if_axe.c revision 1.106 1 /* $NetBSD: if_axe.c,v 1.106 2019/08/06 01:42:22 mrg Exp $ */
2 /* $OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3
4 /*
5 * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Copyright (c) 1997, 1998, 1999, 2000-2003
22 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by Bill Paul.
35 * 4. Neither the name of the author nor the names of any co-contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49 * THE POSSIBILITY OF SUCH DAMAGE.
50 */
51
52 /*
53 * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54 * Used in the LinkSys USB200M and various other adapters.
55 *
56 * Written by Bill Paul <wpaul (at) windriver.com>
57 * Senior Engineer
58 * Wind River Systems
59 */
60
61 /*
62 * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63 * It uses an external PHY (reference designs use a RealTek chip),
64 * and has a 64-bit multicast hash filter. There is some information
65 * missing from the manual which one needs to know in order to make
66 * the chip function:
67 *
68 * - You must set bit 7 in the RX control register, otherwise the
69 * chip won't receive any packets.
70 * - You must initialize all 3 IPG registers, or you won't be able
71 * to send any packets.
72 *
73 * Note that this device appears to only support loading the station
74 * address via autoload from the EEPROM (i.e. there's no way to manually
75 * set it).
76 *
77 * (Adam Weinberger wanted me to name this driver if_gir.c.)
78 */
79
80 /*
81 * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82 * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
83 *
84 * Manual here:
85 * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86 * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87 */
88
89 #include <sys/cdefs.h>
90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.106 2019/08/06 01:42:22 mrg Exp $");
91
92 #ifdef _KERNEL_OPT
93 #include "opt_usb.h"
94 #include "opt_net_mpsafe.h"
95 #endif
96
97 #include <sys/param.h>
98 #include <sys/kernel.h>
99 #include <sys/module.h>
100 #include <sys/socket.h>
101 #include <sys/sockio.h>
102 #include <sys/systm.h>
103
104 #include <dev/usb/usbnet.h>
105 #include <dev/usb/usbhist.h>
106 #include <dev/usb/if_axereg.h>
107
108 struct axe_type {
109 struct usb_devno axe_dev;
110 uint16_t axe_flags;
111 };
112
113 struct axe_softc {
114 struct usbnet axe_un;
115
116 uint32_t axe_flags; /* copied from axe_type */
117 #define AX178 __BIT(0) /* AX88178 */
118 #define AX772 __BIT(1) /* AX88772 */
119 #define AX772A __BIT(2) /* AX88772A */
120 #define AX772B __BIT(3) /* AX88772B */
121 #define AXSTD_FRAME __BIT(12)
122 #define AXCSUM_FRAME __BIT(13)
123
124 uint8_t axe_ipgs[3];
125 uint8_t axe_phyaddrs[2];
126 uint16_t sc_pwrcfg;
127 uint16_t sc_lenmask;
128
129 };
130
131 #define AXE_IS_178_FAMILY(sc) \
132 ((sc)->axe_flags & (AX772 | AX772A | AX772B | AX178))
133
134 #define AXE_IS_772(sc) \
135 ((sc)->axe_flags & (AX772 | AX772A | AX772B))
136
137 #define AX_RXCSUM \
138 (IFCAP_CSUM_IPv4_Rx | \
139 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | \
140 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
141
142 #define AX_TXCSUM \
143 (IFCAP_CSUM_IPv4_Tx | \
144 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | \
145 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
146
147 /*
148 * AXE_178_MAX_FRAME_BURST
149 * max frame burst size for Ax88178 and Ax88772
150 * 0 2048 bytes
151 * 1 4096 bytes
152 * 2 8192 bytes
153 * 3 16384 bytes
154 * use the largest your system can handle without USB stalling.
155 *
156 * NB: 88772 parts appear to generate lots of input errors with
157 * a 2K rx buffer and 8K is only slightly faster than 4K on an
158 * EHCI port on a T42 so change at your own risk.
159 */
160 #define AXE_178_MAX_FRAME_BURST 1
161
162
163 #ifdef USB_DEBUG
164 #ifndef AXE_DEBUG
165 #define axedebug 0
166 #else
167 static int axedebug = 20;
168
169 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
170 {
171 int err;
172 const struct sysctlnode *rnode;
173 const struct sysctlnode *cnode;
174
175 err = sysctl_createv(clog, 0, NULL, &rnode,
176 CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
177 SYSCTL_DESCR("axe global controls"),
178 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
179
180 if (err)
181 goto fail;
182
183 /* control debugging printfs */
184 err = sysctl_createv(clog, 0, &rnode, &cnode,
185 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
186 "debug", SYSCTL_DESCR("Enable debugging output"),
187 NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
188 if (err)
189 goto fail;
190
191 return;
192 fail:
193 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
194 }
195
196 #endif /* AXE_DEBUG */
197 #endif /* USB_DEBUG */
198
199 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
200 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
201 #define AXEHIST_FUNC() USBHIST_FUNC()
202 #define AXEHIST_CALLED(name) USBHIST_CALLED(axedebug)
203
204 /*
205 * Various supported device vendors/products.
