tprof.c revision 1.21.2.1 1 /* $NetBSD: tprof.c,v 1.21.2.1 2022/12/23 08:09:48 martin Exp $ */
2
3 /*-
4 * Copyright (c)2008,2009,2010 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: tprof.c,v 1.21.2.1 2022/12/23 08:09:48 martin Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35
36 #include <sys/callout.h>
37 #include <sys/conf.h>
38 #include <sys/cpu.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41 #include <sys/percpu.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/queue.h>
45 #include <sys/select.h>
46 #include <sys/workqueue.h>
47 #include <sys/xcall.h>
48
49 #include <dev/tprof/tprof.h>
50 #include <dev/tprof/tprof_ioctl.h>
51
52 #include "ioconf.h"
53
54 #ifndef TPROF_HZ
55 #define TPROF_HZ 10000
56 #endif
57
58 /*
59 * locking order:
60 * tprof_reader_lock -> tprof_lock
61 * tprof_startstop_lock -> tprof_lock
62 */
63
64 /*
65 * protected by:
66 * L: tprof_lock
67 * R: tprof_reader_lock
68 * S: tprof_startstop_lock
69 * s: writer should hold tprof_startstop_lock and tprof_lock
70 * reader should hold tprof_startstop_lock or tprof_lock
71 */
72
73 typedef struct tprof_buf {
74 u_int b_used;
75 u_int b_size;
76 u_int b_overflow;
77 u_int b_unused;
78 STAILQ_ENTRY(tprof_buf) b_list;
79 tprof_sample_t b_data[];
80 } tprof_buf_t;
81 #define TPROF_BUF_BYTESIZE(sz) \
82 (sizeof(tprof_buf_t) + (sz) * sizeof(tprof_sample_t))
83 #define TPROF_MAX_SAMPLES_PER_BUF TPROF_HZ
84
85 typedef struct {
86 tprof_buf_t *c_buf;
87 uint32_t c_cpuid;
88 struct work c_work;
89 callout_t c_callout;
90 } __aligned(CACHE_LINE_SIZE) tprof_cpu_t;
91
92 typedef struct tprof_backend {
93 /*
94 * tprof_backend_softc_t must be passed as an argument to the interrupt
95 * handler, but since this is difficult to implement in armv7/v8. Then,
96 * tprof_backend is exposed. Additionally, softc must be placed at the
97 * beginning of struct tprof_backend.
98 */
99 tprof_backend_softc_t tb_softc;
100
101 const char *tb_name;
102 const tprof_backend_ops_t *tb_ops;
103 LIST_ENTRY(tprof_backend) tb_list;
104 } tprof_backend_t;
105
106 static kmutex_t tprof_lock;
107 static u_int tprof_nworker; /* L: # of running worker LWPs */
108 static lwp_t *tprof_owner;
109 static STAILQ_HEAD(, tprof_buf) tprof_list; /* L: global buffer list */
110 static u_int tprof_nbuf_on_list; /* L: # of buffers on tprof_list */
111 static struct workqueue *tprof_wq;
112 static struct percpu *tprof_cpus __read_mostly; /* tprof_cpu_t * */
113 static u_int tprof_samples_per_buf;
114 static u_int tprof_max_buf;
115
116 tprof_backend_t *tprof_backend; /* S: */
117 static LIST_HEAD(, tprof_backend) tprof_backends =
118 LIST_HEAD_INITIALIZER(tprof_backend); /* S: */
119
120 static kmutex_t tprof_reader_lock;
121 static kcondvar_t tprof_reader_cv; /* L: */
122 static off_t tprof_reader_offset; /* R: */
123
124 static kmutex_t tprof_startstop_lock;
125 static kcondvar_t tprof_cv; /* L: */
126 static struct selinfo tprof_selp; /* L: */
127
128 static struct tprof_stat tprof_stat; /* L: */
129
130 static tprof_cpu_t *
131 tprof_cpu_direct(struct cpu_info *ci)
132 {
133 tprof_cpu_t **cp;
134
135 cp = percpu_getptr_remote(tprof_cpus, ci);
136 return *cp;
137 }
138
139 static tprof_cpu_t *
140 tprof_cpu(struct cpu_info *ci)
141 {
142 tprof_cpu_t *c;
143
144 /*
145 * As long as xcalls are blocked -- e.g., by kpreempt_disable
146 * -- the percpu object will not be swapped and destroyed. We
147 * can't write to it, because the data may have already been
148 * moved to a new buffer, but we can safely read from it.
