if_axe.c revision 1.101 1 /* $NetBSD: if_axe.c,v 1.101 2019/07/21 09:38:28 mrg Exp $ */
2 /* $OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3
4 /*
5 * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Copyright (c) 1997, 1998, 1999, 2000-2003
22 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by Bill Paul.
35 * 4. Neither the name of the author nor the names of any co-contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49 * THE POSSIBILITY OF SUCH DAMAGE.
50 */
51
52 /*
53 * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54 * Used in the LinkSys USB200M and various other adapters.
55 *
56 * Written by Bill Paul <wpaul (at) windriver.com>
57 * Senior Engineer
58 * Wind River Systems
59 */
60
61 /*
62 * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63 * It uses an external PHY (reference designs use a RealTek chip),
64 * and has a 64-bit multicast hash filter. There is some information
65 * missing from the manual which one needs to know in order to make
66 * the chip function:
67 *
68 * - You must set bit 7 in the RX control register, otherwise the
69 * chip won't receive any packets.
70 * - You must initialize all 3 IPG registers, or you won't be able
71 * to send any packets.
72 *
73 * Note that this device appears to only support loading the station
74 * address via autoload from the EEPROM (i.e. there's no way to manually
75 * set it).
76 *
77 * (Adam Weinberger wanted me to name this driver if_gir.c.)
78 */
79
80 /*
81 * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82 * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
83 *
84 * Manual here:
85 * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86 * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87 */
88
89 #include <sys/cdefs.h>
90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.101 2019/07/21 09:38:28 mrg Exp $");
91
92 #ifdef _KERNEL_OPT
93 #include "opt_inet.h"
94 #include "opt_usb.h"
95 #include "opt_net_mpsafe.h"
96 #endif
97
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/device.h>
101 #include <sys/kernel.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/socket.h>
106 #include <sys/sockio.h>
107 #include <sys/systm.h>
108
109 #include <sys/rndsource.h>
110
111 #include <net/if.h>
112 #include <net/if_dl.h>
113 #include <net/if_ether.h>
114 #include <net/if_media.h>
115
116 #include <net/bpf.h>
117
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120
121 #include <dev/usb/usb.h>
122 #include <dev/usb/usbhist.h>
123 #include <dev/usb/usbdi.h>
124 #include <dev/usb/usbdi_util.h>
125 #include <dev/usb/usbdivar.h>
126 #include <dev/usb/usbdevs.h>
127
128 #include <dev/usb/if_axereg.h>
129
130 struct axe_type {
131 struct usb_devno axe_dev;
132 uint16_t axe_flags;
133 };
134
135 struct axe_softc;
136
137 struct axe_chain {
138 struct axe_softc *axe_sc;
139 struct usbd_xfer *axe_xfer;
140 uint8_t *axe_buf;
141 };
142
143 struct axe_cdata {
144 struct axe_chain axe_tx_chain[AXE_TX_LIST_CNT];
145 struct axe_chain axe_rx_chain[AXE_RX_LIST_CNT];
146 int axe_tx_prod;
147 int axe_tx_cons;
148 int axe_tx_cnt;
149 int axe_rx_prod;
150 };
151
152 struct axe_softc {
153 device_t axe_dev;
154 struct ethercom axe_ec;
155 struct mii_data axe_mii;
156 krndsource_t rnd_source;
157 struct usbd_device * axe_udev;
158 struct usbd_interface * axe_iface;
159
160 uint16_t axe_vendor;
161 uint16_t axe_product;
162 uint16_t axe_timer;
163 uint32_t axe_flags; /* copied from axe_type */
164 #define AX178 __BIT(0) /* AX88178 */
165 #define AX772 __BIT(1) /* AX88772 */
166 #define AX772A __BIT(2) /* AX88772A */
167 #define AX772B __BIT(3) /* AX88772B */
168 #define AXSTD_FRAME __BIT(12)
169 #define AXCSUM_FRAME __BIT(13)
170
171 int axe_ed[AXE_ENDPT_MAX];
172 struct usbd_pipe * axe_ep[AXE_ENDPT_MAX];
173 int axe_if_flags;
174 int axe_phyno;
175 struct axe_cdata axe_cdata;
176 struct callout axe_stat_ch;
177
178 uint8_t axe_enaddr[ETHER_ADDR_LEN];
179
180 int axe_refcnt;
181 bool axe_dying;
182 bool axe_stopping;
183 bool axe_attached;
184
185 struct usb_task axe_tick_task;
186
187 kmutex_t axe_lock;
188 kmutex_t axe_mii_lock;
189 kmutex_t axe_rxlock;
190 kmutex_t axe_txlock;
191 kcondvar_t axe_detachcv;
192
193 int axe_link;
194
195 uint8_t axe_ipgs[3];
196 uint8_t axe_phyaddrs[2];
197 uint16_t sc_pwrcfg;
198 uint16_t sc_lenmask;
199
200 struct timeval axe_rx_notice;
201 struct timeval axe_tx_notice;
202 int axe_bufsz;
203
204 #define sc_if axe_ec.ec_if
205 };
206
207 #define AXE_IS_178_FAMILY(sc) \
208 ((sc)->axe_flags & (AX772 | AX772A | AX772B | AX178))
209
210 #define AXE_IS_772(sc) \
211 ((sc)->axe_flags & (AX772 | AX772A | AX772B))
212
213 #define AX_RXCSUM \
214 (IFCAP_CSUM_IPv4_Rx | \
215 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | \
216 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
217
218 #define AX_TXCSUM \
219 (IFCAP_CSUM_IPv4_Tx | \
220 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | \
221 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
222
223 /*
224 * AXE_178_MAX_FRAME_BURST
225 * max frame burst size for Ax88178 and Ax88772
226 * 0 2048 bytes
227 * 1 4096 bytes
228 * 2 8192 bytes
229 * 3 16384 bytes
230 * use the largest your system can handle without USB stalling.
231 *
232 * NB: 88772 parts appear to generate lots of input errors with
233 * a 2K rx buffer and 8K is only slightly faster than 4K on an
234 * EHCI port on a T42 so change at your own risk.
235 */
236 #define AXE_178_MAX_FRAME_BURST 1
237
238
239 #ifdef USB_DEBUG
240 #ifndef AXE_DEBUG
241 #define axedebug 0
242 #else
243 static int axedebug = 20;
244
245 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
246 {
247 int err;
248 const struct sysctlnode *rnode;
249 const struct sysctlnode *cnode;
250
251 err = sysctl_createv(clog, 0, NULL, &rnode,
252 CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
253 SYSCTL_DESCR("axe global controls"),
254 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
255
256 if (err)
257 goto fail;
258
259 /* control debugging printfs */
260 err = sysctl_createv(clog, 0, &rnode, &cnode,
261 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
262 "debug", SYSCTL_DESCR("Enable debugging output"),
263 NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
264 if (err)
265 goto fail;
266
267 return;
268 fail:
269 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
270 }
271
272 #endif /* AXE_DEBUG */
273 #endif /* USB_DEBUG */
274
275 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
276 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
277 #define AXEHIST_FUNC() USBHIST_FUNC()
278 #define AXEHIST_CALLED(name) USBHIST_CALLED(axedebug)
279
280 /*
281 * Various supported device vendors/products.
