sysmon_envsys.c revision 1.135 1 /* $NetBSD: sysmon_envsys.c,v 1.135 2015/04/25 02:41:42 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2007, 2008 Juan Romero Pardines.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*-
29 * Copyright (c) 2000 Zembu Labs, Inc.
30 * All rights reserved.
31 *
32 * Author: Jason R. Thorpe <thorpej (at) zembu.com>
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by Zembu Labs, Inc.
45 * 4. Neither the name of Zembu Labs nor the names of its employees may
46 * be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
50 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
51 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
52 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
53 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
55 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
56 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
57 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
58 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Environmental sensor framework for sysmon, exported to userland
63 * with proplib(3).
64 */
65
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.135 2015/04/25 02:41:42 pgoyette Exp $");
68
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/conf.h>
72 #include <sys/errno.h>
73 #include <sys/fcntl.h>
74 #include <sys/kernel.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/mutex.h>
78 #include <sys/kmem.h>
79 #include <sys/rndsource.h>
80 #include <sys/module.h>
81
82 #include <dev/sysmon/sysmonvar.h>
83 #include <dev/sysmon/sysmon_envsysvar.h>
84 #include <dev/sysmon/sysmon_taskq.h>
85
86 kmutex_t sme_global_mtx;
87
88 prop_dictionary_t sme_propd;
89
90 struct sysmon_envsys_lh sysmon_envsys_list;
91
92 static uint32_t sysmon_envsys_next_sensor_index;
93 static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
94
95 static void sysmon_envsys_destroy_plist(prop_array_t);
96 static void sme_remove_userprops(void);
97 static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
98 prop_dictionary_t);
99 static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
100 prop_array_t, prop_dictionary_t, envsys_data_t *);
101 static void sme_initial_refresh(void *);
102 static uint32_t sme_get_max_value(struct sysmon_envsys *,
103 bool (*)(const envsys_data_t*), bool);
104
105 MODULE(MODULE_CLASS_MISC, sysmon_envsys, "sysmon,sysmon_taskq,sysmon_power");
106
107 static struct sysmon_opvec sysmon_envsys_opvec = {
108 sysmonopen_envsys, sysmonclose_envsys, sysmonioctl_envsys,
109 NULL, NULL, NULL
110 };
111
112 /*
113 * sysmon_envsys_init:
114 *
115 * + Initialize global mutex, dictionary and the linked list.
116 */
117 int
118 sysmon_envsys_init(void)
119 {
120 int error;
121
122 LIST_INIT(&sysmon_envsys_list);
123 mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
124 sme_propd = prop_dictionary_create();
125
126 error = sysmon_attach_minor(SYSMON_MINOR_ENVSYS, &sysmon_envsys_opvec);
127
128 return error;
129 }
130
131 int
132 sysmon_envsys_fini(void)
133 {
134 int error;
135
136 if ( ! LIST_EMPTY(&sysmon_envsys_list))
137 error = EBUSY;
138 else
139 error = sysmon_attach_minor(SYSMON_MINOR_ENVSYS, NULL);
140
141 if (error == 0)
142 mutex_destroy(&sme_global_mtx);
143
144 return error;
145 }
146
147 /*
148 * sysmonopen_envsys:
149 *
150 * + Open the system monitor device.
151 */
152 int
153 sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
154 {
155 return 0;
156 }
157
158 /*
159 * sysmonclose_envsys:
160 *
161 * + Close the system monitor device.
162 */
163 int
164 sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
165 {
166 return 0;
167 }
168
169 /*
170 * sysmonioctl_envsys:
171 *
172 * + Perform a sysmon envsys control request.
173 */
174 int
175 sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
176 {
177 struct sysmon_envsys *sme = NULL;
178 int error = 0;
179 u_int oidx;
180
181 switch (cmd) {
182 /*
183 * To update the global dictionary with latest data from devices.
184 */
185 case ENVSYS_GETDICTIONARY:
186 {
187 struct plistref *plist = (struct plistref *)data;
188
189 /*
190 * Update dictionaries on all sysmon envsys devices
191 * registered.
192 */
193 mutex_enter(&sme_global_mtx);
194 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
195 sysmon_envsys_acquire(sme, false);
196 error = sme_update_dictionary(sme);
197 if (error) {
198 DPRINTF(("%s: sme_update_dictionary, "
199 "error=%d\n", __func__, error));
200 sysmon_envsys_release(sme, false);
201 mutex_exit(&sme_global_mtx);
202 return error;
203 }
204 sysmon_envsys_release(sme, false);
205 }
206 mutex_exit(&sme_global_mtx);
207 /*
208 * Copy global dictionary to userland.
209 */
210 error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
211 break;
212 }
213 /*
214 * To set properties on multiple devices.
215 */
216 case ENVSYS_SETDICTIONARY:
217 {
218 const struct plistref *plist = (const struct plistref *)data;
219 prop_dictionary_t udict;
220 prop_object_iterator_t iter, iter2;
221 prop_object_t obj, obj2;
222 prop_array_t array_u, array_k;
223 const char *devname = NULL;
224
225 if ((flag & FWRITE) == 0)
226 return EPERM;
227
228 /*
229 * Get dictionary from userland.
230 */
231 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
232 if (error) {
233 DPRINTF(("%s: copyin_ioctl error=%d\n",
234 __func__, error));
235 break;
236 }
237
238 iter = prop_dictionary_iterator(udict);
239 if (!iter) {
240 prop_object_release(udict);
241 return ENOMEM;
242 }
243
244 /*
245 * Iterate over the userland dictionary and process
246 * the list of devices.
247 */
248 while ((obj = prop_object_iterator_next(iter))) {
249 array_u = prop_dictionary_get_keysym(udict, obj);
250 if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
251 prop_object_iterator_release(iter);
252 prop_object_release(udict);
253 return EINVAL;
254 }
255
256 devname = prop_dictionary_keysym_cstring_nocopy(obj);
257 DPRINTF(("%s: processing the '%s' array requests\n",
258 __func__, devname));
259
260 /*
261 * find the correct sme device.
262 */
263 sme = sysmon_envsys_find(devname);
264 if (!sme) {
265 DPRINTF(("%s: NULL sme\n", __func__));
266 prop_object_iterator_release(iter);
267 prop_object_release(udict);
268 return EINVAL;
269 }
270
271 /*
272 * Find the correct array object with the string
273 * supplied by the userland dictionary.
274 */
275 array_k = prop_dictionary_get(sme_propd, devname);
276 if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
277 DPRINTF(("%s: array device failed\n",
278 __func__));
279 sysmon_envsys_release(sme, false);
280 prop_object_iterator_release(iter);
281 prop_object_release(udict);
282 return EINVAL;
283 }
284
285 iter2 = prop_array_iterator(array_u);
286 if (!iter2) {
287 sysmon_envsys_release(sme, false);
288 prop_object_iterator_release(iter);
289 prop_object_release(udict);
290 return ENOMEM;
291 }
292
293 /*
294 * Iterate over the array of dictionaries to
295 * process the list of sensors and properties.
296 */
297 while ((obj2 = prop_object_iterator_next(iter2))) {
298 /*
299 * do the real work now.
300 */
301 error = sme_userset_dictionary(sme,
302 obj2,
303 array_k);
304 if (error) {
305 sysmon_envsys_release(sme, false);
306 prop_object_iterator_release(iter2);
307 prop_object_iterator_release(iter);
308 prop_object_release(udict);
309 return error;
310 }
311 }
312
313 sysmon_envsys_release(sme, false);
314 prop_object_iterator_release(iter2);
315 }
316
317 prop_object_iterator_release(iter);
318 prop_object_release(udict);
319 break;
320 }
321 /*
322 * To remove all properties from all devices registered.