149 */
150 kpreempt_disable();
151 c = tprof_cpu_direct(ci);
152 kpreempt_enable();
153
154 return c;
155 }
156
157 static tprof_cpu_t *
158 tprof_curcpu(void)
159 {
160
161 return tprof_cpu(curcpu());
162 }
163
164 static tprof_buf_t *
165 tprof_buf_alloc(void)
166 {
167 tprof_buf_t *new;
168 u_int size = tprof_samples_per_buf;
169
170 new = kmem_alloc(TPROF_BUF_BYTESIZE(size), KM_SLEEP);
171 new->b_used = 0;
172 new->b_size = size;
173 new->b_overflow = 0;
174 return new;
175 }
176
177 static void
178 tprof_buf_free(tprof_buf_t *buf)
179 {
180
181 kmem_free(buf, TPROF_BUF_BYTESIZE(buf->b_size));
182 }
183
184 static tprof_buf_t *
185 tprof_buf_switch(tprof_cpu_t *c, tprof_buf_t *new)
186 {
187 tprof_buf_t *old;
188
189 old = c->c_buf;
190 c->c_buf = new;
191 return old;
192 }
193
194 static tprof_buf_t *
195 tprof_buf_refresh(void)
196 {
197 tprof_cpu_t * const c = tprof_curcpu();
198 tprof_buf_t *new;
199
200 new = tprof_buf_alloc();
201 return tprof_buf_switch(c, new);
202 }
203
204 static void
205 tprof_worker(struct work *wk, void *dummy)
206 {
207 tprof_cpu_t * const c = tprof_curcpu();
208 tprof_buf_t *buf;
209 tprof_backend_t *tb;
210 bool shouldstop;
211
212 KASSERT(wk == &c->c_work);
213 KASSERT(dummy == NULL);
214
215 /*
216 * get a per cpu buffer.
217 */
218 buf = tprof_buf_refresh();
219
220 /*
221 * and put it on the global list for read(2).
222 */
223 mutex_enter(&tprof_lock);
224 tb = tprof_backend;
225 shouldstop = (tb == NULL || tb->tb_softc.sc_ctr_running_mask == 0);
226 if (shouldstop) {
227 KASSERT(tprof_nworker > 0);
228 tprof_nworker--;
229 cv_broadcast(&tprof_cv);
230 cv_broadcast(&tprof_reader_cv);
231 }
232 if (buf->b_used == 0) {
233 tprof_stat.ts_emptybuf++;
234 } else if (tprof_nbuf_on_list < tprof_max_buf) {
235 tprof_stat.ts_sample += buf->b_used;
236 tprof_stat.ts_overflow += buf->b_overflow;
237 tprof_stat.ts_buf++;
238 STAILQ_INSERT_TAIL(&tprof_list, buf, b_list);
239 tprof_nbuf_on_list++;
240 buf = NULL;
241 selnotify(&tprof_selp, 0, NOTE_SUBMIT);
242 cv_broadcast(&tprof_reader_cv);
243 } else {
244 tprof_stat.ts_dropbuf_sample += buf->b_used;
245 tprof_stat.ts_dropbuf++;
246 }
247 mutex_exit(&tprof_lock);
248 if (buf) {
249 tprof_buf_free(buf);
250 }
251 if (!shouldstop) {
252 callout_schedule(&c->c_callout, hz / 8);
253 }
254 }
255
256 static void
257 tprof_kick(void *vp)
258 {
259 struct cpu_info * const ci = vp;
260 tprof_cpu_t * const c = tprof_cpu(ci);
261
262 workqueue_enqueue(tprof_wq, &c->c_work, ci);
263 }
264
265 static void
266 tprof_stop1(void)
267 {
268 CPU_INFO_ITERATOR cii;
269 struct cpu_info *ci;
270
271 KASSERT(mutex_owned(&tprof_startstop_lock));
272 KASSERT(tprof_nworker == 0);
273
274 for (CPU_INFO_FOREACH(cii, ci)) {
275 tprof_cpu_t * const c = tprof_cpu(ci);
276 tprof_buf_t *old;
277
278 old = tprof_buf_switch(c, NULL);
279 if (old != NULL) {
280 tprof_buf_free(old);
281 }
282 callout_destroy(&c->c_callout);
283 }
284 workqueue_destroy(tprof_wq);
285 }
286
287 static void
288 tprof_getinfo(struct tprof_info *info)
289 {
290 tprof_backend_t *tb;
291
292 KASSERT(mutex_owned(&tprof_startstop_lock));
293
294 memset(info, 0, sizeof(*info));
295 info->ti_version = TPROF_VERSION;
296 if ((tb = tprof_backend) != NULL) {
297 info->ti_ident = tb->tb_ops->tbo_ident();
298 }
299 }
300
301 static int
302 tprof_getncounters(u_int *ncounters)
303 {
304 tprof_backend_t *tb;
305
306 tb = tprof_backend;
307 if (tb == NULL)
308 return ENOENT;
309
310 *ncounters = tb->tb_ops->tbo_ncounters();
311 return 0;
312 }
313
314 static void
315 tprof_start_cpu(void *arg1, void *arg2)
316 {
317 tprof_backend_t *tb = arg1;
318 tprof_countermask_t runmask = (uintptr_t)arg2;
319
320 tb->tb_ops->tbo_start(runmask);
321 }
322
323 static void
324 tprof_stop_cpu(void *arg1, void *arg2)
325 {
326 tprof_backend_t *tb = arg1;
327 tprof_countermask_t stopmask = (uintptr_t)arg2;
328
329 tb->tb_ops->tbo_stop(stopmask);
330 }
331
332 static int
333 tprof_start(tprof_countermask_t runmask)
334 {
335 CPU_INFO_ITERATOR cii;
336 struct cpu_info *ci;
337 tprof_backend_t *tb;
338 uint64_t xc;
339 int error;
340 bool firstrun;
341
342 KASSERT(mutex_owned(&tprof_startstop_lock));
343
344 tb = tprof_backend;
345 if (tb == NULL) {
346 error = ENOENT;
347 goto done;
348 }
349
350 runmask &= ~tb->tb_softc.sc_ctr_running_mask;
351 runmask &= tb->tb_softc.sc_ctr_configured_mask;
352 if (runmask == 0) {
353 /*
354 * targets are already running.