282 */
283 static const struct axe_type axe_devs[] = {
284 { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE2000}, 0 },
285 { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 },
286 { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 },
287 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 },
288 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 },
289 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A}, AX772 },
290 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B}, AX772B },
291 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
292 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 },
293 { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 },
294 { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
295 { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0},
296 { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
297 { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
298 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 },
299 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
300 { { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
301 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
302 { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
303 { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
304 { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 },
305 { { USB_VENDOR_LENOVO, USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
306 { { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
307 { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 },
308 { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
309 { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
310 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
311 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
312 { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A}, AX772 },
313 { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 },
314 { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
315 { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
316 { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 },
317 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
318 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
319 { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
320 };
321 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
322
323 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
324 { 0x8000, 0x8001, 2048 },
325 { 0x8100, 0x8147, 4096 },
326 { 0x8200, 0x81EB, 6144 },
327 { 0x8300, 0x83D7, 8192 },
328 { 0x8400, 0x851E, 16384 },
329 { 0x8500, 0x8666, 20480 },
330 { 0x8600, 0x87AE, 24576 },
331 { 0x8700, 0x8A3D, 32768 }
332 };
333
334 int axe_match(device_t, cfdata_t, void *);
335 void axe_attach(device_t, device_t, void *);
336 int axe_detach(device_t, int);
337 int axe_activate(device_t, devact_t);
338
339 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
340 axe_match, axe_attach, axe_detach, axe_activate);
341
342 static int axe_tx_list_init(struct axe_softc *);
343 static int axe_rx_list_init(struct axe_softc *);
344 static int axe_encap(struct axe_softc *, struct mbuf *, int);
345 static void axe_rxeof(struct usbd_xfer *, void *, usbd_status);
346 static void axe_txeof(struct usbd_xfer *, void *, usbd_status);
347 static void axe_tick(void *);
348 static void axe_tick_task(void *);
349 static void axe_start(struct ifnet *);
350 static void axe_start_locked(struct ifnet *);
351 static int axe_ioctl(struct ifnet *, u_long, void *);
352 static int axe_init(struct ifnet *);
353 static int axe_init_locked(struct ifnet *);
354 static void axe_stop(struct ifnet *, int);
355 static void axe_stop_locked(struct ifnet *, int);
356 static void axe_watchdog(struct ifnet *);
357 static int axe_miibus_readreg(device_t, int, int, uint16_t *);
358 static int axe_miibus_readreg_locked(device_t, int, int, uint16_t *);
359 static int axe_miibus_writereg(device_t, int, int, uint16_t);
360 static int axe_miibus_writereg_locked(device_t, int, int, uint16_t);
361 static void axe_miibus_statchg(struct ifnet *);
362 static int axe_cmd(struct axe_softc *, int, int, int, void *);
363 static void axe_reset(struct axe_softc *);
364
365 static void axe_setmulti(struct axe_softc *);
366 static void axe_setmulti_locked(struct axe_softc *);
367 static void axe_lock_mii(struct axe_softc *);
368 static void axe_unlock_mii(struct axe_softc *);
369
370 static void axe_ax88178_init(struct axe_softc *);
371 static void axe_ax88772_init(struct axe_softc *);
372 static void axe_ax88772a_init(struct axe_softc *);
373 static void axe_ax88772b_init(struct axe_softc *);
374
375 /* Get exclusive access to the MII registers */
376 static void
377 axe_lock_mii(struct axe_softc *sc)
378 {
379
380 mutex_enter(&sc->axe_lock);
381 sc->axe_refcnt++;
382 mutex_exit(&sc->axe_lock);
383
384 mutex_enter(&sc->axe_mii_lock);
385 }
386
387 static void
388 axe_lock_mii_sc_locked(struct axe_softc *sc)
389 {
390 KASSERT(mutex_owned(&sc->axe_lock));
391
392 sc->axe_refcnt++;
393 mutex_enter(&sc->axe_mii_lock);
394 }
395
396 static void
397 axe_unlock_mii(struct axe_softc *sc)
398 {
399
400 mutex_exit(&sc->axe_mii_lock);
401 mutex_enter(&sc->axe_lock);
402 if (--sc->axe_refcnt < 0)
403 cv_broadcast(&sc->axe_detachcv);
404 mutex_exit(&sc->axe_lock);
405 }
406
407 static void
408 axe_unlock_mii_sc_locked(struct axe_softc *sc)
409 {
410 KASSERT(mutex_owned(&sc->axe_lock));
411
412 mutex_exit(&sc->axe_mii_lock);
413 if (--sc->axe_refcnt < 0)
414 cv_broadcast(&sc->axe_detachcv);
415 }
416
417 static int
418 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
419 {
420 AXEHIST_FUNC(); AXEHIST_CALLED();
421 usb_device_request_t req;
422 usbd_status err;
423
424 KASSERT(mutex_owned(&sc->axe_mii_lock));
425
426 if (sc->axe_dying)
427 return -1;
428
429 DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
430
431 if (AXE_CMD_DIR(cmd))
432 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
433 else
434 req.bmRequestType = UT_READ_VENDOR_DEVICE;
435 req.bRequest = AXE_CMD_CMD(cmd);
436 USETW(req.wValue, val);
437 USETW(req.wIndex, index);
438 USETW(req.wLength, AXE_CMD_LEN(cmd));
439
440 err = usbd_do_request(sc->axe_udev, &req, buf);
441
442 if (err) {
443 DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
444 return -1;
445 }
446 return 0;
447 }
448
449 static int
450 axe_miibus_readreg_locked(device_t dev, int phy, int reg, uint16_t *val)
451 {
452 AXEHIST_FUNC(); AXEHIST_CALLED();
453 struct axe_softc *sc = device_private(dev);
454 usbd_status err;
455 uint16_t data;
456
457 mutex_enter(&sc->axe_lock);
458 if (sc->axe_dying || sc->axe_phyno != phy) {
459 mutex_exit(&sc->axe_lock);
460 return -1;
461 }
462 mutex_exit(&sc->axe_lock);
463
464 DPRINTFN(30, "phy 0x%jx reg 0x%jx\n", phy, reg, 0, 0);
465
466 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
467
468 err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
469 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
470
471 if (err) {
472 aprint_error_dev(sc->axe_dev, "read PHY failed\n");
473 return err;
474 }
475
476 *val = le16toh(data);
477 if (AXE_IS_772(sc) && reg == MII_BMSR) {
478 /*
479 * BMSR of AX88772 indicates that it supports extended
480 * capability but the extended status register is
481 * reserved for embedded ethernet PHY. So clear the
482 * extended capability bit of BMSR.
483 */
484 *val &= ~BMSR_EXTCAP;
485 }
486
487 DPRINTFN(30, "phy 0x%jx reg 0x%jx val %#jx", phy, reg, *val, 0);
488
489 return 0;
490 }
491
492 static int
493 axe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
494 {
495 struct axe_softc *sc = device_private(dev);
496 int rv;
497
498 mutex_enter(&sc->axe_lock);
499 if (sc->axe_dying || sc->axe_phyno != phy) {
500 mutex_exit(&sc->axe_lock);
501 return -1;
502 }
503 mutex_exit(&sc->axe_lock);
504
505 axe_lock_mii(sc);
506 rv = axe_miibus_readreg_locked(dev, phy, reg, val);
507 axe_unlock_mii(sc);
508
509 return rv;
510 }
511
512 static int
513 axe_miibus_writereg_locked(device_t dev, int phy, int reg, uint16_t aval)
514 {
515 struct axe_softc *sc = device_private(dev);
516 usbd_status err;
517 uint16_t val;
518
519 val = htole16(aval);
520
521 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
522 err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &val);
523 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
524
525 if (err) {
526 aprint_error_dev(sc->axe_dev, "write PHY failed\n");
527 return err;
528 }
529
530 return 0;
531 }
532
533 static int
534 axe_miibus_writereg(device_t dev, int phy, int reg, uint16_t aval)
535 {
536 struct axe_softc *sc = device_private(dev);
537 int rv;
538
539 mutex_enter(&sc->axe_lock);
540 if (sc->axe_dying || sc->axe_phyno != phy) {
541 mutex_exit(&sc->axe_lock);
542 return -1;
543 }
544 mutex_exit(&sc->axe_lock);
545
546 axe_lock_mii(sc);
547 rv = axe_miibus_writereg_locked(dev, phy, reg, aval);
548 axe_unlock_mii(sc);
549
550 return rv;
551 }
552
553 static void
554 axe_miibus_statchg(struct ifnet *ifp)
555 {
556 AXEHIST_FUNC(); AXEHIST_CALLED();
557
558 struct axe_softc * const sc = ifp->if_softc;
559 struct mii_data *mii = &sc->axe_mii;
560 int val, err;
561
562 if (sc->axe_dying)
563 return;
564
565 val = 0;
566 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
567 val |= AXE_MEDIA_FULL_DUPLEX;
568 if (AXE_IS_178_FAMILY(sc)) {
569 if ((IFM_OPTIONS(mii->mii_media_active) &
570 IFM_ETH_TXPAUSE) != 0)
571 val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
572 if ((IFM_OPTIONS(mii->mii_media_active) &
573 IFM_ETH_RXPAUSE) != 0)
574 val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
575 }
576 }
577 if (AXE_IS_178_FAMILY(sc)) {
578 val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
579 if (sc->axe_flags & AX178)
580 val |= AXE_178_MEDIA_ENCK;
581 switch (IFM_SUBTYPE(mii->mii_media_active)) {
582 case IFM_1000_T:
583 val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
584 break;
585 case IFM_100_TX:
586 val |= AXE_178_MEDIA_100TX;
587 break;
588 case IFM_10_T:
589 /* doesn't need to be handled */
590 break;
591 }
592 }
593
594 DPRINTF("val=0x%jx", val, 0, 0, 0);
595 axe_lock_mii(sc);
596 err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
597 axe_unlock_mii(sc);
598 if (err) {
599 aprint_error_dev(sc->axe_dev, "media change failed\n");
600 return;
601 }
602 }
603
604 static void
605 axe_setmulti_locked(struct axe_softc *sc)
606 {
607 AXEHIST_FUNC(); AXEHIST_CALLED();
608 struct ethercom *ec = &sc->axe_ec;
609 struct ifnet *ifp = &sc->sc_if;
610 struct ether_multi *enm;
611 struct ether_multistep step;
612 uint32_t h = 0;
613 uint16_t rxmode;
614 uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
615
616 KASSERT(mutex_owned(&sc->axe_mii_lock));
617
618 if (sc->axe_dying)
619 return;
620
621 if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
622 aprint_error_dev(sc->axe_dev, "can't read rxmode");
623 return;
624 }
625 rxmode = le16toh(rxmode);
626
627 rxmode &=
628 ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC |
629 AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST);
630
631 rxmode |=
632 (ifp->if_flags & IFF_BROADCAST) ? AXE_RXCMD_BROADCAST : 0;
633
634 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
635 if (ifp->if_flags & IFF_PROMISC)
636 rxmode |= AXE_RXCMD_PROMISC;
637 goto allmulti;
638 }
639
640 /* Now program new ones */
641 ETHER_LOCK(ec);
642 ETHER_FIRST_MULTI(step, ec, enm);
643 while (enm != NULL) {
644 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
645 ETHER_ADDR_LEN) != 0) {
646 ETHER_UNLOCK(ec);
647 goto allmulti;
648 }
649
650 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
651 hashtbl[h >> 3] |= 1U << (h & 7);
652 ETHER_NEXT_MULTI(step, enm);
653 }
654 ETHER_UNLOCK(ec);
655 ifp->if_flags &= ~IFF_ALLMULTI;
656 rxmode |= AXE_RXCMD_MULTICAST;
657
658 axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
659 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
660 return;
661
662 allmulti:
663 ifp->if_flags |= IFF_ALLMULTI;
664 rxmode |= AXE_RXCMD_ALLMULTI;
665 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
666 }
667
668 static void
669 axe_setmulti(struct axe_softc *sc)
670 {
671 axe_lock_mii(sc);
672 axe_setmulti_locked(sc);
673 axe_unlock_mii(sc);
674 }
675
676 static void
677 axe_ax_init(struct axe_softc *sc)
678 {
679 int cmd = AXE_178_CMD_READ_NODEID;
680
681 if (sc->axe_flags & AX178) {
682 axe_ax88178_init(sc);
683 } else if (sc->axe_flags & AX772) {
684 axe_ax88772_init(sc);
685 } else if (sc->axe_flags & AX772A) {
686 axe_ax88772a_init(sc);
687 } else if (sc->axe_flags & AX772B) {
688 axe_ax88772b_init(sc);
689 return;
690 } else {
691 cmd = AXE_172_CMD_READ_NODEID;
692 }
693
694 if (axe_cmd(sc, cmd, 0, 0, sc->axe_enaddr)) {
695 aprint_error_dev(sc->axe_dev,
696 "failed to read ethernet address\n");
697 }
698 }
699
700
701 static void
702 axe_reset(struct axe_softc *sc)
703 {
704
705 if (sc->axe_dying)
706 return;
707
708 /*
709 * softnet_lock can be taken when NET_MPAFE is not defined when calling
710 * if_addr_init -> if_init. This doesn't mix well with the
711 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
712 * can fire during the wait and attempt to take softnet_lock and then
713 * block the softclk thread meaing the wait never ends.
