
1305
1306 pdict = prop_dictionary_create();
1307 if (!pdict)
1308 return EINVAL;
1309
1310 /*
1311 * Add the 'refresh-timeout' and 'dev-class' objects into the
1312 * 'device-properties' dictionary.
1313 *
1314 * ...
1315 * <dict>
1316 * <key>device-properties</key>
1317 * <dict>
1318 * <key>refresh-timeout</key>
1319 * <integer>120</integer<
1320 * <key>device-class</key>
1321 * <string>class_name</string>
1322 * </dict>
1323 * </dict>
1324 * ...
1325 *
1326 */
1327 if (sme->sme_events_timeout == 0) {
1328 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1329 sme_schedule_callout(sme);
1330 }
1331
1332 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1333 sme->sme_events_timeout)) {
1334 error = EINVAL;
1335 goto out;
1336 }
1337 if (sme->sme_class == SME_CLASS_BATTERY)
1338 class = "battery";
1339 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1340 class = "ac-adapter";
1341 else
1342 class = "other";
1343 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1344 error = EINVAL;
1345 goto out;
1346 }
1347
1348 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1349 error = EINVAL;
1350 goto out;
1351 }
1352
1353 /*
1354 * Add the device dictionary into the sysmon envsys array.
1355 */
1356 if (!prop_array_add(array, dict))
1357 error = EINVAL;
1358
1359 out:
1360 prop_object_release(pdict);
1361 return error;
1362 }
1363
1364 /*
1365 * sme_add_sensor_dictionary:
1366 *
1367 * + Adds the sensor objects into the dictionary and returns a pointer
1368 * to a sme_event_drv_t object if a monitoring flag was set
1369 * (or NULL otherwise).
1370 */
1371 static sme_event_drv_t *
1372 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1373 prop_dictionary_t dict, envsys_data_t *edata)
1374 {
1375 const struct sme_descr_entry *sdt;
1376 int error;
1377 sme_event_drv_t *sme_evdrv_t = NULL;
1378 char indexstr[ENVSYS_DESCLEN];
1379 bool mon_supported, allow_rfact;
1380
1381 /*
1382 * Add the index sensor string.
1383 *
1384 * ...
1385 * <key>index</eyr
1386 * <string>sensor0</string>
1387 * ...
1388 */
1389 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1390 if (sme_sensor_upstring(dict, "index", indexstr))
1391 goto bad;
1392
1393 /*
1394 * ...
1395 * <key>description</key>
1396 * <string>blah blah</string>
1397 * ...
1398 */
1399 if (sme_sensor_upstring(dict, "description", edata->desc))
1400 goto bad;
1401
1402 /*
1403 * Add the monitoring boolean object:
1404 *
1405 * ...
1406 * <key>monitoring-supported</key>
1407 * <true/>
1408 * ...
1409 *
1410 * always false on Battery {capacity,charge}, Drive and Indicator types.
1411 * They cannot be monitored.
1412 *
1413 */
1414 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1415 (edata->units == ENVSYS_INDICATOR) ||
1416 (edata->units == ENVSYS_DRIVE) ||
1417 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1418 (edata->units == ENVSYS_BATTERY_CHARGE))
1419 mon_supported = false;
1420 else
1421 mon_supported = true;
1422 if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1423 goto out;
1424
1425 /*
1426 * Add the allow-rfact boolean object, true if
1427 * ENVSYS_FCHANGERFACT is set, false otherwise.
1428 *
1429 * ...
1430 * <key>allow-rfact</key>
1431 * <true/>
1432 * ...
1433 */
1434 if (edata->units == ENVSYS_SVOLTS_DC ||
1435 edata->units == ENVSYS_SVOLTS_AC) {
1436 if (edata->flags & ENVSYS_FCHANGERFACT)
1437 allow_rfact = true;
1438 else
1439 allow_rfact = false;
1440 if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1441 goto out;
1442 }
1443
1444 error = sme_update_sensor_dictionary(dict, edata,
1445 (edata->state == ENVSYS_SVALID));
1446 if (error < 0)
1447 goto bad;
1448 else if (error)
1449 goto out;
1450
1451 /*
1452 * ...
1453 * </dict>
1454 *
1455 * Add the dictionary into the array.
1456 *
1457 */
1458 if (!prop_array_add(array, dict)) {
1459 DPRINTF(("%s: prop_array_add\n", __func__));
1460 goto bad;
1461 }
1462
1463 /*
1464 * Register new event(s) if any monitoring flag was set or if
1465 * the sensor provides entropy for rnd(4).