355 * unconfigured counters are ignored.
356 */
357 error = 0;
358 goto done;
359 }
360
361 firstrun = (tb->tb_softc.sc_ctr_running_mask == 0);
362 if (firstrun) {
363 if (tb->tb_ops->tbo_establish != NULL) {
364 error = tb->tb_ops->tbo_establish(&tb->tb_softc);
365 if (error != 0)
366 goto done;
367 }
368
369 tprof_samples_per_buf = TPROF_MAX_SAMPLES_PER_BUF;
370 tprof_max_buf = ncpu * 3;
371 error = workqueue_create(&tprof_wq, "tprofmv", tprof_worker,
372 NULL, PRI_NONE, IPL_SOFTCLOCK, WQ_MPSAFE | WQ_PERCPU);
373 if (error != 0) {
374 if (tb->tb_ops->tbo_disestablish != NULL)
375 tb->tb_ops->tbo_disestablish(&tb->tb_softc);
376 goto done;
377 }
378
379 for (CPU_INFO_FOREACH(cii, ci)) {
380 tprof_cpu_t * const c = tprof_cpu(ci);
381 tprof_buf_t *new;
382 tprof_buf_t *old;
383
384 new = tprof_buf_alloc();
385 old = tprof_buf_switch(c, new);
386 if (old != NULL) {
387 tprof_buf_free(old);
388 }
389 callout_init(&c->c_callout, CALLOUT_MPSAFE);
390 callout_setfunc(&c->c_callout, tprof_kick, ci);
391 }
392 }
393
394 runmask &= tb->tb_softc.sc_ctr_configured_mask;
395 xc = xc_broadcast(0, tprof_start_cpu, tb, (void *)(uintptr_t)runmask);
396 xc_wait(xc);
397 mutex_enter(&tprof_lock);
398 tb->tb_softc.sc_ctr_running_mask |= runmask;
399 mutex_exit(&tprof_lock);
400
401 if (firstrun) {
402 for (CPU_INFO_FOREACH(cii, ci)) {
403 tprof_cpu_t * const c = tprof_cpu(ci);
404
405 mutex_enter(&tprof_lock);
406 tprof_nworker++;
407 mutex_exit(&tprof_lock);
408 workqueue_enqueue(tprof_wq, &c->c_work, ci);
409 }
410 }
411 error = 0;
412
413 done:
414 return error;
415 }
416
417 static void
418 tprof_stop(tprof_countermask_t stopmask)
419 {
420 tprof_backend_t *tb;
421 uint64_t xc;
422
423 tb = tprof_backend;
424 if (tb == NULL)
425 return;
426
427 KASSERT(mutex_owned(&tprof_startstop_lock));
428 stopmask &= tb->tb_softc.sc_ctr_running_mask;
429 if (stopmask == 0) {
430 /* targets are not running */
431 goto done;
432 }
433
434 xc = xc_broadcast(0, tprof_stop_cpu, tb, (void *)(uintptr_t)stopmask);
435 xc_wait(xc);
436 mutex_enter(&tprof_lock);
437 tb->tb_softc.sc_ctr_running_mask &= ~stopmask;
438 mutex_exit(&tprof_lock);
439
440 /* all counters have stopped? */
441 if (tb->tb_softc.sc_ctr_running_mask == 0) {
442 mutex_enter(&tprof_lock);
443 cv_broadcast(&tprof_reader_cv);
444 while (tprof_nworker > 0) {
445 cv_wait(&tprof_cv, &tprof_lock);
446 }
447 mutex_exit(&tprof_lock);
448
449 tprof_stop1();
450 if (tb->tb_ops->tbo_disestablish != NULL)
451 tb->tb_ops->tbo_disestablish(&tb->tb_softc);
452 }
453 done:
454 ;
455 }
456
457 static void
458 tprof_init_percpu_counters_offset(void *vp, void *vp2, struct cpu_info *ci)
459 {
460 uint64_t *counters_offset = vp;
461 u_int counter = (uintptr_t)vp2;
462
463 tprof_backend_t *tb = tprof_backend;
464 tprof_param_t *param = &tb->tb_softc.sc_count[counter].ctr_param;
465 counters_offset[counter] = param->p_value;
466 }
467
468 static void
469 tprof_configure_event_cpu(void *arg1, void *arg2)
470 {
471 tprof_backend_t *tb = arg1;
472 u_int counter = (uintptr_t)arg2;
473 tprof_param_t *param = &tb->tb_softc.sc_count[counter].ctr_param;
474
475 tb->tb_ops->tbo_configure_event(counter, param);
476 }
