Home | History | Annotate | Line # | Download | only in usb
if_axe.c revision 1.102.2.2
      1 /*	$NetBSD: if_axe.c,v 1.102.2.2 2019/09/01 14:03:02 martin Exp $	*/
      2 /*	$OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Copyright (c) 1997, 1998, 1999, 2000-2003
     22  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
     23  *
     24  * Redistribution and use in source and binary forms, with or without
     25  * modification, are permitted provided that the following conditions
     26  * are met:
     27  * 1. Redistributions of source code must retain the above copyright
     28  *    notice, this list of conditions and the following disclaimer.
     29  * 2. Redistributions in binary form must reproduce the above copyright
     30  *    notice, this list of conditions and the following disclaimer in the
     31  *    documentation and/or other materials provided with the distribution.
     32  * 3. All advertising materials mentioning features or use of this software
     33  *    must display the following acknowledgement:
     34  *	This product includes software developed by Bill Paul.
     35  * 4. Neither the name of the author nor the names of any co-contributors
     36  *    may be used to endorse or promote products derived from this software
     37  *    without specific prior written permission.
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     40  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     42  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     43  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     44  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     45  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     46  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     47  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     49  * THE POSSIBILITY OF SUCH DAMAGE.
     50  */
     51 
     52 /*
     53  * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
     54  * Used in the LinkSys USB200M and various other adapters.
     55  *
     56  * Written by Bill Paul <wpaul (at) windriver.com>
     57  * Senior Engineer
     58  * Wind River Systems
     59  */
     60 
     61 /*
     62  * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
     63  * It uses an external PHY (reference designs use a RealTek chip),
     64  * and has a 64-bit multicast hash filter. There is some information
     65  * missing from the manual which one needs to know in order to make
     66  * the chip function:
     67  *
     68  * - You must set bit 7 in the RX control register, otherwise the
     69  *   chip won't receive any packets.
     70  * - You must initialize all 3 IPG registers, or you won't be able
     71  *   to send any packets.
     72  *
     73  * Note that this device appears to only support loading the station
     74  * address via autoload from the EEPROM (i.e. there's no way to manually
     75  * set it).
     76  *
     77  * (Adam Weinberger wanted me to name this driver if_gir.c.)
     78  */
     79 
     80 /*
     81  * Ax88178 and Ax88772 support backported from the OpenBSD driver.
     82  * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
     83  *
     84  * Manual here:
     85  * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
     86  * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.102.2.2 2019/09/01 14:03:02 martin Exp $");
     91 
     92 #ifdef _KERNEL_OPT
     93 #include "opt_usb.h"
     94 #include "opt_net_mpsafe.h"
     95 #endif
     96 
     97 #include <sys/param.h>
     98 
     99 #include <dev/usb/usbnet.h>
    100 #include <dev/usb/usbhist.h>
    101 #include <dev/usb/if_axereg.h>
    102 
    103 struct axe_type {
    104 	struct usb_devno	axe_dev;
    105 	uint16_t		axe_flags;
    106 };
    107 
    108 struct axe_softc {
    109 	struct usbnet		axe_un;
    110 
    111 	/* usbnet:un_flags values */
    112 #define AX178		__BIT(0)	/* AX88178 */
    113 #define AX772		__BIT(1)	/* AX88772 */
    114 #define AX772A		__BIT(2)	/* AX88772A */
    115 #define AX772B		__BIT(3)	/* AX88772B */
    116 #define	AXSTD_FRAME	__BIT(12)
    117 #define	AXCSUM_FRAME	__BIT(13)
    118 
    119 	uint8_t			axe_ipgs[3];
    120 	uint8_t 		axe_phyaddrs[2];
    121 	uint16_t		sc_pwrcfg;
    122 	uint16_t		sc_lenmask;
    123 
    124 };
    125 
    126 #define	AXE_IS_178_FAMILY(un)				\
    127 	((un)->un_flags & (AX772 | AX772A | AX772B | AX178))
    128 
    129 #define	AXE_IS_772(un)					\
    130 	((un)->un_flags & (AX772 | AX772A | AX772B))
    131 
    132 #define AX_RXCSUM					\
    133     (IFCAP_CSUM_IPv4_Rx | 				\
    134      IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |	\
    135      IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
    136 
    137 #define AX_TXCSUM					\
    138     (IFCAP_CSUM_IPv4_Tx | 				\
    139      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |	\
    140      IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
    141 
    142 /*
    143  * AXE_178_MAX_FRAME_BURST
    144  * max frame burst size for Ax88178 and Ax88772
    145  *	0	2048 bytes
    146  *	1	4096 bytes
    147  *	2	8192 bytes
    148  *	3	16384 bytes
    149  * use the largest your system can handle without USB stalling.
    150  *
    151  * NB: 88772 parts appear to generate lots of input errors with
    152  * a 2K rx buffer and 8K is only slightly faster than 4K on an
    153  * EHCI port on a T42 so change at your own risk.
    154  */
    155 #define AXE_178_MAX_FRAME_BURST	1
    156 
    157 
    158 #ifdef USB_DEBUG
    159 #ifndef AXE_DEBUG
    160 #define axedebug 0
    161 #else
    162 static int axedebug = 0;
    163 
    164 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
    165 {
    166 	int err;
    167 	const struct sysctlnode *rnode;
    168 	const struct sysctlnode *cnode;
    169 
    170 	err = sysctl_createv(clog, 0, NULL, &rnode,
    171 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
    172 	    SYSCTL_DESCR("axe global controls"),
    173 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
    174 
    175 	if (err)
    176 		goto fail;
    177 
    178 	/* control debugging printfs */
    179 	err = sysctl_createv(clog, 0, &rnode, &cnode,
    180 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
    181 	    "debug", SYSCTL_DESCR("Enable debugging output"),
    182 	    NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
    183 	if (err)
    184 		goto fail;
    185 
    186 	return;
    187 fail:
    188 	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
    189 }
    190 
    191 #endif /* AXE_DEBUG */
    192 #endif /* USB_DEBUG */
    193 
    194 #define DPRINTF(FMT,A,B,C,D)	USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
    195 #define DPRINTFN(N,FMT,A,B,C,D)	USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
    196 #define AXEHIST_FUNC()		USBHIST_FUNC()
    197 #define AXEHIST_CALLED(name)	USBHIST_CALLED(axedebug)
    198 
    199 /*
    200  * Various supported device vendors/products.
