Home | History | Annotate | Line # | Download | only in usb
if_axe.c revision 1.111
      1 /*	$NetBSD: if_axe.c,v 1.111 2019/08/11 02:37:03 mrg Exp $	*/
      2 /*	$OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Copyright (c) 1997, 1998, 1999, 2000-2003
     22  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
     23  *
     24  * Redistribution and use in source and binary forms, with or without
     25  * modification, are permitted provided that the following conditions
     26  * are met:
     27  * 1. Redistributions of source code must retain the above copyright
     28  *    notice, this list of conditions and the following disclaimer.
     29  * 2. Redistributions in binary form must reproduce the above copyright
     30  *    notice, this list of conditions and the following disclaimer in the
     31  *    documentation and/or other materials provided with the distribution.
     32  * 3. All advertising materials mentioning features or use of this software
     33  *    must display the following acknowledgement:
     34  *	This product includes software developed by Bill Paul.
     35  * 4. Neither the name of the author nor the names of any co-contributors
     36  *    may be used to endorse or promote products derived from this software
     37  *    without specific prior written permission.
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     40  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     42  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     43  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     44  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     45  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     46  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     47  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     49  * THE POSSIBILITY OF SUCH DAMAGE.
     50  */
     51 
     52 /*
     53  * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
     54  * Used in the LinkSys USB200M and various other adapters.
     55  *
     56  * Written by Bill Paul <wpaul (at) windriver.com>
     57  * Senior Engineer
     58  * Wind River Systems
     59  */
     60 
     61 /*
     62  * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
     63  * It uses an external PHY (reference designs use a RealTek chip),
     64  * and has a 64-bit multicast hash filter. There is some information
     65  * missing from the manual which one needs to know in order to make
     66  * the chip function:
     67  *
     68  * - You must set bit 7 in the RX control register, otherwise the
     69  *   chip won't receive any packets.
     70  * - You must initialize all 3 IPG registers, or you won't be able
     71  *   to send any packets.
     72  *
     73  * Note that this device appears to only support loading the station
     74  * address via autoload from the EEPROM (i.e. there's no way to manually
     75  * set it).
     76  *
     77  * (Adam Weinberger wanted me to name this driver if_gir.c.)
     78  */
     79 
     80 /*
     81  * Ax88178 and Ax88772 support backported from the OpenBSD driver.
     82  * 2007/02/12, J.R. Oldroyd, fbsd (at) opal.com
     83  *
     84  * Manual here:
     85  * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
     86  * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.111 2019/08/11 02:37:03 mrg Exp $");
     91 
     92 #ifdef _KERNEL_OPT
     93 #include "opt_usb.h"
     94 #include "opt_net_mpsafe.h"
     95 #endif
     96 
     97 #include <sys/param.h>
     98 #include <sys/kernel.h>
     99 #include <sys/module.h>
    100 #include <sys/socket.h>
    101 #include <sys/sockio.h>
    102 #include <sys/systm.h>
    103 
    104 #include <dev/usb/usbnet.h>
    105 #include <dev/usb/usbhist.h>
    106 #include <dev/usb/if_axereg.h>
    107 
    108 struct axe_type {
    109 	struct usb_devno	axe_dev;
    110 	uint16_t		axe_flags;
    111 };
    112 
    113 struct axe_softc {
    114 	struct usbnet		axe_un;
    115 
    116 	/* usbnet:un_flags values */
    117 #define AX178		__BIT(0)	/* AX88178 */
    118 #define AX772		__BIT(1)	/* AX88772 */
    119 #define AX772A		__BIT(2)	/* AX88772A */
    120 #define AX772B		__BIT(3)	/* AX88772B */
    121 #define	AXSTD_FRAME	__BIT(12)
    122 #define	AXCSUM_FRAME	__BIT(13)
    123 
    124 	uint8_t			axe_ipgs[3];
    125 	uint8_t 		axe_phyaddrs[2];
    126 	uint16_t		sc_pwrcfg;
    127 	uint16_t		sc_lenmask;
    128 
    129 };
    130 
    131 #define	AXE_IS_178_FAMILY(un)				\
    132 	((un)->un_flags & (AX772 | AX772A | AX772B | AX178))
    133 
    134 #define	AXE_IS_772(un)					\
    135 	((un)->un_flags & (AX772 | AX772A | AX772B))
    136 
    137 #define AX_RXCSUM					\
    138     (IFCAP_CSUM_IPv4_Rx | 				\
    139      IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |	\
    140      IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
    141 
    142 #define AX_TXCSUM					\
    143     (IFCAP_CSUM_IPv4_Tx | 				\
    144      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |	\
    145      IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
    146 
    147 /*
    148  * AXE_178_MAX_FRAME_BURST
    149  * max frame burst size for Ax88178 and Ax88772
    150  *	0	2048 bytes
    151  *	1	4096 bytes
    152  *	2	8192 bytes
    153  *	3	16384 bytes
    154  * use the largest your system can handle without USB stalling.
    155  *
    156  * NB: 88772 parts appear to generate lots of input errors with
    157  * a 2K rx buffer and 8K is only slightly faster than 4K on an
    158  * EHCI port on a T42 so change at your own risk.
    159  */
    160 #define AXE_178_MAX_FRAME_BURST	1
    161 
    162 
    163 #ifdef USB_DEBUG
    164 #ifndef AXE_DEBUG
    165 #define axedebug 0
    166 #else
    167 static int axedebug = 20;
    168 
    169 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
    170 {
    171 	int err;
    172 	const struct sysctlnode *rnode;
    173 	const struct sysctlnode *cnode;
    174 
    175 	err = sysctl_createv(clog, 0, NULL, &rnode,
    176 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
    177 	    SYSCTL_DESCR("axe global controls"),
    178 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
    179 
    180 	if (err)
    181 		goto fail;
    182 
    183 	/* control debugging printfs */
    184 	err = sysctl_createv(clog, 0, &rnode, &cnode,
    185 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
    186 	    "debug", SYSCTL_DESCR("Enable debugging output"),
    187 	    NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
    188 	if (err)
    189 		goto fail;
    190 
    191 	return;
    192 fail:
    193 	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
    194 }
    195 
    196 #endif /* AXE_DEBUG */
    197 #endif /* USB_DEBUG */
    198 
    199 #define DPRINTF(FMT,A,B,C,D)	USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
    200 #define DPRINTFN(N,FMT,A,B,C,D)	USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
    201 #define AXEHIST_FUNC()		USBHIST_FUNC()
    202 #define AXEHIST_CALLED(name)	USBHIST_CALLED(axedebug)
    203 
    204 /*
    205  * Various supported device vendors/products.
