zs_ioasic.c revision 1.28 1 /* $NetBSD: zs_ioasic.c,v 1.28 2005/08/26 12:42:11 drochner Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross, Ken Hornstein, and by Jason R. Thorpe of the
9 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Zilog Z8530 Dual UART driver (machine-dependent part). This driver
42 * handles Z8530 chips attached to the DECstation/Alpha IOASIC. Modified
43 * for NetBSD/alpha by Ken Hornstein and Jason R. Thorpe. NetBSD/pmax
44 * adaption by Mattias Drochner. Merge work by Tohru Nishimura.
45 *
46 * Runs two serial lines per chip using slave drivers.
47 * Plain tty/async lines use the zstty slave.
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: zs_ioasic.c,v 1.28 2005/08/26 12:42:11 drochner Exp $");
52
53 #include "opt_ddb.h"
54 #include "opt_kgdb.h"
55 #include "zskbd.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/conf.h>
60 #include <sys/device.h>
61 #include <sys/malloc.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/kernel.h>
65 #include <sys/proc.h>
66 #include <sys/tty.h>
67 #include <sys/time.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/intr.h>
72 #include <machine/z8530var.h>
73
74 #include <dev/cons.h>
75 #include <dev/ic/z8530reg.h>
76
77 #include <dev/tc/tcvar.h>
78 #include <dev/tc/ioasicreg.h>
79 #include <dev/tc/ioasicvar.h>
80
81 #include <dev/tc/zs_ioasicvar.h>
82
83 #if defined(__alpha__) || defined(alpha)
84 #include <machine/rpb.h>
85 #endif
86 #if defined(pmax)
87 #include <pmax/pmax/pmaxtype.h>
88 #endif
89
90 /*
91 * Helpers for console support.
92 */
93 void zs_ioasic_cninit(tc_addr_t, tc_offset_t, int);
94 int zs_ioasic_cngetc(dev_t);
95 void zs_ioasic_cnputc(dev_t, int);
96 void zs_ioasic_cnpollc(dev_t, int);
97
98 struct consdev zs_ioasic_cons = {
99 NULL, NULL, zs_ioasic_cngetc, zs_ioasic_cnputc,
100 zs_ioasic_cnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL,
101 };
102
103 tc_offset_t zs_ioasic_console_offset;
104 int zs_ioasic_console_channel;
105 int zs_ioasic_console;
106 struct zs_chanstate zs_ioasic_conschanstate_store;
107
108 int zs_ioasic_isconsole(tc_offset_t, int);
109 int zs_getc(struct zs_chanstate *);
110 void zs_putc(struct zs_chanstate *, int);
111
112 /*
113 * Some warts needed by z8530tty.c
114 */
115 int zs_def_cflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
116
117 /*
118 * ZS chips are feeded a 7.372 MHz clock.