1466 */
1467 if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1468 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1469 sme_evdrv_t->sed_sdict = dict;
1470 sme_evdrv_t->sed_edata = edata;
1471 sme_evdrv_t->sed_sme = sme;
1472 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1473 sme_evdrv_t->sed_powertype = sdt->crittype;
1474 }
1475
1476 out:
1477 return sme_evdrv_t;
1478
1479 bad:
1480 prop_object_release(dict);
1481 return NULL;
1482 }
1483
1484 /*
1485 * Find the maximum of all currently reported values.
1486 * The provided callback decides whether a sensor is part of the
1487 * maximum calculation (by returning true) or ignored (callback
1488 * returns false). Example usage: callback selects temperature
1489 * sensors in a given thermal zone, the function calculates the
1490 * maximum currently reported temperature in this zone.
1491 * If the parameter "refresh" is true, new values will be aquired
1492 * from the hardware, if not, the last reported value will be used.
1493 */
1494 uint32_t
1495 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1496 bool refresh)
1497 {
1498 struct sysmon_envsys *sme;
1499 uint32_t maxv, v;
1500
1501 maxv = 0;
1502 mutex_enter(&sme_global_mtx);
1503 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1504 sysmon_envsys_acquire(sme, false);
1505 v = sme_get_max_value(sme, predicate, refresh);
1506 sysmon_envsys_release(sme, false);
1507 if (v > maxv)
1508 maxv = v;
1509 }
1510 mutex_exit(&sme_global_mtx);
1511 return maxv;
1512 }
1513
1514 static uint32_t
1515 sme_get_max_value(struct sysmon_envsys *sme,
1516 bool (*predicate)(const envsys_data_t*),
1517 bool refresh)
1518 {
1519 envsys_data_t *edata;
1520 uint32_t maxv, v;
1521
1522 /*
1523 * Iterate over all sensors that match the predicate
1524 */
1525 maxv = 0;
1526 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1527 if (!(*predicate)(edata))
1528 continue;
1529
1530 /*
1531 * refresh sensor data
1532 */
1533 mutex_enter(&sme->sme_mtx);
1534 sysmon_envsys_refresh_sensor(sme, edata);
1535 mutex_exit(&sme->sme_mtx);
1536
1537 v = edata->value_cur;
1538 if (v > maxv)
1539 maxv = v;
1540
1541 }
1542
1543 return maxv;
1544 }
1545
1546 /*
1547 * sme_update_dictionary:
1548 *
1549 * + Update per-sensor dictionaries with new values if there were
1550 * changes, otherwise the object in dictionary is untouched.
1551 */
1552 int
1553 sme_update_dictionary(struct sysmon_envsys *sme)
1554 {
1555 envsys_data_t *edata;
1556 prop_object_t array, dict, obj, obj2;
1557 int error = 0;
1558
1559 /*
1560 * Retrieve the array of dictionaries in device.
1561 */
1562 array = prop_dictionary_get(sme_propd, sme->sme_name);
1563 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1564 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1565 return EINVAL;
1566 }
1567
1568 /*
1569 * Get the last dictionary on the array, this contains the
1570 * 'device-properties' sub-dictionary.
1571 */
1572 obj = prop_array_get(array, prop_array_count(array) - 1);
1573 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1574 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1575 return EINVAL;
1576 }
1577
1578 obj2 = prop_dictionary_get(obj, "device-properties");
1579 if (!obj2)
1580 return EINVAL;
1581
1582 /*
1583 * Update the 'refresh-timeout' property.
1584 */
1585 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1586 sme->sme_events_timeout))
1587 return EINVAL;
1588
1589 /*
1590 * - iterate over all sensors.
1591 * - fetch new data.
1592 * - check if data in dictionary is different than new data.
1593 * - update dictionary if there were changes.
1594 */
1595 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1596 sme->sme_name, sme->sme_nsensors));
1597
1598 /*
1599 * Don't bother with locking when traversing the queue,
1600 * the device is already marked as busy; if a sensor
1601 * is going to be removed or added it will have to wait.
1602 */
1603 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1604 /*
1605 * refresh sensor data via sme_envsys_refresh_sensor
1606 */
1607 mutex_enter(&sme->sme_mtx);
1608 sysmon_envsys_refresh_sensor(sme, edata);
1609 mutex_exit(&sme->sme_mtx);
1610
1611 /*
1612 * retrieve sensor's dictionary.