206 */
207 static const struct axe_type axe_devs[] = {
208 { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE2000}, 0 },
209 { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 },
210 { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 },
211 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 },
212 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 },
213 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A}, AX772 },
214 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B}, AX772B },
215 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
216 { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 },
217 { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 },
218 { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
219 { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0},
220 { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
221 { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
222 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 },
223 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
224 { { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
225 { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
226 { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
227 { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
228 { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 },
229 { { USB_VENDOR_LENOVO, USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
230 { { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
231 { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 },
232 { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
233 { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
234 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
235 { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
236 { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A}, AX772 },
237 { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 },
238 { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
239 { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
240 { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 },
241 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
242 { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
243 { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
244 };
245 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
246
247 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
248 { 0x8000, 0x8001, 2048 },
249 { 0x8100, 0x8147, 4096 },
250 { 0x8200, 0x81EB, 6144 },
251 { 0x8300, 0x83D7, 8192 },
252 { 0x8400, 0x851E, 16384 },
253 { 0x8500, 0x8666, 20480 },
254 { 0x8600, 0x87AE, 24576 },
255 { 0x8700, 0x8A3D, 32768 }
256 };
257
258 int axe_match(device_t, cfdata_t, void *);
259 void axe_attach(device_t, device_t, void *);
260
261 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
262 axe_match, axe_attach, usbnet_detach, usbnet_activate);
263
264 static void axe_rx_loop_cb(struct usbnet *, struct usbd_xfer *,
265 struct usbnet_chain *, uint32_t);
266 static unsigned axe_tx_prepare_cb(struct usbnet *, struct mbuf *,
267 struct usbnet_chain *);
268 static int axe_init(struct ifnet *);
269 static void axe_stop_cb(struct ifnet *, int);
270 static int axe_ioctl_cb(struct ifnet *, u_long, void *);
271
272 static void axe_ax88178_init(struct axe_softc *);
273 static void axe_ax88772_init(struct axe_softc *);
274 static void axe_ax88772a_init(struct axe_softc *);
275 static void axe_ax88772b_init(struct axe_softc *);
276
277 static usbd_status
278 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
279 {
280 AXEHIST_FUNC(); AXEHIST_CALLED();
281 struct usbnet * const un = &sc->axe_un;
282 usb_device_request_t req;
283 usbd_status err;
284
285 usbnet_isowned_mii(un);
286
287 if (un->un_dying)
288 return -1;
289
290 DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
291
292 if (AXE_CMD_DIR(cmd))
293 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
294 else
295 req.bmRequestType = UT_READ_VENDOR_DEVICE;
296 req.bRequest = AXE_CMD_CMD(cmd);
297 USETW(req.wValue, val);
298 USETW(req.wIndex, index);
299 USETW(req.wLength, AXE_CMD_LEN(cmd));
300
301 err = usbd_do_request(un->un_udev, &req, buf);
302 if (err)
303 DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
304
305 return err;
306 }
307
308 static usbd_status
309 axe_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
310 {
311 AXEHIST_FUNC(); AXEHIST_CALLED();
312 struct axe_softc * const sc = usbnet_softc(un);
313 usbd_status err;
314 uint16_t data;
315
316 DPRINTFN(30, "phy 0x%jx reg 0x%jx\n", phy, reg, 0, 0);
317
318 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
319
320 err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
321 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
322
323 if (err) {
324 aprint_error_dev(un->un_dev, "read PHY failed\n");
325 return err;
326 }
327
328 *val = le16toh(data);
329 if (AXE_IS_772(sc) && reg == MII_BMSR) {
330 /*
331 * BMSR of AX88772 indicates that it supports extended
332 * capability but the extended status register is
333 * reserved for embedded ethernet PHY. So clear the
334 * extended capability bit of BMSR.