119 */
120 #define PCLK (9600 * 768) /* PCLK pin input clock rate */
121
122 /* The layout of this is hardware-dependent (padding, order). */
123 struct zshan {
124 #if defined(__alpha__) || defined(alpha)
125 volatile u_int zc_csr; /* ctrl,status, and indirect access */
126 u_int zc_pad0;
127 volatile u_int zc_data; /* data */
128 u_int sc_pad1;
129 #endif
130 #if defined(pmax)
131 volatile u_int16_t zc_csr; /* ctrl,status, and indirect access */
132 unsigned : 16;
133 volatile u_int16_t zc_data; /* data */
134 unsigned : 16;
135 #endif
136 };
137
138 struct zsdevice {
139 /* Yes, they are backwards. */
140 struct zshan zs_chan_b;
141 struct zshan zs_chan_a;
142 };
143
144 static u_char zs_ioasic_init_reg[16] = {
145 0, /* 0: CMD (reset, etc.) */
146 0, /* 1: No interrupts yet. */
147 0xf0, /* 2: IVECT */
148 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
149 ZSWR4_CLK_X16 | ZSWR4_ONESB,
150 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
151 0, /* 6: TXSYNC/SYNCLO */
152 0, /* 7: RXSYNC/SYNCHI */
153 0, /* 8: alias for data port */
154 ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
155 0, /*10: Misc. TX/RX control bits */
156 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
157 22, /*12: BAUDLO (default=9600) */
158 0, /*13: BAUDHI (default=9600) */
159 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
160 ZSWR15_BREAK_IE,
161 };
162
163 struct zshan *zs_ioasic_get_chan_addr(tc_addr_t, int);
164
165 struct zshan *
166 zs_ioasic_get_chan_addr(zsaddr, channel)
167 tc_addr_t zsaddr;
168 int channel;
169 {
170 struct zsdevice *addr;
171 struct zshan *zc;
172
173 #if defined(__alpha__) || defined(alpha)
174 addr = (struct zsdevice *)TC_DENSE_TO_SPARSE(zsaddr);
175 #endif
176 #if defined(pmax)
177 addr = (struct zsdevice *)MIPS_PHYS_TO_KSEG1(zsaddr);
178 #endif
179
180 if (channel == 0)
181 zc = &addr->zs_chan_a;
182 else
183 zc = &addr->zs_chan_b;
184
185 return (zc);
186 }
187
188
189 /****************************************************************
190 * Autoconfig
191 ****************************************************************/
192
193 /* Definition of the driver for autoconfig. */
194 int zs_ioasic_match(struct device *, struct cfdata *, void *);
195 void zs_ioasic_attach(struct device *, struct device *, void *);
196 int zs_ioasic_print(void *, const char *name);
197 int zs_ioasic_submatch(struct device *, struct cfdata *,
198 const int *, void *);
199
200 CFATTACH_DECL(zsc_ioasic, sizeof(struct zsc_softc),
201 zs_ioasic_match, zs_ioasic_attach, NULL, NULL);
202
203 /* Interrupt handlers. */
204 int zs_ioasic_hardintr(void *);
205 void zs_ioasic_softintr(void *);
206
207 /*
208 * Is the zs chip present?
209 */
210 int
211 zs_ioasic_match(parent, cf, aux)
212 struct device *parent;
213 struct cfdata *cf;
214 void *aux;
215 {
216 struct ioasicdev_attach_args *d = aux;
217 tc_addr_t zs_addr;
218
219 /*
220 * Make sure that we're looking for the right kind of device.
221 */
222 if (strncmp(d->iada_modname, "z8530 ", TC_ROM_LLEN) != 0 &&
223 strncmp(d->iada_modname, "scc", TC_ROM_LLEN) != 0)
224 return (0);
225
226 /*
227 * Find out the device address, and check it for validity.
228 */
229 zs_addr = TC_DENSE_TO_SPARSE((tc_addr_t)d->iada_addr);
230 if (tc_badaddr(zs_addr))
231 return (0);
232
233 return (1);
234 }
235
236 /*
237 * Attach a found zs.
238 */
239 void
240 zs_ioasic_attach(parent, self, aux)
241 struct device *parent;
242 struct device *self;
243 void *aux;
244 {
245 struct zsc_softc *zs = (void *) self;
246 struct zsc_attach_args zs_args;
247 struct zs_chanstate *cs;
248 struct ioasicdev_attach_args *d = aux;
249 struct zshan *zc;
250 int s, channel;
251 u_long zflg;
252 int locs[ZSCCF_NLOCS];
253
254 printf("\n");
255
256 /*
257 * Initialize software state for each channel.