323 */
324 case ENVSYS_REMOVEPROPS:
325 {
326 const struct plistref *plist = (const struct plistref *)data;
327 prop_dictionary_t udict;
328 prop_object_t obj;
329
330 if ((flag & FWRITE) == 0)
331 return EPERM;
332
333 error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
334 if (error) {
335 DPRINTF(("%s: copyin_ioctl error=%d\n",
336 __func__, error));
337 break;
338 }
339
340 obj = prop_dictionary_get(udict, "envsys-remove-props");
341 if (!obj || !prop_bool_true(obj)) {
342 DPRINTF(("%s: invalid 'envsys-remove-props'\n",
343 __func__));
344 return EINVAL;
345 }
346
347 prop_object_release(udict);
348 sme_remove_userprops();
349
350 break;
351 }
352 /*
353 * Compatibility ioctls with the old interface, only implemented
354 * ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
355 * applications work.
356 */
357 case ENVSYS_GTREDATA:
358 {
359 struct envsys_tre_data *tred = (void *)data;
360 envsys_data_t *edata = NULL;
361 bool found = false;
362
363 tred->validflags = 0;
364
365 sme = sysmon_envsys_find_40(tred->sensor);
366 if (!sme)
367 break;
368
369 oidx = tred->sensor;
370 tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
371
372 DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
373 __func__, tred->sensor, oidx, sme->sme_name,
374 sme->sme_nsensors));
375
376 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
377 if (edata->sensor == tred->sensor) {
378 found = true;
379 break;
380 }
381 }
382
383 if (!found) {
384 sysmon_envsys_release(sme, false);
385 error = ENODEV;
386 break;
387 }
388
389 if (tred->sensor < sme->sme_nsensors) {
390 if ((sme->sme_flags & SME_POLL_ONLY) == 0) {
391 mutex_enter(&sme->sme_mtx);
392 sysmon_envsys_refresh_sensor(sme, edata);
393 mutex_exit(&sme->sme_mtx);
394 }
395
396 /*
397 * copy required values to the old interface.
398 */
399 tred->sensor = edata->sensor;
400 tred->cur.data_us = edata->value_cur;
401 tred->cur.data_s = edata->value_cur;
402 tred->max.data_us = edata->value_max;
403 tred->max.data_s = edata->value_max;
404 tred->min.data_us = edata->value_min;
405 tred->min.data_s = edata->value_min;
406 tred->avg.data_us = 0;
407 tred->avg.data_s = 0;
408 if (edata->units == ENVSYS_BATTERY_CHARGE)
409 tred->units = ENVSYS_INDICATOR;
410 else
411 tred->units = edata->units;
412
413 tred->validflags |= ENVSYS_FVALID;
414 tred->validflags |= ENVSYS_FCURVALID;
415
416 if (edata->flags & ENVSYS_FPERCENT) {
417 tred->validflags |= ENVSYS_FMAXVALID;
418 tred->validflags |= ENVSYS_FFRACVALID;
419 }
420
421 if (edata->state == ENVSYS_SINVALID) {
422 tred->validflags &= ~ENVSYS_FCURVALID;
423 tred->cur.data_us = tred->cur.data_s = 0;
424 }
425
426 DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
427 __func__, edata->desc, tred->cur.data_s));
428 DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
429 " tred->sensor=%d\n", __func__, tred->validflags,
430 tred->units, tred->sensor));
431 }
432 tred->sensor = oidx;
433 sysmon_envsys_release(sme, false);
434
435 break;
436 }
437 case ENVSYS_GTREINFO:
438 {
439 struct envsys_basic_info *binfo = (void *)data;
440 envsys_data_t *edata = NULL;
441 bool found = false;
442
443 binfo->validflags = 0;
444
445 sme = sysmon_envsys_find_40(binfo->sensor);
446 if (!sme)
447 break;
448
449 oidx = binfo->sensor;
450 binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
451
452 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
453 if (edata->sensor == binfo->sensor) {
454 found = true;
455 break;
456 }
457 }
458
459 if (!found) {
460 sysmon_envsys_release(sme, false);
461 error = ENODEV;
462 break;
463 }
464
465 binfo->validflags |= ENVSYS_FVALID;
466
467 if (binfo->sensor < sme->sme_nsensors) {
468 if (edata->units == ENVSYS_BATTERY_CHARGE)
469 binfo->units = ENVSYS_INDICATOR;
470 else
471 binfo->units = edata->units;
472
473 /*
474 * previously, the ACPI sensor names included the
475 * device name. Include that in compatibility code.
476 */
477 if (strncmp(sme->sme_name, "acpi", 4) == 0)
478 (void)snprintf(binfo->desc, sizeof(binfo->desc),
479 "%s %s", sme->sme_name, edata->desc);
480 else
481 (void)strlcpy(binfo->desc, edata->desc,
482 sizeof(binfo->desc));
483 }
484
485 DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
486 __func__, binfo->units, binfo->validflags));
487 DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
488 __func__, binfo->desc, binfo->sensor));
489
490 binfo->sensor = oidx;
491 sysmon_envsys_release(sme, false);
492
493 break;
494 }
495 default:
496 error = ENOTTY;
497 break;
498 }
499
500 return error;
501 }
502
503 /*
504 * sysmon_envsys_create:
505 *
506 * + Allocates a new sysmon_envsys object and initializes the
507 * stuff for sensors and events.
508 */
509 struct sysmon_envsys *
510 sysmon_envsys_create(void)
511 {
512 struct sysmon_envsys *sme;
513
514 sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
515 TAILQ_INIT(&sme->sme_sensors_list);
516 LIST_INIT(&sme->sme_events_list);
517 mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
518 mutex_init(&sme->sme_work_mtx, MUTEX_DEFAULT, IPL_NONE);
519 cv_init(&sme->sme_condvar, "sme_wait");
520
521 return sme;
522 }
523
524 /*
525 * sysmon_envsys_destroy:
526 *
527 * + Removes all sensors from the tail queue, destroys the callout
528 * and frees the sysmon_envsys object.
529 */
530 void
531 sysmon_envsys_destroy(struct sysmon_envsys *sme)
532 {
533 envsys_data_t *edata;
534
535 KASSERT(sme != NULL);
536
537 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
538 edata = TAILQ_FIRST(&sme->sme_sensors_list);
539 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
540 }
541 mutex_destroy(&sme->sme_mtx);
542 mutex_destroy(&sme->sme_work_mtx);
543 cv_destroy(&sme->sme_condvar);
544 kmem_free(sme, sizeof(*sme));
545 }
546
547 /*
548 * sysmon_envsys_sensor_attach:
549 *
550 * + Attaches a sensor into a sysmon_envsys device checking that units
551 * is set to a valid type and description is unique and not empty.
552 */
553 int
554 sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
555 {
556 const struct sme_descr_entry *sdt_units;
557 envsys_data_t *oedata;
558
559 KASSERT(sme != NULL || edata != NULL);
560
561 /*
562 * Find the correct units for this sensor.
563 */
564 sdt_units = sme_find_table_entry(SME_DESC_UNITS, edata->units);
565 if (sdt_units->type == -1)
566 return EINVAL;
567
568 /*
569 * Check that description is not empty or duplicate.
570 */
571 if (strlen(edata->desc) == 0)
572 return EINVAL;
573
574 mutex_enter(&sme->sme_mtx);
575 sysmon_envsys_acquire(sme, true);
576 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
577 if (strcmp(oedata->desc, edata->desc) == 0) {
578 sysmon_envsys_release(sme, true);
579 mutex_exit(&sme->sme_mtx);
580 return EEXIST;
581 }
582 }
583 /*
584 * Ok, the sensor has been added into the device queue.
585 */
586 TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
587
588 /*
589 * Give the sensor an index position.