335 */
336 *val &= ~BMSR_EXTCAP;
337 }
338
339 DPRINTFN(30, "phy 0x%jx reg 0x%jx val %#jx", phy, reg, *val, 0);
340
341 return USBD_NORMAL_COMPLETION;
342 }
343
344 static usbd_status
345 axe_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
346 {
347 struct axe_softc * const sc = usbnet_softc(un);
348 usbd_status err;
349 uint16_t aval;
350
351 aval = htole16(val);
352
353 axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
354 err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
355 axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
356
357 return err;
358 }
359
360 static void
361 axe_mii_statchg_cb(struct ifnet *ifp)
362 {
363 AXEHIST_FUNC(); AXEHIST_CALLED();
364
365 struct usbnet * const un = ifp->if_softc;
366 struct axe_softc * const sc = usbnet_softc(un);
367 struct mii_data *mii = &un->un_mii;
368 int val, err;
369
370 if (un->un_dying)
371 return;
372
373 val = 0;
374 un->un_link = false;
375 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
376 val |= AXE_MEDIA_FULL_DUPLEX;
377 if (AXE_IS_178_FAMILY(sc)) {
378 if ((IFM_OPTIONS(mii->mii_media_active) &
379 IFM_ETH_TXPAUSE) != 0)
380 val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
381 if ((IFM_OPTIONS(mii->mii_media_active) &
382 IFM_ETH_RXPAUSE) != 0)
383 val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
384 }
385 }
386 if (AXE_IS_178_FAMILY(sc)) {
387 val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
388 if (sc->axe_flags & AX178)
389 val |= AXE_178_MEDIA_ENCK;
390 switch (IFM_SUBTYPE(mii->mii_media_active)) {
391 case IFM_1000_T:
392 val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
393 un->un_link = true;
394 break;
395 case IFM_100_TX:
396 val |= AXE_178_MEDIA_100TX;
397 un->un_link = true;
398 break;
399 case IFM_10_T:
400 un->un_link = true;
401 break;
402 }
403 }
404
405 DPRINTF("val=0x%jx", val, 0, 0, 0);
406 usbnet_lock_mii(un);
407 err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
408 usbnet_unlock_mii(un);
409 if (err)
410 aprint_error_dev(un->un_dev, "media change failed\n");
411 }
412
413 static void
414 axe_setiff_locked(struct usbnet *un)
415 {
416 AXEHIST_FUNC(); AXEHIST_CALLED();
417 struct axe_softc * const sc = usbnet_softc(un);
418 struct ifnet * const ifp = usbnet_ifp(un);
419 struct ethercom *ec = usbnet_ec(un);
420 struct ether_multi *enm;
421 struct ether_multistep step;
422 uint32_t h = 0;
423 uint16_t rxmode;
424 uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
425
426 usbnet_isowned_mii(un);
427
428 if (un->un_dying)
429 return;
430
431 if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
432 aprint_error_dev(un->un_dev, "can't read rxmode");
433 return;
434 }
435 rxmode = le16toh(rxmode);
436
437 rxmode &=
438 ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC |
439 AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST);
440
441 rxmode |=
442 (ifp->if_flags & IFF_BROADCAST) ? AXE_RXCMD_BROADCAST : 0;
443
444 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
445 if (ifp->if_flags & IFF_PROMISC)
446 rxmode |= AXE_RXCMD_PROMISC;
447 goto allmulti;
448 }
449
450 /* Now program new ones */
451 ETHER_LOCK(ec);
452 ETHER_FIRST_MULTI(step, ec, enm);
453 while (enm != NULL) {
454 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
455 ETHER_ADDR_LEN) != 0) {
456 ETHER_UNLOCK(ec);
457 goto allmulti;
458 }
459
460 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
461 hashtbl[h >> 3] |= 1U << (h & 7);
462 ETHER_NEXT_MULTI(step, enm);
463 }
464 ETHER_UNLOCK(ec);
465 ifp->if_flags &= ~IFF_ALLMULTI;
466 rxmode |= AXE_RXCMD_MULTICAST;
467
468 axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
469 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
470 return;
471
472 allmulti:
473 ifp->if_flags |= IFF_ALLMULTI;
474 rxmode |= AXE_RXCMD_ALLMULTI;
475 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
476 }
477
478 static void
479 axe_setiff(struct usbnet *un)
480 {
481 usbnet_lock_mii(un);
482 axe_setiff_locked(un);
483 usbnet_unlock_mii(un);
484 }
485
486 static void
487 axe_ax_init(struct usbnet *un)
488 {
489 struct axe_softc * const sc = usbnet_softc(un);
490
491 int cmd = AXE_178_CMD_READ_NODEID;
492
493 if (sc->axe_flags & AX178) {
494 axe_ax88178_init(sc);
495 } else if (sc->axe_flags & AX772) {
496 axe_ax88772_init(sc);
497 } else if (sc->axe_flags & AX772A) {
498 axe_ax88772a_init(sc);
499 } else if (sc->axe_flags & AX772B) {
500 axe_ax88772b_init(sc);
501 return;
502 } else {
503 cmd = AXE_172_CMD_READ_NODEID;
504 }
505
506 if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
507 aprint_error_dev(un->un_dev,
508 "failed to read ethernet address\n");
509 }
510 }
511
512
513 static void
514 axe_reset(struct usbnet *un)
515 {
516
517 usbnet_isowned_mii(un);
518
519 if (un->un_dying)
520 return;
521
522 /*
523 * softnet_lock can be taken when NET_MPAFE is not defined when calling
524 * if_addr_init -> if_init. This doesn't mix well with the
525 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
526 * can fire during the wait and attempt to take softnet_lock and then
527 * block the softclk thread meaning the wait never ends.