258 */
259 for (channel = 0; channel < 2; channel++) {
260 zs_args.channel = channel;
261 zs_args.hwflags = 0;
262
263 if (zs_ioasic_isconsole(d->iada_offset, channel)) {
264 cs = &zs_ioasic_conschanstate_store;
265 zs_args.hwflags |= ZS_HWFLAG_CONSOLE;
266 } else {
267 cs = malloc(sizeof(struct zs_chanstate),
268 M_DEVBUF, M_NOWAIT|M_ZERO);
269 zc = zs_ioasic_get_chan_addr(d->iada_addr, channel);
270 cs->cs_reg_csr = (volatile void *)&zc->zc_csr;
271
272 bcopy(zs_ioasic_init_reg, cs->cs_creg, 16);
273 bcopy(zs_ioasic_init_reg, cs->cs_preg, 16);
274
275 cs->cs_defcflag = zs_def_cflag;
276 cs->cs_defspeed = 9600; /* XXX */
277 (void) zs_set_modes(cs, cs->cs_defcflag);
278 }
279
280 zs->zsc_cs[channel] = cs;
281 zs->zsc_addroffset = d->iada_offset; /* cookie only */
282 cs->cs_channel = channel;
283 cs->cs_ops = &zsops_null;
284 cs->cs_brg_clk = PCLK / 16;
285
286 /*
287 * DCD and CTS interrupts are only meaningful on
288 * SCC 0/B, and RTS and DTR only on B of SCC 0 & 1.
289 *
290 * XXX This is sorta gross.
291 */
292 if (d->iada_offset == 0x00100000 && channel == 1) {
293 cs->cs_creg[15] |= ZSWR15_DCD_IE;
294 cs->cs_preg[15] |= ZSWR15_DCD_IE;
295 zflg = ZIP_FLAGS_DCDCTS;
296 } else
297 zflg = 0;
298 if (channel == 1)
299 zflg |= ZIP_FLAGS_DTRRTS;
300 (u_long)cs->cs_private = zflg;
301
302 /*
303 * Clear the master interrupt enable.
304 * The INTENA is common to both channels,
305 * so just do it on the A channel.
306 */
307 if (channel == 0) {
308 zs_write_reg(cs, 9, 0);
309 }
310
311 /*
312 * Set up the flow/modem control channel pointer to
313 * deal with the weird wiring on the TC Alpha and
314 * DECstation.
315 */
316 if (channel == 1)
317 cs->cs_ctl_chan = zs->zsc_cs[0];
318 else
319 cs->cs_ctl_chan = NULL;
320
321 locs[ZSCCF_CHANNEL] = channel;
322
323 /*
324 * Look for a child driver for this channel.
325 * The child attach will setup the hardware.
326 */
327 if (config_found_sm_loc(self, "zsc", locs, (void *)&zs_args,
328 zs_ioasic_print, zs_ioasic_submatch) == NULL) {
329 /* No sub-driver. Just reset it. */
330 u_char reset = (channel == 0) ?
331 ZSWR9_A_RESET : ZSWR9_B_RESET;
332 s = splhigh();
333 zs_write_reg(cs, 9, reset);
334 splx(s);
335 }
336 }
337
338 /*
339 * Set up the ioasic interrupt handler.
340 */
341 ioasic_intr_establish(parent, d->iada_cookie, TC_IPL_TTY,
342 zs_ioasic_hardintr, zs);
343 zs->zsc_sih = softintr_establish(IPL_SOFTSERIAL,
344 zs_ioasic_softintr, zs);
345 if (zs->zsc_sih == NULL)
346 panic("zs_ioasic_attach: unable to register softintr");
347
348 /*
349 * Set the master interrupt enable and interrupt vector. The
350 * Sun does this only on one channel. The old Alpha SCC driver
351 * did it on both. We'll do it on both.