590 */
591 edata->sensor = sme->sme_nsensors;
592 sme->sme_nsensors++;
593 sysmon_envsys_release(sme, true);
594 mutex_exit(&sme->sme_mtx);
595
596 DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
597 __func__, edata->sensor, edata->desc,
598 sdt_units->type, sdt_units->desc));
599
600 return 0;
601 }
602
603 /*
604 * sysmon_envsys_sensor_detach:
605 *
606 * + Detachs a sensor from a sysmon_envsys device and decrements the
607 * sensors count on success.
608 */
609 int
610 sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
611 {
612 envsys_data_t *oedata;
613 bool found = false;
614 bool destroy = false;
615
616 KASSERT(sme != NULL || edata != NULL);
617
618 /*
619 * Check the sensor is already on the list.
620 */
621 mutex_enter(&sme->sme_mtx);
622 sysmon_envsys_acquire(sme, true);
623 TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
624 if (oedata->sensor == edata->sensor) {
625 found = true;
626 break;
627 }
628 }
629
630 if (!found) {
631 sysmon_envsys_release(sme, true);
632 mutex_exit(&sme->sme_mtx);
633 return EINVAL;
634 }
635
636 /*
637 * remove it, unhook from rnd(4), and decrement the sensors count.
638 */
639 sme_event_unregister_sensor(sme, edata);
640 if (LIST_EMPTY(&sme->sme_events_list)) {
641 sme_events_halt_callout(sme);
642 destroy = true;
643 }
644 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
645 sme->sme_nsensors--;
646 sysmon_envsys_release(sme, true);
647 mutex_exit(&sme->sme_mtx);
648
649 if (destroy)
650 sme_events_destroy(sme);
651
652 return 0;
653 }
654
655
656 /*
657 * sysmon_envsys_register:
658 *
659 * + Register a sysmon envsys device.
660 * + Create array of dictionaries for a device.
661 */
662 int
663 sysmon_envsys_register(struct sysmon_envsys *sme)
664 {
665 struct sme_evdrv {
666 SLIST_ENTRY(sme_evdrv) evdrv_head;
667 sme_event_drv_t *evdrv;
668 };
669 SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
670 struct sme_evdrv *evdv = NULL;
671 struct sysmon_envsys *lsme;
672 prop_array_t array = NULL;
673 prop_dictionary_t dict, dict2;
674 envsys_data_t *edata = NULL;
675 sme_event_drv_t *this_evdrv;
676 int nevent;
677 int error = 0;
678 char rnd_name[sizeof(edata->rnd_src.name)];
679
680 KASSERT(sme != NULL);
681 KASSERT(sme->sme_name != NULL);
682
683 /*
684 * Check if requested sysmon_envsys device is valid
685 * and does not exist already in the list.
686 */
687 mutex_enter(&sme_global_mtx);
688 LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
689 if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
690 mutex_exit(&sme_global_mtx);
691 return EEXIST;
692 }
693 }
694 mutex_exit(&sme_global_mtx);
695
696 /*
697 * sanity check: if SME_DISABLE_REFRESH is not set,
698 * the sme_refresh function callback must be non NULL.
699 */
700 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
701 if (!sme->sme_refresh)
702 return EINVAL;
703
704 /*
705 * If the list of sensors is empty, there's no point to continue...
706 */
707 if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
708 DPRINTF(("%s: sensors list empty for %s\n", __func__,
709 sme->sme_name));
710 return ENOTSUP;
711 }
712
713 /*
714 * Initialize the singly linked list for driver events.
715 */
716 SLIST_INIT(&sme_evdrv_list);
717
718 array = prop_array_create();
719 if (!array)
720 return ENOMEM;
721
722 /*
723 * Iterate over all sensors and create a dictionary per sensor.
724 * We must respect the order in which the sensors were added.
725 */
726 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
727 dict = prop_dictionary_create();
728 if (!dict) {
729 error = ENOMEM;
730 goto out2;
731 }
732
733 /*
734 * Create all objects in sensor's dictionary.
735 */
736 this_evdrv = sme_add_sensor_dictionary(sme, array,
737 dict, edata);
738 if (this_evdrv) {
739 evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
740 evdv->evdrv = this_evdrv;
741 SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
742 }
743 }
744
745 /*
746 * If the array does not contain any object (sensor), there's
747 * no need to attach the driver.
748 */
749 if (prop_array_count(array) == 0) {
750 error = EINVAL;
751 DPRINTF(("%s: empty array for '%s'\n", __func__,
752 sme->sme_name));
753 goto out;
754 }
755
756 /*
757 * Add the dictionary for the global properties of this device.
758 */
759 dict2 = prop_dictionary_create();
760 if (!dict2) {
761 error = ENOMEM;
762 goto out;
763 }
764
765 error = sme_add_property_dictionary(sme, array, dict2);
766 if (error) {
767 prop_object_release(dict2);
768 goto out;
769 }
770
771 /*
772 * Add the array into the global dictionary for the driver.
773 *
774 * <dict>
775 * <key>foo0</key>
776 * <array>
777 * ...
778 */
779 mutex_enter(&sme_global_mtx);
780 if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
781 error = EINVAL;
782 mutex_exit(&sme_global_mtx);
783 DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
784 sme->sme_name));
785 goto out;
786 }
787
788 /*
789 * Add the device into the list.
790 */
791 LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
792 sme->sme_fsensor = sysmon_envsys_next_sensor_index;
793 sysmon_envsys_next_sensor_index += sme->sme_nsensors;
794 mutex_exit(&sme_global_mtx);
795
796 out:
797 /*
798 * No errors? Make an initial data refresh if was requested,
799 * then register the events that were set in the driver. Do
800 * the refresh first in case it is needed to establish the
801 * limits or max_value needed by some events.
802 */
803 if (error == 0) {
804 nevent = 0;
805
806 if (sme->sme_flags & SME_INIT_REFRESH) {
807 sysmon_task_queue_sched(0, sme_initial_refresh, sme);
808 DPRINTF(("%s: scheduled initial refresh for '%s'\n",
809 __func__, sme->sme_name));
810 }
811 SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
812 sysmon_task_queue_sched(0,
813 sme_event_drvadd, evdv->evdrv);
814 nevent++;
815 }
816 /*
817 * Hook the sensor into rnd(4) entropy pool if requested
818 */
819 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
820 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
821 uint32_t rnd_type, rnd_flag = 0;
822 size_t n;
823 int tail = 1;
824
825 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
826 sme->sme_name, edata->desc);
827 n = strlen(rnd_name);
828 /*
829 * 1) Remove trailing white space(s).
830 * 2) If space exist, replace it with '-'
831 */
832 while (--n) {
833 if (rnd_name[n] == ' ') {
834 if (tail != 0)
835 rnd_name[n] = '\0';
836 else
837 rnd_name[n] = '-';
838 } else
839 tail = 0;
840 }
841 rnd_flag |= RND_FLAG_COLLECT_TIME;
842 rnd_flag |= RND_FLAG_ESTIMATE_TIME;
843
844 switch (edata->units) {
845 case ENVSYS_STEMP:
846 case ENVSYS_SFANRPM:
847 case ENVSYS_INTEGER:
848 rnd_type = RND_TYPE_ENV;
849 rnd_flag |= RND_FLAG_COLLECT_VALUE;
850 rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
851 break;
852 case ENVSYS_SVOLTS_AC:
853 case ENVSYS_SVOLTS_DC:
854 case ENVSYS_SOHMS:
855 case ENVSYS_SWATTS:
856 case ENVSYS_SAMPS:
857 case ENVSYS_SWATTHOUR:
858 case ENVSYS_SAMPHOUR:
859 rnd_type = RND_TYPE_POWER;
860 rnd_flag |= RND_FLAG_COLLECT_VALUE;
861 rnd_flag |= RND_FLAG_ESTIMATE_VALUE;
862 break;
863 default:
864 rnd_type = RND_TYPE_UNKNOWN;
865 break;
866 }
867 rnd_attach_source(&edata->rnd_src, rnd_name,
868 rnd_type, rnd_flag);
869 }
870 }
871 DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
872 __func__, sme->sme_name, sme->sme_nsensors, nevent));
873 }
874
875 out2:
876 while (!SLIST_EMPTY(&sme_evdrv_list)) {
877 evdv = SLIST_FIRST(&sme_evdrv_list);
878 SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
879 kmem_free(evdv, sizeof(*evdv));
880 }
881 if (!error)
882 return 0;
883
884 /*
885 * Ugh... something wasn't right; unregister all events and sensors
886 * previously assigned and destroy the array with all its objects.