714 */
715 #ifndef NET_MPSAFE
716 /* XXX What to reset? */
717
718 /* Wait a little while for the chip to get its brains in order. */
719 DELAY(1000);
720 #else
721 axe_lock_mii(sc);
722
723 axe_ax_init(sc);
724
725 axe_unlock_mii(sc);
726 #endif
727 }
728
729 static int
730 axe_get_phyno(struct axe_softc *sc, int sel)
731 {
732 int phyno;
733
734 switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
735 case PHY_TYPE_100_HOME:
736 /* FALLTHROUGH */
737 case PHY_TYPE_GIG:
738 phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
739 break;
740 case PHY_TYPE_SPECIAL:
741 /* FALLTHROUGH */
742 case PHY_TYPE_RSVD:
743 /* FALLTHROUGH */
744 case PHY_TYPE_NON_SUP:
745 /* FALLTHROUGH */
746 default:
747 phyno = -1;
748 break;
749 }
750
751 return phyno;
752 }
753
754 #define AXE_GPIO_WRITE(x, y) do { \
755 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \
756 usbd_delay_ms(sc->axe_udev, hztoms(y)); \
757 } while (0)
758
759 static void
760 axe_ax88178_init(struct axe_softc *sc)
761 {
762 AXEHIST_FUNC(); AXEHIST_CALLED();
763 int gpio0, ledmode, phymode;
764 uint16_t eeprom, val;
765
766 axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
767 /* XXX magic */
768 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
769 eeprom = 0xffff;
770 axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
771
772 eeprom = le16toh(eeprom);
773
774 DPRINTF("EEPROM is 0x%jx", eeprom, 0, 0, 0);
775
776 /* if EEPROM is invalid we have to use to GPIO0 */
777 if (eeprom == 0xffff) {
778 phymode = AXE_PHY_MODE_MARVELL;
779 gpio0 = 1;
780 ledmode = 0;
781 } else {
782 phymode = eeprom & 0x7f;
783 gpio0 = (eeprom & 0x80) ? 0 : 1;
784 ledmode = eeprom >> 8;
785 }
786
787 DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
788
789 /* Program GPIOs depending on PHY hardware. */
790 switch (phymode) {
791 case AXE_PHY_MODE_MARVELL:
792 if (gpio0 == 1) {
793 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
794 hz / 32);
795 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
796 hz / 32);
797 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
798 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
799 hz / 32);
800 } else {
801 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
802 AXE_GPIO1_EN, hz / 3);
803 if (ledmode == 1) {
804 AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
805 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
806 hz / 3);
807 } else {
808 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
809 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
810 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
811 AXE_GPIO2_EN, hz / 4);
812 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
813 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
814 }
815 }
816 break;
817 case AXE_PHY_MODE_CICADA:
818 case AXE_PHY_MODE_CICADA_V2:
819 case AXE_PHY_MODE_CICADA_V2_ASIX:
820 if (gpio0 == 1)
821 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
822 AXE_GPIO0_EN, hz / 32);
823 else
824 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
825 AXE_GPIO1_EN, hz / 32);
826 break;
827 case AXE_PHY_MODE_AGERE:
828 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
829 AXE_GPIO1_EN, hz / 32);
830 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
831 AXE_GPIO2_EN, hz / 32);
832 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
833 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
834 AXE_GPIO2_EN, hz / 32);
835 break;
836 case AXE_PHY_MODE_REALTEK_8211CL:
837 case AXE_PHY_MODE_REALTEK_8211BN:
838 case AXE_PHY_MODE_REALTEK_8251CL:
839 val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
840 AXE_GPIO1 | AXE_GPIO1_EN;
841 AXE_GPIO_WRITE(val, hz / 32);
842 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
843 AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
844 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
845 if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
846 axe_miibus_writereg_locked(sc->axe_dev,
847 sc->axe_phyno, 0x1F, 0x0005);
848 axe_miibus_writereg_locked(sc->axe_dev,
849 sc->axe_phyno, 0x0C, 0x0000);
850 axe_miibus_readreg_locked(sc->axe_dev,
851 sc->axe_phyno, 0x0001, &val);
852 axe_miibus_writereg_locked(sc->axe_dev,
853 sc->axe_phyno, 0x01, val | 0x0080);
854 axe_miibus_writereg_locked(sc->axe_dev,
855 sc->axe_phyno, 0x1F, 0x0000);
856 }
857 break;
858 default:
859 /* Unknown PHY model or no need to program GPIOs. */
860 break;
861 }
862
863 /* soft reset */
864 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
865 usbd_delay_ms(sc->axe_udev, 150);
866 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
867 AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
868 usbd_delay_ms(sc->axe_udev, 150);
869 /* Enable MII/GMII/RGMII interface to work with external PHY. */
870 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
871 usbd_delay_ms(sc->axe_udev, 10);
872 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
873 }
874
875 static void
876 axe_ax88772_init(struct axe_softc *sc)
877 {
878 AXEHIST_FUNC(); AXEHIST_CALLED();
879
880 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
881 usbd_delay_ms(sc->axe_udev, 40);
882
883 if (sc->axe_phyno == AXE_772_PHY_NO_EPHY) {
884 /* ask for the embedded PHY */
885 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
886 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
887 usbd_delay_ms(sc->axe_udev, 10);
888
889 /* power down and reset state, pin reset state */
890 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
891 usbd_delay_ms(sc->axe_udev, 60);
892
893 /* power down/reset state, pin operating state */
894 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
895 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
896 usbd_delay_ms(sc->axe_udev, 150);
897
898 /* power up, reset */
899 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
900
901 /* power up, operating */
902 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
903 AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
904 } else {
905 /* ask for external PHY */
906 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
907 NULL);
908 usbd_delay_ms(sc->axe_udev, 10);
909
910 /* power down internal PHY */
911 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
912 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
913 }
914
915 usbd_delay_ms(sc->axe_udev, 150);
916 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
917 }
918
919 static void
920 axe_ax88772_phywake(struct axe_softc *sc)
921 {
922 AXEHIST_FUNC(); AXEHIST_CALLED();
923
924 if (sc->axe_phyno == AXE_772_PHY_NO_EPHY) {
925 /* Manually select internal(embedded) PHY - MAC mode. */
926 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
927 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
928 usbd_delay_ms(sc->axe_udev, hztoms(hz / 32));
929 } else {
930 /*
931 * Manually select external PHY - MAC mode.
932 * Reverse MII/RMII is for AX88772A PHY mode.