1613 */
1614 dict = prop_array_get(array, edata->sensor);
1615 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1616 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1617 __func__, edata->sensor, sme->sme_name));
1618 return EINVAL;
1619 }
1620
1621 /*
1622 * update sensor's state.
1623 */
1624 error = sme_update_sensor_dictionary(dict, edata, true);
1625
1626 if (error)
1627 break;
1628 }
1629
1630 return error;
1631 }
1632
1633 int
1634 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1635 bool value_update)
1636 {
1637 const struct sme_descr_entry *sdt;
1638 int error = 0;
1639
1640 sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1641 if (sdt == NULL) {
1642 printf("sme_update_sensor_dictionary: can not update sensor "
1643 "state %d unknown\n", edata->state);
1644 return EINVAL;
1645 }
1646
1647 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1648 edata->sensor, sdt->type, sdt->desc, edata->flags));
1649
1650 error = sme_sensor_upstring(dict, "state", sdt->desc);
1651 if (error)
1652 return (-error);
1653
1654 /*
1655 * update sensor's type.
1656 */
1657 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1658
1659 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1660 sdt->type, sdt->desc));
1661
1662 error = sme_sensor_upstring(dict, "type", sdt->desc);
1663 if (error)
1664 return (-error);
1665
1666 if (value_update) {
1667 /*
1668 * update sensor's current value.
1669 */
1670 error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1671 if (error)
1672 return error;
1673 }
1674
1675 /*
1676 * Battery charge and Indicator types do not
1677 * need the remaining objects, so skip them.
1678 */
1679 if (edata->units == ENVSYS_INDICATOR ||
1680 edata->units == ENVSYS_BATTERY_CHARGE)
1681 return error;
1682
1683 /*
1684 * update sensor flags.
1685 */
1686 if (edata->flags & ENVSYS_FPERCENT) {
1687 error = sme_sensor_upbool(dict, "want-percentage", true);
1688 if (error)
1689 return error;
1690 }
1691
1692 if (value_update) {
1693 /*
1694 * update sensor's {max,min}-value.
1695 */
1696 if (edata->flags & ENVSYS_FVALID_MAX) {
1697 error = sme_sensor_upint32(dict, "max-value",
1698 edata->value_max);
1699 if (error)
1700 return error;
1701 }
1702
1703 if (edata->flags & ENVSYS_FVALID_MIN) {
1704 error = sme_sensor_upint32(dict, "min-value",
1705 edata->value_min);
1706 if (error)
1707 return error;
1708 }
1709
1710 /*
1711 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1712 */
1713 if (edata->units == ENVSYS_SFANRPM) {
1714 error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1715 if (error)
1716 return error;
1717 }
1718
1719 /*
1720 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1721 */
1722 if (edata->units == ENVSYS_SVOLTS_AC ||
1723 edata->units == ENVSYS_SVOLTS_DC) {
1724 error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1725 if (error)
1726 return error;
1727 }
1728 }
1729
1730 /*
1731 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1732 */
1733 if (edata->units == ENVSYS_DRIVE) {
1734 sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1735 edata->value_cur);
1736 error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1737 if (error)
1738 return error;
1739 }
1740
1741 /*
1742 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1743 * sensors.
1744 */
1745 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1746 sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1747 edata->value_cur);
1748 error = sme_sensor_upstring(dict, "battery-capacity",
1749 sdt->desc);
1750 if (error)
1751 return error;
1752 }
1753
1754 return error;
1755 }
1756
1757 /*
1758 * sme_userset_dictionary:
1759 *
1760 * + Parse the userland dictionary and run the appropiate tasks
1761 * that were specified.
1762 */
1763 int
1764 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1765 prop_array_t array)
1766 {
1767 const struct sme_descr_entry *sdt;
1768 envsys_data_t *edata;
1769 prop_dictionary_t dict, tdict = NULL;
1770 prop_object_t obj, obj1, obj2, tobj = NULL;
1771 uint32_t props;
1772 uint64_t refresh_timo = 0;
1773 sysmon_envsys_lim_t lims;
1774 int i, error = 0;
1775 const char *blah;
1776 bool targetfound = false;
1777
1778 /*
1779 * The user wanted to change the refresh timeout value for this
1780 * device.
1781 *
1782 * Get the 'device-properties' object from the userland dictionary.
1783 */
1784 obj = prop_dictionary_get(udict, "device-properties");
1785 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1786 /*
1787 * Get the 'refresh-timeout' property for this device.