887 */
888 DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
889 sme->sme_name, error));
890
891 sme_event_unregister_all(sme);
892 while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
893 edata = TAILQ_FIRST(&sme->sme_sensors_list);
894 TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
895 }
896 sysmon_envsys_destroy_plist(array);
897 return error;
898 }
899
900 /*
901 * sysmon_envsys_destroy_plist:
902 *
903 * + Remove all objects from the array of dictionaries that is
904 * created in a sysmon envsys device.
905 */
906 static void
907 sysmon_envsys_destroy_plist(prop_array_t array)
908 {
909 prop_object_iterator_t iter, iter2;
910 prop_dictionary_t dict;
911 prop_object_t obj;
912
913 KASSERT(array != NULL);
914 KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
915
916 DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
917 prop_array_count(array)));
918
919 iter = prop_array_iterator(array);
920 if (!iter)
921 return;
922
923 while ((dict = prop_object_iterator_next(iter))) {
924 KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
925 iter2 = prop_dictionary_iterator(dict);
926 if (!iter2)
927 goto out;
928 DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
929 while ((obj = prop_object_iterator_next(iter2)) != NULL) {
930 DPRINTFOBJ(("%s: obj=%s\n", __func__,
931 prop_dictionary_keysym_cstring_nocopy(obj)));
932 prop_dictionary_remove(dict,
933 prop_dictionary_keysym_cstring_nocopy(obj));
934 prop_object_iterator_reset(iter2);
935 }
936 prop_object_iterator_release(iter2);
937 DPRINTFOBJ(("%s: objects in dictionary:%d\n",
938 __func__, prop_dictionary_count(dict)));
939 prop_object_release(dict);
940 }
941
942 out:
943 prop_object_iterator_release(iter);
944 prop_object_release(array);
945 }
946
947 /*
948 * sysmon_envsys_unregister:
949 *
950 * + Unregister a sysmon envsys device.
951 */
952 void
953 sysmon_envsys_unregister(struct sysmon_envsys *sme)
954 {
955 prop_array_t array;
956 struct sysmon_envsys *osme;
957
958 KASSERT(sme != NULL);
959
960 /*
961 * Decrement global sensors counter and the first_sensor index
962 * for remaining devices in the list (only used for compatibility
963 * with previous API), and remove the device from the list.
964 */
965 mutex_enter(&sme_global_mtx);
966 sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
967 LIST_FOREACH(osme, &sysmon_envsys_list, sme_list) {
968 if (osme->sme_fsensor >= sme->sme_fsensor)
969 osme->sme_fsensor -= sme->sme_nsensors;
970 }
971 LIST_REMOVE(sme, sme_list);
972 mutex_exit(&sme_global_mtx);
973
974 /*
975 * Unregister all events associated with device.
976 */
977 sme_event_unregister_all(sme);
978
979 /*
980 * Remove the device (and all its objects) from the global dictionary.
981 */
982 array = prop_dictionary_get(sme_propd, sme->sme_name);
983 if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
984 mutex_enter(&sme_global_mtx);
985 prop_dictionary_remove(sme_propd, sme->sme_name);
986 mutex_exit(&sme_global_mtx);
987 sysmon_envsys_destroy_plist(array);
988 }
989 /*
990 * And finally destroy the sysmon_envsys object.
991 */
992 sysmon_envsys_destroy(sme);
993 }
994
995 /*
996 * sysmon_envsys_find:
997 *
998 * + Find a sysmon envsys device and mark it as busy
999 * once it's available.
1000 */
1001 struct sysmon_envsys *
1002 sysmon_envsys_find(const char *name)
1003 {
1004 struct sysmon_envsys *sme;
1005
1006 mutex_enter(&sme_global_mtx);
1007 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1008 if (strcmp(sme->sme_name, name) == 0) {
1009 sysmon_envsys_acquire(sme, false);
1010 break;
1011 }
1012 }
1013 mutex_exit(&sme_global_mtx);
1014
1015 return sme;
1016 }
1017
1018 /*
1019 * Compatibility function with the old API.
1020 */
1021 struct sysmon_envsys *
1022 sysmon_envsys_find_40(u_int idx)
1023 {
1024 struct sysmon_envsys *sme;
1025
1026 mutex_enter(&sme_global_mtx);
1027 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1028 if (idx >= sme->sme_fsensor &&
1029 idx < (sme->sme_fsensor + sme->sme_nsensors)) {
1030 sysmon_envsys_acquire(sme, false);
1031 break;
1032 }
1033 }
1034 mutex_exit(&sme_global_mtx);
1035
1036 return sme;
1037 }
1038
1039 /*
1040 * sysmon_envsys_acquire:
1041 *
1042 * + Wait until a sysmon envsys device is available and mark
1043 * it as busy.
1044 */
1045 void
1046 sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
1047 {
1048 KASSERT(sme != NULL);
1049
1050 if (locked) {
1051 while (sme->sme_flags & SME_FLAG_BUSY)
1052 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1053 sme->sme_flags |= SME_FLAG_BUSY;
1054 } else {
1055 mutex_enter(&sme->sme_mtx);
1056 while (sme->sme_flags & SME_FLAG_BUSY)
1057 cv_wait(&sme->sme_condvar, &sme->sme_mtx);
1058 sme->sme_flags |= SME_FLAG_BUSY;
1059 mutex_exit(&sme->sme_mtx);
1060 }
1061 }
1062
1063 /*
1064 * sysmon_envsys_release:
1065 *
1066 * + Unmark a sysmon envsys device as busy, and notify
1067 * waiters.
1068 */
1069 void
1070 sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
1071 {
1072 KASSERT(sme != NULL);
1073
1074 if (locked) {
1075 sme->sme_flags &= ~SME_FLAG_BUSY;
1076 cv_broadcast(&sme->sme_condvar);
1077 } else {
1078 mutex_enter(&sme->sme_mtx);
1079 sme->sme_flags &= ~SME_FLAG_BUSY;
1080 cv_broadcast(&sme->sme_condvar);
1081 mutex_exit(&sme->sme_mtx);
1082 }
1083 }
1084
1085 /*
1086 * sme_initial_refresh:
1087 *
1088 * + Do an initial refresh of the sensors in a device just after
1089 * interrupts are enabled in the autoconf(9) process.
1090 *
1091 */
1092 static void
1093 sme_initial_refresh(void *arg)
1094 {
1095 struct sysmon_envsys *sme = arg;
1096 envsys_data_t *edata;
1097
1098 mutex_enter(&sme->sme_mtx);
1099 sysmon_envsys_acquire(sme, true);
1100 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
1101 sysmon_envsys_refresh_sensor(sme, edata);
1102 sysmon_envsys_release(sme, true);
1103 mutex_exit(&sme->sme_mtx);
1104 }
1105
1106 /*
1107 * sme_sensor_dictionary_get:
1108 *
1109 * + Returns a dictionary of a device specified by its index
1110 * position.