933 */
934 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
935 AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
936 usbd_delay_ms(sc->axe_udev, hztoms(hz / 32));
937 }
938
939 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
940 AXE_SW_RESET_IPRL, NULL);
941
942 /* T1 = min 500ns everywhere */
943 usbd_delay_ms(sc->axe_udev, 150);
944
945 /* Take PHY out of power down. */
946 if (sc->axe_phyno == AXE_772_PHY_NO_EPHY) {
947 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
948 } else {
949 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
950 }
951
952 /* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
953 usbd_delay_ms(sc->axe_udev, 600);
954
955 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
956
957 /* T3 = 500ns everywhere */
958 usbd_delay_ms(sc->axe_udev, hztoms(hz / 32));
959 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
960 usbd_delay_ms(sc->axe_udev, hztoms(hz / 32));
961 }
962
963 static void
964 axe_ax88772a_init(struct axe_softc *sc)
965 {
966 AXEHIST_FUNC(); AXEHIST_CALLED();
967
968 /* Reload EEPROM. */
969 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
970 axe_ax88772_phywake(sc);
971 /* Stop MAC. */
972 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
973 }
974
975 static void
976 axe_ax88772b_init(struct axe_softc *sc)
977 {
978 AXEHIST_FUNC(); AXEHIST_CALLED();
979 uint16_t eeprom;
980 int i;
981
982 /* Reload EEPROM. */
983 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
984
985 /*
986 * Save PHY power saving configuration(high byte) and
987 * clear EEPROM checksum value(low byte).
988 */
989 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
990 &eeprom)) {
991 aprint_error_dev(sc->axe_dev, "failed to read eeprom\n");
992 return;
993 }
994
995 sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
996
997 /*
998 * Auto-loaded default station address from internal ROM is
999 * 00:00:00:00:00:00 such that an explicit access to EEPROM
1000 * is required to get real station address.
1001 */
1002 uint8_t *eaddr = sc->axe_enaddr;
1003 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
1004 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
1005 AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
1006 aprint_error_dev(sc->axe_dev,
1007 "failed to read eeprom\n");
1008 eeprom = 0;
1009 }
1010 eeprom = le16toh(eeprom);
1011 *eaddr++ = (uint8_t)(eeprom & 0xFF);
1012 *eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
1013 }
1014 /* Wakeup PHY. */
1015 axe_ax88772_phywake(sc);
1016 /* Stop MAC. */
1017 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
1018 }
1019
1020 #undef AXE_GPIO_WRITE
1021
1022 /*
1023 * Probe for a AX88172 chip.
1024 */
1025 int
1026 axe_match(device_t parent, cfdata_t match, void *aux)
1027 {
1028 struct usb_attach_arg *uaa = aux;
1029
1030 return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
1031 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
1032 }
1033
1034 /*
1035 * Attach the interface. Allocate softc structures, do ifmedia
1036 * setup and ethernet/BPF attach.
1037 */
1038 void
1039 axe_attach(device_t parent, device_t self, void *aux)
1040 {
1041 AXEHIST_FUNC(); AXEHIST_CALLED();
1042 struct axe_softc *sc = device_private(self);
1043 struct usb_attach_arg *uaa = aux;
1044 struct usbd_device *dev = uaa->uaa_device;
1045 usbd_status err;
1046 usb_interface_descriptor_t *id;
1047 usb_endpoint_descriptor_t *ed;
1048 struct mii_data *mii;
1049 char *devinfop;
1050 const char *devname = device_xname(self);
1051 struct ifnet *ifp;
1052 int i;
1053
1054 aprint_naive("\n");
1055 aprint_normal("\n");
1056
1057 sc->axe_dev = self;
1058 sc->axe_udev = dev;
1059
1060 devinfop = usbd_devinfo_alloc(dev, 0);
1061 aprint_normal_dev(self, "%s\n", devinfop);
1062 usbd_devinfo_free(devinfop);
1063
1064 err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
1065 if (err) {
1066 aprint_error_dev(self, "failed to set configuration"
1067 ", err=%s\n", usbd_errstr(err));
1068 return;
1069 }
1070
1071 sc->axe_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
1072
1073 usb_init_task(&sc->axe_tick_task, axe_tick_task, sc, USB_TASKQ_MPSAFE);
1074
1075 err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &sc->axe_iface);
1076 if (err) {
1077 aprint_error_dev(self, "getting interface handle failed\n");
1078 return;
1079 }
1080
1081 sc->axe_product = uaa->uaa_product;
1082 sc->axe_vendor = uaa->uaa_vendor;
1083
1084 id = usbd_get_interface_descriptor(sc->axe_iface);
1085
1086 /* decide on what our bufsize will be */
1087 if (AXE_IS_178_FAMILY(sc))
1088 sc->axe_bufsz = (sc->axe_udev->ud_speed == USB_SPEED_HIGH) ?
1089 AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
1090 else
1091 sc->axe_bufsz = AXE_172_BUFSZ;
1092
1093 sc->axe_ed[AXE_ENDPT_RX] = -1;
1094 sc->axe_ed[AXE_ENDPT_TX] = -1;
1095 sc->axe_ed[AXE_ENDPT_INTR] = -1;
1096
1097 /* Find endpoints. */
1098 for (i = 0; i < id->bNumEndpoints; i++) {
1099 ed = usbd_interface2endpoint_descriptor(sc->axe_iface, i);
1100 if (ed == NULL) {
1101 aprint_error_dev(self, "couldn't get ep %d\n", i);
1102 return;
1103 }
1104 const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
1105 const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
1106
1107 if (dir == UE_DIR_IN && xt == UE_BULK &&
1108 sc->axe_ed[AXE_ENDPT_RX] == -1) {
1109 sc->axe_ed[AXE_ENDPT_RX] = ed->bEndpointAddress;
1110 } else if (dir == UE_DIR_OUT && xt == UE_BULK &&
1111 sc->axe_ed[AXE_ENDPT_TX] == -1) {
1112 sc->axe_ed[AXE_ENDPT_TX] = ed->bEndpointAddress;
1113 } else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
1114 sc->axe_ed[AXE_ENDPT_INTR] = ed->bEndpointAddress;
1115 }
1116 }
1117
1118 /* Set these up now for axe_cmd(). */
1119 mutex_init(&sc->axe_mii_lock, MUTEX_DEFAULT, IPL_NONE);
1120 mutex_init(&sc->axe_txlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1121 mutex_init(&sc->axe_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB);
1122 mutex_init(&sc->axe_lock, MUTEX_DEFAULT, IPL_NONE);
1123 cv_init(&sc->axe_detachcv, "axedet");
1124
1125 /* We need the PHYID for init dance in some cases */
1126 axe_lock_mii(sc);
1127 if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
1128 aprint_error_dev(self, "failed to read phyaddrs\n");
1129
1130 cv_destroy(&sc->axe_detachcv);
1131 mutex_destroy(&sc->axe_lock);
1132 mutex_destroy(&sc->axe_rxlock);
1133 mutex_destroy(&sc->axe_txlock);
1134 mutex_destroy(&sc->axe_mii_lock);
1135
1136 return;
1137 }
1138
1139 DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
1140 sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
1141 sc->axe_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
1142 if (sc->axe_phyno == -1)
1143 sc->axe_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
1144 if (sc->axe_phyno == -1) {
1145 DPRINTF(" no valid PHY address found, assuming PHY address 0",
1146 0, 0, 0, 0);
1147 sc->axe_phyno = 0;
1148 }
1149
1150 /* Initialize controller and get station address. */
1151
1152 axe_ax_init(sc);
1153
1154 /*
1155 * Fetch IPG values.
1156 */
1157 if (sc->axe_flags & (AX772A | AX772B)) {
1158 /* Set IPG values. */
1159 sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
1160 sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
1161 sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
1162 } else {
1163 if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
1164 aprint_error_dev(self, "failed to read ipg\n");
1165
1166 cv_destroy(&sc->axe_detachcv);
1167 mutex_destroy(&sc->axe_lock);
1168 mutex_destroy(&sc->axe_rxlock);
1169 mutex_destroy(&sc->axe_txlock);
1170 mutex_destroy(&sc->axe_mii_lock);
1171
1172 return;
1173 }
1174 }
1175
1176 axe_unlock_mii(sc);
1177
1178 /*
1179 * An ASIX chip was detected. Inform the world.
1180 */
1181 aprint_normal_dev(self, "Ethernet address %s\n",
1182 ether_sprintf(sc->axe_enaddr));
1183
1184 /* Initialize interface info.*/
1185 ifp = &sc->sc_if;
1186 ifp->if_softc = sc;
1187 strlcpy(ifp->if_xname, devname, IFNAMSIZ);
1188 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1189 ifp->if_extflags = IFEF_MPSAFE;
1190 ifp->if_ioctl = axe_ioctl;
1191 ifp->if_start = axe_start;
1192 ifp->if_init = axe_init;
1193 ifp->if_stop = axe_stop;
1194 ifp->if_watchdog = axe_watchdog;
1195
1196 IFQ_SET_READY(&ifp->if_snd);
1197
1198 if (AXE_IS_178_FAMILY(sc))
1199 sc->axe_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1200 if (sc->axe_flags & AX772B) {
1201 ifp->if_capabilities =
1202 IFCAP_CSUM_IPv4_Rx |
1203 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
1204 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
1205 /*
1206 * Checksum offloading of AX88772B also works with VLAN
1207 * tagged frames but there is no way to take advantage
1208 * of the feature because vlan(4) assumes
1209 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
1210 * support checksum offloading with VLAN. VLAN hardware
1211 * tagging support of AX88772B is very limited so it's
1212 * not possible to announce IFCAP_VLAN_HWTAGGING.