    201  */
    202 static const struct axe_type axe_devs[] = {
    203 	{ { USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_UFE2000}, 0 },
    204 	{ { USB_VENDOR_ACERCM,		USB_PRODUCT_ACERCM_EP1427X2}, 0 },
    205 	{ { USB_VENDOR_APPLE,		USB_PRODUCT_APPLE_ETHERNET }, AX772 },
    206 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88172}, 0 },
    207 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772}, AX772 },
    208 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772A}, AX772 },
    209 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B}, AX772B },
    210 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
    211 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88178}, AX178 },
    212 	{ { USB_VENDOR_ATEN,		USB_PRODUCT_ATEN_UC210T}, 0 },
    213 	{ { USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
    214 	{ { USB_VENDOR_BILLIONTON,	USB_PRODUCT_BILLIONTON_USB2AR}, 0},
    215 	{ { USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
    216 	{ { USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
    217 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100}, 0 },
    218 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
    219 	{ { USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
    220 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
    221 	{ { USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
    222 	{ { USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
    223 	{ { USB_VENDOR_JVC,		USB_PRODUCT_JVC_MP_PRX1}, 0 },
    224 	{ { USB_VENDOR_LENOVO,		USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
    225 	{ { USB_VENDOR_LINKSYS,		USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
    226 	{ { USB_VENDOR_LINKSYS2,	USB_PRODUCT_LINKSYS2_USB200M}, 0 },
    227 	{ { USB_VENDOR_LINKSYS4,	USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
    228 	{ { USB_VENDOR_LOGITEC,		USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
    229 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
    230 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
    231 	{ { USB_VENDOR_MSI,		USB_PRODUCT_MSI_AX88772A}, AX772 },
    232 	{ { USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_FA120}, 0 },
    233 	{ { USB_VENDOR_OQO,		USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
    234 	{ { USB_VENDOR_PLANEX3,		USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
    235 	{ { USB_VENDOR_SITECOM,		USB_PRODUCT_SITECOM_LN029}, 0 },
    236 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
    237 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
    238 	{ { USB_VENDOR_SYSTEMTALKS,	USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
    239 };
    240 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
    241 
    242 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
    243 	{ 0x8000, 0x8001, 2048 },
    244 	{ 0x8100, 0x8147, 4096 },
    245 	{ 0x8200, 0x81EB, 6144 },
    246 	{ 0x8300, 0x83D7, 8192 },
    247 	{ 0x8400, 0x851E, 16384 },
    248 	{ 0x8500, 0x8666, 20480 },
    249 	{ 0x8600, 0x87AE, 24576 },
    250 	{ 0x8700, 0x8A3D, 32768 }
    251 };
    252 
    253 int	axe_match(device_t, cfdata_t, void *);
    254 void	axe_attach(device_t, device_t, void *);
    255 
    256 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
    257 	axe_match, axe_attach, usbnet_detach, usbnet_activate);
    258 
    259 static void	axe_stop(struct ifnet *, int);
    260 static int	axe_ioctl(struct ifnet *, u_long, void *);
    261 static int	axe_init(struct ifnet *);
    262 static int	axe_mii_read_reg(struct usbnet *, int, int, uint16_t *);
    263 static int	axe_mii_write_reg(struct usbnet *, int, int, uint16_t);
    264 static void	axe_mii_statchg(struct ifnet *);
    265 static void	axe_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
    266 static unsigned axe_tx_prepare(struct usbnet *, struct mbuf *,
    267 			       struct usbnet_chain *);
    268 
    269 static void	axe_ax88178_init(struct axe_softc *);
    270 static void	axe_ax88772_init(struct axe_softc *);
    271 static void	axe_ax88772a_init(struct axe_softc *);
    272 static void	axe_ax88772b_init(struct axe_softc *);
    273 
    274 static struct usbnet_ops axe_ops = {
    275 	.uno_stop = axe_stop,
    276 	.uno_ioctl = axe_ioctl,
    277 	.uno_read_reg = axe_mii_read_reg,
    278 	.uno_write_reg = axe_mii_write_reg,
    279 	.uno_statchg = axe_mii_statchg,
    280 	.uno_tx_prepare = axe_tx_prepare,
    281 	.uno_rx_loop = axe_rx_loop,
    282 	.uno_init = axe_init,
    283 };
    284 
    285 static usbd_status
    286 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
    287 {
    288 	AXEHIST_FUNC(); AXEHIST_CALLED();
    289 	struct usbnet * const un = &sc->axe_un;
    290 	usb_device_request_t req;
    291 	usbd_status err;
    292 
    293 	usbnet_isowned_mii(un);
    294 
    295 	if (usbnet_isdying(un))
    296 		return -1;
    297 
    298 	DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
    299 
    300 	if (AXE_CMD_DIR(cmd))
    301 		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
    302 	else
    303 		req.bmRequestType = UT_READ_VENDOR_DEVICE;
    304 	req.bRequest = AXE_CMD_CMD(cmd);
    305 	USETW(req.wValue, val);
    306 	USETW(req.wIndex, index);
    307 	USETW(req.wLength, AXE_CMD_LEN(cmd));
    308 
    309 	err = usbd_do_request(un->un_udev, &req, buf);
    310 	if (err)
    311 		DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
    312 
    313 	return err;
    314 }
    315 
    316 static int
    317 axe_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
    318 {
    319 	AXEHIST_FUNC(); AXEHIST_CALLED();
    320 	struct axe_softc * const sc = usbnet_softc(un);
    321 	usbd_status err;
    322 	uint16_t data;
    323 
    324 	DPRINTFN(30, "phy 0x%jx reg 0x%jx\n", phy, reg, 0, 0);
    325 
    326 	if (un->un_phyno != phy)
    327 		return EINVAL;
    328 
    329 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    330 
    331 	err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
    332 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    333 
    334 	if (err) {
    335 		aprint_error_dev(un->un_dev, "read PHY failed\n");
    336 		return EIO;
    337 	}
    338 
    339 	*val = le16toh(data);
    340 	if (AXE_IS_772(un) && reg == MII_BMSR) {
    341 		/*
    342 		 * BMSR of AX88772 indicates that it supports extended
    343 		 * capability but the extended status register is
    344 		 * reserved for embedded ethernet PHY. So clear the
    345 		 * extended capability bit of BMSR.