    206  */
    207 static const struct axe_type axe_devs[] = {
    208 	{ { USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_UFE2000}, 0 },
    209 	{ { USB_VENDOR_ACERCM,		USB_PRODUCT_ACERCM_EP1427X2}, 0 },
    210 	{ { USB_VENDOR_APPLE,		USB_PRODUCT_APPLE_ETHERNET }, AX772 },
    211 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88172}, 0 },
    212 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772}, AX772 },
    213 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772A}, AX772 },
    214 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B}, AX772B },
    215 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B_1}, AX772B },
    216 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88178}, AX178 },
    217 	{ { USB_VENDOR_ATEN,		USB_PRODUCT_ATEN_UC210T}, 0 },
    218 	{ { USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
    219 	{ { USB_VENDOR_BILLIONTON,	USB_PRODUCT_BILLIONTON_USB2AR}, 0},
    220 	{ { USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772A },
    221 	{ { USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0},
    222 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100}, 0 },
    223 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
    224 	{ { USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
    225 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
    226 	{ { USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_GWUSB2E}, 0 },
    227 	{ { USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
    228 	{ { USB_VENDOR_JVC,		USB_PRODUCT_JVC_MP_PRX1}, 0 },
    229 	{ { USB_VENDOR_LENOVO,		USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
    230 	{ { USB_VENDOR_LINKSYS,		USB_PRODUCT_LINKSYS_HG20F9}, AX772B },
    231 	{ { USB_VENDOR_LINKSYS2,	USB_PRODUCT_LINKSYS2_USB200M}, 0 },
    232 	{ { USB_VENDOR_LINKSYS4,	USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
    233 	{ { USB_VENDOR_LOGITEC,		USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 },
    234 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2GT}, AX178 },
    235 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2KTX}, 0 },
    236 	{ { USB_VENDOR_MSI,		USB_PRODUCT_MSI_AX88772A}, AX772 },
    237 	{ { USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_FA120}, 0 },
    238 	{ { USB_VENDOR_OQO,		USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
    239 	{ { USB_VENDOR_PLANEX3,		USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
    240 	{ { USB_VENDOR_SITECOM,		USB_PRODUCT_SITECOM_LN029}, 0 },
    241 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
    242 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
    243 	{ { USB_VENDOR_SYSTEMTALKS,	USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 },
    244 };
    245 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
    246 
    247 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
    248 	{ 0x8000, 0x8001, 2048 },
    249 	{ 0x8100, 0x8147, 4096 },
    250 	{ 0x8200, 0x81EB, 6144 },
    251 	{ 0x8300, 0x83D7, 8192 },
    252 	{ 0x8400, 0x851E, 16384 },
    253 	{ 0x8500, 0x8666, 20480 },
    254 	{ 0x8600, 0x87AE, 24576 },
    255 	{ 0x8700, 0x8A3D, 32768 }
    256 };
    257 
    258 int	axe_match(device_t, cfdata_t, void *);
    259 void	axe_attach(device_t, device_t, void *);
    260 
    261 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
    262 	axe_match, axe_attach, usbnet_detach, usbnet_activate);
    263 
    264 static void	axe_stop(struct ifnet *, int);
    265 static int	axe_ioctl(struct ifnet *, u_long, void *);
    266 static int	axe_init(struct ifnet *);
    267 static usbd_status axe_mii_read_reg(struct usbnet *, int, int, uint16_t *);
    268 static usbd_status axe_mii_write_reg(struct usbnet *, int, int, uint16_t);
    269 static void	axe_mii_statchg(struct ifnet *);
    270 static void	axe_rx_loop(struct usbnet *, struct usbd_xfer *,
    271 			    struct usbnet_chain *, uint32_t);
    272 static unsigned axe_tx_prepare(struct usbnet *, struct mbuf *,
    273 			       struct usbnet_chain *);
    274 
    275 static void	axe_ax88178_init(struct axe_softc *);
    276 static void	axe_ax88772_init(struct axe_softc *);
    277 static void	axe_ax88772a_init(struct axe_softc *);
    278 static void	axe_ax88772b_init(struct axe_softc *);
    279 
    280 static struct usbnet_ops axe_ops = {
    281 	.uno_stop = axe_stop,
    282 	.uno_ioctl = axe_ioctl,
    283 	.uno_read_reg = axe_mii_read_reg,
    284 	.uno_write_reg = axe_mii_write_reg,
    285 	.uno_statchg = axe_mii_statchg,
    286 	.uno_tx_prepare = axe_tx_prepare,
    287 	.uno_rx_loop = axe_rx_loop,
    288 	.uno_init = axe_init,
    289 };
    290 
    291 static usbd_status
    292 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
    293 {
    294 	AXEHIST_FUNC(); AXEHIST_CALLED();
    295 	struct usbnet * const un = &sc->axe_un;
    296 	usb_device_request_t req;
    297 	usbd_status err;
    298 
    299 	usbnet_isowned_mii(un);
    300 
    301 	if (usbnet_isdying(un))
    302 		return -1;
    303 
    304 	DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
    305 
    306 	if (AXE_CMD_DIR(cmd))
    307 		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
    308 	else
    309 		req.bmRequestType = UT_READ_VENDOR_DEVICE;
    310 	req.bRequest = AXE_CMD_CMD(cmd);
    311 	USETW(req.wValue, val);
    312 	USETW(req.wIndex, index);
    313 	USETW(req.wLength, AXE_CMD_LEN(cmd));
    314 
    315 	err = usbd_do_request(un->un_udev, &req, buf);
    316 	if (err)
    317 		DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
    318 
    319 	return err;
    320 }
    321 
    322 static usbd_status
    323 axe_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
    324 {
    325 	AXEHIST_FUNC(); AXEHIST_CALLED();
    326 	struct axe_softc * const sc = usbnet_softc(un);
    327 	usbd_status err;
    328 	uint16_t data;
    329 
    330 	DPRINTFN(30, "phy 0x%jx reg 0x%jx\n", phy, reg, 0, 0);
    331 
    332 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    333 
    334 	err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
    335 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    336 
    337 	if (err) {
    338 		aprint_error_dev(un->un_dev, "read PHY failed\n");
    339 		return err;
    340 	}
    341 
    342 	*val = le16toh(data);
    343 	if (AXE_IS_772(un) && reg == MII_BMSR) {
    344 		/*
    345 		 * BMSR of AX88772 indicates that it supports extended
    346 		 * capability but the extended status register is
    347 		 * reserved for embedded ethernet PHY. So clear the
    348 		 * extended capability bit of BMSR.