528 */
529 #ifndef NET_MPSAFE
530 /* XXX What to reset? */
531
532 /* Wait a little while for the chip to get its brains in order. */
533 DELAY(1000);
534 #else
535 axe_ax_init(un);
536 #endif
537 }
538
539 static int
540 axe_get_phyno(struct axe_softc *sc, int sel)
541 {
542 int phyno;
543
544 switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
545 case PHY_TYPE_100_HOME:
546 /* FALLTHROUGH */
547 case PHY_TYPE_GIG:
548 phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
549 break;
550 case PHY_TYPE_SPECIAL:
551 /* FALLTHROUGH */
552 case PHY_TYPE_RSVD:
553 /* FALLTHROUGH */
554 case PHY_TYPE_NON_SUP:
555 /* FALLTHROUGH */
556 default:
557 phyno = -1;
558 break;
559 }
560
561 return phyno;
562 }
563
564 #define AXE_GPIO_WRITE(x, y) do { \
565 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \
566 usbd_delay_ms(sc->axe_un.un_udev, hztoms(y)); \
567 } while (0)
568
569 static void
570 axe_ax88178_init(struct axe_softc *sc)
571 {
572 AXEHIST_FUNC(); AXEHIST_CALLED();
573 struct usbnet * const un = &sc->axe_un;
574 int gpio0, ledmode, phymode;
575 uint16_t eeprom, val;
576
577 axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
578 /* XXX magic */
579 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
580 eeprom = 0xffff;
581 axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
582
583 eeprom = le16toh(eeprom);
584
585 DPRINTF("EEPROM is 0x%jx", eeprom, 0, 0, 0);
586
587 /* if EEPROM is invalid we have to use to GPIO0 */
588 if (eeprom == 0xffff) {
589 phymode = AXE_PHY_MODE_MARVELL;
590 gpio0 = 1;
591 ledmode = 0;
592 } else {
593 phymode = eeprom & 0x7f;
594 gpio0 = (eeprom & 0x80) ? 0 : 1;
595 ledmode = eeprom >> 8;
596 }
597
598 DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
599
600 /* Program GPIOs depending on PHY hardware. */
601 switch (phymode) {
602 case AXE_PHY_MODE_MARVELL:
603 if (gpio0 == 1) {
604 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
605 hz / 32);
606 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
607 hz / 32);
608 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
609 AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
610 hz / 32);
611 } else {
612 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
613 AXE_GPIO1_EN, hz / 3);
614 if (ledmode == 1) {
615 AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
616 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
617 hz / 3);
618 } else {
619 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
620 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
621 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
622 AXE_GPIO2_EN, hz / 4);
623 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
624 AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
625 }
626 }
627 break;
628 case AXE_PHY_MODE_CICADA:
629 case AXE_PHY_MODE_CICADA_V2:
630 case AXE_PHY_MODE_CICADA_V2_ASIX:
631 if (gpio0 == 1)
632 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
633 AXE_GPIO0_EN, hz / 32);
634 else
635 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
636 AXE_GPIO1_EN, hz / 32);
637 break;
638 case AXE_PHY_MODE_AGERE:
639 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
640 AXE_GPIO1_EN, hz / 32);
641 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
642 AXE_GPIO2_EN, hz / 32);
643 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
644 AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
645 AXE_GPIO2_EN, hz / 32);
646 break;
647 case AXE_PHY_MODE_REALTEK_8211CL:
648 case AXE_PHY_MODE_REALTEK_8211BN:
649 case AXE_PHY_MODE_REALTEK_8251CL:
650 val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
651 AXE_GPIO1 | AXE_GPIO1_EN;
652 AXE_GPIO_WRITE(val, hz / 32);
653 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
654 AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
655 AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
656 if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
657 axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
658 axe_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
659 axe_mii_read_reg(un, un->un_phyno, 0x0001, &val);
660 axe_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
661 axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
662 }
663 break;
664 default:
665 /* Unknown PHY model or no need to program GPIOs. */
666 break;
667 }
668
669 /* soft reset */
670 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
671 usbd_delay_ms(un->un_udev, 150);
672 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
673 AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
674 usbd_delay_ms(un->un_udev, 150);
675 /* Enable MII/GMII/RGMII interface to work with external PHY. */
676 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
677 usbd_delay_ms(un->un_udev, 10);
678 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
679 }
680
681 static void
682 axe_ax88772_init(struct axe_softc *sc)
683 {
684 AXEHIST_FUNC(); AXEHIST_CALLED();
685 struct usbnet * const un = &sc->axe_un;
686
687 axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
688 usbd_delay_ms(un->un_udev, 40);
689
690 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
691 /* ask for the embedded PHY */
692 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
693 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
694 usbd_delay_ms(un->un_udev, 10);
695
696 /* power down and reset state, pin reset state */
697 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
698 usbd_delay_ms(un->un_udev, 60);
699
700 /* power down/reset state, pin operating state */
701 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
702 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
703 usbd_delay_ms(un->un_udev, 150);
704
705 /* power up, reset */
706 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
707
708 /* power up, operating */
709 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
710 AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
711 } else {
712 /* ask for external PHY */
713 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
714 NULL);
715 usbd_delay_ms(un->un_udev, 10);
716
717 /* power down internal PHY */
718 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
719 AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
720 }
721
722 usbd_delay_ms(un->un_udev, 150);
723 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
724 }
725
726 static void
727 axe_ax88772_phywake(struct axe_softc *sc)
728 {
729 AXEHIST_FUNC(); AXEHIST_CALLED();
730 struct usbnet * const un = &sc->axe_un;
731
732 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
733 /* Manually select internal(embedded) PHY - MAC mode. */
734 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
735 AXE_SW_PHY_SELECT_EMBEDDED, NULL);
736 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
737 } else {
738 /*
739 * Manually select external PHY - MAC mode.
740 * Reverse MII/RMII is for AX88772A PHY mode.