1111 */
1112 prop_dictionary_t
1113 sme_sensor_dictionary_get(prop_array_t array, const char *index)
1114 {
1115 prop_object_iterator_t iter;
1116 prop_dictionary_t dict;
1117 prop_object_t obj;
1118
1119 KASSERT(array != NULL || index != NULL);
1120
1121 iter = prop_array_iterator(array);
1122 if (!iter)
1123 return NULL;
1124
1125 while ((dict = prop_object_iterator_next(iter))) {
1126 obj = prop_dictionary_get(dict, "index");
1127 if (prop_string_equals_cstring(obj, index))
1128 break;
1129 }
1130
1131 prop_object_iterator_release(iter);
1132 return dict;
1133 }
1134
1135 /*
1136 * sme_remove_userprops:
1137 *
1138 * + Remove all properties from all devices that were set by
1139 * the ENVSYS_SETDICTIONARY ioctl.
1140 */
1141 static void
1142 sme_remove_userprops(void)
1143 {
1144 struct sysmon_envsys *sme;
1145 prop_array_t array;
1146 prop_dictionary_t sdict;
1147 envsys_data_t *edata = NULL;
1148 char tmp[ENVSYS_DESCLEN];
1149 char rnd_name[sizeof(edata->rnd_src.name)];
1150 sysmon_envsys_lim_t lims;
1151 const struct sme_descr_entry *sdt_units;
1152 uint32_t props;
1153 int ptype;
1154
1155 mutex_enter(&sme_global_mtx);
1156 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1157 sysmon_envsys_acquire(sme, false);
1158 array = prop_dictionary_get(sme_propd, sme->sme_name);
1159
1160 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1161 (void)snprintf(tmp, sizeof(tmp), "sensor%d",
1162 edata->sensor);
1163 sdict = sme_sensor_dictionary_get(array, tmp);
1164 KASSERT(sdict != NULL);
1165
1166 ptype = 0;
1167 if (edata->upropset & PROP_BATTCAP) {
1168 prop_dictionary_remove(sdict,
1169 "critical-capacity");
1170 ptype = PENVSYS_EVENT_CAPACITY;
1171 }
1172
1173 if (edata->upropset & PROP_BATTWARN) {
1174 prop_dictionary_remove(sdict,
1175 "warning-capacity");
1176 ptype = PENVSYS_EVENT_CAPACITY;
1177 }
1178
1179 if (edata->upropset & PROP_BATTHIGH) {
1180 prop_dictionary_remove(sdict,
1181 "high-capacity");
1182 ptype = PENVSYS_EVENT_CAPACITY;
1183 }
1184
1185 if (edata->upropset & PROP_BATTMAX) {
1186 prop_dictionary_remove(sdict,
1187 "maximum-capacity");
1188 ptype = PENVSYS_EVENT_CAPACITY;
1189 }
1190 if (edata->upropset & PROP_WARNMAX) {
1191 prop_dictionary_remove(sdict, "warning-max");
1192 ptype = PENVSYS_EVENT_LIMITS;
1193 }
1194
1195 if (edata->upropset & PROP_WARNMIN) {
1196 prop_dictionary_remove(sdict, "warning-min");
1197 ptype = PENVSYS_EVENT_LIMITS;
1198 }
1199
1200 if (edata->upropset & PROP_CRITMAX) {
1201 prop_dictionary_remove(sdict, "critical-max");
1202 ptype = PENVSYS_EVENT_LIMITS;
1203 }
1204
1205 if (edata->upropset & PROP_CRITMIN) {
1206 prop_dictionary_remove(sdict, "critical-min");
1207 ptype = PENVSYS_EVENT_LIMITS;
1208 }
1209 if (edata->upropset & PROP_RFACT) {
1210 (void)sme_sensor_upint32(sdict, "rfact", 0);
1211 edata->rfact = 0;
1212 }
1213
1214 if (edata->upropset & PROP_DESC)
1215 (void)sme_sensor_upstring(sdict,
1216 "description", edata->desc);
1217
1218 if (ptype == 0)
1219 continue;
1220
1221 /*
1222 * If there were any limit values removed, we
1223 * need to revert to initial limits.
1224 *
1225 * First, tell the driver that we need it to
1226 * restore any h/w limits which may have been
1227 * changed to stored, boot-time values.
1228 */
1229 if (sme->sme_set_limits) {
1230 DPRINTF(("%s: reset limits for %s %s\n",
1231 __func__, sme->sme_name, edata->desc));
1232 (*sme->sme_set_limits)(sme, edata, NULL, NULL);
1233 }
1234
1235 /*
1236 * Next, we need to retrieve those initial limits.
1237 */
1238 props = 0;
1239 edata->upropset &= ~PROP_LIMITS;
1240 if (sme->sme_get_limits) {
1241 DPRINTF(("%s: retrieve limits for %s %s\n",
1242 __func__, sme->sme_name, edata->desc));
1243 lims = edata->limits;
1244 (*sme->sme_get_limits)(sme, edata, &lims,
1245 &props);
1246 }
1247
1248 /*
1249 * Finally, remove any old limits event, then
1250 * install a new event (which will update the
1251 * dictionary)
1252 */
1253 sme_event_unregister(sme, edata->desc,
1254 PENVSYS_EVENT_LIMITS);
1255
1256 /*
1257 * Find the correct units for this sensor.
1258 */
1259 sdt_units = sme_find_table_entry(SME_DESC_UNITS,
1260 edata->units);
1261
1262 if (props & PROP_LIMITS) {
1263 DPRINTF(("%s: install limits for %s %s\n",
1264 __func__, sme->sme_name, edata->desc));
1265
1266 sme_event_register(sdict, edata, sme,
1267 &lims, props, PENVSYS_EVENT_LIMITS,
1268 sdt_units->crittype);
1269 }
1270 if (edata->flags & ENVSYS_FHAS_ENTROPY) {
1271 sme_event_register(sdict, edata, sme,
1272 &lims, props, PENVSYS_EVENT_NULL,
1273 sdt_units->crittype);
1274 snprintf(rnd_name, sizeof(rnd_name), "%s-%s",
1275 sme->sme_name, edata->desc);
1276 rnd_attach_source(&edata->rnd_src, rnd_name,
1277 RND_TYPE_ENV, RND_FLAG_COLLECT_VALUE|
1278 RND_FLAG_COLLECT_TIME|
1279 RND_FLAG_ESTIMATE_VALUE|
1280 RND_FLAG_ESTIMATE_TIME);
1281 }
1282 }
1283
1284 /*
1285 * Restore default timeout value.
1286 */
1287 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1288 sme_schedule_callout(sme);
1289 sysmon_envsys_release(sme, false);
1290 }
1291 mutex_exit(&sme_global_mtx);
1292 }
1293
1294 /*
1295 * sme_add_property_dictionary:
1296 *
1297 * + Add global properties into a device.
1298 */
1299 static int
1300 sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1301 prop_dictionary_t dict)
1302 {
1303 prop_dictionary_t pdict;
1304 const char *class;
1305 int error = 0;
1306
1307 pdict = prop_dictionary_create();
1308 if (!pdict)
1309 return EINVAL;
1310
1311 /*
1312 * Add the 'refresh-timeout' and 'dev-class' objects into the
1313 * 'device-properties' dictionary.
1314 *
1315 * ...
1316 * <dict>
1317 * <key>device-properties</key>
1318 * <dict>
1319 * <key>refresh-timeout</key>
1320 * <integer>120</integer<
1321 * <key>device-class</key>
1322 * <string>class_name</string>
1323 * </dict>
1324 * </dict>
1325 * ...
1326 *
1327 */
1328 if (sme->sme_events_timeout == 0) {
1329 sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
1330 sme_schedule_callout(sme);
1331 }
1332
1333 if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
1334 sme->sme_events_timeout)) {
1335 error = EINVAL;
1336 goto out;
1337 }
1338 if (sme->sme_class == SME_CLASS_BATTERY)
1339 class = "battery";
1340 else if (sme->sme_class == SME_CLASS_ACADAPTER)
1341 class = "ac-adapter";
1342 else
1343 class = "other";
1344 if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
1345 error = EINVAL;
1346 goto out;
1347 }
1348
1349 if (!prop_dictionary_set(dict, "device-properties", pdict)) {
1350 error = EINVAL;
1351 goto out;
1352 }
1353
1354 /*
1355 * Add the device dictionary into the sysmon envsys array.