    349 		 */
    350 		*val &= ~BMSR_EXTCAP;
    351 	}
    352 
    353 	DPRINTFN(30, "phy 0x%jx reg 0x%jx val %#jx", phy, reg, *val, 0);
    354 
    355 	return USBD_NORMAL_COMPLETION;
    356 }
    357 
    358 static usbd_status
    359 axe_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
    360 {
    361 	struct axe_softc * const sc = usbnet_softc(un);
    362 	usbd_status err;
    363 	uint16_t aval;
    364 
    365 	aval = htole16(val);
    366 
    367 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
    368 	err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
    369 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
    370 
    371 	return err;
    372 }
    373 
    374 static void
    375 axe_mii_statchg(struct ifnet *ifp)
    376 {
    377 	AXEHIST_FUNC(); AXEHIST_CALLED();
    378 
    379 	struct usbnet * const un = ifp->if_softc;
    380 	struct axe_softc * const sc = usbnet_softc(un);
    381 	struct mii_data *mii = usbnet_mii(un);
    382 	int val, err;
    383 
    384 	if (usbnet_isdying(un))
    385 		return;
    386 
    387 	val = 0;
    388 	usbnet_set_link(un, false);
    389 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
    390 		val |= AXE_MEDIA_FULL_DUPLEX;
    391 		if (AXE_IS_178_FAMILY(un)) {
    392 			if ((IFM_OPTIONS(mii->mii_media_active) &
    393 			    IFM_ETH_TXPAUSE) != 0)
    394 				val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
    395 			if ((IFM_OPTIONS(mii->mii_media_active) &
    396 			    IFM_ETH_RXPAUSE) != 0)
    397 				val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
    398 		}
    399 	}
    400 	if (AXE_IS_178_FAMILY(un)) {
    401 		val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
    402 		if (un->un_flags & AX178)
    403 			val |= AXE_178_MEDIA_ENCK;
    404 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
    405 		case IFM_1000_T:
    406 			val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
    407 			usbnet_set_link(un, true);
    408 			break;
    409 		case IFM_100_TX:
    410 			val |= AXE_178_MEDIA_100TX;
    411 			usbnet_set_link(un, true);
    412 			break;
    413 		case IFM_10_T:
    414 			usbnet_set_link(un, true);
    415 			break;
    416 		}
    417 	}
    418 
    419 	DPRINTF("val=0x%jx", val, 0, 0, 0);
    420 	usbnet_lock_mii(un);
    421 	err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
    422 	usbnet_unlock_mii(un);
    423 	if (err)
    424 		aprint_error_dev(un->un_dev, "media change failed\n");
    425 }
    426 
    427 static void
    428 axe_setiff_locked(struct usbnet *un)
    429 {
    430 	AXEHIST_FUNC(); AXEHIST_CALLED();
    431 	struct axe_softc * const sc = usbnet_softc(un);
    432 	struct ifnet * const ifp = usbnet_ifp(un);
    433 	struct ethercom *ec = usbnet_ec(un);
    434 	struct ether_multi *enm;
    435 	struct ether_multistep step;
    436 	uint32_t h = 0;
    437 	uint16_t rxmode;
    438 	uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    439 
    440 	usbnet_isowned_mii(un);
    441 
    442 	if (usbnet_isdying(un))
    443 		return;
    444 
    445 	if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
    446 		aprint_error_dev(un->un_dev, "can't read rxmode");
    447 		return;
    448 	}
    449 	rxmode = le16toh(rxmode);
    450 
    451 	rxmode &=
    452 	    ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC |
    453 	    AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST);
    454 
    455 	rxmode |=
    456 	    (ifp->if_flags & IFF_BROADCAST) ? AXE_RXCMD_BROADCAST : 0;
    457 
    458 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
    459 		if (ifp->if_flags & IFF_PROMISC)
    460 			rxmode |= AXE_RXCMD_PROMISC;
    461 		goto allmulti;
    462 	}
    463 
    464 	/* Now program new ones */
    465 	ETHER_LOCK(ec);
    466 	ETHER_FIRST_MULTI(step, ec, enm);
    467 	while (enm != NULL) {
    468 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    469 		    ETHER_ADDR_LEN) != 0) {
    470 			ETHER_UNLOCK(ec);
    471 			goto allmulti;
    472 		}
    473 
    474 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
    475 		hashtbl[h >> 3] |= 1U << (h & 7);
    476 		ETHER_NEXT_MULTI(step, enm);
    477 	}
    478 	ETHER_UNLOCK(ec);
    479 	ifp->if_flags &= ~IFF_ALLMULTI;
    480 	rxmode |= AXE_RXCMD_MULTICAST;
    481 
    482 	axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, hashtbl);
    483 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    484 	return;
    485 
    486  allmulti:
    487 	ifp->if_flags |= IFF_ALLMULTI;
    488 	rxmode |= AXE_RXCMD_ALLMULTI;
    489 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
    490 }
    491 
    492 static void
    493 axe_setiff(struct usbnet *un)
    494 {
    495 	usbnet_lock_mii(un);
    496 	axe_setiff_locked(un);
    497 	usbnet_unlock_mii(un);
    498 }
    499 
    500 static void
    501 axe_ax_init(struct usbnet *un)
    502 {
    503 	struct axe_softc * const sc = usbnet_softc(un);
    504 
    505 	int cmd = AXE_178_CMD_READ_NODEID;
    506 
    507 	if (un->un_flags & AX178) {
    508 		axe_ax88178_init(sc);
    509 	} else if (un->un_flags & AX772) {
    510 		axe_ax88772_init(sc);
    511 	} else if (un->un_flags & AX772A) {
    512 		axe_ax88772a_init(sc);
    513 	} else if (un->un_flags & AX772B) {
    514 		axe_ax88772b_init(sc);
    515 		return;
    516 	} else {
    517 		cmd = AXE_172_CMD_READ_NODEID;
    518 	}
    519 
    520 	if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
    521 		aprint_error_dev(un->un_dev,
    522 		    "failed to read ethernet address\n");
    523 	}
    524 }
    525 
    526 
    527 static void
    528 axe_reset(struct usbnet *un)
    529 {
    530 
    531 	usbnet_isowned_mii(un);
    532 
    533 	if (usbnet_isdying(un))
    534 		return;
    535 
    536 	/*
    537 	 * softnet_lock can be taken when NET_MPAFE is not defined when calling
    538 	 * if_addr_init -> if_init.  This doesn't mix well with the
    539 	 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
    540 	 * can fire during the wait and attempt to take softnet_lock and then
    541 	 * block the softclk thread meaning the wait never ends.