1788 */
1789 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1790 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1791 targetfound = true;
1792 refresh_timo =
1793 prop_number_unsigned_integer_value(obj1);
1794 if (refresh_timo < 1)
1795 error = EINVAL;
1796 else {
1797 mutex_enter(&sme->sme_mtx);
1798 if (sme->sme_events_timeout != refresh_timo) {
1799 sme->sme_events_timeout = refresh_timo;
1800 sme_schedule_callout(sme);
1801 }
1802 mutex_exit(&sme->sme_mtx);
1803 }
1804 }
1805 return error;
1806
1807 } else if (!obj) {
1808 /*
1809 * Get sensor's index from userland dictionary.
1810 */
1811 obj = prop_dictionary_get(udict, "index");
1812 if (!obj)
1813 return EINVAL;
1814 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1815 DPRINTF(("%s: 'index' not a string\n", __func__));
1816 return EINVAL;
1817 }
1818 } else
1819 return EINVAL;
1820
1821 /*
1822 * Don't bother with locking when traversing the queue,
1823 * the device is already marked as busy; if a sensor
1824 * is going to be removed or added it will have to wait.
1825 */
1826 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1827 /*
1828 * Get a dictionary and check if it's our sensor by checking
1829 * at its index position.
1830 */
1831 dict = prop_array_get(array, edata->sensor);
1832 obj1 = prop_dictionary_get(dict, "index");
1833
1834 /*
1835 * is it our sensor?
1836 */
1837 if (!prop_string_equals(obj1, obj))
1838 continue;
1839
1840 props = 0;
1841
1842 /*
1843 * Check if a new description operation was
1844 * requested by the user and set new description.
1845 */
1846 obj2 = prop_dictionary_get(udict, "description");
1847 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1848 targetfound = true;
1849 blah = prop_string_cstring_nocopy(obj2);
1850
1851 /*
1852 * Check for duplicate description.
1853 */
1854 for (i = 0; i < sme->sme_nsensors; i++) {
1855 if (i == edata->sensor)
1856 continue;
1857 tdict = prop_array_get(array, i);
1858 tobj =
1859 prop_dictionary_get(tdict, "description");
1860 if (prop_string_equals(obj2, tobj)) {
1861 error = EEXIST;
1862 goto out;
1863 }
1864 }
1865
1866 /*
1867 * Update the object in dictionary.
1868 */
1869 mutex_enter(&sme->sme_mtx);
1870 error = sme_sensor_upstring(dict,
1871 "description",
1872 blah);
1873 if (error) {
1874 mutex_exit(&sme->sme_mtx);
1875 goto out;
1876 }
1877
1878 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1879 __func__, edata->sensor, blah));
1880 edata->upropset |= PROP_DESC;
1881 mutex_exit(&sme->sme_mtx);
1882 }
1883
1884 /*
1885 * did the user want to change the rfact?
1886 */
1887 obj2 = prop_dictionary_get(udict, "rfact");
1888 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1889 targetfound = true;
1890 if (edata->flags & ENVSYS_FCHANGERFACT) {
1891 mutex_enter(&sme->sme_mtx);
1892 edata->rfact = prop_number_integer_value(obj2);
1893 edata->upropset |= PROP_RFACT;
1894 mutex_exit(&sme->sme_mtx);
1895 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1896 __func__, edata->sensor, edata->rfact));
1897 } else {
1898 error = ENOTSUP;
1899 goto out;
1900 }
1901 }
1902
1903 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1904
1905 /*
1906 * did the user want to set a critical capacity event?
1907 */
1908 obj2 = prop_dictionary_get(udict, "critical-capacity");
1909 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1910 targetfound = true;
1911 lims.sel_critmin = prop_number_integer_value(obj2);
1912 props |= PROP_BATTCAP;
1913 }
1914
1915 /*
1916 * did the user want to set a warning capacity event?
1917 */
1918 obj2 = prop_dictionary_get(udict, "warning-capacity");
1919 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1920 targetfound = true;
1921 lims.sel_warnmin = prop_number_integer_value(obj2);
1922 props |= PROP_BATTWARN;
1923 }
1924
1925 /*
1926 * did the user want to set a high capacity event?
1927 */
1928 obj2 = prop_dictionary_get(udict, "high-capacity");
1929 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1930 targetfound = true;
1931 lims.sel_warnmin = prop_number_integer_value(obj2);
1932 props |= PROP_BATTHIGH;
1933 }
1934
1935 /*
1936 * did the user want to set a maximum capacity event?