1356 */
1357 if (!prop_array_add(array, dict))
1358 error = EINVAL;
1359
1360 out:
1361 prop_object_release(pdict);
1362 return error;
1363 }
1364
1365 /*
1366 * sme_add_sensor_dictionary:
1367 *
1368 * + Adds the sensor objects into the dictionary and returns a pointer
1369 * to a sme_event_drv_t object if a monitoring flag was set
1370 * (or NULL otherwise).
1371 */
1372 static sme_event_drv_t *
1373 sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
1374 prop_dictionary_t dict, envsys_data_t *edata)
1375 {
1376 const struct sme_descr_entry *sdt;
1377 int error;
1378 sme_event_drv_t *sme_evdrv_t = NULL;
1379 char indexstr[ENVSYS_DESCLEN];
1380 bool mon_supported, allow_rfact;
1381
1382 /*
1383 * Add the index sensor string.
1384 *
1385 * ...
1386 * <key>index</eyr
1387 * <string>sensor0</string>
1388 * ...
1389 */
1390 (void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
1391 if (sme_sensor_upstring(dict, "index", indexstr))
1392 goto bad;
1393
1394 /*
1395 * ...
1396 * <key>description</key>
1397 * <string>blah blah</string>
1398 * ...
1399 */
1400 if (sme_sensor_upstring(dict, "description", edata->desc))
1401 goto bad;
1402
1403 /*
1404 * Add the monitoring boolean object:
1405 *
1406 * ...
1407 * <key>monitoring-supported</key>
1408 * <true/>
1409 * ...
1410 *
1411 * always false on Battery {capacity,charge}, Drive and Indicator types.
1412 * They cannot be monitored.
1413 *
1414 */
1415 if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
1416 (edata->units == ENVSYS_INDICATOR) ||
1417 (edata->units == ENVSYS_DRIVE) ||
1418 (edata->units == ENVSYS_BATTERY_CAPACITY) ||
1419 (edata->units == ENVSYS_BATTERY_CHARGE))
1420 mon_supported = false;
1421 else
1422 mon_supported = true;
1423 if (sme_sensor_upbool(dict, "monitoring-supported", mon_supported))
1424 goto out;
1425
1426 /*
1427 * Add the allow-rfact boolean object, true if
1428 * ENVSYS_FCHANGERFACT is set, false otherwise.
1429 *
1430 * ...
1431 * <key>allow-rfact</key>
1432 * <true/>
1433 * ...
1434 */
1435 if (edata->units == ENVSYS_SVOLTS_DC ||
1436 edata->units == ENVSYS_SVOLTS_AC) {
1437 if (edata->flags & ENVSYS_FCHANGERFACT)
1438 allow_rfact = true;
1439 else
1440 allow_rfact = false;
1441 if (sme_sensor_upbool(dict, "allow-rfact", allow_rfact))
1442 goto out;
1443 }
1444
1445 error = sme_update_sensor_dictionary(dict, edata,
1446 (edata->state == ENVSYS_SVALID));
1447 if (error < 0)
1448 goto bad;
1449 else if (error)
1450 goto out;
1451
1452 /*
1453 * ...
1454 * </dict>
1455 *
1456 * Add the dictionary into the array.
1457 *
1458 */
1459 if (!prop_array_add(array, dict)) {
1460 DPRINTF(("%s: prop_array_add\n", __func__));
1461 goto bad;
1462 }
1463
1464 /*
1465 * Register new event(s) if any monitoring flag was set or if
1466 * the sensor provides entropy for rnd(4).
1467 */
1468 if (edata->flags & (ENVSYS_FMONANY | ENVSYS_FHAS_ENTROPY)) {
1469 sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
1470 sme_evdrv_t->sed_sdict = dict;
1471 sme_evdrv_t->sed_edata = edata;
1472 sme_evdrv_t->sed_sme = sme;
1473 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1474 sme_evdrv_t->sed_powertype = sdt->crittype;
1475 }
1476
1477 out:
1478 return sme_evdrv_t;
1479
1480 bad:
1481 prop_object_release(dict);
1482 return NULL;
1483 }
1484
1485 /*
1486 * Find the maximum of all currently reported values.
1487 * The provided callback decides whether a sensor is part of the
1488 * maximum calculation (by returning true) or ignored (callback
1489 * returns false). Example usage: callback selects temperature
1490 * sensors in a given thermal zone, the function calculates the
1491 * maximum currently reported temperature in this zone.
1492 * If the parameter "refresh" is true, new values will be aquired
1493 * from the hardware, if not, the last reported value will be used.
1494 */
1495 uint32_t
1496 sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
1497 bool refresh)
1498 {
1499 struct sysmon_envsys *sme;
1500 uint32_t maxv, v;
1501
1502 maxv = 0;
1503 mutex_enter(&sme_global_mtx);
1504 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
1505 sysmon_envsys_acquire(sme, false);
1506 v = sme_get_max_value(sme, predicate, refresh);
1507 sysmon_envsys_release(sme, false);
1508 if (v > maxv)
1509 maxv = v;
1510 }
1511 mutex_exit(&sme_global_mtx);
1512 return maxv;
1513 }
1514
1515 static uint32_t
1516 sme_get_max_value(struct sysmon_envsys *sme,
1517 bool (*predicate)(const envsys_data_t*),
1518 bool refresh)
1519 {
1520 envsys_data_t *edata;
1521 uint32_t maxv, v;
1522
1523 /*
1524 * Iterate over all sensors that match the predicate
1525 */
1526 maxv = 0;
1527 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1528 if (!(*predicate)(edata))
1529 continue;
1530
1531 /*
1532 * refresh sensor data
1533 */
1534 mutex_enter(&sme->sme_mtx);
1535 sysmon_envsys_refresh_sensor(sme, edata);
1536 mutex_exit(&sme->sme_mtx);
1537
1538 v = edata->value_cur;
1539 if (v > maxv)
1540 maxv = v;
1541
1542 }
1543
1544 return maxv;
1545 }
1546
1547 /*
1548 * sme_update_dictionary:
1549 *
1550 * + Update per-sensor dictionaries with new values if there were
1551 * changes, otherwise the object in dictionary is untouched.
1552 */
1553 int
1554 sme_update_dictionary(struct sysmon_envsys *sme)
1555 {
1556 envsys_data_t *edata;
1557 prop_object_t array, dict, obj, obj2;
1558 int error = 0;
1559
1560 /*
1561 * Retrieve the array of dictionaries in device.
1562 */
1563 array = prop_dictionary_get(sme_propd, sme->sme_name);
1564 if (prop_object_type(array) != PROP_TYPE_ARRAY) {
1565 DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
1566 return EINVAL;
1567 }
1568
1569 /*
1570 * Get the last dictionary on the array, this contains the
1571 * 'device-properties' sub-dictionary.
1572 */
1573 obj = prop_array_get(array, prop_array_count(array) - 1);
1574 if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
1575 DPRINTF(("%s: not a device-properties dictionary\n", __func__));
1576 return EINVAL;
1577 }
1578
1579 obj2 = prop_dictionary_get(obj, "device-properties");
1580 if (!obj2)
1581 return EINVAL;
1582
1583 /*
1584 * Update the 'refresh-timeout' property.
1585 */
1586 if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
1587 sme->sme_events_timeout))
1588 return EINVAL;
1589
1590 /*
1591 * - iterate over all sensors.
1592 * - fetch new data.