    542 	 */
    543 #ifndef NET_MPSAFE
    544 	/* XXX What to reset? */
    545 
    546 	/* Wait a little while for the chip to get its brains in order. */
    547 	DELAY(1000);
    548 #else
    549 	axe_ax_init(un);
    550 #endif
    551 }
    552 
    553 static int
    554 axe_get_phyno(struct axe_softc *sc, int sel)
    555 {
    556 	int phyno;
    557 
    558 	switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
    559 	case PHY_TYPE_100_HOME:
    560 		/* FALLTHROUGH */
    561 	case PHY_TYPE_GIG:
    562 		phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
    563 		break;
    564 	case PHY_TYPE_SPECIAL:
    565 		/* FALLTHROUGH */
    566 	case PHY_TYPE_RSVD:
    567 		/* FALLTHROUGH */
    568 	case PHY_TYPE_NON_SUP:
    569 		/* FALLTHROUGH */
    570 	default:
    571 		phyno = -1;
    572 		break;
    573 	}
    574 
    575 	return phyno;
    576 }
    577 
    578 #define	AXE_GPIO_WRITE(x, y)	do {				\
    579 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL);		\
    580 	usbd_delay_ms(sc->axe_un.un_udev, hztoms(y));		\
    581 } while (0)
    582 
    583 static void
    584 axe_ax88178_init(struct axe_softc *sc)
    585 {
    586 	AXEHIST_FUNC(); AXEHIST_CALLED();
    587 	struct usbnet * const un = &sc->axe_un;
    588 	int gpio0, ledmode, phymode;
    589 	uint16_t eeprom, val;
    590 
    591 	axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
    592 	/* XXX magic */
    593 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
    594 		eeprom = 0xffff;
    595 	axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
    596 
    597 	eeprom = le16toh(eeprom);
    598 
    599 	DPRINTF("EEPROM is 0x%jx", eeprom, 0, 0, 0);
    600 
    601 	/* if EEPROM is invalid we have to use to GPIO0 */
    602 	if (eeprom == 0xffff) {
    603 		phymode = AXE_PHY_MODE_MARVELL;
    604 		gpio0 = 1;
    605 		ledmode = 0;
    606 	} else {
    607 		phymode = eeprom & 0x7f;
    608 		gpio0 = (eeprom & 0x80) ? 0 : 1;
    609 		ledmode = eeprom >> 8;
    610 	}
    611 
    612 	DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
    613 
    614 	/* Program GPIOs depending on PHY hardware. */
    615 	switch (phymode) {
    616 	case AXE_PHY_MODE_MARVELL:
    617 		if (gpio0 == 1) {
    618 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
    619 			    hz / 32);
    620 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    621 			    hz / 32);
    622 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
    623 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
    624 			    hz / 32);
    625 		} else {
    626 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    627 			    AXE_GPIO1_EN, hz / 3);
    628 			if (ledmode == 1) {
    629 				AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
    630 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
    631 				    hz / 3);
    632 			} else {
    633 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    634 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    635 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    636 				    AXE_GPIO2_EN, hz / 4);
    637 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
    638 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    639 			}
    640 		}
    641 		break;
    642 	case AXE_PHY_MODE_CICADA:
    643 	case AXE_PHY_MODE_CICADA_V2:
    644 	case AXE_PHY_MODE_CICADA_V2_ASIX:
    645 		if (gpio0 == 1)
    646 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
    647 			    AXE_GPIO0_EN, hz / 32);
    648 		else
    649 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    650 			    AXE_GPIO1_EN, hz / 32);
    651 		break;
    652 	case AXE_PHY_MODE_AGERE:
    653 		AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
    654 		    AXE_GPIO1_EN, hz / 32);
    655 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    656 		    AXE_GPIO2_EN, hz / 32);
    657 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
    658 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
    659 		    AXE_GPIO2_EN, hz / 32);
    660 		break;
    661 	case AXE_PHY_MODE_REALTEK_8211CL:
    662 	case AXE_PHY_MODE_REALTEK_8211BN:
    663 	case AXE_PHY_MODE_REALTEK_8251CL:
    664 		val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
    665 		    AXE_GPIO1 | AXE_GPIO1_EN;
    666 		AXE_GPIO_WRITE(val, hz / 32);
    667 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    668 		AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
    669 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
    670 		if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
    671 			axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
    672 			axe_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
    673 			axe_mii_read_reg(un, un->un_phyno, 0x0001, &val);
    674 			axe_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
    675 			axe_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
    676 		}
    677 		break;
    678 	default:
    679 		/* Unknown PHY model or no need to program GPIOs. */
    680 		break;
    681 	}
    682 
    683 	/* soft reset */
    684 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    685 	usbd_delay_ms(un->un_udev, 150);
    686 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    687 	    AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
    688 	usbd_delay_ms(un->un_udev, 150);
    689 	/* Enable MII/GMII/RGMII interface to work with external PHY. */
    690 	axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
    691 	usbd_delay_ms(un->un_udev, 10);
    692 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    693 }
    694 
    695 static void
    696 axe_ax88772_init(struct axe_softc *sc)
    697 {
    698 	AXEHIST_FUNC(); AXEHIST_CALLED();
    699 	struct usbnet * const un = &sc->axe_un;
    700 
    701 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
    702 	usbd_delay_ms(un->un_udev, 40);
    703 
    704 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    705 		/* ask for the embedded PHY */
    706 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    707 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    708 		usbd_delay_ms(un->un_udev, 10);
    709 
    710 		/* power down and reset state, pin reset state */
    711 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    712 		usbd_delay_ms(un->un_udev, 60);
    713 
    714 		/* power down/reset state, pin operating state */
    715 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    716 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    717 		usbd_delay_ms(un->un_udev, 150);
    718 
    719 		/* power up, reset */
    720 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
    721 
    722 		/* power up, operating */
    723 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    724 		    AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
    725 	} else {
    726 		/* ask for external PHY */
    727 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
    728 		    NULL);
    729 		usbd_delay_ms(un->un_udev, 10);
    730 
    731 		/* power down internal PHY */
    732 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
    733 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
    734 	}
    735 
    736 	usbd_delay_ms(un->un_udev, 150);
    737 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    738 }
    739 
    740 static void
    741 axe_ax88772_phywake(struct axe_softc *sc)
    742 {
    743 	AXEHIST_FUNC(); AXEHIST_CALLED();
    744 	struct usbnet * const un = &sc->axe_un;
    745 
    746 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    747 		/* Manually select internal(embedded) PHY - MAC mode. */
    748 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
    749 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
    750 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    751 	} else {
    752 		/*
    753 		 * Manually select external PHY - MAC mode.