477
478 static int
479 tprof_configure_event(const tprof_param_t *param)
480 {
481 tprof_backend_t *tb;
482 tprof_backend_softc_t *sc;
483 tprof_param_t *sc_param;
484 uint64_t xc;
485 int c, error;
486
487 if ((param->p_flags & (TPROF_PARAM_USER | TPROF_PARAM_KERN)) == 0) {
488 error = EINVAL;
489 goto done;
490 }
491
492 tb = tprof_backend;
493 if (tb == NULL) {
494 error = ENOENT;
495 goto done;
496 }
497 sc = &tb->tb_softc;
498
499 c = param->p_counter;
500 if (c >= tb->tb_softc.sc_ncounters) {
501 error = EINVAL;
502 goto done;
503 }
504
505 if (tb->tb_ops->tbo_valid_event != NULL) {
506 error = tb->tb_ops->tbo_valid_event(param->p_counter, param);
507 if (error != 0)
508 goto done;
509 }
510
511 /* if already running, stop the counter */
512 if (ISSET(c, tb->tb_softc.sc_ctr_running_mask))
513 tprof_stop(__BIT(c));
514
515 sc->sc_count[c].ctr_bitwidth =
516 tb->tb_ops->tbo_counter_bitwidth(param->p_counter);
517
518 sc_param = &sc->sc_count[c].ctr_param;
519 memcpy(sc_param, param, sizeof(*sc_param)); /* save copy of param */
520
521 if (ISSET(param->p_flags, TPROF_PARAM_PROFILE)) {
522 uint64_t freq, inum, dnum;
523
524 freq = tb->tb_ops->tbo_counter_estimate_freq(c);
525 sc->sc_count[c].ctr_counter_val = freq / TPROF_HZ;
526 if (sc->sc_count[c].ctr_counter_val == 0) {
527 printf("%s: counter#%d frequency (%"PRIu64") is"
528 " very low relative to TPROF_HZ (%u)\n", __func__,
529 c, freq, TPROF_HZ);
530 sc->sc_count[c].ctr_counter_val =
531 4000000000ULL / TPROF_HZ;
532 }
533
534 switch (param->p_flags & TPROF_PARAM_VALUE2_MASK) {
535 case TPROF_PARAM_VALUE2_SCALE:
536 if (sc_param->p_value2 == 0)
537 break;
538 /*
539 * p_value2 is 64-bit fixed-point
540 * upper 32 bits are the integer part
541 * lower 32 bits are the decimal part
542 */
543 inum = sc_param->p_value2 >> 32;
544 dnum = sc_param->p_value2 & __BITS(31, 0);
545 sc->sc_count[c].ctr_counter_val =
546 sc->sc_count[c].ctr_counter_val * inum +
547 (sc->sc_count[c].ctr_counter_val * dnum >> 32);
548 if (sc->sc_count[c].ctr_counter_val == 0)
549 sc->sc_count[c].ctr_counter_val = 1;
550 break;
551 case TPROF_PARAM_VALUE2_TRIGGERCOUNT:
552 if (sc_param->p_value2 == 0)
553 sc_param->p_value2 = 1;
554 if (sc_param->p_value2 >
555 __BITS(sc->sc_count[c].ctr_bitwidth - 1, 0)) {
556 sc_param->p_value2 =
557 __BITS(sc->sc_count[c].ctr_bitwidth - 1, 0);
558 }
559 sc->sc_count[c].ctr_counter_val = sc_param->p_value2;
560 break;
561 default:
562 break;
563 }
564 sc->sc_count[c].ctr_counter_reset_val =
565 -sc->sc_count[c].ctr_counter_val;
566 sc->sc_count[c].ctr_counter_reset_val &=
567 __BITS(sc->sc_count[c].ctr_bitwidth - 1, 0);
568 } else {
569 sc->sc_count[c].ctr_counter_val = 0;
570 sc->sc_count[c].ctr_counter_reset_val = 0;
571 }
572
573 /* At this point, p_value is used as an initial value */
574 percpu_foreach(tb->tb_softc.sc_ctr_offset_percpu,
575 tprof_init_percpu_counters_offset, (void *)(uintptr_t)c);
576 /* On the backend side, p_value is used as the reset value */
577 sc_param->p_value = tb->tb_softc.sc_count[c].ctr_counter_reset_val;
578
579 xc = xc_broadcast(0, tprof_configure_event_cpu,
580 tb, (void *)(uintptr_t)c);
581 xc_wait(xc);
582
583 mutex_enter(&tprof_lock);