1213 */
1214 }
1215 u_int adv_pause;
1216 if (sc->axe_flags & (AX772A | AX772B | AX178))
1217 adv_pause = MIIF_DOPAUSE;
1218 else
1219 adv_pause = 0;
1220 adv_pause = 0;
1221
1222 /* Initialize MII/media info. */
1223 mii = &sc->axe_mii;
1224 mii->mii_ifp = ifp;
1225 mii->mii_readreg = axe_miibus_readreg;
1226 mii->mii_writereg = axe_miibus_writereg;
1227 mii->mii_statchg = axe_miibus_statchg;
1228 mii->mii_flags = MIIF_AUTOTSLEEP;
1229
1230 sc->axe_ec.ec_mii = mii;
1231 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1232
1233 mii_attach(sc->axe_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
1234 adv_pause);
1235
1236 if (LIST_EMPTY(&mii->mii_phys)) {
1237 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1238 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1239 } else
1240 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1241
1242 /* Attach the interface. */
1243 if_attach(ifp);
1244 ether_ifattach(ifp, sc->axe_enaddr);
1245 rnd_attach_source(&sc->rnd_source, device_xname(sc->axe_dev),
1246 RND_TYPE_NET, RND_FLAG_DEFAULT);
1247
1248 callout_init(&sc->axe_stat_ch, CALLOUT_MPSAFE);
1249 callout_setfunc(&sc->axe_stat_ch, axe_tick, sc);
1250
1251 sc->axe_attached = true;
1252
1253 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->axe_udev, sc->axe_dev);
1254
1255 if (!pmf_device_register(self, NULL, NULL))
1256 aprint_error_dev(self, "couldn't establish power handler\n");
1257 }
1258
1259 int
1260 axe_detach(device_t self, int flags)
1261 {
1262 AXEHIST_FUNC(); AXEHIST_CALLED();
1263 struct axe_softc *sc = device_private(self);
1264 struct ifnet *ifp = &sc->sc_if;
1265
1266 mutex_enter(&sc->axe_lock);
1267 sc->axe_dying = true;
1268 mutex_exit(&sc->axe_lock);
1269
1270 /* Detached before attached finished, so just bail out. */
1271 if (!sc->axe_attached)
1272 return 0;
1273
1274 pmf_device_deregister(self);
1275
1276 callout_halt(&sc->axe_stat_ch, NULL);
1277 usb_rem_task_wait(sc->axe_udev, &sc->axe_tick_task, USB_TASKQ_DRIVER,
1278 NULL);
1279
1280 if (ifp->if_flags & IFF_RUNNING) {
1281 IFNET_LOCK(ifp);
1282 axe_stop(ifp, 1);
1283 IFNET_UNLOCK(ifp);
1284 }
1285
1286 mutex_enter(&sc->axe_lock);
1287 sc->axe_refcnt--;
1288 while (sc->axe_refcnt > 0) {
1289 /* Wait for processes to go away */
1290 cv_wait(&sc->axe_detachcv, &sc->axe_lock);
1291 }
1292
1293 #ifdef DIAGNOSTIC
1294 if (sc->axe_ep[AXE_ENDPT_TX] != NULL ||
1295 sc->axe_ep[AXE_ENDPT_RX] != NULL ||
1296 sc->axe_ep[AXE_ENDPT_INTR] != NULL)
1297 aprint_debug_dev(self, "detach has active endpoints\n");
1298 #endif
1299
1300 mutex_exit(&sc->axe_lock);
1301
1302 callout_destroy(&sc->axe_stat_ch);
1303 rnd_detach_source(&sc->rnd_source);
1304 mii_detach(&sc->axe_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1305 ifmedia_delete_instance(&sc->axe_mii.mii_media, IFM_INST_ANY);
1306 ether_ifdetach(ifp);
1307 if_detach(ifp);
1308
1309 sc->axe_attached = false;
1310
1311 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->axe_udev, sc->axe_dev);
1312
1313 cv_destroy(&sc->axe_detachcv);
1314 mutex_destroy(&sc->axe_lock);
1315 mutex_destroy(&sc->axe_rxlock);
1316 mutex_destroy(&sc->axe_txlock);
1317 mutex_destroy(&sc->axe_mii_lock);
1318
1319 return 0;
1320 }
1321
1322 int
1323 axe_activate(device_t self, devact_t act)
1324 {
1325 AXEHIST_FUNC(); AXEHIST_CALLED();
1326 struct axe_softc *sc = device_private(self);
1327
1328 switch (act) {
1329 case DVACT_DEACTIVATE:
1330 if_deactivate(&sc->axe_ec.ec_if);
1331
1332 mutex_enter(&sc->axe_lock);
1333 sc->axe_dying = true;
1334 mutex_exit(&sc->axe_lock);
1335
1336 mutex_enter(&sc->axe_rxlock);
1337 mutex_enter(&sc->axe_txlock);
1338 sc->axe_stopping = true;
1339 mutex_exit(&sc->axe_txlock);
1340 mutex_exit(&sc->axe_rxlock);
1341
1342 return 0;
1343 default:
1344 return EOPNOTSUPP;
1345 }
1346 }
1347
1348 static int
1349 axe_rx_list_init(struct axe_softc *sc)
1350 {
1351 AXEHIST_FUNC(); AXEHIST_CALLED();
1352
1353 struct axe_cdata *cd;
1354 struct axe_chain *c;
1355 int i;
1356
1357 cd = &sc->axe_cdata;
1358 for (i = 0; i < AXE_RX_LIST_CNT; i++) {
1359 c = &cd->axe_rx_chain[i];
1360 c->axe_sc = sc;
1361 if (c->axe_xfer == NULL) {
1362 int err = usbd_create_xfer(sc->axe_ep[AXE_ENDPT_RX],
1363 sc->axe_bufsz, 0, 0, &c->axe_xfer);
1364 if (err)
1365 return err;
1366 c->axe_buf = usbd_get_buffer(c->axe_xfer);
1367 }
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int
1374 axe_tx_list_init(struct axe_softc *sc)
1375 {
1376 AXEHIST_FUNC(); AXEHIST_CALLED();
1377 struct axe_cdata *cd;
1378 struct axe_chain *c;
1379 int i;
1380
1381 cd = &sc->axe_cdata;
1382 for (i = 0; i < AXE_TX_LIST_CNT; i++) {
1383 c = &cd->axe_tx_chain[i];
1384 c->axe_sc = sc;
1385 if (c->axe_xfer == NULL) {
1386 int err = usbd_create_xfer(sc->axe_ep[AXE_ENDPT_TX],
1387 sc->axe_bufsz, USBD_FORCE_SHORT_XFER, 0,
1388 &c->axe_xfer);
1389 if (err)
1390 return err;
1391 c->axe_buf = usbd_get_buffer(c->axe_xfer);
1392 }
1393 }
1394
1395 cd->axe_tx_cnt = 0;
1396
1397 return 0;
1398 }
1399
1400 /*
1401 * A frame has been uploaded: pass the resulting mbuf chain up to
1402 * the higher level protocols.
1403 */
1404 static void
1405 axe_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1406 {
1407 AXEHIST_FUNC(); AXEHIST_CALLED();
1408 struct axe_chain *c = (struct axe_chain *)priv;
1409 struct axe_softc * const sc = c->axe_sc;
1410 struct ifnet *ifp = &sc->sc_if;
1411 uint8_t *buf = c->axe_buf;
1412 uint32_t total_len;
1413 struct mbuf *m;
1414
1415 mutex_enter(&sc->axe_rxlock);
1416
1417 if (sc->axe_dying || sc->axe_stopping ||
1418 status == USBD_INVAL || status == USBD_NOT_STARTED ||
1419 status == USBD_CANCELLED || !(ifp->if_flags & IFF_RUNNING)) {
1420 mutex_exit(&sc->axe_rxlock);
1421 return;
1422 }
1423
1424 if (status != USBD_NORMAL_COMPLETION) {
1425 if (usbd_ratecheck(&sc->axe_rx_notice)) {
1426 aprint_error_dev(sc->axe_dev, "usb errors on rx: %s\n",
1427 usbd_errstr(status));
1428 }
1429 if (status == USBD_STALLED)
1430 usbd_clear_endpoint_stall_async(sc->axe_ep[AXE_ENDPT_RX]);
1431 goto done;
1432 }
1433
1434 usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
1435
1436 do {
1437 u_int pktlen = 0;
1438 u_int rxlen = 0;
1439 int flags = 0;
1440 if ((sc->axe_flags & AXSTD_FRAME) != 0) {
1441 struct axe_sframe_hdr hdr;
1442
1443 if (total_len < sizeof(hdr)) {
1444 ifp->if_ierrors++;
1445 goto done;
1446 }
1447
1448 #if !defined(__NO_STRICT_ALIGNMENT) && __GNUC_PREREQ__(6, 1)
1449 /*
1450 * XXX hdr is 2-byte aligned in buf, not 4-byte.