    754 		 * Reverse MII/RMII is for AX88772A PHY mode.
    755 		 */
    756 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
    757 		    AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
    758 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    759 	}
    760 
    761 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
    762 	    AXE_SW_RESET_IPRL, NULL);
    763 
    764 	/* T1 = min 500ns everywhere */
    765 	usbd_delay_ms(un->un_udev, 150);
    766 
    767 	/* Take PHY out of power down. */
    768 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
    769 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    770 	} else {
    771 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
    772 	}
    773 
    774 	/* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
    775 	usbd_delay_ms(un->un_udev, 600);
    776 
    777 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
    778 
    779 	/* T3 = 500ns everywhere */
    780 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    781 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
    782 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
    783 }
    784 
    785 static void
    786 axe_ax88772a_init(struct axe_softc *sc)
    787 {
    788 	AXEHIST_FUNC(); AXEHIST_CALLED();
    789 
    790 	/* Reload EEPROM. */
    791 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
    792 	axe_ax88772_phywake(sc);
    793 	/* Stop MAC. */
    794 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    795 }
    796 
    797 static void
    798 axe_ax88772b_init(struct axe_softc *sc)
    799 {
    800 	AXEHIST_FUNC(); AXEHIST_CALLED();
    801 	struct usbnet * const un = &sc->axe_un;
    802 	uint16_t eeprom;
    803 	int i;
    804 
    805 	/* Reload EEPROM. */
    806 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
    807 
    808 	/*
    809 	 * Save PHY power saving configuration(high byte) and
    810 	 * clear EEPROM checksum value(low byte).
    811 	 */
    812 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
    813 	    &eeprom)) {
    814 		aprint_error_dev(un->un_dev, "failed to read eeprom\n");
    815 		return;
    816 	}
    817 
    818 	sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
    819 
    820 	/*
    821 	 * Auto-loaded default station address from internal ROM is
    822 	 * 00:00:00:00:00:00 such that an explicit access to EEPROM
    823 	 * is required to get real station address.
    824 	 */
    825 	uint8_t *eaddr = un->un_eaddr;
    826 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    827 		if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
    828 		    AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
    829 			aprint_error_dev(un->un_dev,
    830 			    "failed to read eeprom\n");
    831 		    eeprom = 0;
    832 		}
    833 		eeprom = le16toh(eeprom);
    834 		*eaddr++ = (uint8_t)(eeprom & 0xFF);
    835 		*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
    836 	}
    837 	/* Wakeup PHY. */
    838 	axe_ax88772_phywake(sc);
    839 	/* Stop MAC. */
    840 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
    841 }
    842 
    843 #undef	AXE_GPIO_WRITE
    844 
    845 /*
    846  * Probe for a AX88172 chip.
    847  */
    848 int
    849 axe_match(device_t parent, cfdata_t match, void *aux)
    850 {
    851 	struct usb_attach_arg *uaa = aux;
    852 
    853 	return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
    854 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
    855 }
    856 
    857 /*
    858  * Attach the interface. Allocate softc structures, do ifmedia
    859  * setup and ethernet/BPF attach.