352 */
353 s = splhigh();
354 /* interrupt vector */
355 zs_write_reg(zs->zsc_cs[0], 2, zs_ioasic_init_reg[2]);
356 zs_write_reg(zs->zsc_cs[1], 2, zs_ioasic_init_reg[2]);
357
358 /* master interrupt control (enable) */
359 zs_write_reg(zs->zsc_cs[0], 9, zs_ioasic_init_reg[9]);
360 zs_write_reg(zs->zsc_cs[1], 9, zs_ioasic_init_reg[9]);
361 #if defined(__alpha__) || defined(alpha)
362 /* ioasic interrupt enable */
363 *(volatile u_int *)(ioasic_base + IOASIC_IMSK) |=
364 IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0;
365 tc_mb();
366 #endif
367 splx(s);
368 }
369
370 int
371 zs_ioasic_print(aux, name)
372 void *aux;
373 const char *name;
374 {
375 struct zsc_attach_args *args = aux;
376
377 if (name != NULL)
378 aprint_normal("%s:", name);
379
380 if (args->channel != -1)
381 aprint_normal(" channel %d", args->channel);
382
383 return (UNCONF);
384 }
385
386 int
387 zs_ioasic_submatch(parent, cf, locs, aux)
388 struct device *parent;
389 struct cfdata *cf;
390 const int *locs;
391 void *aux;
392 {
393 struct zsc_softc *zs = (void *)parent;
394 struct zsc_attach_args *pa = aux;
395 const char *defname = "";
396
397 if (cf->cf_loc[ZSCCF_CHANNEL] != ZSCCF_CHANNEL_DEFAULT &&
398 cf->cf_loc[ZSCCF_CHANNEL] != locs[ZSCCF_CHANNEL])
399 return (0);
400
401 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT) {
402 if (pa->channel == 0) {
403 #if defined(pmax)
404 if (systype == DS_MAXINE)
405 return (0);
406 #endif
407 if (zs->zsc_addroffset == 0x100000)
408 defname = "vsms";
409 else
410 defname = "lkkbd";
411 }
412 else if (zs->zsc_addroffset == 0x100000)
413 defname = "zstty";
414 #if defined(pmax)
415 else if (systype == DS_MAXINE)
416 return (0);
417 #endif
418 #if defined(__alpha__) || defined(alpha)
419 else if (cputype == ST_DEC_3000_300)
420 return (0);
421 #endif
422 else
423 defname = "zstty"; /* 3min/3max+, DEC3000/500 */
424
425 if (strcmp(cf->cf_name, defname))
426 return (0);
427 }
428 return (config_match(parent, cf, aux));
429 }
430
431 /*
432 * Hardware interrupt handler.
433 */
434 int
435 zs_ioasic_hardintr(arg)
436 void *arg;
437 {
438 struct zsc_softc *zsc = arg;
439
440 /*
441 * Call the upper-level MI hardware interrupt handler.
442 */
443 zsc_intr_hard(zsc);
444
445 /*
446 * Check to see if we need to schedule any software-level
447 * processing interrupts.
448 */
449 if (zsc->zsc_cs[0]->cs_softreq | zsc->zsc_cs[1]->cs_softreq)
450 softintr_schedule(zsc->zsc_sih);
451
452 return (1);
453 }
454
455 /*
456 * Software-level interrupt (character processing, lower priority).
457 */
458 void
459 zs_ioasic_softintr(arg)
460 void *arg;
461 {
462 struct zsc_softc *zsc = arg;
463 int s;
464
465 s = spltty();
466 (void) zsc_intr_soft(zsc);
467 splx(s);
468 }
469
470 /*
471 * MD functions for setting the baud rate and control modes.
472 */
473 int
474 zs_set_speed(cs, bps)
475 struct zs_chanstate *cs;
476 int bps; /* bits per second */
477 {
478 int tconst, real_bps;
479
480 if (bps == 0)
481 return (0);
482
483 #ifdef DIAGNOSTIC
484 if (cs->cs_brg_clk == 0)
485 panic("zs_set_speed");
486 #endif
487
488 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
489 if (tconst < 0)
490 return (EINVAL);
491
492 /* Convert back to make sure we can do it. */
493 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
494
495 /* XXX - Allow some tolerance here? */
496 if (real_bps != bps)
497 return (EINVAL);
498
499 cs->cs_preg[12] = tconst;
500 cs->cs_preg[13] = tconst >> 8;
501
502 /* Caller will stuff the pending registers. */
503 return (0);
504 }
505
506 int
507 zs_set_modes(cs, cflag)
508 struct zs_chanstate *cs;
509 int cflag; /* bits per second */
510 {
511 u_long privflags = (u_long)cs->cs_private;
512 int s;
513
514 /*
515 * Output hardware flow control on the chip is horrendous:
516 * if carrier detect drops, the receiver is disabled, and if
517 * CTS drops, the transmitter is stoped IN MID CHARACTER!