1937 */
1938 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1939 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1940 targetfound = true;
1941 lims.sel_warnmin = prop_number_integer_value(obj2);
1942 props |= PROP_BATTMAX;
1943 }
1944
1945 /*
1946 * did the user want to set a critical max event?
1947 */
1948 obj2 = prop_dictionary_get(udict, "critical-max");
1949 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1950 targetfound = true;
1951 lims.sel_critmax = prop_number_integer_value(obj2);
1952 props |= PROP_CRITMAX;
1953 }
1954
1955 /*
1956 * did the user want to set a warning max event?
1957 */
1958 obj2 = prop_dictionary_get(udict, "warning-max");
1959 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1960 targetfound = true;
1961 lims.sel_warnmax = prop_number_integer_value(obj2);
1962 props |= PROP_WARNMAX;
1963 }
1964
1965 /*
1966 * did the user want to set a critical min event?
1967 */
1968 obj2 = prop_dictionary_get(udict, "critical-min");
1969 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1970 targetfound = true;
1971 lims.sel_critmin = prop_number_integer_value(obj2);
1972 props |= PROP_CRITMIN;
1973 }
1974
1975 /*
1976 * did the user want to set a warning min event?
1977 */
1978 obj2 = prop_dictionary_get(udict, "warning-min");
1979 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1980 targetfound = true;
1981 lims.sel_warnmin = prop_number_integer_value(obj2);
1982 props |= PROP_WARNMIN;
1983 }
1984
1985 if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1986 error = ENOTSUP;
1987 goto out;
1988 }
1989 if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1990 error = sme_event_register(dict, edata, sme, &lims,
1991 props,
1992 (edata->flags & ENVSYS_FPERCENT)?
1993 PENVSYS_EVENT_CAPACITY:
1994 PENVSYS_EVENT_LIMITS,
1995 sdt->crittype);
1996 if (error == EEXIST)
1997 error = 0;
1998 if (error)
1999 goto out;
2000 }
2001
2002 /*
2003 * All objects in dictionary were processed.
2004 */
2005 break;
2006 }
2007
2008 out:
2009 /*
2010 * invalid target? return the error.
2011 */
2012 if (!targetfound)
2013 error = EINVAL;
2014
2015 return error;
2016 }
2017
2018 /*
2019 * + sysmon_envsys_foreach_sensor
2020 *
2021 * Walk through the devices' sensor lists and execute the callback.
2022 * If the callback returns false, the remainder of the current
2023 * device's sensors are skipped.
2024 */
2025 void
2026 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
2027 bool refresh)
2028 {
2029 struct sysmon_envsys *sme;
2030 envsys_data_t *sensor;
2031
2032 mutex_enter(&sme_global_mtx);
2033 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
2034
2035 sysmon_envsys_acquire(sme, false);
2036 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
2037 if (refresh) {
2038 mutex_enter(&sme->sme_mtx);
2039 sysmon_envsys_refresh_sensor(sme, sensor);
2040 mutex_exit(&sme->sme_mtx);
2041 }
2042 if (!(*func)(sme, sensor, arg))
2043 break;
2044 }
2045 sysmon_envsys_release(sme, false);
2046 }
2047 mutex_exit(&sme_global_mtx);
2048 }
2049
2050 /*
2051 * Call the sensor's refresh function, and collect/stir entropy
2052 */
2053 void
2054 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
2055 {
2056
2057 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
2058 (*sme->sme_refresh)(sme, edata);
2059
2060 if (edata->flags & ENVSYS_FHAS_ENTROPY &&
2061 edata->state != ENVSYS_SINVALID &&
2062 edata->value_prev != edata->value_cur)
2063 rnd_add_uint32(&edata->rnd_src, edata->value_cur);
2064 edata->value_prev = edata->value_cur;
2065 }
2066
2067 static
2068 int
2069 sysmon_envsys_modcmd(modcmd_t cmd, void *arg)
2070 {
2071 int ret;
2072
2073 switch (cmd) {
2074 case MODULE_CMD_INIT:
2075 ret = sysmon_envsys_init();
2076 break;
2077
2078 case MODULE_CMD_FINI:
2079 ret = sysmon_envsys_fini();
2080 break;
2081
2082 case MODULE_CMD_STAT:
2083 default:
2084 ret = ENOTTY;
2085 }
2086
2087 return ret;
2088 }
2089