    860  */
    861 void
    862 axe_attach(device_t parent, device_t self, void *aux)
    863 {
    864 	AXEHIST_FUNC(); AXEHIST_CALLED();
    865 	struct axe_softc *sc = device_private(self);
    866 	struct usbnet * const un = &sc->axe_un;
    867 	struct usb_attach_arg *uaa = aux;
    868 	struct usbd_device *dev = uaa->uaa_device;
    869 	usbd_status err;
    870 	usb_interface_descriptor_t *id;
    871 	usb_endpoint_descriptor_t *ed;
    872 	char *devinfop;
    873 	unsigned bufsz;
    874 	int i;
    875 
    876 	/* Switch to usbnet for device_private() */
    877 	self->dv_private = un;
    878 
    879 	aprint_naive("\n");
    880 	aprint_normal("\n");
    881 	devinfop = usbd_devinfo_alloc(dev, 0);
    882 	aprint_normal_dev(self, "%s\n", devinfop);
    883 	usbd_devinfo_free(devinfop);
    884 
    885 	un->un_dev = self;
    886 	un->un_udev = dev;
    887 	un->un_sc = sc;
    888 	un->un_ops = &axe_ops;
    889 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
    890 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
    891 	un->un_rx_list_cnt = AXE_RX_LIST_CNT;
    892 	un->un_tx_list_cnt = AXE_TX_LIST_CNT;
    893 
    894 	err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
    895 	if (err) {
    896 		aprint_error_dev(self, "failed to set configuration"
    897 		    ", err=%s\n", usbd_errstr(err));
    898 		return;
    899 	}
    900 
    901 	un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
    902 
    903 	err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
    904 	if (err) {
    905 		aprint_error_dev(self, "getting interface handle failed\n");
    906 		return;
    907 	}
    908 
    909 	id = usbd_get_interface_descriptor(un->un_iface);
    910 
    911 	/* decide on what our bufsize will be */
    912 	if (AXE_IS_178_FAMILY(un))
    913 		bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
    914 		    AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
    915 	else
    916 		bufsz = AXE_172_BUFSZ;
    917 	un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
    918 
    919 	un->un_ed[USBNET_ENDPT_RX] = 0;
    920 	un->un_ed[USBNET_ENDPT_TX] = 0;
    921 	un->un_ed[USBNET_ENDPT_INTR] = 0;
    922 
    923 	/* Find endpoints. */
    924 	for (i = 0; i < id->bNumEndpoints; i++) {
    925 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
    926 		if (ed == NULL) {
    927 			aprint_error_dev(self, "couldn't get ep %d\n", i);
    928 			return;
    929 		}
    930 		const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
    931 		const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
    932 
    933 		if (dir == UE_DIR_IN && xt == UE_BULK &&
    934 		    un->un_ed[USBNET_ENDPT_RX] == 0) {
    935 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
    936 		} else if (dir == UE_DIR_OUT && xt == UE_BULK &&
    937 		    un->un_ed[USBNET_ENDPT_TX] == 0) {
    938 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
    939 		} else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
    940 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
    941 		}
    942 	}
    943 
    944 	/* Set these up now for axe_cmd().  */
    945 	usbnet_attach(un, "axedet");
    946 
    947 	/* We need the PHYID for init dance in some cases */
    948 	usbnet_lock_mii(un);
    949 	if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
    950 		aprint_error_dev(self, "failed to read phyaddrs\n");
    951 
    952 		return;
    953 	}
    954 
    955 	DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
    956 	    sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
    957 	un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
    958 	if (un->un_phyno == -1)
    959 		un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
    960 	if (un->un_phyno == -1) {
    961 		DPRINTF(" no valid PHY address found, assuming PHY address 0",
    962 		    0, 0, 0, 0);
    963 		un->un_phyno = 0;
    964 	}
    965 
    966 	/* Initialize controller and get station address. */
    967 
    968 	axe_ax_init(un);
    969 
    970 	/*
    971 	 * Fetch IPG values.
    972 	 */
    973 	if (un->un_flags & (AX772A | AX772B)) {
    974 		/* Set IPG values. */
    975 		sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
    976 		sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
    977 		sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
    978 	} else {
    979 		if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
    980 			aprint_error_dev(self, "failed to read ipg\n");
    981 			usbnet_unlock_mii(un);
    982 			return;
    983 		}
    984 	}
    985 
    986 	usbnet_unlock_mii(un);
    987 
    988 	if (AXE_IS_178_FAMILY(un))
    989 		usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
    990 	if (un->un_flags & AX772B) {
    991 		struct ifnet *ifp = usbnet_ifp(un);
    992 
    993 		ifp->if_capabilities =
    994 		    IFCAP_CSUM_IPv4_Rx |
    995 		    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
    996 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
    997 		/*
    998 		 * Checksum offloading of AX88772B also works with VLAN
    999 		 * tagged frames but there is no way to take advantage
   1000 		 * of the feature because vlan(4) assumes
   1001 		 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
   1002 		 * support checksum offloading with VLAN. VLAN hardware
   1003 		 * tagging support of AX88772B is very limited so it's
   1004 		 * not possible to announce IFCAP_VLAN_HWTAGGING.
   1005 		 */
   1006 	}
   1007 	u_int adv_pause;
   1008 	if (un->un_flags & (AX772A | AX772B | AX178))
   1009 		adv_pause = MIIF_DOPAUSE;
   1010 	else
   1011 		adv_pause = 0;
   1012 	adv_pause = 0;
   1013 
   1014 	usbnet_attach_ifp(un, true, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
   1015 	    0, adv_pause);
   1016 }
   1017 
   1018 static void
   1019 axe_rx_loop(struct usbnet * un, struct usbd_xfer *xfer,
   1020 	    struct usbnet_chain *c, uint32_t total_len)
   1021 {
   1022 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1023 	struct axe_softc * const sc = usbnet_softc(un);
   1024 	struct ifnet *ifp = usbnet_ifp(un);
   1025 	uint8_t *buf = c->unc_buf;
   1026 
   1027 	do {
   1028 		u_int pktlen = 0;
   1029 		u_int rxlen = 0;
   1030 		int flags = 0;
   1031 
   1032 		if ((un->un_flags & AXSTD_FRAME) != 0) {
   1033 			struct axe_sframe_hdr hdr;
   1034 
   1035 			if (total_len < sizeof(hdr)) {
   1036 				ifp->if_ierrors++;
   1037 				break;
   1038 			}
   1039 
   1040 #if !defined(__NO_STRICT_ALIGNMENT) && __GNUC_PREREQ__(6, 1)
   1041 			/*
   1042 			 * XXX hdr is 2-byte aligned in buf, not 4-byte.
   1043 			 * For some architectures, __builtin_memcpy() of
   1044 			 * GCC 6 attempts to copy sizeof(hdr) = 4 bytes
   1045 			 * at onece, which results in alignment error.