    346 		 */
    347 		*val &= ~BMSR_EXTCAP;
    348 	}
    349 
    350 	DPRINTFN(30, "phy 0x%jx reg 0x%jx val %#jx", phy, reg, *val, 0);
    351 
    352 	return 0;
    353 }
    354 
    355 static int
    356 axe_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
    357 {
    358 	struct axe_softc * const sc = usbnet_softc(un);
    359 	usbd_status err;
    360 	uint16_t aval;
    361 
    362 	if (un->un_phyno != phy)
    363 		return EINVAL;
    364 
    365 	aval = htole16(val);
    366 
    367 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    368 	err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
    369 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    370 
    371 	if (err)
    372 		return EIO;
    373 	return 0;
    374 }
    375 
    376 static void
    377 axe_mii_statchg(struct ifnet *ifp)
    378 {
    379 	AXEHIST_FUNC(); AXEHIST_CALLED();
    380 
    381 	struct usbnet * const un = ifp->if_softc;
    382 	struct axe_softc * const sc = usbnet_softc(un);
    383 	struct mii_data *mii = usbnet_mii(un);
    384 	int val, err;
    385 
    386 	if (usbnet_isdying(un))
    387 		return;
    388 
    389 	val = 0;
    390 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
    391 		val |= AXE_MEDIA_FULL_DUPLEX;
    392 		if (AXE_IS_178_FAMILY(un)) {
    393 			if ((IFM_OPTIONS(mii->mii_media_active) &
    394 			    IFM_ETH_TXPAUSE) != 0)
    395 				val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
    396 			if ((IFM_OPTIONS(mii->mii_media_active) &
    397 			    IFM_ETH_RXPAUSE) != 0)
    398 				val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
    399 		}
    400 	}
    401 	if (AXE_IS_178_FAMILY(un)) {
    402 		val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
    403 		if (un->un_flags & AX178)
    404 			val |= AXE_178_MEDIA_ENCK;
    405 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    406 		case IFM_1000_T:
    407 			val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
    408 			usbnet_set_link(un, true);
    409 			break;
    410 		case IFM_100_TX:
    411 			val |= AXE_178_MEDIA_100TX;
    412 			usbnet_set_link(un, true);
    413 			break;
    414 		case IFM_10_T:
    415 			usbnet_set_link(un, true);
    416 			break;
    417 		}
    418 	}
    419 
    420 	DPRINTF("val=0x%jx", val, 0, 0, 0);
    421 	usbnet_lock_mii(un);
    422 	err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
    423 	usbnet_unlock_mii(un);
    424 	if (err)
    425 		aprint_error_dev(un->un_dev, "media change failed\n");
    426 }
    427 
    428 static void
    429 axe_setiff_locked(struct usbnet *un)
    430 {
    431 	AXEHIST_FUNC(); AXEHIST_CALLED();
    432 	struct axe_softc * const sc = usbnet_softc(un);
    433 	struct ifnet * const ifp = usbnet_ifp(un);
    434 	struct ethercom *ec = usbnet_ec(un);
    435 	struct ether_multi *enm;
    436 	struct ether_multistep step;
    437 	uint32_t h = 0;
    438 	uint16_t rxmode;
    439 	uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    440 
    441 	usbnet_isowned_mii(un);
    442 
    443 	if (usbnet_isdying(un))
    444 		return;
    445 
    446 	if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
    447 		aprint_error_dev(un->un_dev, "can't read rxmode");
    448 		return;
    449 	}
    450 	rxmode = le16toh(rxmode);
    451 
    452 	rxmode &=
    453 	    ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC |
    454 	    AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST);
    455 
    456 	rxmode |=
    457 	    (ifp->if_flags & IFF_BROADCAST) ? AXE_RXCMD_BROADCAST : 0;
    458 
    459 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
    460 		if (ifp->if_flags & IFF_PROMISC)
    461 			rxmode |= AXE_RXCMD_PROMISC;
    462 		goto allmulti;
    463 	}
    464 
    465 	/* Now program new ones */
    466 	ETHER_LOCK(ec);
    467 	ETHER_FIRST_MULTI(step, ec, enm);
    468 	while (enm != NULL) {
    469 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    470 		    ETHER_ADDR_LEN) != 0) {
    471 			ETHER_UNLOCK(ec);
    472 			goto allmulti;
    473 		}
    474 
    475 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
    476 		hashtbl[h >> 3] |= 1U << (h & 7);
    477 		ETHER_NEXT_MULTI(step, enm);
    478 	}
    479 	ETHER_UNLOCK(ec);
    480 	ifp->if_flags &= ~IFF_ALLMULTI;
    481 	rxmode |= AXE_RXCMD_MULTICAST;
    482 
    483 	axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
    484 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    485 	return;
    486 
    487  allmulti:
    488 	ifp->if_flags |= IFF_ALLMULTI;
    489 	rxmode |= AXE_RXCMD_ALLMULTI;
    490 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    491 }
    492 
    493 static void
    494 axe_setiff(struct usbnet *un)
    495 {
    496 	usbnet_lock_mii(un);
    497 	axe_setiff_locked(un);
    498 	usbnet_unlock_mii(un);
    499 }
    500 
    501 static void
    502 axe_ax_init(struct usbnet *un)
    503 {
    504 	struct axe_softc * const sc = usbnet_softc(un);
    505 
    506 	int cmd = AXE_178_CMD_READ_NODEID;
    507 
    508 	if (un->un_flags & AX178) {
    509 		axe_ax88178_init(sc);
    510 	} else if (un->un_flags & AX772) {
    511 		axe_ax88772_init(sc);
    512 	} else if (un->un_flags & AX772A) {
    513 		axe_ax88772a_init(sc);
    514 	} else if (un->un_flags & AX772B) {
    515 		axe_ax88772b_init(sc);
    516 		return;
    517 	} else {
    518 		cmd = AXE_172_CMD_READ_NODEID;
    519 	}
    520 
    521 	if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
    522 		aprint_error_dev(un->un_dev,
    523 		    "failed to read ethernet address\n");
    524 	}
    525 }
    526 
    527 
    528 static void
    529 axe_reset(struct usbnet *un)
    530 {
    531 
    532 	usbnet_isowned_mii(un);
    533 
    534 	if (usbnet_isdying(un))
    535 		return;
    536 
    537 	/*
    538 	 * softnet_lock can be taken when NET_MPAFE is not defined when calling
    539 	 * if_addr_init -> if_init.  This doesn't mix well with the
    540 	 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
    541 	 * can fire during the wait and attempt to take softnet_lock and then
    542 	 * block the softclk thread meaning the wait never ends.