741 */
742 axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
743 AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
744 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
745 }
746
747 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
748 AXE_SW_RESET_IPRL, NULL);
749
750 /* T1 = min 500ns everywhere */
751 usbd_delay_ms(un->un_udev, 150);
752
753 /* Take PHY out of power down. */
754 if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
755 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
756 } else {
757 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
758 }
759
760 /* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
761 usbd_delay_ms(un->un_udev, 600);
762
763 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
764
765 /* T3 = 500ns everywhere */
766 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
767 axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
768 usbd_delay_ms(un->un_udev, hztoms(hz / 32));
769 }
770
771 static void
772 axe_ax88772a_init(struct axe_softc *sc)
773 {
774 AXEHIST_FUNC(); AXEHIST_CALLED();
775
776 /* Reload EEPROM. */
777 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
778 axe_ax88772_phywake(sc);
779 /* Stop MAC. */
780 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
781 }
782
783 static void
784 axe_ax88772b_init(struct axe_softc *sc)
785 {
786 AXEHIST_FUNC(); AXEHIST_CALLED();
787 struct usbnet * const un = &sc->axe_un;
788 uint16_t eeprom;
789 int i;
790
791 /* Reload EEPROM. */
792 AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
793
794 /*
795 * Save PHY power saving configuration(high byte) and
796 * clear EEPROM checksum value(low byte).
797 */
798 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
799 &eeprom)) {
800 aprint_error_dev(un->un_dev, "failed to read eeprom\n");
801 return;
802 }
803
804 sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
805
806 /*
807 * Auto-loaded default station address from internal ROM is
808 * 00:00:00:00:00:00 such that an explicit access to EEPROM
809 * is required to get real station address.
810 */
811 uint8_t *eaddr = un->un_eaddr;
812 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
813 if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
814 AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
815 aprint_error_dev(un->un_dev,
816 "failed to read eeprom\n");
817 eeprom = 0;
818 }
819 eeprom = le16toh(eeprom);
820 *eaddr++ = (uint8_t)(eeprom & 0xFF);
821 *eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
822 }
823 /* Wakeup PHY. */
824 axe_ax88772_phywake(sc);
825 /* Stop MAC. */
826 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
827 }
828
829 #undef AXE_GPIO_WRITE
830
831 /*
832 * Probe for a AX88172 chip.
833 */
834 int
835 axe_match(device_t parent, cfdata_t match, void *aux)
836 {
837 struct usb_attach_arg *uaa = aux;
838
839 return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
840 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
841 }
842
843 /*
844 * Attach the interface. Allocate softc structures, do ifmedia
845 * setup and ethernet/BPF attach.
846 */
847 void
848 axe_attach(device_t parent, device_t self, void *aux)
849 {
850 AXEHIST_FUNC(); AXEHIST_CALLED();
851 struct axe_softc *sc = device_private(self);
852 struct usbnet * const un = &sc->axe_un;
853 struct usb_attach_arg *uaa = aux;
854 struct usbd_device *dev = uaa->uaa_device;
855 usbd_status err;
856 usb_interface_descriptor_t *id;
857 usb_endpoint_descriptor_t *ed;
858 char *devinfop;
859 unsigned bufsz;
860 int i;
861
862 /* Switch to usbnet for device_private() */
863 self->dv_private = un;
864
865 aprint_naive("\n");
866 aprint_normal("\n");
867 devinfop = usbd_devinfo_alloc(dev, 0);
868 aprint_normal_dev(self, "%s\n", devinfop);
869 usbd_devinfo_free(devinfop);
870
871 un->un_dev = self;
872 un->un_udev = dev;
873 un->un_sc = sc;
874 un->un_stop_cb = axe_stop_cb;
875 un->un_ioctl_cb = axe_ioctl_cb;
876 un->un_read_reg_cb = axe_mii_read_reg;
877 un->un_write_reg_cb = axe_mii_write_reg;
878 un->un_statchg_cb = axe_mii_statchg_cb;
879 un->un_tx_prepare_cb = axe_tx_prepare_cb;
880 un->un_rx_loop_cb = axe_rx_loop_cb;
881 un->un_init_cb = axe_init;
882 un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
883 un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
884
885 err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
886 if (err) {
887 aprint_error_dev(self, "failed to set configuration"
888 ", err=%s\n", usbd_errstr(err));
889 return;
890 }
891
892 sc->axe_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
893
894 err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
895 if (err) {
896 aprint_error_dev(self, "getting interface handle failed\n");
897 return;
898 }
899
900 id = usbd_get_interface_descriptor(un->un_iface);
901
902 /* decide on what our bufsize will be */
903 if (AXE_IS_178_FAMILY(sc))
904 bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
905 AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
906 else
907 bufsz = AXE_172_BUFSZ;
908 un->un_cdata.uncd_rx_bufsz = bufsz;
909 un->un_cdata.uncd_tx_bufsz = bufsz;
910
911 un->un_ed[USBNET_ENDPT_RX] = 0;
912 un->un_ed[USBNET_ENDPT_TX] = 0;
913 un->un_ed[USBNET_ENDPT_INTR] = 0;
914
915 /* Find endpoints. */
916 for (i = 0; i < id->bNumEndpoints; i++) {
917 ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
918 if (ed == NULL) {
919 aprint_error_dev(self, "couldn't get ep %d\n", i);
920 return;
921 }
922 const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
923 const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
924
925 if (dir == UE_DIR_IN && xt == UE_BULK &&
926 un->un_ed[USBNET_ENDPT_RX] == 0) {
927 un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
928 } else if (dir == UE_DIR_OUT && xt == UE_BULK &&
929 un->un_ed[USBNET_ENDPT_TX] == 0) {
930 un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
931 } else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
932 un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
933 }
934 }
935
936 /* Set these up now for axe_cmd(). */
937 usbnet_attach(un, "axedet", AXE_RX_LIST_CNT, AXE_TX_LIST_CNT);
938
939 /* We need the PHYID for init dance in some cases */
940 usbnet_lock_mii(un);
941 if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
942 aprint_error_dev(self, "failed to read phyaddrs\n");
943
944 return;
945 }
946
947 DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
948 sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
949 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
950 if (un->un_phyno == -1)
951 un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
952 if (un->un_phyno == -1) {
953 DPRINTF(" no valid PHY address found, assuming PHY address 0",
954 0, 0, 0, 0);
955 un->un_phyno = 0;
956 }
957
958 /* Initialize controller and get station address. */
959
960 axe_ax_init(un);
961
962 /*
963 * Fetch IPG values.