518 * Therefore, NEVER set the HFC bit, and instead use the
519 * status interrupt to detect CTS changes.
520 */
521 s = splzs();
522 if ((cflag & (CLOCAL | MDMBUF)) != 0)
523 cs->cs_rr0_dcd = 0;
524 else
525 cs->cs_rr0_dcd = ZSRR0_DCD;
526 if ((cflag & CRTSCTS) != 0) {
527 cs->cs_wr5_dtr = ZSWR5_DTR;
528 cs->cs_wr5_rts = ZSWR5_RTS;
529 cs->cs_rr0_cts = ZSRR0_CTS;
530 } else if ((cflag & CDTRCTS) != 0) {
531 cs->cs_wr5_dtr = 0;
532 cs->cs_wr5_rts = ZSWR5_DTR;
533 cs->cs_rr0_cts = ZSRR0_CTS;
534 } else if ((cflag & MDMBUF) != 0) {
535 cs->cs_wr5_dtr = 0;
536 cs->cs_wr5_rts = ZSWR5_DTR;
537 cs->cs_rr0_cts = ZSRR0_DCD;
538 } else {
539 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
540 cs->cs_wr5_rts = 0;
541 cs->cs_rr0_cts = 0;
542 }
543
544 if ((privflags & ZIP_FLAGS_DCDCTS) == 0) {
545 cs->cs_rr0_dcd &= ~(ZSRR0_CTS|ZSRR0_DCD);
546 cs->cs_rr0_cts &= ~(ZSRR0_CTS|ZSRR0_DCD);
547 }
548 if ((privflags & ZIP_FLAGS_DTRRTS) == 0) {
549 cs->cs_wr5_dtr &= ~(ZSWR5_RTS|ZSWR5_DTR);
550 cs->cs_wr5_rts &= ~(ZSWR5_RTS|ZSWR5_DTR);
551 }
552 splx(s);
553
554 /* Caller will stuff the pending registers. */
555 return (0);
556 }
557
558 /*
559 * Functions to read and write individual registers in a channel.
560 * The ZS chip requires a 1.6 uSec. recovery time between accesses,
561 * and the Alpha TC hardware does NOT take care of this for you.
562 * The delay is now handled inside the chip access functions.
563 * These could be inlines, but with the delay, speed is moot.
564 */
565 #if defined(pmax)
566 #undef DELAY
567 #define DELAY(x)
568 #endif
569
570 u_int
571 zs_read_reg(cs, reg)
572 struct zs_chanstate *cs;
573 u_int reg;
574 {
575 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
576 unsigned val;
577
578 zc->zc_csr = reg << 8;
579 tc_wmb();
580 DELAY(5);
581 val = (zc->zc_csr >> 8) & 0xff;
582 /* tc_mb(); */
583 DELAY(5);
584 return (val);
585 }
586
587 void
588 zs_write_reg(cs, reg, val)
589 struct zs_chanstate *cs;
590 u_int reg, val;
591 {
592 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
593
594 zc->zc_csr = reg << 8;
595 tc_wmb();
596 DELAY(5);
597 zc->zc_csr = val << 8;
598 tc_wmb();
599 DELAY(5);
600 }
601
602 u_int
603 zs_read_csr(cs)
604 struct zs_chanstate *cs;
605 {
606 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
607 unsigned val;
608
609 val = (zc->zc_csr >> 8) & 0xff;
610 /* tc_mb(); */
611 DELAY(5);
612 return (val);
613 }
614
615 void
616 zs_write_csr(cs, val)
617 struct zs_chanstate *cs;
618 u_int val;
619 {
620 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
621
622 zc->zc_csr = val << 8;
623 tc_wmb();
624 DELAY(5);
625 }
626
627 u_int
628 zs_read_data(cs)
629 struct zs_chanstate *cs;
630 {
631 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
632 unsigned val;
633
634 val = (zc->zc_data) >> 8 & 0xff;
635 /* tc_mb(); */
636 DELAY(5);
637 return (val);
638 }
639
640 void
641 zs_write_data(cs, val)
642 struct zs_chanstate *cs;
643 u_int val;
644 {
645 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr;
646
647 zc->zc_data = val << 8;
648 tc_wmb();
649 DELAY(5);
650 }
651
652 /****************************************************************
653 * Console support functions
654 ****************************************************************/
655
656 /*
657 * Handle user request to enter kernel debugger.