    543 	 */
    544 #ifndef NET_MPSAFE
    545 	/* XXX What to reset? */
    546 
    547 	/* Wait a little while for the chip to get its brains in order. */
    548 	DELAY(1000);
    549 #else
    550 	axe_ax_init(un);
    551 #endif
    552 }
    553 
    554 static int
    555 axe_get_phyno(struct axe_softc *sc, int sel)
    556 {
    557 	int phyno;
    558 
    559 	switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
    560 	case PHY_TYPE_100_HOME:
    561 		/* FALLTHROUGH */
    562 	case PHY_TYPE_GIG:
    563 		phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
    564 		break;
    565 	case PHY_TYPE_SPECIAL:
    566 		/* FALLTHROUGH */
    567 	case PHY_TYPE_RSVD:
    568 		/* FALLTHROUGH */
    569 	case PHY_TYPE_NON_SUP:
    570 		/* FALLTHROUGH */
    571 	default:
    572 		phyno = -1;
    573 		break;
    574 	}
    575 
    576 	return phyno;
    577 }
    578 
    579 #define	AXE_GPIO_WRITE(x, y)	do {				\
    580 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL);		\
    581 	usbd_delay_ms(sc->axe_un.un_udev, hztoms(y));		\
    582 } while (0)
    583 
    584 static void
    585 axe_ax88178_init(struct axe_softc *sc)
    586 {
    587 	AXEHIST_FUNC(); AXEHIST_CALLED();
    588 	struct usbnet * const un = &sc->axe_un;
    589 	int gpio0, ledmode, phymode;
    590 	uint16_t eeprom, val;
    591 
    592 	axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
    593 	/* XXX magic */
    594 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
    595 		eeprom = 0xffff;
    596 	axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
    597 
    598 	eeprom = le16toh(eeprom);
    599 
    600 	DPRINTF("EEPROM is 0x%jx", eeprom, 0, 0, 0);
    601 
    602 	/* if EEPROM is invalid we have to use to GPIO0 */
    603 	if (eeprom == 0xffff) {
    604 		phymode = AXE_PHY_MODE_MARVELL;
    605 		gpio0 = 1;
    606 		ledmode = 0;
    607 	} else {
    608 		phymode = eeprom & 0x7f;
    609 		gpio0 = (eeprom & 0x80) ? 0 : 1;
    610 		ledmode = eeprom >> 8;
    611 	}
    612 
    613 	DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
    614 
    615 	/* Program GPIOs depending on PHY hardware. */
    616 	switch (phymode) {
    617 	case AXE_PHY_MODE_MARVELL:
    618 		if (gpio0 == 1) {
    619 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
    620 			    hz / 32);
    621 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    622 			    hz / 32);
    623 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
    624 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    625 			    hz / 32);
    626 		} else {
    627 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    628 			    AXE_GPIO1_EN, hz / 3);
    629 			if (ledmode == 1) {
    630 				AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
    631 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
    632 				    hz / 3);
    633 			} else {
    634 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    635 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    636 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    637 				    AXE_GPIO2_EN, hz / 4);
    638 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    639 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    640 			}
    641 		}
    642 		break;
    643 	case AXE_PHY_MODE_CICADA:
    644 	case AXE_PHY_MODE_CICADA_V2:
    645 	case AXE_PHY_MODE_CICADA_V2_ASIX:
    646 		if (gpio0 == 1)
    647 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
    648 			    AXE_GPIO0_EN, hz / 32);
    649 		else
    650 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    651 			    AXE_GPIO1_EN, hz / 32);
    652 		break;
    653 	case AXE_PHY_MODE_AGERE:
    654 		AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    655 		    AXE_GPIO1_EN, hz / 32);
    656 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    657 		    AXE_GPIO2_EN, hz / 32);
    658 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
    659 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    660 		    AXE_GPIO2_EN, hz / 32);
    661 		break;
    662 	case AXE_PHY_MODE_REALTEK_8211CL:
    663 	case AXE_PHY_MODE_REALTEK_8211BN:
    664 	case AXE_PHY_MODE_REALTEK_8251CL:
    665 		val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
    666 		    AXE_GPIO1 | AXE_GPIO1_EN;
    667 		AXE_GPIO_WRITE(val, hz / 32);
    668 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    669 		AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
    670 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    671 		if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
    672 			axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
    673 			axe_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
    674 			axe_mii_read_reg(un, un->un_phyno, 0x0001, &val);
    675 			axe_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
    676 			axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
    677 		}
    678 		break;
    679 	default:
    680 		/* Unknown PHY model or no need to program GPIOs. */
    681 		break;
    682 	}
    683 
    684 	/* soft reset */
    685 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    686 	usbd_delay_ms(un->un_udev, 150);
    687 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    688 	    AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
    689 	usbd_delay_ms(un->un_udev, 150);
    690 	/* Enable MII/GMII/RGMII interface to work with external PHY. */
    691 	axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
    692 	usbd_delay_ms(un->un_udev, 10);
    693 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    694 }
    695 
    696 static void
    697 axe_ax88772_init(struct axe_softc *sc)
    698 {
    699 	AXEHIST_FUNC(); AXEHIST_CALLED();
    700 	struct usbnet * const un = &sc->axe_un;