584 /* update counters bitmasks */
585 SET(tb->tb_softc.sc_ctr_configured_mask, __BIT(c));
586 CLR(tb->tb_softc.sc_ctr_prof_mask, __BIT(c));
587 CLR(tb->tb_softc.sc_ctr_ovf_mask, __BIT(c));
588 /* profiled counter requires overflow handling */
589 if (ISSET(param->p_flags, TPROF_PARAM_PROFILE)) {
590 SET(tb->tb_softc.sc_ctr_prof_mask, __BIT(c));
591 SET(tb->tb_softc.sc_ctr_ovf_mask, __BIT(c));
592 }
593 /* counters with less than 64bits also require overflow handling */
594 if (sc->sc_count[c].ctr_bitwidth != 64)
595 SET(tb->tb_softc.sc_ctr_ovf_mask, __BIT(c));
596 mutex_exit(&tprof_lock);
597
598 error = 0;
599
600 done:
601 return error;
602 }
603
604 static void
605 tprof_getcounts_cpu(void *arg1, void *arg2)
606 {
607 tprof_backend_t *tb = arg1;
608 tprof_backend_softc_t *sc = &tb->tb_softc;
609 uint64_t *counters = arg2;
610 uint64_t *counters_offset;
611 unsigned int c;
612
613 tprof_countermask_t configmask = sc->sc_ctr_configured_mask;
614 counters_offset = percpu_getref(sc->sc_ctr_offset_percpu);
615 for (c = 0; c < sc->sc_ncounters; c++) {
616 if (ISSET(configmask, __BIT(c))) {
617 uint64_t ctr = tb->tb_ops->tbo_counter_read(c);
618 counters[c] = counters_offset[c] +
619 ((ctr - sc->sc_count[c].ctr_counter_reset_val) &
620 __BITS(sc->sc_count[c].ctr_bitwidth - 1, 0));
621 } else {
622 counters[c] = 0;
623 }
624 }
625 percpu_putref(sc->sc_ctr_offset_percpu);
626 }
627
628 static int
629 tprof_getcounts(tprof_counts_t *counts)
630 {
631 struct cpu_info *ci;
632 tprof_backend_t *tb;
633 uint64_t xc;
634
635 tb = tprof_backend;
636 if (tb == NULL)
637 return ENOENT;
638
639 if (counts->c_cpu >= ncpu)
640 return ESRCH;
641 ci = cpu_lookup(counts->c_cpu);
642 if (ci == NULL)
643 return ESRCH;
644
645 xc = xc_unicast(0, tprof_getcounts_cpu, tb, counts->c_count, ci);
646 xc_wait(xc);
647
648 counts->c_ncounters = tb->tb_softc.sc_ncounters;
649 counts->c_runningmask = tb->tb_softc.sc_ctr_running_mask;
650 return 0;
651 }
652
653 /*
654 * tprof_clear: drain unread samples.
655 */
656
657 static void
658 tprof_clear(void)
659 {
660 tprof_buf_t *buf;
661
662 mutex_enter(&tprof_reader_lock);
663 mutex_enter(&tprof_lock);
664 while ((buf = STAILQ_FIRST(&tprof_list)) != NULL) {
665 if (buf != NULL) {
666 STAILQ_REMOVE_HEAD(&tprof_list, b_list);
667 KASSERT(tprof_nbuf_on_list > 0);
668 tprof_nbuf_on_list--;
669 mutex_exit(&tprof_lock);
670 tprof_buf_free(buf);
671 mutex_enter(&tprof_lock);
672 }
673 }
674 KASSERT(tprof_nbuf_on_list == 0);
675 mutex_exit(&tprof_lock);
676 tprof_reader_offset = 0;
677 mutex_exit(&tprof_reader_lock);
678
679 memset(&tprof_stat, 0, sizeof(tprof_stat));
680 }
681
682 static tprof_backend_t *
683 tprof_backend_lookup(const char *name)
684 {
685 tprof_backend_t *tb;
686
687 KASSERT(mutex_owned(&tprof_startstop_lock));
688
689 LIST_FOREACH(tb, &tprof_backends, tb_list) {
690 if (!strcmp(tb->tb_name, name)) {
691 return tb;
692 }
693 }
694 return NULL;
695 }
696
697 /* -------------------- backend interfaces */
698
699 /*
700 * tprof_sample: record a sample on the per-cpu buffer.
701 *
702 * be careful; can be called in NMI context.
703 * we are bluntly assuming the followings are safe.