1451 * For some architectures, __builtin_memcpy() of
1452 * GCC 6 attempts to copy sizeof(hdr) = 4 bytes
1453 * at onece, which results in alignment error.
1454 */
1455 hdr.len = *(uint16_t *)buf;
1456 hdr.ilen = *(uint16_t *)(buf + sizeof(uint16_t));
1457 #else
1458 memcpy(&hdr, buf, sizeof(hdr));
1459 #endif
1460
1461 DPRINTFN(20, "total_len %#jx len %jx ilen %#jx",
1462 total_len,
1463 (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1464 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1465
1466 total_len -= sizeof(hdr);
1467 buf += sizeof(hdr);
1468
1469 if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1470 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1471 AXE_RH1M_RXLEN_MASK) {
1472 ifp->if_ierrors++;
1473 goto done;
1474 }
1475
1476 rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1477 if (total_len < rxlen) {
1478 pktlen = total_len;
1479 total_len = 0;
1480 } else {
1481 pktlen = rxlen;
1482 rxlen = roundup2(rxlen, 2);
1483 total_len -= rxlen;
1484 }
1485
1486 } else if ((sc->axe_flags & AXCSUM_FRAME) != 0) {
1487 struct axe_csum_hdr csum_hdr;
1488
1489 if (total_len < sizeof(csum_hdr)) {
1490 ifp->if_ierrors++;
1491 goto done;
1492 }
1493
1494 memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1495
1496 csum_hdr.len = le16toh(csum_hdr.len);
1497 csum_hdr.ilen = le16toh(csum_hdr.ilen);
1498 csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1499
1500 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1501 " cstatus %#jx", total_len,
1502 csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1503
1504 if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1505 AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1506 sc->sc_lenmask) {
1507 /* we lost sync */
1508 ifp->if_ierrors++;
1509 DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1510 "err",
1511 AXE_CSUM_RXBYTES(csum_hdr.len),
1512 AXE_CSUM_RXBYTES(csum_hdr.ilen),
1513 sc->sc_lenmask, 0);
1514 goto done;
1515 }
1516 /*
1517 * Get total transferred frame length including
1518 * checksum header. The length should be multiple
1519 * of 4.
1520 */
1521 pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1522 u_int len = sizeof(csum_hdr) + pktlen;
1523 len = (len + 3) & ~3;
1524 if (total_len < len) {
1525 DPRINTFN(20, "total_len %#jx < len %#jx",
1526 total_len, len, 0, 0);
1527 /* invalid length */
1528 ifp->if_ierrors++;
1529 goto done;
1530 }
1531 buf += sizeof(csum_hdr);
1532
1533 const uint16_t cstatus = csum_hdr.cstatus;
1534
1535 if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1536 if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1537 flags |= M_CSUM_TCP_UDP_BAD;
1538 if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1539 flags |= M_CSUM_IPv4_BAD;
1540
1541 const uint16_t l4type =
1542 cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1543
1544 if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1545 flags |= M_CSUM_TCPv4;
1546 if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1547 flags |= M_CSUM_UDPv4;
1548 }
1549 if (total_len < len) {
1550 pktlen = total_len;
1551 total_len = 0;
1552 } else {
1553 total_len -= len;
1554 rxlen = len - sizeof(csum_hdr);
1555 }
1556 DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1557 " rxlen %#jx", total_len, len, pktlen, rxlen);
1558 } else { /* AX172 */
1559 pktlen = rxlen = total_len;
1560 total_len = 0;
1561 }
1562
1563 MGETHDR(m, M_DONTWAIT, MT_DATA);
1564 if (m == NULL) {
1565 ifp->if_ierrors++;
1566 goto done;
1567 }
1568
1569 if (pktlen > MHLEN - ETHER_ALIGN) {
1570 MCLGET(m, M_DONTWAIT);
1571 if ((m->m_flags & M_EXT) == 0) {
1572 m_freem(m);
1573 ifp->if_ierrors++;
1574 goto done;
1575 }
1576 }
1577 m->m_data += ETHER_ALIGN;
1578
1579 m_set_rcvif(m, ifp);
1580 m->m_pkthdr.len = m->m_len = pktlen;
1581 m->m_pkthdr.csum_flags = flags;
1582
1583 memcpy(mtod(m, uint8_t *), buf, pktlen);
1584 buf += rxlen;
1585
1586 DPRINTFN(10, "deliver %jd (%#jx)", m->m_len, m->m_len, 0, 0);
1587
1588 mutex_exit(&sc->axe_rxlock);
1589
1590 if_percpuq_enqueue((ifp)->if_percpuq, (m));
1591
1592 mutex_enter(&sc->axe_rxlock);
1593 if (sc->axe_dying || sc->axe_stopping) {
1594 mutex_exit(&sc->axe_rxlock);
1595 return;
1596 }
1597
1598 } while (total_len > 0);
1599
1600 done:
1601
1602 if (sc->axe_dying || sc->axe_stopping) {
1603 mutex_exit(&sc->axe_rxlock);
1604 return;
1605 }
1606
1607 mutex_exit(&sc->axe_rxlock);
1608
1609 /* Setup new transfer. */
1610 usbd_setup_xfer(xfer, c, c->axe_buf, sc->axe_bufsz,
1611 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, axe_rxeof);
1612 usbd_transfer(xfer);
1613
1614 DPRINTFN(10, "start rx", 0, 0, 0, 0);
1615 }
1616
1617 /*
1618 * A frame was downloaded to the chip. It's safe for us to clean up
1619 * the list buffers.
1620 */
1621
1622 static void
1623 axe_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1624 {
1625 AXEHIST_FUNC(); AXEHIST_CALLED();
1626 struct axe_chain *c = priv;
1627 struct axe_softc *sc = c->axe_sc;
1628 struct axe_cdata *cd = &sc->axe_cdata;
1629 struct ifnet *ifp = &sc->sc_if;
1630
1631 mutex_enter(&sc->axe_txlock);
1632 if (sc->axe_stopping || sc->axe_dying) {
1633 mutex_exit(&sc->axe_txlock);
1634 return;
1635 }
1636
1637 KASSERT(cd->axe_tx_cnt == 1);
1638 cd->axe_tx_cnt--;
1639
1640 sc->axe_timer = 0;
1641
1642 switch (status) {
1643 case USBD_NOT_STARTED:
1644 case USBD_CANCELLED:
1645 break;
1646
1647 case USBD_NORMAL_COMPLETION:
1648 ifp->if_opackets++;
1649 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1650 axe_start_locked(ifp);
1651 break;
1652
1653 default:
1654
1655 ifp->if_oerrors++;
1656 if (usbd_ratecheck(&sc->axe_tx_notice))
1657 aprint_error_dev(sc->axe_dev, "usb error on tx: %s\n",
1658 usbd_errstr(status));
1659 if (status == USBD_STALLED)
1660 usbd_clear_endpoint_stall_async(sc->axe_ep[AXE_ENDPT_TX]);
1661 break;
1662 }
1663
1664 mutex_exit(&sc->axe_txlock);
1665 }
1666
1667 static void
1668 axe_tick(void *xsc)
1669 {
1670 AXEHIST_FUNC(); AXEHIST_CALLED();
1671 struct axe_softc *sc = xsc;
1672
1673 if (sc == NULL)
1674 return;
1675
1676 mutex_enter(&sc->axe_lock);
1677 if (!sc->axe_stopping && !sc->axe_dying) {
1678 /* Perform periodic stuff in process context */
1679 usb_add_task(sc->axe_udev, &sc->axe_tick_task, USB_TASKQ_DRIVER);
1680 }
1681 mutex_exit(&sc->axe_lock);
1682
1683 }
1684
1685 static void
1686 axe_tick_task(void *xsc)
1687 {
1688 AXEHIST_FUNC(); AXEHIST_CALLED();
1689 struct axe_softc *sc = xsc;
1690 struct ifnet *ifp;
1691 struct mii_data *mii;
1692
1693 if (sc == NULL)
1694 return;
1695
1696 mutex_enter(&sc->axe_lock);
1697 if (sc->axe_stopping || sc->axe_dying) {
1698 mutex_exit(&sc->axe_lock);
1699 return;
1700 }
1701
1702 ifp = &sc->sc_if;
1703 mii = &sc->axe_mii;
1704
1705 if (mii == NULL) {
1706 mutex_exit(&sc->axe_lock);
1707 return;
1708 }
1709
1710 sc->axe_refcnt++;
1711 mutex_exit(&sc->axe_lock);
1712
1713 if (sc->axe_timer != 0 && --sc->axe_timer == 0)
1714 axe_watchdog(ifp);
1715
1716 mii_tick(mii);
1717
1718 if (sc->axe_link == 0 &&
1719 (mii->mii_media_status & IFM_ACTIVE) != 0 &&
1720 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1721 DPRINTF("got link", 0, 0, 0, 0);
1722 sc->axe_link++;
1723 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1724 axe_start(ifp);
1725 }
1726
1727
1728 mutex_enter(&sc->axe_lock);
1729 if (--sc->axe_refcnt < 0)
1730 cv_broadcast(&sc->axe_detachcv);
1731 if (!sc->axe_stopping && !sc->axe_dying)
1732 callout_schedule(&sc->axe_stat_ch, hz);
1733 mutex_exit(&sc->axe_lock);
1734 }
1735
1736 static int
1737 axe_encap(struct axe_softc *sc, struct mbuf *m, int idx)
1738 {
1739 struct ifnet *ifp = &sc->sc_if;
1740 struct axe_chain *c;
1741 usbd_status err;
1742 int length, boundary;
1743
1744 KASSERT(mutex_owned(&sc->axe_txlock));
1745
1746 c = &sc->axe_cdata.axe_tx_chain[idx];
1747
1748 /*
1749 * Copy the mbuf data into a contiguous buffer, leaving two
1750 * bytes at the beginning to hold the frame length.