    701 
    702 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
    703 	usbd_delay_ms(un->un_udev, 40);
    704 
    705 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    706 		/* ask for the embedded PHY */
    707 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    708 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    709 		usbd_delay_ms(un->un_udev, 10);
    710 
    711 		/* power down and reset state, pin reset state */
    712 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    713 		usbd_delay_ms(un->un_udev, 60);
    714 
    715 		/* power down/reset state, pin operating state */
    716 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    717 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    718 		usbd_delay_ms(un->un_udev, 150);
    719 
    720 		/* power up, reset */
    721 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
    722 
    723 		/* power up, operating */
    724 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    725 		    AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
    726 	} else {
    727 		/* ask for external PHY */
    728 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
    729 		    NULL);
    730 		usbd_delay_ms(un->un_udev, 10);
    731 
    732 		/* power down internal PHY */
    733 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    734 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    735 	}
    736 
    737 	usbd_delay_ms(un->un_udev, 150);
    738 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    739 }
    740 
    741 static void
    742 axe_ax88772_phywake(struct axe_softc *sc)
    743 {
    744 	AXEHIST_FUNC(); AXEHIST_CALLED();
    745 	struct usbnet * const un = &sc->axe_un;
    746 
    747 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    748 		/* Manually select internal(embedded) PHY - MAC mode. */
    749 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    750 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    751 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    752 	} else {
    753 		/*
    754 		 * Manually select external PHY - MAC mode.
    755 		 * Reverse MII/RMII is for AX88772A PHY mode.
    756 		 */
    757 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
    758 		    AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
    759 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    760 	}
    761 
    762 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
    763 	    AXE_SW_RESET_IPRL, NULL);
    764 
    765 	/* T1 = min 500ns everywhere */
    766 	usbd_delay_ms(un->un_udev, 150);
    767 
    768 	/* Take PHY out of power down. */
    769 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    770 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    771 	} else {
    772 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
    773 	}
    774 
    775 	/* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
    776 	usbd_delay_ms(un->un_udev, 600);
    777 
    778 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    779 
    780 	/* T3 = 500ns everywhere */
    781 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    782 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    783 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    784 }
    785 
    786 static void
    787 axe_ax88772a_init(struct axe_softc *sc)
    788 {
    789 	AXEHIST_FUNC(); AXEHIST_CALLED();
    790 
    791 	/* Reload EEPROM. */
    792 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
    793 	axe_ax88772_phywake(sc);
    794 	/* Stop MAC. */
    795 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    796 }
    797 
    798 static void
    799 axe_ax88772b_init(struct axe_softc *sc)
    800 {
    801 	AXEHIST_FUNC(); AXEHIST_CALLED();
    802 	struct usbnet * const un = &sc->axe_un;
    803 	uint16_t eeprom;
    804 	int i;
    805 
    806 	/* Reload EEPROM. */
    807 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
    808 
    809 	/*
    810 	 * Save PHY power saving configuration(high byte) and
    811 	 * clear EEPROM checksum value(low byte).
    812 	 */
    813 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
    814 	    &eeprom)) {
    815 		aprint_error_dev(un->un_dev, "failed to read eeprom\n");
    816 		return;
    817 	}
    818 
    819 	sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
    820 
    821 	/*
    822 	 * Auto-loaded default station address from internal ROM is
    823 	 * 00:00:00:00:00:00 such that an explicit access to EEPROM
    824 	 * is required to get real station address.
    825 	 */
    826 	uint8_t *eaddr = un->un_eaddr;
    827 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    828 		if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
    829 		    AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
    830 			aprint_error_dev(un->un_dev,
    831 			    "failed to read eeprom\n");
    832 		    eeprom = 0;
    833 		}
    834 		eeprom = le16toh(eeprom);
    835 		*eaddr++ = (uint8_t)(eeprom & 0xFF);
    836 		*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
    837 	}
    838 	/* Wakeup PHY. */
    839 	axe_ax88772_phywake(sc);
    840 	/* Stop MAC. */
    841 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    842 }
    843 
    844 #undef	AXE_GPIO_WRITE
    845 
    846 /*
    847  * Probe for a AX88172 chip.
    848  */
    849 int
    850 axe_match(device_t parent, cfdata_t match, void *aux)
    851 {
    852 	struct usb_attach_arg *uaa = aux;
    853 
    854 	return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
    855 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    856 }
    857 
    858 /*
    859  * Attach the interface. Allocate softc structures, do ifmedia
    860  * setup and ethernet/BPF attach.