704 * curcpu()
705 * curlwp->l_lid
706 * curlwp->l_proc->p_pid
707 */
708
709 void
710 tprof_sample(void *unused, const tprof_frame_info_t *tfi)
711 {
712 tprof_cpu_t * const c = tprof_cpu_direct(curcpu());
713 tprof_buf_t * const buf = c->c_buf;
714 tprof_sample_t *sp;
715 const uintptr_t pc = tfi->tfi_pc;
716 const lwp_t * const l = curlwp;
717 u_int idx;
718
719 idx = buf->b_used;
720 if (__predict_false(idx >= buf->b_size)) {
721 buf->b_overflow++;
722 return;
723 }
724 sp = &buf->b_data[idx];
725 sp->s_pid = l->l_proc->p_pid;
726 sp->s_lwpid = l->l_lid;
727 sp->s_cpuid = c->c_cpuid;
728 sp->s_flags = ((tfi->tfi_inkernel) ? TPROF_SAMPLE_INKERNEL : 0) |
729 __SHIFTIN(tfi->tfi_counter, TPROF_SAMPLE_COUNTER_MASK);
730 sp->s_pc = pc;
731 buf->b_used = idx + 1;
732 }
733
734 /*
735 * tprof_backend_register:
736 */
737
738 int
739 tprof_backend_register(const char *name, const tprof_backend_ops_t *ops,
740 int vers)
741 {
742 tprof_backend_t *tb;
743
744 if (vers != TPROF_BACKEND_VERSION) {
745 return EINVAL;
746 }
747
748 mutex_enter(&tprof_startstop_lock);
749 tb = tprof_backend_lookup(name);
750 if (tb != NULL) {
751 mutex_exit(&tprof_startstop_lock);
752 return EEXIST;
753 }
754 #if 1 /* XXX for now */
755 if (!LIST_EMPTY(&tprof_backends)) {
756 mutex_exit(&tprof_startstop_lock);
757 return ENOTSUP;
758 }
759 #endif
760 tb = kmem_zalloc(sizeof(*tb), KM_SLEEP);
761 tb->tb_name = name;
762 tb->tb_ops = ops;
763 LIST_INSERT_HEAD(&tprof_backends, tb, tb_list);
764 #if 1 /* XXX for now */
765 if (tprof_backend == NULL) {
766 tprof_backend = tb;
767 }
768 #endif
769 mutex_exit(&tprof_startstop_lock);
770
771 /* init backend softc */
772 tb->tb_softc.sc_ncounters = tb->tb_ops->tbo_ncounters();
773 tb->tb_softc.sc_ctr_offset_percpu_size =
774 sizeof(uint64_t) * tb->tb_softc.sc_ncounters;
775 tb->tb_softc.sc_ctr_offset_percpu =
776 percpu_alloc(tb->tb_softc.sc_ctr_offset_percpu_size);
777
778 return 0;
779 }
780
781 /*
782 * tprof_backend_unregister:
783 */
784
785 int
786 tprof_backend_unregister(const char *name)
787 {
788 tprof_backend_t *tb;
789
790 mutex_enter(&tprof_startstop_lock);
791 tb = tprof_backend_lookup(name);
792 #if defined(DIAGNOSTIC)
793 if (tb == NULL) {
794 mutex_exit(&tprof_startstop_lock);
795 panic("%s: not found '%s'", __func__, name);
796 }
797 #endif /* defined(DIAGNOSTIC) */
798 if (tb->tb_softc.sc_ctr_running_mask != 0) {
799 mutex_exit(&tprof_startstop_lock);
800 return EBUSY;
801 }
802 #if 1 /* XXX for now */
803 if (tprof_backend == tb) {
804 tprof_backend = NULL;
805 }
806 #endif
807 LIST_REMOVE(tb, tb_list);
808 mutex_exit(&tprof_startstop_lock);
809
810 /* fini backend softc */
811 percpu_free(tb->tb_softc.sc_ctr_offset_percpu,
812 tb->tb_softc.sc_ctr_offset_percpu_size);
813
814 /* free backend */
815 kmem_free(tb, sizeof(*tb));
816
817 return 0;
818 }
819
820 /* -------------------- cdevsw interfaces */
821
822 static int
823 tprof_open(dev_t dev, int flags, int type, struct lwp *l)
824 {
825
826 if (minor(dev) != 0) {
827 return EXDEV;
828 }
829 mutex_enter(&tprof_lock);
830 if (tprof_owner != NULL) {
831 mutex_exit(&tprof_lock);
832 return EBUSY;
833 }
834 tprof_owner = curlwp;
835 mutex_exit(&tprof_lock);
836
837 return 0;
838 }
839
840 static int
841 tprof_close(dev_t dev, int flags, int type, struct lwp *l)
842 {
843
844 KASSERT(minor(dev) == 0);
845
846 mutex_enter(&tprof_startstop_lock);
847 mutex_enter(&tprof_lock);
848 tprof_owner = NULL;
849 mutex_exit(&tprof_lock);
850 tprof_stop(TPROF_COUNTERMASK_ALL);
851 tprof_clear();
852
853 tprof_backend_t *tb = tprof_backend;
854 if (tb != NULL) {
855 KASSERT(tb->tb_softc.sc_ctr_running_mask == 0);
856 tb->tb_softc.sc_ctr_configured_mask = 0;
857 tb->tb_softc.sc_ctr_prof_mask = 0;