1751 */
1752 if (AXE_IS_178_FAMILY(sc)) {
1753 struct axe_sframe_hdr hdr;
1754
1755 boundary = (sc->axe_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1756
1757 hdr.len = htole16(m->m_pkthdr.len);
1758 hdr.ilen = ~hdr.len;
1759
1760 memcpy(c->axe_buf, &hdr, sizeof(hdr));
1761 length = sizeof(hdr);
1762
1763 m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf + length);
1764 length += m->m_pkthdr.len;
1765
1766 if ((length % boundary) == 0) {
1767 hdr.len = 0x0000;
1768 hdr.ilen = 0xffff;
1769 memcpy(c->axe_buf + length, &hdr, sizeof(hdr));
1770 length += sizeof(hdr);
1771 }
1772 } else {
1773 m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf);
1774 length = m->m_pkthdr.len;
1775 }
1776
1777 usbd_setup_xfer(c->axe_xfer, c, c->axe_buf, length,
1778 USBD_FORCE_SHORT_XFER, 10000, axe_txeof);
1779
1780 /* Transmit */
1781 err = usbd_transfer(c->axe_xfer);
1782 if (err != USBD_IN_PROGRESS) {
1783 /* XXXSMP IFNET_LOCK */
1784 axe_stop(ifp, 0);
1785 return EIO;
1786 }
1787
1788 sc->axe_cdata.axe_tx_cnt++;
1789
1790 return 0;
1791 }
1792
1793
1794 static void
1795 axe_csum_cfg(struct axe_softc *sc)
1796 {
1797 struct ifnet *ifp = &sc->sc_if;
1798 uint16_t csum1, csum2;
1799
1800 if ((sc->axe_flags & AX772B) != 0) {
1801 csum1 = 0;
1802 csum2 = 0;
1803 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1804 csum1 |= AXE_TXCSUM_IP;
1805 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1806 csum1 |= AXE_TXCSUM_TCP;
1807 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1808 csum1 |= AXE_TXCSUM_UDP;
1809 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1810 csum1 |= AXE_TXCSUM_TCPV6;
1811 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1812 csum1 |= AXE_TXCSUM_UDPV6;
1813 axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1814 csum1 = 0;
1815 csum2 = 0;
1816
1817 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1818 csum1 |= AXE_RXCSUM_IP;
1819 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1820 csum1 |= AXE_RXCSUM_TCP;
1821 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1822 csum1 |= AXE_RXCSUM_UDP;
1823 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1824 csum1 |= AXE_RXCSUM_TCPV6;
1825 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1826 csum1 |= AXE_RXCSUM_UDPV6;
1827 axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1828 }
1829 }
1830
1831 static void
1832 axe_start_locked(struct ifnet *ifp)
1833 {
1834 struct axe_softc *sc = ifp->if_softc;
1835 struct mbuf *m;
1836 struct axe_cdata *cd = &sc->axe_cdata;
1837
1838 KASSERT(mutex_owned(&sc->axe_txlock));
1839
1840 if (cd->axe_tx_cnt != 0)
1841 return;
1842
1843 if (sc->axe_link == 0 || (ifp->if_flags & IFF_RUNNING) == 0)
1844 return;
1845
1846 IFQ_POLL(&ifp->if_snd, m);
1847 if (m == NULL) {
1848 return;
1849 }
1850
1851 if (axe_encap(sc, m, 0)) {
1852 return;
1853 }
1854 IFQ_DEQUEUE(&ifp->if_snd, m);
1855
1856 /*
1857 * If there's a BPF listener, bounce a copy of this frame
1858 * to him.
1859 */
1860 bpf_mtap(ifp, m, BPF_D_OUT);
1861 m_freem(m);
1862
1863 /*
1864 * Set a timeout in case the chip goes out to lunch.
1865 */
1866 sc->axe_timer = 5;
1867
1868 return;
1869 }
1870
1871 static void
1872 axe_start(struct ifnet *ifp)
1873 {
1874 struct axe_softc * const sc = ifp->if_softc;
1875
1876 mutex_enter(&sc->axe_txlock);
1877 if (!sc->axe_stopping)
1878 axe_start_locked(ifp);
1879 mutex_exit(&sc->axe_txlock);
1880 }
1881
1882 static int
1883 axe_init_locked(struct ifnet *ifp)
1884 {
1885 AXEHIST_FUNC(); AXEHIST_CALLED();
1886 struct axe_softc *sc = ifp->if_softc;
1887 struct axe_chain *c;
1888 usbd_status err;
1889 int rxmode;
1890 int i;
1891
1892 KASSERT(mutex_owned(&sc->axe_lock));
1893
1894 if (sc->axe_dying)
1895 return EIO;
1896
1897 /* Cancel pending I/O */
1898 axe_stop_locked(ifp, 0);
1899
1900 /* Reset the ethernet interface. */
1901 axe_reset(sc);
1902
1903 axe_lock_mii_sc_locked(sc);
1904
1905 #if 0
1906 ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1907 AX_GPIO_GPO2EN, 5, in_pm);
1908 #endif
1909 /* Set MAC address and transmitter IPG values. */
1910 if (AXE_IS_178_FAMILY(sc)) {
1911 axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, sc->axe_enaddr);
1912 axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1913 (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1914 } else {
1915 axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, sc->axe_enaddr);
1916 axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1917 axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1918 axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1919 }
1920 if (AXE_IS_178_FAMILY(sc)) {
1921 sc->axe_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1922 if ((sc->axe_flags & AX772B) != 0 &&
1923 (ifp->if_capenable & AX_RXCSUM) != 0) {
1924 sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1925 sc->axe_flags |= AXCSUM_FRAME;
1926 } else {
1927 sc->sc_lenmask = AXE_HDR_LEN_MASK;
1928 sc->axe_flags |= AXSTD_FRAME;
1929 }
1930 }
1931
1932 /* Configure TX/RX checksum offloading. */
1933 axe_csum_cfg(sc);
1934
1935 if (sc->axe_flags & AX772B) {
1936 /* AX88772B uses different maximum frame burst configuration. */
1937 axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1938 ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1939 ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1940 }
1941 /* Enable receiver, set RX mode */
1942 rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1943 if (AXE_IS_178_FAMILY(sc)) {
1944 if (sc->axe_flags & AX772B) {
1945 /*
1946 * Select RX header format type 1. Aligning IP
1947 * header on 4 byte boundary is not needed when
1948 * checksum offloading feature is not used
1949 * because we always copy the received frame in
1950 * RX handler. When RX checksum offloading is
1951 * active, aligning IP header is required to
1952 * reflect actual frame length including RX
1953 * header size.
1954 */
1955 rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1956 if (sc->axe_flags & AXCSUM_FRAME)
1957 rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1958 } else {
1959 /*
1960 * Default Rx buffer size is too small to get
1961 * maximum performance.