   1046 			 */
   1047 			hdr.len = *(uint16_t *)buf;
   1048 			hdr.ilen = *(uint16_t *)(buf + sizeof(uint16_t));
   1049 #else
   1050 			memcpy(&hdr, buf, sizeof(hdr));
   1051 #endif
   1052 
   1053 			DPRINTFN(20, "total_len %#jx len %jx ilen %#jx",
   1054 			    total_len,
   1055 			    (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
   1056 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
   1057 
   1058 			total_len -= sizeof(hdr);
   1059 			buf += sizeof(hdr);
   1060 
   1061 			if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
   1062 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
   1063 			    AXE_RH1M_RXLEN_MASK) {
   1064 				ifp->if_ierrors++;
   1065 				break;
   1066 			}
   1067 
   1068 			rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
   1069 			if (total_len < rxlen) {
   1070 				pktlen = total_len;
   1071 				total_len = 0;
   1072 			} else {
   1073 				pktlen = rxlen;
   1074 				rxlen = roundup2(rxlen, 2);
   1075 				total_len -= rxlen;
   1076 			}
   1077 
   1078 		} else if ((un->un_flags & AXCSUM_FRAME) != 0) {
   1079 			struct axe_csum_hdr csum_hdr;
   1080 
   1081 			if (total_len <	sizeof(csum_hdr)) {
   1082 				ifp->if_ierrors++;
   1083 				break;
   1084 			}
   1085 
   1086 			memcpy(&csum_hdr, buf, sizeof(csum_hdr));
   1087 
   1088 			csum_hdr.len = le16toh(csum_hdr.len);
   1089 			csum_hdr.ilen = le16toh(csum_hdr.ilen);
   1090 			csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
   1091 
   1092 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
   1093 			    " cstatus %#jx", total_len,
   1094 			    csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
   1095 
   1096 			if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
   1097 			    AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
   1098 			    sc->sc_lenmask) {
   1099 				/* we lost sync */
   1100 				ifp->if_ierrors++;
   1101 				DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
   1102 				    "err",
   1103 				    AXE_CSUM_RXBYTES(csum_hdr.len),
   1104 				    AXE_CSUM_RXBYTES(csum_hdr.ilen),
   1105 				    sc->sc_lenmask, 0);
   1106 				break;
   1107 			}
   1108 			/*
   1109 			 * Get total transferred frame length including
   1110 			 * checksum header.  The length should be multiple
   1111 			 * of 4.
   1112 			 */
   1113 			pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
   1114 			u_int len = sizeof(csum_hdr) + pktlen;
   1115 			len = (len + 3) & ~3;
   1116 			if (total_len < len) {
   1117 				DPRINTFN(20, "total_len %#jx < len %#jx",
   1118 				    total_len, len, 0, 0);
   1119 				/* invalid length */
   1120 				ifp->if_ierrors++;
   1121 				break;
   1122 			}
   1123 			buf += sizeof(csum_hdr);
   1124 
   1125 			const uint16_t cstatus = csum_hdr.cstatus;
   1126 
   1127 			if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
   1128 				if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
   1129 					flags |= M_CSUM_TCP_UDP_BAD;
   1130 				if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
   1131 					flags |= M_CSUM_IPv4_BAD;
   1132 
   1133 				const uint16_t l4type =
   1134 				    cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
   1135 
   1136 				if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
   1137 					flags |= M_CSUM_TCPv4;
   1138 				if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
   1139 					flags |= M_CSUM_UDPv4;
   1140 			}
   1141 			if (total_len < len) {
   1142 				pktlen = total_len;
   1143 				total_len = 0;
   1144 			} else {
   1145 				total_len -= len;
   1146 				rxlen = len - sizeof(csum_hdr);
   1147 			}
   1148 			DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
   1149 			    " rxlen %#jx", total_len, len, pktlen, rxlen);
   1150 		} else { /* AX172 */
   1151 			pktlen = rxlen = total_len;
   1152 			total_len = 0;
   1153 		}
   1154 
   1155 		usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
   1156 		buf += rxlen;
   1157 
   1158 	} while (total_len > 0);
   1159 
   1160 	DPRINTFN(10, "start rx", 0, 0, 0, 0);
   1161 }
   1162 
   1163 static unsigned
   1164 axe_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
   1165 {
   1166 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1167 	struct axe_sframe_hdr hdr, tlr;
   1168 	size_t hdr_len = 0, tlr_len = 0;
   1169 	int length, boundary;
   1170 
   1171 	usbnet_isowned_tx(un);
   1172 
   1173 	if (AXE_IS_178_FAMILY(un)) {
   1174 		/*
   1175 		 * Copy the mbuf data into a contiguous buffer, leaving two
   1176 		 * bytes at the beginning to hold the frame length.
   1177 		 */
   1178 		boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
   1179 
   1180 		hdr.len = htole16(m->m_pkthdr.len);
   1181 		hdr.ilen = ~hdr.len;
   1182 		hdr_len = sizeof(hdr);
   1183 
   1184 		length = hdr_len + m->m_pkthdr.len;
   1185 
   1186 		if ((length % boundary) == 0) {
   1187 			tlr.len = 0x0000;
   1188 			tlr.ilen = 0xffff;
   1189 			tlr_len = sizeof(tlr);
   1190 		}
   1191 		DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
   1192 			length, m->m_pkthdr.len, sizeof(hdr), 0);
   1193 	}
   1194 
   1195 	if (m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
   1196 		return 0;
   1197 	length = hdr_len + m->m_pkthdr.len + tlr_len;
   1198 
   1199 	if (hdr_len)
   1200 		memcpy(c->unc_buf, &hdr, hdr_len);
   1201 	m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
   1202 	if (tlr_len)
   1203 		memcpy(c->unc_buf + length, &tlr, tlr_len);
   1204 
   1205 	return length;
   1206 }
   1207 
   1208 static void
   1209 axe_csum_cfg(struct axe_softc *sc)
   1210 {
   1211 	struct usbnet * const un = &sc->axe_un;
   1212 	struct ifnet * const ifp = usbnet_ifp(un);
   1213 	uint16_t csum1, csum2;
   1214 
   1215 	if ((un->un_flags & AX772B) != 0) {
   1216 		csum1 = 0;
   1217 		csum2 = 0;
   1218 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
   1219 			csum1 |= AXE_TXCSUM_IP;
   1220 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
   1221 			csum1 |= AXE_TXCSUM_TCP;
   1222 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
   1223 			csum1 |= AXE_TXCSUM_UDP;
   1224 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
   1225 			csum1 |= AXE_TXCSUM_TCPV6;
   1226 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
   1227 			csum1 |= AXE_TXCSUM_UDPV6;