1593 * - check if data in dictionary is different than new data.
1594 * - update dictionary if there were changes.
1595 */
1596 DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
1597 sme->sme_name, sme->sme_nsensors));
1598
1599 /*
1600 * Don't bother with locking when traversing the queue,
1601 * the device is already marked as busy; if a sensor
1602 * is going to be removed or added it will have to wait.
1603 */
1604 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1605 /*
1606 * refresh sensor data via sme_envsys_refresh_sensor
1607 */
1608 mutex_enter(&sme->sme_mtx);
1609 sysmon_envsys_refresh_sensor(sme, edata);
1610 mutex_exit(&sme->sme_mtx);
1611
1612 /*
1613 * retrieve sensor's dictionary.
1614 */
1615 dict = prop_array_get(array, edata->sensor);
1616 if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
1617 DPRINTF(("%s: not a dictionary (%d:%s)\n",
1618 __func__, edata->sensor, sme->sme_name));
1619 return EINVAL;
1620 }
1621
1622 /*
1623 * update sensor's state.
1624 */
1625 error = sme_update_sensor_dictionary(dict, edata, true);
1626
1627 if (error)
1628 break;
1629 }
1630
1631 return error;
1632 }
1633
1634 int
1635 sme_update_sensor_dictionary(prop_object_t dict, envsys_data_t *edata,
1636 bool value_update)
1637 {
1638 const struct sme_descr_entry *sdt;
1639 int error = 0;
1640
1641 sdt = sme_find_table_entry(SME_DESC_STATES, edata->state);
1642 if (sdt == NULL) {
1643 printf("sme_update_sensor_dictionary: can not update sensor "
1644 "state %d unknown\n", edata->state);
1645 return EINVAL;
1646 }
1647
1648 DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n", __func__,
1649 edata->sensor, sdt->type, sdt->desc, edata->flags));
1650
1651 error = sme_sensor_upstring(dict, "state", sdt->desc);
1652 if (error)
1653 return (-error);
1654
1655 /*
1656 * update sensor's type.
1657 */
1658 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1659
1660 DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n", __func__, edata->sensor,
1661 sdt->type, sdt->desc));
1662
1663 error = sme_sensor_upstring(dict, "type", sdt->desc);
1664 if (error)
1665 return (-error);
1666
1667 if (value_update) {
1668 /*
1669 * update sensor's current value.
1670 */
1671 error = sme_sensor_upint32(dict, "cur-value", edata->value_cur);
1672 if (error)
1673 return error;
1674 }
1675
1676 /*
1677 * Battery charge and Indicator types do not
1678 * need the remaining objects, so skip them.
1679 */
1680 if (edata->units == ENVSYS_INDICATOR ||
1681 edata->units == ENVSYS_BATTERY_CHARGE)
1682 return error;
1683
1684 /*
1685 * update sensor flags.
1686 */
1687 if (edata->flags & ENVSYS_FPERCENT) {
1688 error = sme_sensor_upbool(dict, "want-percentage", true);
1689 if (error)
1690 return error;
1691 }
1692
1693 if (value_update) {
1694 /*
1695 * update sensor's {max,min}-value.
1696 */
1697 if (edata->flags & ENVSYS_FVALID_MAX) {
1698 error = sme_sensor_upint32(dict, "max-value",
1699 edata->value_max);
1700 if (error)
1701 return error;
1702 }
1703
1704 if (edata->flags & ENVSYS_FVALID_MIN) {
1705 error = sme_sensor_upint32(dict, "min-value",
1706 edata->value_min);
1707 if (error)
1708 return error;
1709 }
1710
1711 /*
1712 * update 'rpms' only for ENVSYS_SFANRPM sensors.
1713 */
1714 if (edata->units == ENVSYS_SFANRPM) {
1715 error = sme_sensor_upuint32(dict, "rpms", edata->rpms);
1716 if (error)
1717 return error;
1718 }
1719
1720 /*
1721 * update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
1722 */
1723 if (edata->units == ENVSYS_SVOLTS_AC ||
1724 edata->units == ENVSYS_SVOLTS_DC) {
1725 error = sme_sensor_upint32(dict, "rfact", edata->rfact);
1726 if (error)
1727 return error;
1728 }
1729 }
1730
1731 /*
1732 * update 'drive-state' only for ENVSYS_DRIVE sensors.
1733 */
1734 if (edata->units == ENVSYS_DRIVE) {
1735 sdt = sme_find_table_entry(SME_DESC_DRIVE_STATES,
1736 edata->value_cur);
1737 error = sme_sensor_upstring(dict, "drive-state", sdt->desc);
1738 if (error)
1739 return error;
1740 }
1741
1742 /*
1743 * update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
1744 * sensors.
1745 */
1746 if (edata->units == ENVSYS_BATTERY_CAPACITY) {
1747 sdt = sme_find_table_entry(SME_DESC_BATTERY_CAPACITY,
1748 edata->value_cur);
1749 error = sme_sensor_upstring(dict, "battery-capacity",
1750 sdt->desc);
1751 if (error)
1752 return error;
1753 }
1754
1755 return error;
1756 }
1757
1758 /*
1759 * sme_userset_dictionary:
1760 *
1761 * + Parse the userland dictionary and run the appropiate tasks
1762 * that were specified.
1763 */
1764 int
1765 sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
1766 prop_array_t array)
1767 {
1768 const struct sme_descr_entry *sdt;
1769 envsys_data_t *edata;
1770 prop_dictionary_t dict, tdict = NULL;
1771 prop_object_t obj, obj1, obj2, tobj = NULL;
1772 uint32_t props;
1773 uint64_t refresh_timo = 0;
1774 sysmon_envsys_lim_t lims;
1775 int i, error = 0;
1776 const char *blah;
1777 bool targetfound = false;
1778
1779 /*
1780 * The user wanted to change the refresh timeout value for this
1781 * device.
1782 *
1783 * Get the 'device-properties' object from the userland dictionary.
1784 */
1785 obj = prop_dictionary_get(udict, "device-properties");
1786 if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
1787 /*
1788 * Get the 'refresh-timeout' property for this device.
1789 */
1790 obj1 = prop_dictionary_get(obj, "refresh-timeout");
1791 if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
1792 targetfound = true;
1793 refresh_timo =
1794 prop_number_unsigned_integer_value(obj1);
1795 if (refresh_timo < 1)
1796 error = EINVAL;
1797 else {
1798 mutex_enter(&sme->sme_mtx);
1799 if (sme->sme_events_timeout != refresh_timo) {
1800 sme->sme_events_timeout = refresh_timo;
1801 sme_schedule_callout(sme);
1802 }
1803 mutex_exit(&sme->sme_mtx);
1804 }
1805 }
1806 return error;
1807
1808 } else if (!obj) {
1809 /*
1810 * Get sensor's index from userland dictionary.
1811 */
1812 obj = prop_dictionary_get(udict, "index");
1813 if (!obj)
1814 return EINVAL;
1815 if (prop_object_type(obj) != PROP_TYPE_STRING) {
1816 DPRINTF(("%s: 'index' not a string\n", __func__));
1817 return EINVAL;
1818 }
1819 } else
1820 return EINVAL;
1821
1822 /*
1823 * Don't bother with locking when traversing the queue,
1824 * the device is already marked as busy; if a sensor
1825 * is going to be removed or added it will have to wait.
1826 */
1827 TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
1828 /*
1829 * Get a dictionary and check if it's our sensor by checking
1830 * at its index position.
1831 */
1832 dict = prop_array_get(array, edata->sensor);
1833 obj1 = prop_dictionary_get(dict, "index");
1834
1835 /*
1836 * is it our sensor?
1837 */
1838 if (!prop_string_equals(obj1, obj))
1839 continue;
1840
1841 props = 0;
1842
1843 /*
1844 * Check if a new description operation was
1845 * requested by the user and set new description.