964 */
965 if (sc->axe_flags & (AX772A | AX772B)) {
966 /* Set IPG values. */
967 sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
968 sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
969 sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
970 } else {
971 if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
972 aprint_error_dev(self, "failed to read ipg\n");
973 usbnet_unlock_mii(un);
974 return;
975 }
976 }
977
978 usbnet_unlock_mii(un);
979
980 if (AXE_IS_178_FAMILY(sc))
981 usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
982 if (sc->axe_flags & AX772B) {
983 struct ifnet *ifp = usbnet_ifp(un);
984
985 ifp->if_capabilities =
986 IFCAP_CSUM_IPv4_Rx |
987 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
988 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
989 /*
990 * Checksum offloading of AX88772B also works with VLAN
991 * tagged frames but there is no way to take advantage
992 * of the feature because vlan(4) assumes
993 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
994 * support checksum offloading with VLAN. VLAN hardware
995 * tagging support of AX88772B is very limited so it's
996 * not possible to announce IFCAP_VLAN_HWTAGGING.
997 */
998 }
999 u_int adv_pause;
1000 if (sc->axe_flags & (AX772A | AX772B | AX178))
1001 adv_pause = MIIF_DOPAUSE;
1002 else
1003 adv_pause = 0;
1004 adv_pause = 0;
1005
1006 usbnet_attach_ifp(un, true, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
1007 0, adv_pause);
1008 }
1009
1010 static void
1011 axe_rx_loop_cb(struct usbnet * un, struct usbd_xfer *xfer,
1012 struct usbnet_chain *c, uint32_t total_len)
1013 {
1014 AXEHIST_FUNC(); AXEHIST_CALLED();
1015 struct axe_softc * const sc = usbnet_softc(un);
1016 struct ifnet *ifp = usbnet_ifp(un);
1017 uint8_t *buf = c->unc_buf;
1018
1019 do {
1020 u_int pktlen = 0;
1021 u_int rxlen = 0;
1022 int flags = 0;
1023
1024 if ((sc->axe_flags & AXSTD_FRAME) != 0) {
1025 struct axe_sframe_hdr hdr;
1026
1027 if (total_len < sizeof(hdr)) {
1028 ifp->if_ierrors++;
1029 break;
1030 }
1031
1032 #if !defined(__NO_STRICT_ALIGNMENT) && __GNUC_PREREQ__(6, 1)
1033 /*
1034 * XXX hdr is 2-byte aligned in buf, not 4-byte.
1035 * For some architectures, __builtin_memcpy() of
1036 * GCC 6 attempts to copy sizeof(hdr) = 4 bytes
1037 * at onece, which results in alignment error.
1038 */
1039 hdr.len = *(uint16_t *)buf;
1040 hdr.ilen = *(uint16_t *)(buf + sizeof(uint16_t));
1041 #else
1042 memcpy(&hdr, buf, sizeof(hdr));
1043 #endif
1044
1045 DPRINTFN(20, "total_len %#jx len %jx ilen %#jx",
1046 total_len,
1047 (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1048 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1049
1050 total_len -= sizeof(hdr);
1051 buf += sizeof(hdr);
1052
1053 if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1054 (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1055 AXE_RH1M_RXLEN_MASK) {
1056 ifp->if_ierrors++;
1057 break;
1058 }
1059
1060 rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1061 if (total_len < rxlen) {
1062 pktlen = total_len;
1063 total_len = 0;
1064 } else {
1065 pktlen = rxlen;
1066 rxlen = roundup2(rxlen, 2);
1067 total_len -= rxlen;
1068 }
1069
1070 } else if ((sc->axe_flags & AXCSUM_FRAME) != 0) {
1071 struct axe_csum_hdr csum_hdr;
1072
1073 if (total_len < sizeof(csum_hdr)) {
1074 ifp->if_ierrors++;
1075 break;
1076 }
1077
1078 memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1079
1080 csum_hdr.len = le16toh(csum_hdr.len);
1081 csum_hdr.ilen = le16toh(csum_hdr.ilen);
1082 csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1083
1084 DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1085 " cstatus %#jx", total_len,
1086 csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1087
1088 if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1089 AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1090 sc->sc_lenmask) {
1091 /* we lost sync */
1092 ifp->if_ierrors++;
1093 DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1094 "err",
1095 AXE_CSUM_RXBYTES(csum_hdr.len),
1096 AXE_CSUM_RXBYTES(csum_hdr.ilen),
1097 sc->sc_lenmask, 0);
1098 break;
1099 }
1100 /*
1101 * Get total transferred frame length including
1102 * checksum header. The length should be multiple
1103 * of 4.