    861  */
    862 void
    863 axe_attach(device_t parent, device_t self, void *aux)
    864 {
    865 	AXEHIST_FUNC(); AXEHIST_CALLED();
    866 	USBNET_MII_DECL_DEFAULT(unm);
    867 	struct axe_softc *sc = device_private(self);
    868 	struct usbnet * const un = &sc->axe_un;
    869 	struct usb_attach_arg *uaa = aux;
    870 	struct usbd_device *dev = uaa->uaa_device;
    871 	usbd_status err;
    872 	usb_interface_descriptor_t *id;
    873 	usb_endpoint_descriptor_t *ed;
    874 	char *devinfop;
    875 	unsigned bufsz;
    876 	int i;
    877 
    878 	KASSERT((void *)sc == un);
    879 
    880 	aprint_naive("\n");
    881 	aprint_normal("\n");
    882 	devinfop = usbd_devinfo_alloc(dev, 0);
    883 	aprint_normal_dev(self, "%s\n", devinfop);
    884 	usbd_devinfo_free(devinfop);
    885 
    886 	un->un_dev = self;
    887 	un->un_udev = dev;
    888 	un->un_sc = sc;
    889 	un->un_ops = &axe_ops;
    890 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
    891 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
    892 	un->un_rx_list_cnt = AXE_RX_LIST_CNT;
    893 	un->un_tx_list_cnt = AXE_TX_LIST_CNT;
    894 
    895 	err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
    896 	if (err) {
    897 		aprint_error_dev(self, "failed to set configuration"
    898 		    ", err=%s\n", usbd_errstr(err));
    899 		return;
    900 	}
    901 
    902 	un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
    903 
    904 	err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
    905 	if (err) {
    906 		aprint_error_dev(self, "getting interface handle failed\n");
    907 		return;
    908 	}
    909 
    910 	id = usbd_get_interface_descriptor(un->un_iface);
    911 
    912 	/* decide on what our bufsize will be */
    913 	if (AXE_IS_178_FAMILY(un))
    914 		bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
    915 		    AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
    916 	else
    917 		bufsz = AXE_172_BUFSZ;
    918 	un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
    919 
    920 	un->un_ed[USBNET_ENDPT_RX] = 0;
    921 	un->un_ed[USBNET_ENDPT_TX] = 0;
    922 	un->un_ed[USBNET_ENDPT_INTR] = 0;
    923 
    924 	/* Find endpoints. */
    925 	for (i = 0; i < id->bNumEndpoints; i++) {
    926 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
    927 		if (ed == NULL) {
    928 			aprint_error_dev(self, "couldn't get ep %d\n", i);
    929 			return;
    930 		}
    931 		const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
    932 		const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
    933 
    934 		if (dir == UE_DIR_IN && xt == UE_BULK &&
    935 		    un->un_ed[USBNET_ENDPT_RX] == 0) {
    936 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
    937 		} else if (dir == UE_DIR_OUT && xt == UE_BULK &&
    938 		    un->un_ed[USBNET_ENDPT_TX] == 0) {
    939 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
    940 		} else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
    941 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
    942 		}
    943 	}
    944 
    945 	/* Set these up now for axe_cmd().  */
    946 	usbnet_attach(un, "axedet");
    947 
    948 	/* We need the PHYID for init dance in some cases */
    949 	usbnet_lock_mii(un);
    950 	if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
    951 		aprint_error_dev(self, "failed to read phyaddrs\n");
    952 
    953 		return;
    954 	}
    955 
    956 	DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
    957 	    sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
    958 	un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
    959 	if (un->un_phyno == -1)
    960 		un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
    961 	if (un->un_phyno == -1) {
    962 		DPRINTF(" no valid PHY address found, assuming PHY address 0",
    963 		    0, 0, 0, 0);
    964 		un->un_phyno = 0;
    965 	}
    966 
    967 	/* Initialize controller and get station address. */
    968 
    969 	axe_ax_init(un);
    970 
    971 	/*
    972 	 * Fetch IPG values.
    973 	 */
    974 	if (un->un_flags & (AX772A | AX772B)) {
    975 		/* Set IPG values. */
    976 		sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
    977 		sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
    978 		sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
    979 	} else {
    980 		if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
    981 			aprint_error_dev(self, "failed to read ipg\n");
    982 			usbnet_unlock_mii(un);
    983 			return;
    984 		}
    985 	}
    986 
    987 	usbnet_unlock_mii(un);
    988 
    989 	if (AXE_IS_178_FAMILY(un))
    990 		usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
    991 	if (un->un_flags & AX772B) {
    992 		struct ifnet *ifp = usbnet_ifp(un);
    993 
    994 		ifp->if_capabilities =
    995 		    IFCAP_CSUM_IPv4_Rx |
    996 		    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
    997 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
    998 		/*
    999 		 * Checksum offloading of AX88772B also works with VLAN
   1000 		 * tagged frames but there is no way to take advantage
   1001 		 * of the feature because vlan(4) assumes
   1002 		 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
   1003 		 * support checksum offloading with VLAN. VLAN hardware
   1004 		 * tagging support of AX88772B is very limited so it's
   1005 		 * not possible to announce IFCAP_VLAN_HWTAGGING.