1846 */
1847 obj2 = prop_dictionary_get(udict, "description");
1848 if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
1849 targetfound = true;
1850 blah = prop_string_cstring_nocopy(obj2);
1851
1852 /*
1853 * Check for duplicate description.
1854 */
1855 for (i = 0; i < sme->sme_nsensors; i++) {
1856 if (i == edata->sensor)
1857 continue;
1858 tdict = prop_array_get(array, i);
1859 tobj =
1860 prop_dictionary_get(tdict, "description");
1861 if (prop_string_equals(obj2, tobj)) {
1862 error = EEXIST;
1863 goto out;
1864 }
1865 }
1866
1867 /*
1868 * Update the object in dictionary.
1869 */
1870 mutex_enter(&sme->sme_mtx);
1871 error = sme_sensor_upstring(dict,
1872 "description",
1873 blah);
1874 if (error) {
1875 mutex_exit(&sme->sme_mtx);
1876 goto out;
1877 }
1878
1879 DPRINTF(("%s: sensor%d changed desc to: %s\n",
1880 __func__, edata->sensor, blah));
1881 edata->upropset |= PROP_DESC;
1882 mutex_exit(&sme->sme_mtx);
1883 }
1884
1885 /*
1886 * did the user want to change the rfact?
1887 */
1888 obj2 = prop_dictionary_get(udict, "rfact");
1889 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1890 targetfound = true;
1891 if (edata->flags & ENVSYS_FCHANGERFACT) {
1892 mutex_enter(&sme->sme_mtx);
1893 edata->rfact = prop_number_integer_value(obj2);
1894 edata->upropset |= PROP_RFACT;
1895 mutex_exit(&sme->sme_mtx);
1896 DPRINTF(("%s: sensor%d changed rfact to %d\n",
1897 __func__, edata->sensor, edata->rfact));
1898 } else {
1899 error = ENOTSUP;
1900 goto out;
1901 }
1902 }
1903
1904 sdt = sme_find_table_entry(SME_DESC_UNITS, edata->units);
1905
1906 /*
1907 * did the user want to set a critical capacity event?
1908 */
1909 obj2 = prop_dictionary_get(udict, "critical-capacity");
1910 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1911 targetfound = true;
1912 lims.sel_critmin = prop_number_integer_value(obj2);
1913 props |= PROP_BATTCAP;
1914 }
1915
1916 /*
1917 * did the user want to set a warning capacity event?
1918 */
1919 obj2 = prop_dictionary_get(udict, "warning-capacity");
1920 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1921 targetfound = true;
1922 lims.sel_warnmin = prop_number_integer_value(obj2);
1923 props |= PROP_BATTWARN;
1924 }
1925
1926 /*
1927 * did the user want to set a high capacity event?
1928 */
1929 obj2 = prop_dictionary_get(udict, "high-capacity");
1930 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1931 targetfound = true;
1932 lims.sel_warnmin = prop_number_integer_value(obj2);
1933 props |= PROP_BATTHIGH;
1934 }
1935
1936 /*
1937 * did the user want to set a maximum capacity event?
1938 */
1939 obj2 = prop_dictionary_get(udict, "maximum-capacity");
1940 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1941 targetfound = true;
1942 lims.sel_warnmin = prop_number_integer_value(obj2);
1943 props |= PROP_BATTMAX;
1944 }
1945
1946 /*
1947 * did the user want to set a critical max event?
1948 */
1949 obj2 = prop_dictionary_get(udict, "critical-max");
1950 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1951 targetfound = true;
1952 lims.sel_critmax = prop_number_integer_value(obj2);
1953 props |= PROP_CRITMAX;
1954 }
1955
1956 /*
1957 * did the user want to set a warning max event?
1958 */
1959 obj2 = prop_dictionary_get(udict, "warning-max");
1960 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1961 targetfound = true;
1962 lims.sel_warnmax = prop_number_integer_value(obj2);
1963 props |= PROP_WARNMAX;
1964 }
1965
1966 /*
1967 * did the user want to set a critical min event?
1968 */
1969 obj2 = prop_dictionary_get(udict, "critical-min");
1970 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1971 targetfound = true;
1972 lims.sel_critmin = prop_number_integer_value(obj2);
1973 props |= PROP_CRITMIN;
1974 }
1975
1976 /*
1977 * did the user want to set a warning min event?
1978 */
1979 obj2 = prop_dictionary_get(udict, "warning-min");
1980 if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
1981 targetfound = true;
1982 lims.sel_warnmin = prop_number_integer_value(obj2);
1983 props |= PROP_WARNMIN;
1984 }
1985
1986 if (props && (edata->flags & ENVSYS_FMONNOTSUPP) != 0) {
1987 error = ENOTSUP;
1988 goto out;
1989 }
1990 if (props || (edata->flags & ENVSYS_FHAS_ENTROPY) != 0) {
1991 error = sme_event_register(dict, edata, sme, &lims,
1992 props,
1993 (edata->flags & ENVSYS_FPERCENT)?
1994 PENVSYS_EVENT_CAPACITY:
1995 PENVSYS_EVENT_LIMITS,
1996 sdt->crittype);
1997 if (error == EEXIST)
1998 error = 0;
1999 if (error)
2000 goto out;
2001 }
2002
2003 /*
2004 * All objects in dictionary were processed.
2005 */
2006 break;
2007 }
2008
2009 out:
2010 /*
2011 * invalid target? return the error.
2012 */
2013 if (!targetfound)
2014 error = EINVAL;
2015
2016 return error;
2017 }
2018
2019 /*
2020 * + sysmon_envsys_foreach_sensor
2021 *
2022 * Walk through the devices' sensor lists and execute the callback.
2023 * If the callback returns false, the remainder of the current
2024 * device's sensors are skipped.
2025 */
2026 void
2027 sysmon_envsys_foreach_sensor(sysmon_envsys_callback_t func, void *arg,
2028 bool refresh)
2029 {
2030 struct sysmon_envsys *sme;
2031 envsys_data_t *sensor;
2032
2033 mutex_enter(&sme_global_mtx);
2034 LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
2035
2036 sysmon_envsys_acquire(sme, false);
2037 TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
2038 if (refresh) {
2039 mutex_enter(&sme->sme_mtx);
2040 sysmon_envsys_refresh_sensor(sme, sensor);
2041 mutex_exit(&sme->sme_mtx);
2042 }
2043 if (!(*func)(sme, sensor, arg))
2044 break;
2045 }
2046 sysmon_envsys_release(sme, false);
2047 }
2048 mutex_exit(&sme_global_mtx);
2049 }
2050
2051 /*
2052 * Call the sensor's refresh function, and collect/stir entropy
2053 */
2054 void
2055 sysmon_envsys_refresh_sensor(struct sysmon_envsys *sme, envsys_data_t *edata)
2056 {
2057
2058 if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
2059 (*sme->sme_refresh)(sme, edata);
2060
2061 if (edata->flags & ENVSYS_FHAS_ENTROPY &&
2062 edata->state != ENVSYS_SINVALID &&
2063 edata->value_prev != edata->value_cur)
2064 rnd_add_uint32(&edata->rnd_src, edata->value_cur);
2065 edata->value_prev = edata->value_cur;
2066 }
2067
2068 static
2069 int
2070 sysmon_envsys_modcmd(modcmd_t cmd, void *arg)
2071 {
2072 int ret;
2073
2074 switch (cmd) {
2075 case MODULE_CMD_INIT:
2076 ret = sysmon_envsys_init();
2077 break;
2078
2079 case MODULE_CMD_FINI:
2080 ret = sysmon_envsys_fini();
2081 break;
2082
2083 case MODULE_CMD_STAT:
2084 default:
2085 ret = ENOTTY;
2086 }
2087
2088 return ret;
2089 }
2090