1104 */
1105 pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1106 u_int len = sizeof(csum_hdr) + pktlen;
1107 len = (len + 3) & ~3;
1108 if (total_len < len) {
1109 DPRINTFN(20, "total_len %#jx < len %#jx",
1110 total_len, len, 0, 0);
1111 /* invalid length */
1112 ifp->if_ierrors++;
1113 break;
1114 }
1115 buf += sizeof(csum_hdr);
1116
1117 const uint16_t cstatus = csum_hdr.cstatus;
1118
1119 if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1120 if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1121 flags |= M_CSUM_TCP_UDP_BAD;
1122 if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1123 flags |= M_CSUM_IPv4_BAD;
1124
1125 const uint16_t l4type =
1126 cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1127
1128 if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1129 flags |= M_CSUM_TCPv4;
1130 if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1131 flags |= M_CSUM_UDPv4;
1132 }
1133 if (total_len < len) {
1134 pktlen = total_len;
1135 total_len = 0;
1136 } else {
1137 total_len -= len;
1138 rxlen = len - sizeof(csum_hdr);
1139 }
1140 DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1141 " rxlen %#jx", total_len, len, pktlen, rxlen);
1142 } else { /* AX172 */
1143 pktlen = rxlen = total_len;
1144 total_len = 0;
1145 }
1146
1147 usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
1148 buf += rxlen;
1149
1150 } while (total_len > 0);
1151
1152 DPRINTFN(10, "start rx", 0, 0, 0, 0);
1153 }
1154
1155 static unsigned
1156 axe_tx_prepare_cb(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1157 {
1158 AXEHIST_FUNC(); AXEHIST_CALLED();
1159 struct axe_softc * const sc = usbnet_softc(un);
1160 int length, boundary;
1161
1162 usbnet_isowned_tx(un);
1163
1164 /*
1165 * Copy the mbuf data into a contiguous buffer, leaving two
1166 * bytes at the beginning to hold the frame length.
1167 */
1168 if (AXE_IS_178_FAMILY(sc)) {
1169 struct axe_sframe_hdr hdr;
1170
1171 boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1172
1173 hdr.len = htole16(m->m_pkthdr.len);
1174 hdr.ilen = ~hdr.len;
1175
1176 memcpy(c->unc_buf, &hdr, sizeof(hdr));
1177 length = sizeof(hdr);
1178
1179 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + length);
1180 length += m->m_pkthdr.len;
1181
1182 if ((length % boundary) == 0) {
1183 hdr.len = 0x0000;
1184 hdr.ilen = 0xffff;
1185 memcpy(c->unc_buf + length, &hdr, sizeof(hdr));
1186 length += sizeof(hdr);
1187 }
1188 DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
1189 length, m->m_pkthdr.len, sizeof(hdr), 0);
1190 } else {
1191 m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf);
1192 length = m->m_pkthdr.len;
1193 DPRINTFN(20, "length %jx", length, 0, 0, 0);
1194 }
1195
1196
1197 return length;
1198 }
1199
1200 static void
1201 axe_csum_cfg(struct axe_softc *sc)
1202 {
1203 struct usbnet * const un = &sc->axe_un;
1204 struct ifnet * const ifp = usbnet_ifp(un);
1205 uint16_t csum1, csum2;
1206
1207 if ((sc->axe_flags & AX772B) != 0) {
1208 csum1 = 0;
1209 csum2 = 0;
1210 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1211 csum1 |= AXE_TXCSUM_IP;
1212 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1213 csum1 |= AXE_TXCSUM_TCP;
1214 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1215 csum1 |= AXE_TXCSUM_UDP;
1216 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1217 csum1 |= AXE_TXCSUM_TCPV6;
1218 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1219 csum1 |= AXE_TXCSUM_UDPV6;
1220 axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1221 csum1 = 0;
1222 csum2 = 0;
1223
1224 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1225 csum1 |= AXE_RXCSUM_IP;
1226 if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1227 csum1 |= AXE_RXCSUM_TCP;
1228 if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1229 csum1 |= AXE_RXCSUM_UDP;
1230 if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1231 csum1 |= AXE_RXCSUM_TCPV6;
1232 if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1233 csum1 |= AXE_RXCSUM_UDPV6;
1234 axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1235 }
1236 }
1237
1238 static int
1239 axe_init_locked(struct ifnet *ifp)
1240 {
1241 AXEHIST_FUNC(); AXEHIST_CALLED();
1242 struct usbnet * const un = ifp->if_softc;
1243 struct axe_softc * const sc = usbnet_softc(un);
1244 int rxmode;
1245
1246 usbnet_isowned(un);
1247
1248 if (un->un_dying)
1249 return EIO;
1250
1251 /* Cancel pending I/O */
1252 usbnet_stop(un, ifp, 1);
1253
1254 usbnet_lock_mii_un_locked(un);
1255