658 */
659 void
660 zs_abort(cs)
661 struct zs_chanstate *cs;
662 {
663 int rr0;
664
665 /* Wait for end of break. */
666 /* XXX - Limit the wait? */
667 do {
668 rr0 = zs_read_csr(cs);
669 } while (rr0 & ZSRR0_BREAK);
670
671 #if defined(KGDB)
672 zskgdb(cs);
673 #elif defined(DDB)
674 Debugger();
675 #else
676 printf("zs_abort: ignoring break on console\n");
677 #endif
678 }
679
680 /*
681 * Polled input char.
682 */
683 int
684 zs_getc(cs)
685 struct zs_chanstate *cs;
686 {
687 int s, c, rr0;
688
689 s = splhigh();
690 /* Wait for a character to arrive. */
691 do {
692 rr0 = zs_read_csr(cs);
693 } while ((rr0 & ZSRR0_RX_READY) == 0);
694
695 c = zs_read_data(cs);
696 splx(s);
697
698 /*
699 * This is used by the kd driver to read scan codes,
700 * so don't translate '\r' ==> '\n' here...
701 */
702 return (c);
703 }
704
705 /*
706 * Polled output char.
707 */
708 void
709 zs_putc(cs, c)
710 struct zs_chanstate *cs;
711 int c;
712 {
713 register int s, rr0;
714
715 s = splhigh();
716 /* Wait for transmitter to become ready. */
717 do {
718 rr0 = zs_read_csr(cs);
719 } while ((rr0 & ZSRR0_TX_READY) == 0);
720
721 zs_write_data(cs, c);
722
723 /* Wait for the character to be transmitted. */
724 do {
725 rr0 = zs_read_csr(cs);
726 } while ((rr0 & ZSRR0_TX_READY) == 0);
727 splx(s);
728 }
729
730 /*****************************************************************/
731
732 /*
733 * zs_ioasic_cninit --
734 * Initialize the serial channel for either a keyboard or
735 * a serial console.
736 */
737 void
738 zs_ioasic_cninit(ioasic_addr, zs_offset, channel)
739 tc_addr_t ioasic_addr;
740 tc_offset_t zs_offset;
741 int channel;
742 {
743 struct zs_chanstate *cs;
744 tc_addr_t zs_addr;
745 struct zshan *zc;
746 u_long zflg;
747
748 /*
749 * Initialize the console finder helpers.
750 */
751 zs_ioasic_console_offset = zs_offset;
752 zs_ioasic_console_channel = channel;
753 zs_ioasic_console = 1;
754
755 /*
756 * Pointer to channel state.
757 */
758 cs = &zs_ioasic_conschanstate_store;
759
760 /*
761 * Compute the physical address of the chip, "map" it via
762 * K0SEG, and then get the address of the actual channel.