   1006 		 */
   1007 	}
   1008 	u_int adv_pause;
   1009 	if (un->un_flags & (AX772A | AX772B | AX178))
   1010 		adv_pause = MIIF_DOPAUSE;
   1011 	else
   1012 		adv_pause = 0;
   1013 	adv_pause = 0;
   1014 
   1015 	unm.un_mii_flags = adv_pause;
   1016 	usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
   1017 	    0, &unm);
   1018 }
   1019 
   1020 static void
   1021 axe_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
   1022 {
   1023 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1024 	struct axe_softc * const sc = usbnet_softc(un);
   1025 	struct ifnet *ifp = usbnet_ifp(un);
   1026 	uint8_t *buf = c->unc_buf;
   1027 
   1028 	do {
   1029 		u_int pktlen = 0;
   1030 		u_int rxlen = 0;
   1031 		int flags = 0;
   1032 
   1033 		if ((un->un_flags & AXSTD_FRAME) != 0) {
   1034 			struct axe_sframe_hdr hdr;
   1035 
   1036 			if (total_len < sizeof(hdr)) {
   1037 				ifp->if_ierrors++;
   1038 				break;
   1039 			}
   1040 
   1041 			memcpy(&hdr, buf, sizeof(hdr));
   1042 
   1043 			DPRINTFN(20, "total_len %#jx len %jx ilen %#jx",
   1044 			    total_len,
   1045 			    (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
   1046 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
   1047 
   1048 			total_len -= sizeof(hdr);
   1049 			buf += sizeof(hdr);
   1050 
   1051 			if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
   1052 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
   1053 			    AXE_RH1M_RXLEN_MASK) {
   1054 				ifp->if_ierrors++;
   1055 				break;
   1056 			}
   1057 
   1058 			rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
   1059 			if (total_len < rxlen) {
   1060 				pktlen = total_len;
   1061 				total_len = 0;
   1062 			} else {
   1063 				pktlen = rxlen;
   1064 				rxlen = roundup2(rxlen, 2);
   1065 				total_len -= rxlen;
   1066 			}
   1067 
   1068 		} else if ((un->un_flags & AXCSUM_FRAME) != 0) {
   1069 			struct axe_csum_hdr csum_hdr;
   1070 
   1071 			if (total_len <	sizeof(csum_hdr)) {
   1072 				ifp->if_ierrors++;
   1073 				break;
   1074 			}
   1075 
   1076 			memcpy(&csum_hdr, buf, sizeof(csum_hdr));
   1077 
   1078 			csum_hdr.len = le16toh(csum_hdr.len);
   1079 			csum_hdr.ilen = le16toh(csum_hdr.ilen);
   1080 			csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
   1081 
   1082 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
   1083 			    " cstatus %#jx", total_len,
   1084 			    csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
   1085 
   1086 			if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
   1087 			    AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
   1088 			    sc->sc_lenmask) {
   1089 				/* we lost sync */
   1090 				ifp->if_ierrors++;
   1091 				DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
   1092 				    "err",
   1093 				    AXE_CSUM_RXBYTES(csum_hdr.len),
   1094 				    AXE_CSUM_RXBYTES(csum_hdr.ilen),
   1095 				    sc->sc_lenmask, 0);
   1096 				break;
   1097 			}
   1098 			/*
   1099 			 * Get total transferred frame length including
   1100 			 * checksum header.  The length should be multiple
   1101 			 * of 4.
   1102 			 */
   1103 			pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
   1104 			u_int len = sizeof(csum_hdr) + pktlen;
   1105 			len = (len + 3) & ~3;
   1106 			if (total_len < len) {
   1107 				DPRINTFN(20, "total_len %#jx < len %#jx",
   1108 				    total_len, len, 0, 0);
   1109 				/* invalid length */
   1110 				ifp->if_ierrors++;
   1111 				break;
   1112 			}
   1113 			buf += sizeof(csum_hdr);
   1114 
   1115 			const uint16_t cstatus = csum_hdr.cstatus;
   1116 
   1117 			if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
   1118 				if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
   1119 					flags |= M_CSUM_TCP_UDP_BAD;
   1120 				if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
   1121 					flags |= M_CSUM_IPv4_BAD;
   1122 
   1123 				const uint16_t l4type =
   1124 				    cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
   1125 
   1126 				if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
   1127 					flags |= M_CSUM_TCPv4;
   1128 				if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
   1129 					flags |= M_CSUM_UDPv4;
   1130 			}
   1131 			if (total_len < len) {
   1132 				pktlen = total_len;
   1133 				total_len = 0;
   1134 			} else {
   1135 				total_len -= len;
   1136 				rxlen = len - sizeof(csum_hdr);
   1137 			}
   1138 			DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
   1139 			    " rxlen %#jx", total_len, len, pktlen, rxlen);
   1140 		} else { /* AX172 */
   1141 			pktlen = rxlen = total_len;
   1142 			total_len = 0;
   1143 		}
   1144 
   1145 		usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
   1146 		buf += rxlen;
   1147 
   1148 	} while (total_len > 0);
   1149 
   1150 	DPRINTFN(10, "start rx", 0, 0, 0, 0);
   1151 }
   1152 
   1153 static unsigned
   1154 axe_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
   1155 {
   1156 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1157 	struct axe_sframe_hdr hdr, tlr;
   1158 	size_t hdr_len = 0, tlr_len = 0;
   1159 	int length, boundary;
   1160 
   1161 	usbnet_isowned_tx(un);
   1162 
   1163 	if (AXE_IS_178_FAMILY(un)) {
   1164 		/*
   1165 		 * Copy the mbuf data into a contiguous buffer, leaving two
   1166 		 * bytes at the beginning to hold the frame length.
   1167 		 */
   1168 		boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
   1169 
   1170 		hdr.len = htole16(m->m_pkthdr.len);
   1171 		hdr.ilen = ~hdr.len;
   1172 		hdr_len = sizeof(hdr);
   1173 
   1174 		length = hdr_len + m->m_pkthdr.len;
   1175 
   1176 		if ((length % boundary) == 0) {
   1177 			tlr.len = 0x0000;
   1178 			tlr.ilen = 0xffff;
   1179 			tlr_len = sizeof(tlr);
   1180 		}
   1181 		DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
   1182 			length, m->m_pkthdr.len, sizeof(hdr), 0);
   1183 	}
   1184 
   1185 	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
   1186 		return 0;
   1187 	length = hdr_len + m->m_pkthdr.len + tlr_len;
   1188 
   1189 	if (hdr_len)
   1190 		memcpy(c->unc_buf, &hdr, hdr_len);
   1191 	m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
   1192 	if (tlr_len)
   1193 		memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
   1194 
   1195 	return length;
   1196 }
   1197 
   1198 static void
   1199 axe_csum_cfg(struct axe_softc *sc)