   1228 		axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
   1229 		csum1 = 0;
   1230 		csum2 = 0;
   1231 
   1232 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
   1233 			csum1 |= AXE_RXCSUM_IP;
   1234 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
   1235 			csum1 |= AXE_RXCSUM_TCP;
   1236 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
   1237 			csum1 |= AXE_RXCSUM_UDP;
   1238 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
   1239 			csum1 |= AXE_RXCSUM_TCPV6;
   1240 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
   1241 			csum1 |= AXE_RXCSUM_UDPV6;
   1242 		axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
   1243 	}
   1244 }
   1245 
   1246 static int
   1247 axe_init_locked(struct ifnet *ifp)
   1248 {
   1249 	AXEHIST_FUNC(); AXEHIST_CALLED();
   1250 	struct usbnet * const un = ifp->if_softc;
   1251 	struct axe_softc * const sc = usbnet_softc(un);
   1252 	int rxmode;
   1253 
   1254 	usbnet_isowned(un);
   1255 
   1256 	if (usbnet_isdying(un))
   1257 		return EIO;
   1258 
   1259 	/* Cancel pending I/O */
   1260 	usbnet_stop(un, ifp, 1);
   1261 
   1262 	usbnet_lock_mii_un_locked(un);
   1263 
   1264 	/* Reset the ethernet interface. */
   1265 	axe_reset(un);
   1266 
   1267 #if 0
   1268 	ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
   1269 			      AX_GPIO_GPO2EN, 5, in_pm);
   1270 #endif
   1271 	/* Set MAC address and transmitter IPG values. */
   1272 	if (AXE_IS_178_FAMILY(un)) {
   1273 		axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1274 		axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
   1275 		    (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
   1276 	} else {
   1277 		axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
   1278 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
   1279 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
   1280 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
   1281 	}
   1282 	if (AXE_IS_178_FAMILY(un)) {
   1283 		un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
   1284 		if ((un->un_flags & AX772B) != 0 &&
   1285 		    (ifp->if_capenable & AX_RXCSUM) != 0) {
   1286 			sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
   1287 			un->un_flags |= AXCSUM_FRAME;
   1288 		} else {
   1289 			sc->sc_lenmask = AXE_HDR_LEN_MASK;
   1290 			un->un_flags |= AXSTD_FRAME;
   1291 		}
   1292 	}
   1293 
   1294 	/* Configure TX/RX checksum offloading. */
   1295 	axe_csum_cfg(sc);
   1296 
   1297 	if (un->un_flags & AX772B) {
   1298 		/* AX88772B uses different maximum frame burst configuration. */
   1299 		axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
   1300 		    ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
   1301 		    ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
   1302 	}
   1303 	/* Enable receiver, set RX mode */
   1304 	rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
   1305 	if (AXE_IS_178_FAMILY(un)) {
   1306 		if (un->un_flags & AX772B) {
   1307 			/*
   1308 			 * Select RX header format type 1.  Aligning IP
   1309 			 * header on 4 byte boundary is not needed when
   1310 			 * checksum offloading feature is not used
   1311 			 * because we always copy the received frame in
   1312 			 * RX handler.  When RX checksum offloading is
   1313 			 * active, aligning IP header is required to
   1314 			 * reflect actual frame length including RX
   1315 			 * header size.
   1316 			 */
   1317 			rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
   1318 			if (un->un_flags & AXCSUM_FRAME)
   1319 				rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
   1320 		} else {
   1321 			/*
   1322 			 * Default Rx buffer size is too small to get
   1323 			 * maximum performance.
   1324 			 */
   1325 #if 0
   1326 			if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
   1327 				/* Largest possible USB buffer size for AX88178 */
   1328 			}
   1329 #endif
   1330 			rxmode |= AXE_178_RXCMD_MFB_16384;
   1331 		}
   1332 	} else {
   1333 		rxmode |= AXE_172_RXCMD_UNICAST;
   1334 	}
   1335 
   1336 
   1337 	/* If we want promiscuous mode, set the allframes bit. */
   1338 	if (ifp->if_flags & IFF_PROMISC)
   1339 		rxmode |= AXE_RXCMD_PROMISC;
   1340 
   1341 	if (ifp->if_flags & IFF_BROADCAST)
   1342 		rxmode |= AXE_RXCMD_BROADCAST;
   1343 
   1344 	DPRINTF("rxmode 0x%#jx", rxmode, 0, 0, 0);
   1345 
   1346 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
   1347 
   1348 	/* Load the multicast filter. */
   1349 	axe_setiff_locked(un);
   1350 
   1351 	usbnet_unlock_mii_un_locked(un);
   1352 
   1353 	return usbnet_init_rx_tx(un);
   1354 }
   1355 
   1356 static int
   1357 axe_init(struct ifnet *ifp)
   1358 {
   1359 	struct usbnet * const un = ifp->if_softc;
   1360 
   1361 	usbnet_lock(un);
   1362 	int ret = axe_init_locked(ifp);
   1363 	usbnet_unlock(un);
   1364 
   1365 	return ret;
   1366 }
   1367 
   1368 static int
   1369 axe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1370 {
   1371 	struct usbnet * const un = ifp->if_softc;
   1372 
   1373 	switch (cmd) {
   1374 	case SIOCADDMULTI:
   1375 	case SIOCDELMULTI:
   1376 		axe_setiff(un);
   1377 		break;
   1378 	default:
   1379 		break;
   1380 	}
   1381 
   1382 	return 0;
   1383 }
   1384 
   1385 static void
   1386 axe_stop(struct ifnet *ifp, int disable)
   1387 {
   1388 	struct usbnet * const un = ifp->if_softc;
   1389 
   1390 	usbnet_lock_mii_un_locked(un);
   1391 	axe_reset(un);
   1392 	usbnet_unlock_mii_un_locked(un);
   1393 }
   1394 
   1395 MODULE(MODULE_CLASS_DRIVER, if_axe, "usbnet");
   1396 
   1397 #ifdef _MODULE
   1398 #include "ioconf.c"
   1399 #endif
   1400 
   1401 static int
   1402 if_axe_modcmd(modcmd_t cmd, void *aux)
   1403 {
   1404 	int error = 0;
   1405 
   1406 	switch (cmd) {
   1407 	case MODULE_CMD_INIT:
   1408 #ifdef _MODULE
   1409 		error = config_init_component(cfdriver_ioconf_axe,
   1410 		    cfattach_ioconf_axe, cfdata_ioconf_axe);
   1411 #endif
   1412 		return error;
   1413 	case MODULE_CMD_FINI:
   1414 #ifdef _MODULE
   1415 		error = config_fini_component(cfdriver_ioconf_axe,
   1416 		    cfattach_ioconf_axe, cfdata_ioconf_axe);
   1417 #endif
   1418 		return error;
   1419 	default:
   1420 		return ENOTTY;
   1421 	}
   1422 }
   1423