763 */
764 #if defined(__alpha__) || defined(alpha)
765 zs_addr = ALPHA_PHYS_TO_K0SEG(ioasic_addr + zs_offset);
766 #endif
767 #if defined(pmax)
768 zs_addr = MIPS_PHYS_TO_KSEG1(ioasic_addr + zs_offset);
769 #endif
770 zc = zs_ioasic_get_chan_addr(zs_addr, channel);
771
772 /* Setup temporary chanstate. */
773 cs->cs_reg_csr = (volatile void *)&zc->zc_csr;
774
775 cs->cs_channel = channel;
776 cs->cs_ops = &zsops_null;
777 cs->cs_brg_clk = PCLK / 16;
778
779 /* Initialize the pending registers. */
780 bcopy(zs_ioasic_init_reg, cs->cs_preg, 16);
781 /* cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS); */
782
783 /*
784 * DCD and CTS interrupts are only meaningful on
785 * SCC 0/B, and RTS and DTR only on B of SCC 0 & 1.
786 *
787 * XXX This is sorta gross.
788 */
789 if (zs_offset == 0x00100000 && channel == 1)
790 zflg = ZIP_FLAGS_DCDCTS;
791 else
792 zflg = 0;
793 if (channel == 1)
794 zflg |= ZIP_FLAGS_DTRRTS;
795 (u_long)cs->cs_private = zflg;
796
797 /* Clear the master interrupt enable. */
798 zs_write_reg(cs, 9, 0);
799
800 /* Reset the whole SCC chip. */
801 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
802
803 /* Copy "pending" to "current" and H/W. */
804 zs_loadchannelregs(cs);
805 }
806
807 /*
808 * zs_ioasic_cnattach --
809 * Initialize and attach a serial console.
810 */
811 void
812 zs_ioasic_cnattach(ioasic_addr, zs_offset, channel)
813 tc_addr_t ioasic_addr;
814 tc_offset_t zs_offset;
815 int channel;
816 {
817 struct zs_chanstate *cs = &zs_ioasic_conschanstate_store;
818 extern const struct cdevsw zstty_cdevsw;
819
820 zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
821 cs->cs_defspeed = 9600;
822 cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
823
824 /* Point the console at the SCC. */
825 cn_tab = &zs_ioasic_cons;
826 cn_tab->cn_pri = CN_REMOTE;
827 cn_tab->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw),
828 (zs_offset == 0x100000) ? 0 : 1);
829 }
830
831 /*
832 * zs_ioasic_lk201_cnattach --
833 * Initialize and attach a keyboard.
834 */
835 int
836 zs_ioasic_lk201_cnattach(ioasic_addr, zs_offset, channel)
837 tc_addr_t ioasic_addr;
838 tc_offset_t zs_offset;
839 int channel;
840 {
841 #if (NZSKBD > 0)
842 struct zs_chanstate *cs = &zs_ioasic_conschanstate_store;
843
844 zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
845 cs->cs_defspeed = 4800;
846 cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
847 return (zskbd_cnattach(cs));
848 #else
849 return (ENXIO);
850 #endif
851 }
852
853 int
854 zs_ioasic_isconsole(offset, channel)
855 tc_offset_t offset;
856 int channel;
857 {
858
859 if (zs_ioasic_console &&
860 offset == zs_ioasic_console_offset &&
861 channel == zs_ioasic_console_channel)
862 return (1);
863
864 return (0);
865 }
866
867 /*
868 * Polled console input putchar.
869 */
870 int
871 zs_ioasic_cngetc(dev)
872 dev_t dev;
873 {
874
875 return (zs_getc(&zs_ioasic_conschanstate_store));
876 }
877
878 /*
879 * Polled console output putchar.
880 */
881 void
882 zs_ioasic_cnputc(dev, c)
883 dev_t dev;
884 int c;
885 {
886
887 zs_putc(&zs_ioasic_conschanstate_store, c);
888 }
889
890 /*
891 * Set polling/no polling on console.
892 */
893 void
894 zs_ioasic_cnpollc(dev, onoff)
895 dev_t dev;
896 int onoff;
897 {
898
899 /* XXX ??? */
900 }
901