1962 */
1963 #if 0
1964 if (sc->axe_udev->ud_speed == USB_SPEED_HIGH) {
1965 /* Largest possible USB buffer size for AX88178 */
1966 }
1967 #endif
1968 rxmode |= AXE_178_RXCMD_MFB_16384;
1969 }
1970 } else {
1971 rxmode |= AXE_172_RXCMD_UNICAST;
1972 }
1973
1974
1975 /* If we want promiscuous mode, set the allframes bit. */
1976 if (ifp->if_flags & IFF_PROMISC)
1977 rxmode |= AXE_RXCMD_PROMISC;
1978
1979 if (ifp->if_flags & IFF_BROADCAST)
1980 rxmode |= AXE_RXCMD_BROADCAST;
1981
1982 DPRINTF("rxmode 0x%#jx", rxmode, 0, 0, 0);
1983
1984 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1985
1986 /* Load the multicast filter. */
1987 axe_setmulti_locked(sc);
1988
1989 axe_unlock_mii_sc_locked(sc);
1990
1991 /* Open RX and TX pipes. */
1992 err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_RX],
1993 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->axe_ep[AXE_ENDPT_RX]);
1994 if (err) {
1995 aprint_error_dev(sc->axe_dev, "open rx pipe failed: %s\n",
1996 usbd_errstr(err));
1997 return EIO;
1998 }
1999
2000 err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_TX],
2001 USBD_EXCLUSIVE_USE | USBD_MPSAFE, &sc->axe_ep[AXE_ENDPT_TX]);
2002 if (err) {
2003 aprint_error_dev(sc->axe_dev, "open tx pipe failed: %s\n",
2004 usbd_errstr(err));
2005 return EIO;
2006 }
2007
2008 /* Init RX ring. */
2009 if (axe_rx_list_init(sc) != 0) {
2010 aprint_error_dev(sc->axe_dev, "rx list init failed\n");
2011 return ENOBUFS;
2012 }
2013
2014 /* Init TX ring. */
2015 if (axe_tx_list_init(sc) != 0) {
2016 aprint_error_dev(sc->axe_dev, "tx list init failed\n");
2017 return ENOBUFS;
2018 }
2019
2020 mutex_enter(&sc->axe_rxlock);
2021 mutex_enter(&sc->axe_txlock);
2022 sc->axe_stopping = false;
2023
2024 /* Start up the receive pipe. */
2025 for (i = 0; i < AXE_RX_LIST_CNT; i++) {
2026 c = &sc->axe_cdata.axe_rx_chain[i];
2027 usbd_setup_xfer(c->axe_xfer, c, c->axe_buf, sc->axe_bufsz,
2028 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, axe_rxeof);
2029 usbd_transfer(c->axe_xfer);
2030 }
2031
2032 mutex_exit(&sc->axe_txlock);
2033 mutex_exit(&sc->axe_rxlock);
2034
2035 /* Indicate we are up and running. */
2036 KASSERT(IFNET_LOCKED(ifp));
2037 ifp->if_flags |= IFF_RUNNING;
2038
2039 callout_schedule(&sc->axe_stat_ch, hz);
2040 return 0;
2041 }
2042
2043 static int
2044 axe_init(struct ifnet *ifp)
2045 {
2046 struct axe_softc * const sc = ifp->if_softc;
2047
2048 mutex_enter(&sc->axe_lock);
2049 int ret = axe_init_locked(ifp);
2050 mutex_exit(&sc->axe_lock);
2051
2052 return ret;
2053 }
2054
2055 static int
2056 axe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2057 {
2058 struct axe_softc *sc = ifp->if_softc;
2059 int error = 0;
2060
2061 switch (cmd) {
2062 case SIOCSIFFLAGS:
2063 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2064 break;
2065
2066 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2067 case IFF_RUNNING:
2068 axe_stop(ifp, 1);
2069 break;
2070 case IFF_UP:
2071 axe_init(ifp);
2072 break;
2073 case IFF_UP | IFF_RUNNING:
2074 if ((ifp->if_flags ^ sc->axe_if_flags) == IFF_PROMISC)
2075 axe_setmulti(sc);
2076 else
2077 axe_init(ifp);
2078 break;
2079 }
2080 mutex_enter(&sc->axe_rxlock);
2081 mutex_enter(&sc->axe_txlock);
2082 sc->axe_if_flags = ifp->if_flags;
2083 mutex_exit(&sc->axe_txlock);
2084 mutex_exit(&sc->axe_rxlock);
2085 break;
2086
2087 default:
2088 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2089 break;
2090
2091 error = 0;
2092
2093 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI)
2094 axe_setmulti(sc);
2095
2096 }
2097
2098 return error;
2099 }
2100
2101 static void
2102 axe_watchdog(struct ifnet *ifp)
2103 {
2104 struct axe_softc * const sc = ifp->if_softc;
2105 struct axe_chain *c;
2106 usbd_status stat;
2107
2108 ifp->if_oerrors++;
2109 aprint_error_dev(sc->axe_dev, "watchdog timeout\n");
2110
2111 c = &sc->axe_cdata.axe_tx_chain[0];
2112 usbd_get_xfer_status(c->axe_xfer, NULL, NULL, NULL, &stat);
2113 axe_txeof(c->axe_xfer, c, stat);
2114
2115 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2116 axe_start(ifp);
2117 }
2118
2119 /*
2120 * Stop the adapter and free any mbufs allocated to the
2121 * RX and TX lists.
2122 */
2123 static void
2124 axe_stop_locked(struct ifnet *ifp, int disable)
2125 {
2126 struct axe_softc * const sc = ifp->if_softc;
2127 usbd_status err;
2128 int i;
2129
2130 KASSERT(mutex_owned(&sc->axe_lock));
2131
2132 mutex_enter(&sc->axe_rxlock);
2133 mutex_enter(&sc->axe_txlock);
2134 sc->axe_stopping = true;
2135 mutex_exit(&sc->axe_txlock);
2136 mutex_exit(&sc->axe_rxlock);
2137
2138 /*
2139 * XXXSMP Would like to
2140 * KASSERT(IFNET_LOCKED(ifp))
2141 * here but the locking order is:
2142 * ifnet -> sc lock -> rxlock -> txlock
2143 * and sc lock is already held.
2144 */
2145 ifp->if_flags &= ~IFF_RUNNING;
2146 sc->axe_timer = 0;
2147
2148 callout_stop(&sc->axe_stat_ch);
2149 sc->axe_link = 0;
2150
2151 /* Stop transfers. */
2152 if (sc->axe_ep[AXE_ENDPT_RX] != NULL) {
2153 err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_RX]);
2154 if (err) {
2155 aprint_error_dev(sc->axe_dev,
2156 "abort rx pipe failed: %s\n", usbd_errstr(err));
2157 }
2158 }
2159
2160 if (sc->axe_ep[AXE_ENDPT_TX] != NULL) {
2161 err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_TX]);
2162 if (err) {
2163 aprint_error_dev(sc->axe_dev,
2164 "abort tx pipe failed: %s\n", usbd_errstr(err));
2165 }
2166 }
2167
2168 if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) {
2169 err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_INTR]);
2170 if (err) {
2171 aprint_error_dev(sc->axe_dev,
2172 "abort intr pipe failed: %s\n", usbd_errstr(err));
2173 }
2174 }
2175
2176 axe_reset(sc);
2177
2178 /* Free RX resources. */
2179 for (i = 0; i < AXE_RX_LIST_CNT; i++) {
2180 if (sc->axe_cdata.axe_rx_chain[i].axe_xfer != NULL) {
2181 usbd_destroy_xfer(sc->axe_cdata.axe_rx_chain[i].axe_xfer);
2182 sc->axe_cdata.axe_rx_chain[i].axe_xfer = NULL;
2183 }
2184 }
2185
2186 /* Free TX resources. */
2187 for (i = 0; i < AXE_TX_LIST_CNT; i++) {
2188 if (sc->axe_cdata.axe_tx_chain[i].axe_xfer != NULL) {
2189 usbd_destroy_xfer(sc->axe_cdata.axe_tx_chain[i].axe_xfer);
2190 sc->axe_cdata.axe_tx_chain[i].axe_xfer = NULL;
2191 }
2192 }
2193
2194 /* Close pipes. */
2195 if (sc->axe_ep[AXE_ENDPT_RX] != NULL) {
2196 err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_RX]);
2197 if (err) {
2198 aprint_error_dev(sc->axe_dev,
2199 "close rx pipe failed: %s\n", usbd_errstr(err));
2200 }
2201 sc->axe_ep[AXE_ENDPT_RX] = NULL;
2202 }
2203
2204 if (sc->axe_ep[AXE_ENDPT_TX] != NULL) {
2205 err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_TX]);
2206 if (err) {
2207 aprint_error_dev(sc->axe_dev,
2208 "close tx pipe failed: %s\n", usbd_errstr(err));
2209 }
2210 sc->axe_ep[AXE_ENDPT_TX] = NULL;
2211 }
2212
2213 if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) {
2214 err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_INTR]);
2215 if (err) {
2216 aprint_error_dev(sc->axe_dev,
2217 "close intr pipe failed: %s\n", usbd_errstr(err));
2218 }
2219 sc->axe_ep[AXE_ENDPT_INTR] = NULL;
2220 }
2221 }
2222
2223 static void
2224 axe_stop(struct ifnet *ifp, int disable)
2225 {
2226 struct axe_softc * const sc = ifp->if_softc;
2227
2228 mutex_enter(&sc->axe_lock);
2229 axe_stop_locked(ifp, disable);
2230 mutex_exit(&sc->axe_lock);
2231 }
2232
2233 MODULE(MODULE_CLASS_DRIVER, if_axe, NULL);
2234
2235 #ifdef _MODULE
2236 #include "ioconf.c"
2237 #endif
2238
2239 static int
2240 if_axe_modcmd(modcmd_t cmd, void *aux)
2241 {
2242 int error = 0;
2243
2244 switch (cmd) {
2245 case MODULE_CMD_INIT:
2246 #ifdef _MODULE
2247 error = config_init_component(cfdriver_ioconf_axe,
2248 cfattach_ioconf_axe, cfdata_ioconf_axe);
2249 #endif
2250 return error;
2251 case MODULE_CMD_FINI:
2252 #ifdef _MODULE
2253 error = config_fini_component(cfdriver_ioconf_axe,
2254 cfattach_ioconf_axe, cfdata_ioconf_axe);
2255 #endif
2256 return error;
2257 default:
2258 return ENOTTY;
2259 }
2260 }
2261