1256 /* Reset the ethernet interface. */
1257 axe_reset(un);
1258
1259 #if 0
1260 ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1261 AX_GPIO_GPO2EN, 5, in_pm);
1262 #endif
1263 /* Set MAC address and transmitter IPG values. */
1264 if (AXE_IS_178_FAMILY(sc)) {
1265 axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1266 axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1267 (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1268 } else {
1269 axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1270 axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1271 axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1272 axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1273 }
1274 if (AXE_IS_178_FAMILY(sc)) {
1275 sc->axe_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1276 if ((sc->axe_flags & AX772B) != 0 &&
1277 (ifp->if_capenable & AX_RXCSUM) != 0) {
1278 sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1279 sc->axe_flags |= AXCSUM_FRAME;
1280 } else {
1281 sc->sc_lenmask = AXE_HDR_LEN_MASK;
1282 sc->axe_flags |= AXSTD_FRAME;
1283 }
1284 }
1285
1286 /* Configure TX/RX checksum offloading. */
1287 axe_csum_cfg(sc);
1288
1289 if (sc->axe_flags & AX772B) {
1290 /* AX88772B uses different maximum frame burst configuration. */
1291 axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1292 ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1293 ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1294 }
1295 /* Enable receiver, set RX mode */
1296 rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1297 if (AXE_IS_178_FAMILY(sc)) {
1298 if (sc->axe_flags & AX772B) {
1299 /*
1300 * Select RX header format type 1. Aligning IP
1301 * header on 4 byte boundary is not needed when
1302 * checksum offloading feature is not used
1303 * because we always copy the received frame in
1304 * RX handler. When RX checksum offloading is
1305 * active, aligning IP header is required to
1306 * reflect actual frame length including RX
1307 * header size.
1308 */
1309 rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1310 if (sc->axe_flags & AXCSUM_FRAME)
1311 rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1312 } else {
1313 /*
1314 * Default Rx buffer size is too small to get
1315 * maximum performance.
1316 */
1317 #if 0
1318 if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
1319 /* Largest possible USB buffer size for AX88178 */
1320 }
1321 #endif
1322 rxmode |= AXE_178_RXCMD_MFB_16384;
1323 }
1324 } else {
1325 rxmode |= AXE_172_RXCMD_UNICAST;
1326 }
1327
1328
1329 /* If we want promiscuous mode, set the allframes bit. */
1330 if (ifp->if_flags & IFF_PROMISC)
1331 rxmode |= AXE_RXCMD_PROMISC;
1332
1333 if (ifp->if_flags & IFF_BROADCAST)
1334 rxmode |= AXE_RXCMD_BROADCAST;
1335
1336 DPRINTF("rxmode 0x%#jx", rxmode, 0, 0, 0);
1337
1338 axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1339
1340 /* Load the multicast filter. */
1341 axe_setiff_locked(un);
1342
1343 usbnet_unlock_mii_un_locked(un);
1344
1345 return usbnet_init_rx_tx(un, 0, USBD_FORCE_SHORT_XFER);
1346 }
1347
1348 static int
1349 axe_init(struct ifnet *ifp)
1350 {
1351 struct usbnet * const un = ifp->if_softc;
1352
1353 usbnet_lock(un);
1354 int ret = axe_init_locked(ifp);
1355 usbnet_unlock(un);
1356
1357 return ret;
1358 }
1359
1360 static int
1361 axe_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data)
1362 {
1363 struct usbnet * const un = ifp->if_softc;
1364
1365 switch (cmd) {
1366 case SIOCADDMULTI:
1367 case SIOCDELMULTI:
1368 axe_setiff(un);
1369 break;
1370 default:
1371 break;
1372 }
1373
1374 return 0;
1375 }
1376
1377 static void
1378 axe_stop_cb(struct ifnet *ifp, int disable)
1379 {
1380 struct usbnet * const un = ifp->if_softc;
1381
1382 usbnet_lock_mii_un_locked(un);
1383 axe_reset(un);
1384 usbnet_unlock_mii_un_locked(un);
1385 }
1386
1387 MODULE(MODULE_CLASS_DRIVER, if_axe, "usbnet");
1388
1389 #ifdef _MODULE
1390 #include "ioconf.c"
1391 #endif
1392
1393 static int
1394 if_axe_modcmd(modcmd_t cmd, void *aux)
1395 {
1396 int error = 0;
1397
1398 switch (cmd) {
1399 case MODULE_CMD_INIT:
1400 #ifdef _MODULE
1401 error = config_init_component(cfdriver_ioconf_axe,
1402 cfattach_ioconf_axe, cfdata_ioconf_axe);
1403 #endif
1404 return error;
1405 case MODULE_CMD_FINI:
1406 #ifdef _MODULE
1407 error = config_fini_component(cfdriver_ioconf_axe,
1408 cfattach_ioconf_axe, cfdata_ioconf_axe);
1409 #endif
1410 return error;
1411 default:
1412 return ENOTTY;
1413 }
1414 }
1415