   1200 {
   1201 	struct usbnet * const un = &sc->axe_un;
   1202 	struct ifnet * const ifp = usbnet_ifp(un);
   1203 	uint16_t csum1, csum2;
   1204 
   1205 	if ((un->un_flags & AX772B) != 0) {
   1206 		csum1 = 0;
   1207 		csum2 = 0;
   1208 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
   1209 			csum1 |= AXE_TXCSUM_IP;
   1210 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
   1211 			csum1 |= AXE_TXCSUM_TCP;
   1212 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
   1213 			csum1 |= AXE_TXCSUM_UDP;
   1214 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
   1215 			csum1 |= AXE_TXCSUM_TCPV6;
   1216 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
   1217 			csum1 |= AXE_TXCSUM_UDPV6;
   1218 		axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
   1219 		csum1 = 0;
   1220 		csum2 = 0;
   1221 
   1222 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
   1223 			csum1 |= AXE_RXCSUM_IP;
   1224 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
   1225 			csum1 |= AXE_RXCSUM_TCP;
   1226 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
   1227 			csum1 |= AXE_RXCSUM_UDP;
   1228 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
   1229 			csum1 |= AXE_RXCSUM_TCPV6;
   1230 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
   1231 			csum1 |= AXE_RXCSUM_UDPV6;
   1232 		axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
   1233 	}
   1234 }
   1235 
   1236 static int
   1237 axe_init_locked(struct ifnet *ifp)
   1238 {
   1239 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1240 	struct usbnet * const un = ifp->if_softc;
   1241 	struct axe_softc * const sc = usbnet_softc(un);
   1242 	int rxmode;
   1243 
   1244 	usbnet_isowned(un);
   1245 
   1246 	if (usbnet_isdying(un))
   1247 		return EIO;
   1248 
   1249 	/* Cancel pending I/O */
   1250 	usbnet_stop(un, ifp, 1);
   1251 
   1252 	usbnet_lock_mii_un_locked(un);
   1253 
   1254 	/* Reset the ethernet interface. */
   1255 	axe_reset(un);
   1256 
   1257 #if 0
   1258 	ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
   1259 			      AX_GPIO_GPO2EN, 5, in_pm);
   1260 #endif
   1261 	/* Set MAC address and transmitter IPG values. */
   1262 	if (AXE_IS_178_FAMILY(un)) {
   1263 		axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1264 		axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
   1265 		    (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
   1266 	} else {
   1267 		axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1268 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
   1269 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
   1270 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
   1271 	}
   1272 	if (AXE_IS_178_FAMILY(un)) {
   1273 		un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
   1274 		if ((un->un_flags & AX772B) != 0 &&
   1275 		    (ifp->if_capenable & AX_RXCSUM) != 0) {
   1276 			sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
   1277 			un->un_flags |= AXCSUM_FRAME;
   1278 		} else {
   1279 			sc->sc_lenmask = AXE_HDR_LEN_MASK;
   1280 			un->un_flags |= AXSTD_FRAME;
   1281 		}
   1282 	}
   1283 
   1284 	/* Configure TX/RX checksum offloading. */
   1285 	axe_csum_cfg(sc);
   1286 
   1287 	if (un->un_flags & AX772B) {
   1288 		/* AX88772B uses different maximum frame burst configuration. */
   1289 		axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
   1290 		    ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
   1291 		    ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
   1292 	}
   1293 	/* Enable receiver, set RX mode */
   1294 	rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
   1295 	if (AXE_IS_178_FAMILY(un)) {
   1296 		if (un->un_flags & AX772B) {
   1297 			/*
   1298 			 * Select RX header format type 1.  Aligning IP
   1299 			 * header on 4 byte boundary is not needed when
   1300 			 * checksum offloading feature is not used
   1301 			 * because we always copy the received frame in
   1302 			 * RX handler.  When RX checksum offloading is
   1303 			 * active, aligning IP header is required to
   1304 			 * reflect actual frame length including RX
   1305 			 * header size.
   1306 			 */
   1307 			rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
   1308 			if (un->un_flags & AXCSUM_FRAME)
   1309 				rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
   1310 		} else {
   1311 			/*
   1312 			 * Default Rx buffer size is too small to get
   1313 			 * maximum performance.
   1314 			 */
   1315 #if 0
   1316 			if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
   1317 				/* Largest possible USB buffer size for AX88178 */
   1318 			}
   1319 #endif
   1320 			rxmode |= AXE_178_RXCMD_MFB_16384;
   1321 		}
   1322 	} else {
   1323 		rxmode |= AXE_172_RXCMD_UNICAST;
   1324 	}
   1325 
   1326 
   1327 	/* If we want promiscuous mode, set the allframes bit. */
   1328 	if (ifp->if_flags & IFF_PROMISC)
   1329 		rxmode |= AXE_RXCMD_PROMISC;
   1330 
   1331 	if (ifp->if_flags & IFF_BROADCAST)
   1332 		rxmode |= AXE_RXCMD_BROADCAST;
   1333 
   1334 	DPRINTF("rxmode 0x%#jx", rxmode, 0, 0, 0);
   1335 
   1336 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
   1337 
   1338 	/* Load the multicast filter. */
   1339 	axe_setiff_locked(un);
   1340 
   1341 	usbnet_unlock_mii_un_locked(un);
   1342 
   1343 	return usbnet_init_rx_tx(un);
   1344 }
   1345 
   1346 static int
   1347 axe_init(struct ifnet *ifp)
   1348 {
   1349 	struct usbnet * const un = ifp->if_softc;
   1350 
   1351 	usbnet_lock(un);
   1352 	int ret = axe_init_locked(ifp);
   1353 	usbnet_unlock(un);
   1354 
   1355 	return ret;
   1356 }
   1357 
   1358 static int
   1359 axe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1360 {
   1361 	struct usbnet * const un = ifp->if_softc;
   1362 
   1363 	switch (cmd) {
   1364 	case SIOCADDMULTI:
   1365 	case SIOCDELMULTI:
   1366 		axe_setiff(un);
   1367 		break;
   1368 	default:
   1369 		break;
   1370 	}
   1371 
   1372 	return 0;
   1373 }
   1374 
   1375 static void
   1376 axe_stop(struct ifnet *ifp, int disable)
   1377 {
   1378 	struct usbnet * const un = ifp->if_softc;
   1379 
   1380 	usbnet_lock_mii_un_locked(un);
   1381 	axe_reset(un);
   1382 	usbnet_unlock_mii_un_locked(un);
   1383 }
   1384 
   1385 #ifdef _MODULE
   1386 #include "ioconf.c"
   1387 #endif
   1388 
   1389 USBNET_MODULE(axe)
   1390