858 tb->tb_softc.sc_ctr_ovf_mask = 0;
859 }
860
861 mutex_exit(&tprof_startstop_lock);
862
863 return 0;
864 }
865
866 static int
867 tprof_poll(dev_t dev, int events, struct lwp *l)
868 {
869 int revents;
870
871 revents = events & (POLLIN | POLLRDNORM);
872 if (revents == 0)
873 return 0;
874
875 mutex_enter(&tprof_lock);
876 if (STAILQ_EMPTY(&tprof_list)) {
877 revents = 0;
878 selrecord(l, &tprof_selp);
879 }
880 mutex_exit(&tprof_lock);
881
882 return revents;
883 }
884
885 static void
886 filt_tprof_read_detach(struct knote *kn)
887 {
888 mutex_enter(&tprof_lock);
889 selremove_knote(&tprof_selp, kn);
890 mutex_exit(&tprof_lock);
891 }
892
893 static int
894 filt_tprof_read_event(struct knote *kn, long hint)
895 {
896 int rv = 0;
897
898 if ((hint & NOTE_SUBMIT) == 0)
899 mutex_enter(&tprof_lock);
900
901 if (!STAILQ_EMPTY(&tprof_list)) {
902 tprof_buf_t *buf;
903 int64_t n = 0;
904
905 STAILQ_FOREACH(buf, &tprof_list, b_list) {
906 n += buf->b_used;
907 }
908 kn->kn_data = n * sizeof(tprof_sample_t);
909
910 rv = 1;
911 }
912
913 if ((hint & NOTE_SUBMIT) == 0)
914 mutex_exit(&tprof_lock);
915
916 return rv;
917 }
918
919 static const struct filterops tprof_read_filtops = {
920 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
921 .f_attach = NULL,
922 .f_detach = filt_tprof_read_detach,
923 .f_event = filt_tprof_read_event,
924 };
925
926 static int
927 tprof_kqfilter(dev_t dev, struct knote *kn)
928 {
929 switch (kn->kn_filter) {
930 case EVFILT_READ:
931 kn->kn_fop = &tprof_read_filtops;
932 mutex_enter(&tprof_lock);
933 selrecord_knote(&tprof_selp, kn);
934 mutex_exit(&tprof_lock);
935 break;
936 default:
937 return EINVAL;
938 }
939
940 return 0;
941 }
942
943 static int
944 tprof_read(dev_t dev, struct uio *uio, int flags)
945 {
946 tprof_buf_t *buf;
947 size_t bytes;
948 size_t resid;
949 size_t done = 0;
950 int error = 0;
951
952 KASSERT(minor(dev) == 0);
953 mutex_enter(&tprof_reader_lock);
954 while (uio->uio_resid > 0 && error == 0) {
955 /*
956 * take the first buffer from the list.
957 */
958 mutex_enter(&tprof_lock);
959 buf = STAILQ_FIRST(&tprof_list);
960 if (buf == NULL) {
961 if (tprof_nworker == 0 || done != 0) {
962 mutex_exit(&tprof_lock);
963 error = 0;
964 break;
965 }
966 mutex_exit(&tprof_reader_lock);
967 error = cv_wait_sig(&tprof_reader_cv, &tprof_lock);
968 mutex_exit(&tprof_lock);
969 mutex_enter(&tprof_reader_lock);
970 continue;
971 }
972 STAILQ_REMOVE_HEAD(&tprof_list, b_list);
973 KASSERT(tprof_nbuf_on_list > 0);
974 tprof_nbuf_on_list--;
975 mutex_exit(&tprof_lock);
976
977 /*
978 * copy it out.
979 */
980 bytes = MIN(buf->b_used * sizeof(tprof_sample_t) -
981 tprof_reader_offset, uio->uio_resid);
982 resid = uio->uio_resid;
983 error = uiomove((char *)buf->b_data + tprof_reader_offset,
984 bytes, uio);
985 done = resid - uio->uio_resid;
986 tprof_reader_offset += done;
987
988 /*
989 * if we didn't consume the whole buffer,
990 * put it back to the list.
991 */
992 if (tprof_reader_offset <
993 buf->b_used * sizeof(tprof_sample_t)) {
994 mutex_enter(&tprof_lock);
995 STAILQ_INSERT_HEAD(&tprof_list, buf, b_list);
996 tprof_nbuf_on_list++;
997 cv_broadcast(&tprof_reader_cv);
998 mutex_exit(&tprof_lock);
999 } else {
1000 tprof_buf_free(buf);
1001 tprof_reader_offset = 0;
1002 }
1003 }
1004 mutex_exit(&tprof_reader_lock);
1005
1006 return error;
1007 }
1008
1009 static int
1010 tprof_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
1011 {
1012 const tprof_param_t *param;
1013 tprof_counts_t *counts;
1014 int error = 0;
1015
1016 KASSERT(minor(dev) == 0);
1017
1018 switch (cmd) {
1019 case TPROF_IOC_GETINFO:
1020 mutex_enter(&tprof_startstop_lock);
1021 tprof_getinfo(data);
1022 mutex_exit(&tprof_startstop_lock);
1023 break;
1024 case TPROF_IOC_GETNCOUNTERS:
1025 mutex_enter(&tprof_lock);
1026 error = tprof_getncounters((u_int *)data);
1027 mutex_exit(&tprof_lock);
1028 break;
1029 case TPROF_IOC_START:
1030 mutex_enter(&tprof_startstop_lock);
1031 error = tprof_start(*(tprof_countermask_t *)data);
1032 mutex_exit(&tprof_startstop_lock);
1033 break;
1034 case TPROF_IOC_STOP:
1035 mutex_enter(&tprof_startstop_lock);
1036 tprof_stop(*(tprof_countermask_t *)data);
1037 mutex_exit(&tprof_startstop_lock);
1038 break;
1039 case TPROF_IOC_GETSTAT:
1040 mutex_enter(&tprof_lock);
1041 memcpy(data, &tprof_stat, sizeof(tprof_stat));
1042 mutex_exit(&tprof_lock);
1043 break;
1044 case TPROF_IOC_CONFIGURE_EVENT:
1045 param = data;
1046 mutex_enter(&tprof_startstop_lock);
1047 error = tprof_configure_event(param);
1048 mutex_exit(&tprof_startstop_lock);
1049 break;
1050 case TPROF_IOC_GETCOUNTS:
1051 counts = data;
1052 mutex_enter(&tprof_startstop_lock);
1053 error = tprof_getcounts(counts);
1054 mutex_exit(&tprof_startstop_lock);
1055 break;
1056 default:
1057 error = EINVAL;
1058 break;
1059 }
1060
1061 return error;
1062 }
1063
1064 const struct cdevsw tprof_cdevsw = {
1065 .d_open = tprof_open,
1066 .d_close = tprof_close,
1067 .d_read = tprof_read,
1068 .d_write = nowrite,
1069 .d_ioctl = tprof_ioctl,
1070 .d_stop = nostop,
1071 .d_tty = notty,
1072 .d_poll = tprof_poll,
1073 .d_mmap = nommap,
1074 .d_kqfilter = tprof_kqfilter,
1075 .d_discard = nodiscard,
1076 .d_flag = D_OTHER | D_MPSAFE
1077 };
1078
1079 void
1080 tprofattach(int nunits)
1081 {
1082
1083 /* nothing */
1084 }
1085
1086 MODULE(MODULE_CLASS_DRIVER, tprof, NULL);
1087
1088 static void
1089 tprof_cpu_init(void *vcp, void *vcookie, struct cpu_info *ci)
1090 {
1091 tprof_cpu_t **cp = vcp, *c;
1092
1093 c = kmem_zalloc(sizeof(*c), KM_SLEEP);
1094 c->c_buf = NULL;
1095 c->c_cpuid = cpu_index(ci);
1096 *cp = c;
1097 }
1098
1099 static void
1100 tprof_cpu_fini(void *vcp, void *vcookie, struct cpu_info *ci)
1101 {
1102 tprof_cpu_t **cp = vcp, *c;
1103
1104 c = *cp;
1105 KASSERT(c->c_cpuid == cpu_index(ci));
1106 KASSERT(c->c_buf == NULL);
1107 kmem_free(c, sizeof(*c));
1108 *cp = NULL;
1109 }
1110
1111 static void
1112 tprof_driver_init(void)
1113 {
1114
1115 mutex_init(&tprof_lock, MUTEX_DEFAULT, IPL_NONE);
1116 mutex_init(&tprof_reader_lock, MUTEX_DEFAULT, IPL_NONE);
1117 mutex_init(&tprof_startstop_lock, MUTEX_DEFAULT, IPL_NONE);
1118 selinit(&tprof_selp);
1119 cv_init(&tprof_cv, "tprof");
1120 cv_init(&tprof_reader_cv, "tprof_rd");
1121 STAILQ_INIT(&tprof_list);
1122 tprof_cpus = percpu_create(sizeof(tprof_cpu_t *),
1123 tprof_cpu_init, tprof_cpu_fini, NULL);
1124 }
1125
1126 static void
1127 tprof_driver_fini(void)
1128 {
1129
1130 percpu_free(tprof_cpus, sizeof(tprof_cpu_t *));
1131 mutex_destroy(&tprof_lock);
1132 mutex_destroy(&tprof_reader_lock);
1133 mutex_destroy(&tprof_startstop_lock);
1134 seldestroy(&tprof_selp);
1135 cv_destroy(&tprof_cv);
1136 cv_destroy(&tprof_reader_cv);
1137 }
1138
1139 static int
1140 tprof_modcmd(modcmd_t cmd, void *arg)
1141 {
1142
1143 switch (cmd) {
1144 case MODULE_CMD_INIT:
1145 tprof_driver_init();
1146 #if defined(_MODULE)
1147 {
1148 devmajor_t bmajor = NODEVMAJOR;
1149 devmajor_t cmajor = NODEVMAJOR;
1150 int error;
1151
1152 error = devsw_attach("tprof", NULL, &bmajor,
1153 &tprof_cdevsw, &cmajor);
1154 if (error) {
1155 tprof_driver_fini();
1156 return error;
1157 }
1158 }
1159 #endif /* defined(_MODULE) */
1160 return 0;
1161
1162 case MODULE_CMD_FINI:
1163 #if defined(_MODULE)
1164 devsw_detach(NULL, &tprof_cdevsw);
1165 #endif /* defined(_MODULE) */
1166 tprof_driver_fini();
1167 return 0;
1168
1169 default:
1170 return ENOTTY;
1171 }
1172 }
1173